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Abstract:We investigate the problem

{{
{{
{

−∆u = |u|p−2u in Ω,
∂u
∂n
= λb(x)|u|q−2u on ∂Ω,

where Ω is a bounded and smooth domain of ℝN (N ≥ 2), 1 < q < 2 < p, λ > 0, and b ∈ C1+α(∂Ω) for some
α ∈ (0, 1). We show that ∫∂Ω b < 0 is a necessary and sufficient condition for the existence of nontrivial non-
negative solutions of this problem. Under the additional condition b+ ̸≡ 0 we show that for λ > 0 sufficiently
small this problem has two nontrivial non-negative solutions which converge to zero in C(Ω) as λ → 0. When
p < 2∗ we also provide the asymptotic profiles of these solutions.

Keywords: Semilinear elliptic equation, indefinite type problem, nonlinear boundary condition, asymptotic
profiles

MSC 2010: 35J25, 35J61, 35J20, 35B09, 35B32

1 Introduction and statements of the main results
Let Ω be a bounded domain of ℝN (N ≥ 2) with smooth boundary ∂Ω. This article is concerned with the
problem

{{
{{
{

−∆u = |u|p−2u in Ω,
∂u
∂n
= λb(x)|u|q−2u on ∂Ω,

(Pλ)

where
∙ ∆ = ∑Nj=1 ∂2

∂x2j
is the usual Laplacian inℝN ,

∙ λ > 0,
∙ 1 < q < 2 < p,
∙ b ∈ C1+α(∂Ω) with α ∈ (0, 1),
∙ n is the unit outer normal to the boundary ∂Ω.

Our purpose is to investigate the existence, non-existence and multiplicity of non-negative solutions
of (Pλ). A function u ∈ X := H1(Ω) is said to be a solution of (Pλ) if it is a weak solution, i.e. it satisfies

∫
Ω

∇u∇w − ∫
Ω

|u|p−2uw − λ ∫
∂Ω

b(x)|u|q−2uw = 0 for all w ∈ X.

In this case, u ∈ W2,r
loc (Ω) ∩ C

θ(Ω) for some r > N and 0 < θ < 1 (see [10, Theorem 9.11], [13, Theorem 2.2]).
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A solution of (Pλ) is said to be positive if it satisfies u > 0 on Ω, whereas it is said to be nontrivial and
non-negative if it satisfies u ≥ 0 and u ̸≡ 0. By theweakmaximumprinciple [10, Theorem9.1], nontrivial non-
negative solutions of (Pλ) satisfy u > 0 in Ω. In addition, if u is a positive solution of (Pλ), then u ∈ C2+θ(Ω)
for some θ ∈ (0, 1).

If u is a nontrivial non-negative solution of (Pλ), then there holds

∫
Ω

up−1 + λ ∫
∂Ω

b(x)uq−1 = 0.

It follows that u ≡ 0 is the only non-negative solution of (Pλ) if b ≥ 0.We then shall assume b− ̸≡ 0 throughout
this article.

In view of the condition 1 < q < 2 < p and its weak formulation, when b+ ̸≡ 0, then (Pλ) belongs to the
class of concave-convex type problems, which has been widely investigated, mostly for Dirichlet boundary
conditions, since the work of Ambrosetti, Brezis and Cerami [3]. To the best of our knowledge, very fewworks
have been devoted to concave-convex problems under Neumann boundary conditions.

Tarfulea [17] considered the problem

{{
{{
{

−∆u = λ|u|q−2u + a(x)|u|p−2u in Ω,
∂u
∂n
= 0 on ∂Ω,

(1.1)

where a ∈ C(Ω). He proved that ∫Ω a < 0 is a necessary and sufficient condition for the existence of a positive
solution of (1.1). By making use of the sub-supersolutions method, the author proved the existence of Λ > 0
such that problem (Pλ) has at least one positive solution for λ < Λ which converges to 0 in L∞(Ω) as λ → 0+,
and no positive solution for λ > Λ.

Garcia-Azorero, Peral and Rossi [8] dealt with the problem

{{
{{
{

−∆u + u = |u|p−2u in Ω,
∂u
∂n
= λ|u|q−2u on ∂Ω.

(1.2)

By means of a variational approach, they proved that if 1 < q < 2 and p = 2N
N−2 when N > 2, then there exists

Λ1 > 0 such that (1.2) has at least two positive solutions for λ < Λ1, at least one positive solution for λ = Λ1,
and no positive solution for λ > Λ1.

In [2], Alama investigated the problem

{{
{{
{

−∆u = μu + b(x)uq−1 + γup−1 in Ω,
∂u
∂n
= 0 on ∂Ω,

where μ ∈ ℝ and γ > 0. A special difficulty in this problem is the possible existence of dead core solutions
when b changes sign. Using variational, bifurcation and sub-supersolutions techniques, the author proved
existence, non-existence and multiplicity results for non-negative solutions in accordance with γ and μ.
Moreover, these solutions are shown to be positive in the set where b > 0.

First we shall prove that the condition
∫
∂Ω

b < 0 (1.3)

is necessary for the existence of nontrivial non-negative solutions of (Pλ). This type of condition goes back (at
least) to Bandle, Pozio and Tesei [4]. Next, we show that (1.3) and b+ ̸≡ 0 yield the existence of two nontrivial
non-negative solutions of (Pλ). Whenever (1.3) holds, we set

c∗ = (
−∫∂Ω b
|Ω| )

1
p−q

.

We now state our main result.
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Theorem 1.1. The following statements hold:
(i) Problem (Pλ) has a nontrivial non-negative solution if and only if ∫∂Ω b < 0.
(ii) If∫∂Ω b < 0, then there exists λ0 > 0 such that (Pλ) has a nontrivial non-negative solution u2,λ for0 < λ < λ0.

Moreover, u2,λ → 0 in C2+θ(Ω) for some θ ∈ (0, 1) as λ → 0+. If in addition b+ ̸≡ 0, then (Pλ) has another
nontrivial non-negative solution u1,λ for0 < λ < λ0, which also satisfies u1,λ → 0 in H1(Ω) ∩ Cθ(Ω) for some
θ ∈ (0, 1) as λ → 0+. More precisely:
(a) Assume p < 2∗. If λn → 0+, then, up to a subsequence, λ−1/(2−q)n u1,λn → w0 in H1(Ω) ∩ Cθ(Ω) for some

θ ∈ (0, 1), where w0 is a nontrivial non-negative ground state solution of

{{
{{
{

∆w = 0 in Ω,
∂w
∂n
= b(x)|w|q−2w on ∂Ω.

(Pw)

Furthermore, w0 > 0 inΩ, the set {x ∈ ∂Ω : w0 = 0} has no interior points in the relative topology of ∂Ω,
and it is contained in {x ∈ ∂Ω : b(x) ≤ 0}.

(b) λ−1(p−q)u2,λ → c∗ in C2+θ(Ω) for some θ ∈ (0, 1) as λ → 0+. In particular, u2,λ is a positive solution
of (Pλ) for λ > 0 sufficiently small.

Remark 1.2. From the assertion that wλ := λ−1/(p−q)u2,λ → c∗ > 0 in C2+θ(Ω), we can deduce the fact that
u2,λ = λ1/(p−q)wλ → 0 in C2+θ(Ω) as λ → 0+, and that u2,λ > 0 in Ω for sufficiently small λ > 0. Moreover,
when p < 2∗, there holds u1,λ

u2,λ = o(λ
σ) for any σ < p−2

(2−q)(p−q) as λ → 0+. In particular, we have u2,λ > u1,λ ≥ 0
for sufficiently small λ > 0, see Figure 1.

The rest of this article is devoted to the proof of Theorem1.1. In the next subsection,we showTheorem1.1 (ii).
In Section 1.2, we assume p < 2∗ and follow a variational approach to obtain u1,λ, u2,λ and their asymptotic
profiles as λ → 0+. In Sections 1.3 and 1.4, we use these asymptotic profiles to remove the condition p < 2∗.
More precisely, we employ the sub-supersolutions method to obtain a positive solution having some features
of u1,λ. In addition, we employ a Lyapunov–Schmidt-type reduction to obtain u2,λ. Finally, in Section 1.5 we
prove a positivity property for non-negative solutions of (Pλ) in the case N = 1.

Throughout this article we use the following notations and conventions:
∙ The infimum of an empty set is assumed to be∞.
∙ Unless otherwise stated, for any f ∈ L1(Ω) the integral ∫Ω f is considered with respect to the Lebesgue

measure, whereas for any g ∈ L1(∂Ω) the integral∫∂Ω g is consideredwith respect to the surfacemeasure.
∙ For r ≥ 1 the Lebesgue norm in Lr(Ω) will be denoted by ‖ ⋅ ‖r and the usual norm of H1(Ω) by ‖ ⋅ ‖.
∙ The strong and weak convergence are denoted by→ and⇀, respectively.
∙ The positive and negative parts of a function u are defined by u± := max{±u, 0}.
∙ If U ⊂ ℝN , then we denote the closure of U by U and the interior of U by intU.
∙ The support of a measurable function f is denoted by supp f .

1.1 A necessary condition

Proposition 1.3. If (Pλ) has a nontrivial non-negative solution, then ∫∂Ω b < 0.

Proof. Let u be a nontrivial non-negative solution of (Pλ). By the weak maximum principle we know that
u > 0 in Ω. Moreover, by [12, Proposition 5.1] we have u > 0 in {x ∈ ∂Ω : b(x) > 0}. Given ε > 0, we take
w = (u + ε)1−q in the weak formulation of (Pλ) to get

(1 − q) ∫
Ω

|∇u|2(u + ε)−q − ∫
Ω

up−1(u + ε)1−q − λ ∫
∂Ω

b( u
u + ε )

q−1
= 0.

Since q > 1, we obtain
λ ∫
Γu

b( u
u + ε )

q−1
< −∫

Ω

up−1(u + ε)1−q ,
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u2,λ
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Figure 1: Ordering of u1,λ and u2,λ.

where Γu = ∂Ω ∩ supp u. Letting ε → 0 and using the Lebesgue dominated convergence theorem, we get

λ ∫
Γu

b ≤ −∫
Ω

up−q ,

so that ∫Γu b < 0. Now, since b ≤ 0 in ∂Ω \ Γu, we have

∫
∂Ω

b = ∫
Γu

b + ∫
∂Ω\Γu

b ≤ ∫
Γu

b < 0,

as desired.

1.2 The variational approach

Throughout this subsection, we assume that p < 2∗, so that weak solutions of (Pλ) are critical points of the
C1 functional Iλ, defined on X by

Iλ(u) :=
1
2E(u) −

1
p
A(u) − λ

q
B(u),

where

E(u) = ∫
Ω

|∇u|2, A(u) = ∫
Ω

|u|p , B(u) = ∫
∂Ω

b(x)|u|q .

Let us recall that X = H1(Ω) is equipped with the usual norm

‖u‖ = [∫
Ω

(|∇u|2 + u2)]
1
2
.

We shall study the geometry of Iλ to obtain non-negative weak solutions of (Pλ) for a small λ > 0.
The next result will be used repeatedly in this section.

Lemma 1.4. The following statements hold:
(i) If (un) is a sequence such that un ⇀ u0 in X and lim E(un) = 0, then u0 is a constant and un → u0 in X.
(ii) Assume ∫∂Ω b < 0. If v ̸≡ 0 and B(v) ≥ 0, then v is not a constant.
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Proof. (i) Since un ⇀ u0 in X and E is weakly lower semicontinuous, we have 0 ≤ E(u0) ≤ lim E(un) = 0.
Hence, E(u0) = 0,which implies that u0 is a constant. In addition, if un ↛ u0 in X, then E(u0) < lim E(un) = 0,
which is a contradiction. Therefore, un → u0 in X.

(ii) If v is a non-zero constant and B(v) ≥ 0, then B(v) = |v|p ∫∂Ω b < 0, which yields a contradiction.

Let us introduce some useful subsets of X:

E+ = {u ∈ X : E(u) > 0},
A+ = {u ∈ X : A(u) > 0},
B± = {u ∈ X : B(u) ≷ 0}, B0 = {u ∈ X : B(u) = 0}, B±0 = B

± ∪ B0.

The Nehari manifold associated to Iλ is given by

Nλ := {u ∈ X \ {0} : ⟨I󸀠λ(u), u⟩ = 0} = {u ∈ X \ {0} : E(u) = A(u) + λB(u)}.

We shall use the splitting
Nλ = N+λ ∪ N

−
λ ∪ N

0
λ ,

where

N±λ := {u ∈ Nλ : ⟨J
󸀠
λ(u), u⟩ ≷ 0} = {u ∈ Nλ : E(u) ≶ λ

p − q
p − 2B(u)}

= {u ∈ Nλ : E(u) ≷
p − q
2 − q A(u)}

and
N0
λ = {u ∈ Nλ : ⟨J

󸀠
λ(u), u⟩ = 0}.

Here, Jλ(u) = ⟨I󸀠λ(u), u⟩ = E(u) − A(u) − λB(u).
Note that any nontrivial weak solution of (Pλ) belongs to Nλ. Furthermore, it follows from the implicit

function theorem that Nλ \ N0
λ is a C

1 manifold and local minimizers of the restriction of Iλ to this manifold
are critical points of Iλ (see for instance [7, Theorem 2.3]).

To analyze the structure of N±λ , we consider the fibering maps corresponding to Iλ, which are defined,
for u ̸= 0, as follows:

ju(t) := Iλ(tu) =
t2

2 E(u) −
tp

p
A(u) − λ t

q

q
B(u), t > 0.

It is easy to see that
j󸀠u(1) = 0 ≶ j󸀠󸀠u (1) ⇐⇒ u ∈ N±λ

and, more generally,
j󸀠u(t) = 0 ≶ j󸀠󸀠u (t) ⇐⇒ tu ∈ N±λ .

Having this characterization in mind, we look for conditions under which ju has a critical point. Set

iu(t) := t−q ju(t) =
t2−q

2 E(u) − t
p−q

p
A(u) − λB(u), t > 0.

Let u ∈ E+ ∩ A+ ∩ B+. Then iu has a global maximum iu(t∗) at some t∗ > 0 and, moreover, t∗ is unique. If
iu(t∗) > 0, then ju has a global maximumwhich is positive and a local minimumwhich is negative. Moreover,
these are the only critical points of ju.

We shall require a condition on λ that provides iu(t∗) > 0. Note that

i󸀠u(t) =
2 − q
2 t1−qE(u) − p − q

p
tp−q−1A(u) = 0

if and only if

t = t∗ := ( p(2 − q)E(u)2(p − q)A(u))
1
p−2 .
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Moreover,

iu(t∗) =
p − 2

2(p − q)(
p(2 − q)
2(p − q))

2−q
p−2 E(u)

p−q
p−2

A(u)
2−q
p−2
−
λ
q
B(u) > 0

if and only if

0 < λ < Cpq
E(u)

p−q
p−2

B(u)A(u)
2−q
p−2

, (1.4)

where
Cpq = (

q(p − 2)
2(p − q))(

p(2 − q)
2(p − q))

2−q
p−2 .

Note that

F(u) = E(u)
p−q
p−2

B(u)A(u)
2−q
p−2

satisfies F(tu) = F(u) for t > 0, i.e. F is homogeneous of order 0.
We then introduce

λ0 = inf{E(u)
p−q
p−2 : u ∈ E+ ∩ A+ ∩ B+, C−1pqB(u)A(u)

2−q
p−2 = 1}.

Note that if E+ ∩ A+ ∩ B+ = 0, then λ0 = ∞.
We then deduce the following result, which provides sufficient conditions for the existence of critical

points of ju.

Proposition 1.5. The following statements hold:
(i) If either u ∈ A+ ∩ B− or u ∈ E+ ∩ A+ ∩ B0, then ju has a positive global maximum at some t1 > 0, i.e.

j󸀠u(t1) = 0 > j󸀠󸀠u (t1) and ju(t) < ju(t1) for t ̸= t1. Moreover, t1 is the unique critical point of ju.
(ii) Assume∫∂Ω b < 0. Then λ0 > 0 and for any 0 < λ < λ0 and u ∈ E

+ ∩ A+ ∩ B+ themap ju has a negative local
minimum at t1 > 0 and a positive global maximum at t2 > t1, which are the only critical points of ju.

Proof. The first assertion is straightforward from the definition of ju. Let us assume now ∫∂Ω b < 0. First, we
show that λ0 > 0. Assume λ0 = 0, so that we can choose un ∈ E+ ∩ A+ ∩ B+ satisfying

E(un) → 0 and C−1pqB(un)A(un)
2−q
p−2 = 1.

If (un) is bounded in X, then we may assume that un ⇀ u0 for some u0 ∈ X and un → u0 in Lp(Ω) and Lq(Ω).
It follows from Lemma 1.4 (i) that u0 is a constant and un → u0 in X. From un ∈ A+ ∩ B+ we deduce that
u0 ∈ A+0 ∩ B

+
0 . In addition, there holds

C−1pqB(u0)A(u0)
2−q
p−2 = 1,

so that u0 ̸≡ 0. From Lemma 1.4 we get a contradiction.
Let us assume now that ‖un‖ → ∞. Set vn = un

‖un‖ , so that ‖vn‖ = 1. We may assume that vn ⇀ v0 and
vn → v0 in Lp(Ω). Since E(vn) → 0 and vn ∈ A+, we can argue as for un to reach a contradiction. Finally, for
any u ∈ E+ ∩ A+ ∩ B+ we have

λ0 ≤ Cpq
E(u)

p−q
p−2

B(u)A(u)
2−q
p−2

.

Thus, if 0 < λ < λ0, then iu(t∗) > 0 from (1.4).

Proposition 1.6. We have the following results:
(i) N0

λ is empty.
(ii) If b+ ̸≡ 0 and ∫∂Ω b < 0, then N

+
λ is non-empty for 0 < λ < λ0.

(iii) If b− ̸≡ 0, then N−λ is non-empty.

Proof. (i) From Proposition 1.5 it follows that there is no t > 0 such that j󸀠u(t) = j󸀠󸀠u (t) = 0, i.e. N0
λ is empty.

(ii) Since b+ ̸≡ 0, we can find u ∈ B+. Moreover, since ∫∂Ω b < 0, by Lemma 1.4 we have u ∈ E+ ∩ A+. By
Proposition 1.5 we infer that for 0 < λ < λ0 there are 0 < t1 < t2 such that t1u ∈ N+λ and t2u ∈ N

−
λ .
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(iii) Since b− ̸≡ 0, we can find u ∈ B−, so that u ∈ A+ ∩ B−. By Proposition 1.5 we infer that there exists
t1 > 0 such that t1u ∈ N−λ .

The following result provides some properties of N+λ .

Lemma 1.7. Assume b+ ̸≡ 0 and ∫∂Ω b < 0. Then, for 0 < λ < λ0, we have the following:
(i) N+λ ⊂ B

+.
(ii) N+λ is bounded in X.
(iii) Iλ(u) < 0 for any u ∈ N+λ .

Proof. (i) Let u ∈ N+λ . Then 0 ≤ E(u) < λ
p−q
p−2B(u), i.e. u ∈ B

+.
(ii) Assume (un) ⊂ N+λ and ‖un‖ → ∞. Set vn = un

‖un‖ . It follows that ‖vn‖ = 1, so we may assume that
vn ⇀ v0 in X, B(vn) is bounded and vn → v0 in Lp(Ω) (implying A(v) → A(v0)). Since un ∈ N+λ , we see that

E(vn) < λ
p − q
p − 2B(vn)‖un‖

q−2,

and thus lim supn E(vn) ≤ 0. Lemma 1.4 (i) yields that v0 is a constant and vn → v0 in X. Consequently,
‖v0‖ = 1 and v0 is a non-zero constant. On the other hand, since un ∈ N+λ , we have vn ∈ N

+
λ , so vn ∈ B

+. It
follows that v0 ∈ B+0, a contradiction.

(iii) Let u ∈ N+λ , so that u ∈ B+. Hence u is not a constant and E(u) > 0. Thus u ∈ E+ ∩ A+ ∩ B+ and by
Proposition 1.5 (ii) we infer that Iλ(u) < 0 and t > 1 if j󸀠u(t) > 0.

Proposition 1.8. Assume b+ ̸≡ 0 and ∫∂Ω b < 0. Then, for any 0 < λ < λ0, there exists u1,λ ≥ 0 such that
Iλ(u1,λ) = minN+

λ
Iλ < 0. In particular, u1,λ is a nontrivial non-negative solution of (Pλ).

Proof. Let 0 < λ < λ0. By Proposition 1.6 we know that N+λ is non-empty. We consider a minimizing sequence
(un) ⊂ N+λ , i.e.

Iλ(un) → inf
N+
λ

Iλ < 0.

Since (un) is bounded in X, we may assume that un ⇀ u0 in X, un → u0 in Lp(Ω) and Lq(∂Ω). It follows that

Iλ(u0) ≤ lim inf
n

Iλ(un) = inf
N+
λ

Iλ(u) < 0,

so that u0 ̸≡ 0. Moreover, as un ∈ B+, we have u0 ∈ B+0 and u0 is not a constant. So u0 ∈ E+ ∩ A+ ∩ B+. Since
0 < λ < λ0, Proposition 1.5 yields that t1u0 ∈ N+λ for some t1 > 0. Assume un ↛ u0. If 1 < t1, then we have

Iλ(t1u0) = ju0 (t1) ≤ ju0 (1) < lim sup jun (1) = lim sup Iλ(un) = inf
N+
λ

Iλ ,

which is impossible. If t1 ≤ 1, then j󸀠un (t1) ≤ 0 for every n, so that

j󸀠u0 (t1) < lim sup j󸀠un (t1) ≤ 0,

which is a contradiction. Therefore, un → u0. Now, since un → u0, we have j󸀠u0 (1) = 0 ≤ j
󸀠󸀠
u0 (1). But j

󸀠󸀠
u0 (1) = 0

is impossible by Proposition 1.6 (i). Thus u0 ∈ N+λ and Iλ(u0) = infN+
λ
Iλ. We set u1,λ = u0.

Next, we obtain a nontrivial non-negative weak solution of (Pλ), which achieves infN−
λ
Iλ for λ ∈ (0, λ0). The

following result provides some properties of N−λ .

Lemma 1.9. Assume ∫∂Ω b < 0. Then Iλ(u) > 0 for 0 < λ < λ0 and any u ∈ N
−
λ .

Proof. Let u ∈ N−λ . If u ∈ B0, then u is not a constant, so u ∈ E
+ ∩ A+. Thus, byProposition1.5, ju has apositive

global maximum at t = 1. The same conclusion holds if u ∈ B−. Finally, if u ∈ B+, then u is not a constant.
Hence u ∈ E+ ∩ A+, and since 0 < λ < λ0, Proposition 1.5 yields again that ju has a positive global maximum
at t = 1.

Proposition 1.10. Let∫∂Ω b < 0. Then for any λ ∈ (0, λ0) there exists u2,λ ≥ 0 such that Iλ(u2,λ) = minN−
λ
Iλ > 0.

In particular, u2,λ is a non-negative solution of (Pλ).
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Proof. First of all, since ∫∂Ω b < 0, we have b
− ̸≡ 0, so that by Proposition 1.6 we know that N−λ is non-empty.

In addition, since Iλ(u) > 0 for u ∈ N−λ , we can choose un ∈ N
−
λ such that

Iλ(un) → inf
N−
λ

Iλ ≥ 0.

We claim that (un) is bounded in X. Indeed, there exists C > 0 such that Iλ(un) ≤ C. Since un ∈ Nλ, we deduce

(
1
2 −

1
p )
E(un) − λ(

1
q
−
1
p )
B(un) = Iλ(un) ≤ C.

Assume ‖un‖ → ∞ and set vn = un
‖un‖ , so that ‖vn‖ = 1.Wemay assume that vn ⇀ v0 in X and vn → v0 in Lp(Ω)

and Lq(∂Ω). Then, from

(
1
2 −

1
p )
E(vn) ≤ λ(

1
q
−
1
p )
B(vn)‖un‖q−2 + C‖un‖−2,

we infer that lim supn E(vn) ≤ 0. Lemma 1.4 (i) yields that v0 is a constant and vn → v0 in X, which implies
‖v0‖ = 1. On the other hand, since un ∈ Nλ, we have

E(un) = λB(un) + A(un).

Dividing by ‖un‖p and passing to the limit as n →∞, we get A(v0) = 0, i.e. v0 = 0, which is impossible. Hence
(un) is bounded. We may then assume that un ⇀ u0 in X and un → u0 in Lp(Ω) and Lq(∂Ω). If u0 ≡ 0, then
we set vn = un

‖un‖ . From

E(un) <
p − q
2 − q A(un)

we get
E(vn) <

p − q
2 − q A(vn)‖un‖

p−2 → 0.

So we can assume that vn → v0 with v0 constant. Moreover, from

E(un) = λB(un) + A(un)

we deduce that B(vn) → 0, i.e. B(v0) = 0, which contradicts ∫∂Ω b < 0. Thus, u0 ̸≡ 0. By Proposition 1.5 we
infer the existence of t2 > 0 such that t2u0 ∈ N−λ . Assume un ↛ u0. Then, since un ∈ N−λ , we get

Iλ(t2u0) < lim sup Iλ(t2un) ≤ lim sup Iλ(un) = inf
N−
λ

Iλ ,

which is a contradiction. Therefore, un → u0. In particular, we get j󸀠u0 (1) = 0 and j
󸀠󸀠
u0 (1) < 0. SinceN

0
λ is empty

for λ ∈ (0, λ0), we infer that u0 ∈ N−λ and Iλ(u0) = infN−
λ
Iλ. We set u2,λ = u0.

We now discuss the asymptotic profiles of u1,λ and u2,λ as λ → 0+.

Lemma 1.11. Assume b+ ̸≡ 0 and ∫∂Ω b < 0. Then, for 0 < λ < λ0, there holds

Iλ(u1,λ) < −D0λ
2

2−q

for some D0 > 0.

Proof. Let u ∈ N+λ . Thus, u ∈ A
+ ∩ E+ ∩ B+. Then

Iλ(u) ≤ ̃Iλ(u) :=
1
2E(u) −

λ
q
B(u).

Thus Iλ(tu) ≤ ̃Iλ(tu) for every t > 0. Note that ̃Iλ(tu) has a global minimum point t0 given by

t0 = (
λB(u)
E(u) )

1
2−q
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and
̃Iλ(t0u) = −

2 − q
2q λtq0B(u) = −

2 − q
2q
(λB(u))

2
2−q

E(u)
q

2−q
= −D0λ

2
2−q ,

where

D0 =
2 − q
2q

B(u)
2

2−q

E(u)
q

2−q
.

It follows that if Iλ(tu) has a local minimum at t1, then

Iλ(t1u) < −D0λ
2

2−q

with D0 > 0. Therefore, Iλ(u) < −D0λ
2

2−q for every u ∈ N+λ . In particular,

Iλ(u1,λ) < −D0λ
2

2−q .

We now determine the asymptotic profile of u1,λ as λ → 0+.

Proposition 1.12. Assume b+ ̸≡ 0 and ∫∂Ω b < 0. Then u1,λ → 0 in X as λ → 0+. Moreover, if λn → 0+, then, up
to a subsequence, λ−1/(2−q)n u1,λn → w0 in X, where w0 is a non-negative ground state solution, i.e. a least energy
solution of

{{
{{
{

∆w = 0 in Ω,
∂w
∂n
= b(x)|w|q−2w on ∂Ω.

(Pw)

Proof. First we show that u1,λ remains bounded in X as λ → 0+. Indeed, assume that ‖u1,λ‖ → ∞ and set
vλ = u1,λ
‖u1,λ‖ . Wemay then assume that for some v0 ∈ X we have vλ ⇀ v0 in X and vλ → v0 in Lp(Ω) and Lq(∂Ω).

Since u1,λ ∈ Nλ, we have
E(vλ)‖u1,λ‖2−p = A(vλ) + λB(vλ)‖u1,λ‖q−p .

Passing to the limit as λ → 0+, we obtain A(v0) = 0, i.e. v0 ≡ 0. From u1,λ ∈ N+λ we have

E(vλ) < λ
p − q
p − 2B(vλ)‖u1,λ‖

q−2,

so that lim supλ E(vλ) ≤ 0. By Lemma 1.4 (i) we infer that v0 is a constant and vλ → 0 in X, which contradicts
‖vλ‖ = 1 for every λ. Thus u1,λ stays bounded in X as λ → 0+.

Hencewemayassume that u1,λ ⇀ u0 in X and u1,λ → u0 in Lp(Ω) and Lq(∂Ω) as λ → 0+. Since u1,λ ∈ N+λ ,
we observe that

E(u1,λ) < λ
p − q
p − 2B(u1,λ). (1.5)

Passing to the limit as λ → 0+, we get lim supλ E(u1,λ) ≤ 0. Lemma 1.4 (ii) provides that u0 is a constant and
u1,λ → u0 in X. Since u1,λ ∈ B+, we have u0 ∈ B+0, and ∫∂Ω b < 0 implies that u0 = 0.

Let wλ = λ−1/(2−q)u1,λ. We claim that wλ remains bounded in X as λ → 0+. Indeed, from (1.5) we have

E(wλ) <
p − q
p − 2B(wλ).

Let us assume that ‖wλ‖ → ∞ and set ψλ = wλ
‖wλ‖ . We may assume that ψλ ⇀ ψ0 and ψλ → ψ0 in Lp(Ω) and

Lq(∂Ω). It follows that
E(ψλ) <

p − q
p − 2B(ψλ)‖wλ‖

q−2,

so that lim supλ E(ψλ) ≤ 0. By Lemma 1.4 (i) we infer that ψ0 is a constant and ψλ → ψ0 in X. On the other
hand, from u1,λ ∈ B+wehaveψλ ∈ B+, and consequentlyψ0 ∈ B+0 . From∫∂Ω b < 0we infer thatψ0 ≡ 0,which
contradicts ‖ψ0‖ = 1. Hence wλ stays bounded in X as λ → 0+, and we may assume that wλ ⇀ w0 in X and
wλ → w0 in Lp(Ω) and Lq(∂Ω). Note that wλ satisfies

∫
Ω

∇wλ∇w − λ
p−2
2−q ∫

Ω

wp−1λ w − ∫
∂Ω

b(x)wq−1λ w = 0 for all w ∈ X.
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Takingw = wλ − w0 and letting λ → 0,we deduce thatwλ → w0 in X. Moreover,w0 is aweak solution of (Pw).
We claim that w0 ̸≡ 0. Indeed, by Lemma 1.11 we have

Iλ(u1,λ) < −D0λ
2

2−q ,

with D0 > 0. Hence
λ

2
2−q

2 E(wλ) −
λ

p
2−q

p
A(wλ) −

λ
2

2−q

q
B(wn) < −D0λ

2
2−q ,

so that
1
2E(wλ) −

λ
p−2
2−q

p
A(wλ) − B(wλ) < −D0.

Letting λ → 0, we obtain
1
2E(w0) − B(w0) ≤ −D0,

and consequently w0 ̸≡ 0.
It remains to prove that w0 is a ground state solution of (Pw), i.e.

Ib(w0) = min
Nb

Ib ,

where
Ib(u) =

1
2E(u) −

1
q
B(u)

for u ∈ X and
Nb = {u ∈ X \ {0} : ⟨I󸀠b(u), u⟩ = 0} = {u ∈ X \ {0} : E(u) = B(u)}

is the Nehari manifold associated to Ib. Since ∫∂Ω b < 0, it is easily seen that there exists wb ̸= 0 such that
Ib(wb) = minNb Ib. Note that w0 ∈ Nb, and consequently Ib(wb) ≤ Ib(w0). We now prove the reverse inequal-
ity. Since wb is non-constant, we have wb ∈ B+ ∩ E+. We set ub = λ1/(2−q)wb. Let λn → 0+. Since ub ∈ B+ ∩ E+
for every n, there exists tn > 0 such that tnub ∈ N+λn . Hence

t2nE(ub) < λn
p − q
p − 2 t

q
nB(ub),

i.e.
t2−qn <

p − q
p − 2

B(wb)
E(wb)
=
p − q
p − 2 .

We may then assume that tn → t0. We claim that t0 = 1. Indeed, note that from tnub ∈ N+λn we infer that

t2nE(ub) = λn t
q
nB(ub) + t

p
nA(ub),

so
t2−qn E(wb) = B(wb) + t

p−q
n λ

p−2
2−q
n A(wb).

From E(wb) = B(wb) we infer that t0 = 1, as claimed. Now, since tnub ∈ N+λn , we have

Iλn (u1,λn ) ≤ Iλn (tnub).

It follows that
Iλn (u1,λn ) ≤ (

1
2 −

1
q )
t2nE(ub) − (

1
p
−
1
q )
tpnA(ub).

Hence
λ

2
2−q
n
2 E(wn) −

λ
p

2−q
n
p
A(wn) −

λ
2

2−q
n
q
B(wn) ≤

q − 2
2q t2nλ

2
2−q
n E(wb) −

q − p
pq

λ
p

2−q
n tpnA(wb),

i.e.
1
2E(wn) −

λ
p−2
2−q
n
p
A(wn) −

1
q
B(wn) ≤

q − 2
2q t2nE(wb) −

q − p
pq

λ
p−2
2−q
n tpnA(wb).



H. Ramos Quoirin and K. Umezu, An elliptic equation | 185

Since wn → w0 in X, we obtain
Ib(w0) ≤ (

1
2 −

1
q )
E(wb) = Ib(wb).

Therefore, Ib(w0) = Ib(wb), as claimed.

We now consider the asymptotic behavior of u2,λ as λ → 0+. We shall prove that u2,λ → 0 in X as λ → 0+.

Lemma 1.13. Assume ∫∂Ω b < 0. Then there exists a constant C > 0 such that ‖u2,λ‖ ≤ C as λ → 0+.

Proof. First we show that there exists a constant C1 > 0 such that Iλ(u2,λ) ≤ C1 for every λ ∈ (0, λ0). To this
end, we consider the eigenvalue problem

{
−∆φ = λφ in Ω,
φ = 0 on ∂Ω.

Let λ1 be the first eigenvalue of this problem and φ1 > 0 be an eigenfunction associated to λ1. Note that
φ1 ∈ E+ ∩ A+ ∩ B0 and

jφ1 (t) =
t2

2 E(φ1) −
tp

p
A(φ1),

so that jφ1 has a global maximum at some t2 > 0, which implies t2φ1 ∈ N−λ . Moreover, neither jφ1 nor t2φ1
depend on λ ∈ (0, λ0). Let C1 = jφ1 (t2) = Iλ(t2φ1) > 0. Since Iλ(u2,λ) = minN−

λ
Iλ, we have

(
1
2 −

1
p )
E(u2,λ) − (

1
q
−
1
p )
λB(u2,λ) = Iλ(u2,λ) ≤ C1.

Assume by contradiction that λn → 0 and ‖u2,λn‖ → ∞. We set vn = u2,λn
‖u2,λn ‖

and assume that vn ⇀ v0 in X.
Then

(
1
2 −

1
p )
E(vn) ≤ (

1
q
−
1
p )
λB(vn)‖u2,λn‖q−2 + C1‖u2,λn‖−2.

We obtain lim sup E(vn) ≤ 0, and by Lemma 1.4 we infer that v0 is a constant and vn → v0 in X. In particular,
‖v0‖ = 1. Moreover, from

E(u2,λn ) = λnB(u2,λn ) + A(u2,λn )

we get A(vn) → 0, i.e. A(v0) = 0, which provides v0 = 0, and we get a contradiction. Therefore, (u2,λ) stays
bounded in X as λ → 0.

Proposition 1.14. Assume ∫∂Ω b < 0. Then u2,λ → 0 and λ−1/(p−q)u2,λ → c∗ in X as λ → 0+.

Proof. By Lemma 1.13, up to a subsequence, we have u2,λ ⇀ u0 in X and u2,λ → u0 in Lp(Ω) and Lq(∂Ω)
as λ → 0. Since u2,λ is a weak solution of (Pλ), it follows that u2,λ → u0 in X and u0 is a non-negative solution
of

{{
{{
{

−∆u = up−1 in Ω,
∂u
∂n
= 0 on ∂Ω.

But the only non-negative solution of this problem is u ≡ 0. Hence u0 ≡ 0 and u2,λ → 0 in X as λ → 0. We
now set wλ = λ−1/(p−q)u2,λ. Then wλ is a non-negative solution of

{{
{{
{

−∆w = λ
p−2
p−q wp−1 in Ω,

∂w
∂n
= λ

p−2
p−q b(x)wq−1 on ∂Ω.

(1.6)

We claim that wλ stays bounded in X as λ → 0. Indeed, assume that ‖wλ‖ → ∞ and ψλ = wλ
‖wλ‖ ⇀ ψ0 in Xwith

ψλ → ψ0 in Lp(Ω) and Lq(∂Ω) as λ → 0. Let

cλ = (
−λ ∫∂Ω b
|Ω| )

1
p−q

.

We now use the fact that cλ ∈ N−λ for any λ > 0. Hence

Iλ(u2,λ) ≤ Iλ(cλ) = Dλ
p
p−q ,
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where

D = p − q
pq
(− ∫∂Ω b)

p
p−q

|Ω|
q
p−q

.

Thus
p − 2
2p λ

2
p−q E(wλ) −

p − q
pq

λ
p
p−q B(wλ) ≤ Dλ

p
p−q ,

so that
p − 2
2p E(wλ) −

p − q
pq

λ
p−2
p−q B(wλ) ≤ Dλ

p−2
p−q .

Dividing the latter inequality by ‖wλ‖2, we get E(ψλ) → 0, and consequently ψλ → ψ0 in X as λ → 0 and
ψ0 is a constant. Furthermore, integrating (1.6), we obtain

∫
Ω

wp−1λ + ∫
∂Ω

bwq−1λ = 0, (1.7)

so that ∫Ω ψ
p−1
λ → 0, i.e. ψ0 = 0, which is impossible since ‖ψ0‖ = 1. Therefore, wλ stays bounded in X as

λ → 0. We may then assume that wλ ⇀ w0 in X and wλ → w0 in Lp(Ω) and Lq(∂Ω) as λ → 0. It follows that

∫
Ω

∇w0∇ϕ = 0 for all ϕ ∈ X.

Hence w0 is a constant and wλ → w0 in X. It remains to show that w0 ̸= 0. If w0 = 0, then we set again
ψλ = wλ

‖wλ‖ . From
E(wλ) <

p − 2
p − q

λ
p−2
p−q A(wλ),

we infer that E(ψλ) → 0, so that ψλ → ψ0 in X and ψ0 is a constant. Moreover, from

0 ≤ A(wλ) + B(wλ)

we have
−‖wλ‖p−qA(ψλ) ≤ B(ψλ),

so that B(ψ0) ≥ 0. From ∫∂Ω b < 0 we deduce that ψ0 = 0, which contradicts ‖ψ0‖ = 1. Therefore, we have
proved that w0 is a non-zero constant. Finally, letting λ → 0 in (1.7), we obtain wp−10 |Ω| = −w

q−1
0 ∫∂Ω b,

i.e. w0 = c∗.

Remark 1.15. By a bootstrap argument based on elliptic regularity just as in the proof of [13, Theorem
2.2], we deduce that as λ → 0+, we have wλ → c∗ > 0 in W1,r(Ω) for r > N, and therefore in Cθ(Ω) for some
θ ∈ (0, 1). It follows that wλ > c

∗

2 on Ω for sufficiently small λ > 0. Hence, an elliptic regularity argument
yields that wλ → c∗ in C2+θ(Ω) for some θ ∈ (0, 1) as λ → 0+.

1.3 A result via sub-supersolutions

Wenowuse the asymptotic profile of u1,λ as λ → 0 to obtainUλ by the sub-supersolutionsmethod. Therefore,
the condition p < 2∗ can be dropped. We shall consider an auxiliary problem first.

Lemma 1.16. Assume that

∫
∂Ω

b < 0 and 0 < δ < −
∫∂Ω b
|Ω| .

Then the problem
{{
{{
{

−∆w = δ|w|q−2w in Ω,
∂w
∂n
= b(x)|w|q−2w on ∂Ω.

(Pb,δ)

has a nontrivial non-negative solution wδ.
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Proof. First we claim that there exists C > 0 such that

∫
Ω

|∇w|2 ≥ C‖w‖2 for all w such that δ‖w‖qq + B(w) ≥ 0.

Indeed, assume by contradiction that (wn) is a sequence such that

δ‖wn‖
q
q + B(wn) ≥ 0 and ∫

Ω

|∇wn|2 <
1
n
‖wn‖2.

Setting vn = wn
‖wn‖ ,wemayassume that vn ⇀ v0 inX and vn → v0 in Lq(Ω)and Lq(∂Ω). Then lim sup E(vn) ≤ 0,

so that, by Lemma 1.4, vn → v0 in X and v0 is a constant. On the other hand, we have δ‖v0‖qq + B(v0) ≥ 0,
so that δ|Ω| + ∫∂Ω b ≥ 0, which contradicts our assumption. The claim is thus proved. We now consider the
functional

Jδ(w) =
1
2E(w) −

1
q
δ‖w‖qq −

1
q
B(w), w ∈ X.

We claim that Jδ is bounded from below. Indeed, assume by contradiction that Jδ(wn) → −∞ for some
sequence (wn). Then δ‖wn‖qq + B(wn) → ∞, and consequently ‖wn‖ → ∞. From the claim above we deduce
that E(wn) ≥ C‖wn‖2, and consequently Jδ(wn) → ∞, a contradiction. Therefore, Jλ is bounded from below,
and since it is weakly lower semicontinuous, it achieves its infimum. Consequently, choosing w0 such that
δ‖w0‖

q
q + B(w0) > 0, we see that Jλ(tw0) < 0 if t > 0 is small enough. It follows that the infimum of Jλ is nega-

tive, and consequently Jλ has a nontrivial critical point wδ, which is a solution of (Pb,δ). Since Jλ is even, we
may choose wδ non-negative.

Proposition 1.17. Assume b+ ̸≡ 0 and ∫∂Ω b < 0. Then there exists Λ0 > 0 such that (Pλ) has a nontrivial non-
negative solution Uλ for 0 < λ < Λ0. Moreover, Uλ → 0 in X as λ → 0+.

Proof. First we obtain a supersolution of (Pλ). To this end, we consider a nontrivial non-negative solution wδ
of (Pb,δ). We set u = λ1/(2−q)wδ. Then u is a weak supersolution of (Pλ) if

λ
1

2−q δ∫
Ω

wδ(x)q−1v + λ
1

2−q ∫
∂Ω

b(x)wδ(x)q−1v ≥ λ
p−1
2−q ∫

Ω

wδ(x)p−1v + λ
1

2−q ∫
∂Ω

b(x)wδ(x)q−1v

for every non-negative v ∈ X. It then suffices to have

δ ≥ λ
p−2
2−q wδ(x)p−q

for a.e. x ∈ Ω such that wδ(x) > 0. This inequality is satisfied if

λ ≤ Λ0 := (δ‖wδ‖q−p∞ )
2−q
p−2 .

On the other hand, since b+ ̸≡ 0 there exist a non-empty, open and smooth (N − 1)-dimensional surface
Γ0 ⊂ ∂Ω and η0 > 0 such that b ≥ η0 in Γ0. Let ϕ1 be a positive eigenfunction associated to σ1(λ), the first
eigenvalue of

{{{{
{{{{
{

−∆ϕ = σϕ in Ω,
∂ϕ
∂n
= λϕ on Γ0,

ϕ = 0 on Γ1,

where Γ1 = ∂Ω \ Γ0. Note that ϕ1 is a weak solution of this problem (see Garcia-Melian, Rossi and Sabina de
Lis [9]), i.e. ϕ1 ∈ H1

Γ1 (Ω) and

∫
Ω

∇ϕ∇v − σ1 ∫
Ω

ϕv − λ ∫
Γ0

ϕv = 0 for all v ∈ H1
Γ1 (Ω),

where H1
Γ1 (Ω) = {v ∈ X : u|Γ1 = 0}. From Agmon, Douglis and Nirenberg [1] and Stampacchia [16] we know

that ϕ1 ∈ C2+θ(Ω ∪ Γ0 ∪ Γ1) ∩ Cθ(Ω) for some θ ∈ (0, 1), and thus, by the strong maximum principle and the
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D

Γ2

Γ3
∂Ω

Ω

Figure 2: Subdomain D.

boundary point lemma, we have ∂ϕ1
∂n < 0 on Γ1 and ϕ1 > 0 on Ω ∪ Γ0. As for the W2,p-regularity of ϕ1, we

know (cf. Beirão da Veiga [5, Theorem B]) that ϕ1 ∈ W2,r(Ω) for some r ∈ (1, 43 ). Note that σ1(λ) < 0 for λ > 0.
We set u = εϕ1, where ε > 0. Then u is a weak subsolution of (Pλ) if

ε(λ ∫
Γ0

ϕ1v + σ(λ) ∫
Ω

ϕ1v) ≤ εp−1 ∫
Ω

ϕp−11 v + λεq−1 ∫
Γ0

bϕq−11 v

for every non-negative v ∈ X. Since σ1(λ) < 0, it then suffices to have (εϕ1)2−q ≤ b, which holds for ε > 0
sufficiently small.

Now, to apply the method of super and subsolutions we need to verify that wδ > 0 in a neighborhood
of Γ0. Let D be a smooth subdomain of Ω such that Γ2 := Ω ∩ ∂D and Γ3 := ∂D \ Γ2 are non-empty, open
and smooth (N − 1)-dimensional surfaces. In addition, we assume that ∂D = Γ2 ∪ γ ∪ Γ3 with γ = Γ2 ∩ Γ3,
see Figure 2. By assumption there exists a constant d > 0 such that b > 0 in Γ3 = {x ∈ ∂Ω : dist(x, Γ0) < d}.
We then see that wδ is a weak supersolution of the concave problem

{{{{
{{{{
{

−∆u = δuq−1 in D,
∂u
∂n
= b(x)uq−1 on Γ3,

u = 0 on Γ2.

(Qb)

To construct a subsolution of (Qb), we consider the problem

{{{{
{{{{
{

−∆ϕ = λϕ in D,
∂ϕ
∂n
= 0 on Γ3,

ϕ = 0 on Γ2.

This eigenvalue problem possesses a smallest eigenvalue, which is positive. We denote by Φ1 a positive
eigenfunction associated to this eigenvalue. We see that Φ1 is a weak subsolution of (Qb) if ‖Φ1‖C(D) is suffi-
ciently small. Hence, the comparison principle [12, Proposition A.1] shows that Φ1 ≤ wδ on D. In particular,
0 < Φ1 ≤ wδ on Γ3, as desired.

Finally, taking ε > 0 smaller if necessary, we have εϕ1 ≤ u in Ω. By [11, Theorem 2] we deduce that (Pλ)
has a solution Uλ which satisfies

εϕ1 ≤ Uλ ≤ λ
1

2−q wδ

in Ω for λ < Λ0. In particular, we have Uλ → 0 in C(Ω), and consequently in X, as λ → 0+.

1.4 A bifurcation result

We now use a bifurcation technique to obtain Vλ for λ > 0 sufficiently close to 0 if ∫∂Ω b < 0. Saut and
Schereur [14] have originally carried out this kind of bifurcation analysis by using the Lyapunov–Schmidt
method. To the best of our knowledge, this approach has been first applied to the case of nonlinear boundary
conditions in [18].
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Weconsider the following problem,which corresponds to (Pλ) after the change of variablew = λ−1/(p−q)u:

{{
{{
{

−∆w = λ
p−2
p−q wp−1 in Ω,

∂w
∂n
= λ

p−2
p−q bwq−1 on ∂Ω.

(1.8)

Let us recall that

c∗ = (
−∫∂Ω b
|Ω| )

1
p−q

.

Proposition 1.18. Assume ∫∂Ω b < 0. Then we have the following:
(i) If (1.8) has a sequence of non-negative solutions (λn , wn) such that λn → 0+, wn → c in C(Ω) and c is

a positive constant, then c = c∗.
(ii) Conversely, (1.8) has, for |λ| sufficiently small, a bifurcation branch (λ, w(λ)) of positive solutions (param-

eterized by λ) emanating from the trivial line {(0, c) : c is a positive constant} at (0, c∗) and such that, for
0 < θ ≤ α, the mapping λ 󳨃→ w(λ) ∈ C2+θ(Ω) is continuous. Moreover, the set {(λ, w)} of positive solutions
of (1.8) around (λ, w) = (0, c∗) consists of the union

{(0, c) : c is a positive constant, |c − c∗| ≤ δ1} ∪ {(λ, w(λ)) : |λ| ≤ δ1}

for some δ1 > 0.

Proof. The proof is similar to the one of [12, Proposition 5.3].
(i) Let wn be non-negative solutions of (1.8) with λ = λn, where λn → 0+. By the Green formula we have

∫
Ω

wp−1n + ∫
∂Ω

bwq−1n = 0.

Passing to the limit as n →∞, we deduce the desired conclusion.
(ii)We reduce (1.8) to a bifurcation equation inℝ2 by the Lyapunov–Schmidt procedure:we use the usual

orthogonal decomposition
L2(Ω) = ℝ ⊕ V,

where V = {v ∈ L2(Ω) : ∫Ω v = 0}, and the projection Q : L2(Ω) → V given by

v = Qu = u − 1
|Ω| ∫

Ω

u.

The problem of finding a positive solution of (1.8) then reduces to the following problems:

{{{{
{{{{
{

− ∆v + μ
|Ω| ∫

∂Ω

(t + v)q−1 = μQ[(t + v)p−1] in Ω,

∂v
∂n
= μb(t + v)q−1 on ∂Ω,

(1.9)

and
∫
Ω

(t + v)p−1 + ∫
∂Ω

b(t + v)q−1 = 0, (1.10)

where
μ = λ

p−2
p−q ̸= 0, t = 1

|Ω| ∫
Ω

w, v = w − t.

To solve (1.9) in the framework of Hölder spaces, we set

Y = {v ∈ C2+θ(Ω) : ∫
Ω

v = 0},

Z = {(ϕ, ψ) ∈ Cθ(Ω) × C1+θ(∂Ω) : ∫
Ω

ϕ + ∫
∂Ω

ψ = 0}.
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Let c > 0 be a constant and U ⊂ ℝ × ℝ × Y be a small neighborhood of (0, c, 0). The nonlinear mapping
F : U → Z is given by

F(μ, t, v) = (−∆v − μQ[(t + v)p−1] + μ
|Ω| ∫

∂Ω

b(t + v)q−1, ∂v
∂n
− μb(t + v)q−1).

The Fréchet derivative Fv of F with respect to v at (0, c, 0) is given by the formula

Fv(0, c, 0)v = (−∆v,
∂v
∂n)

.

Since Fv(0, c, 0) is a continuous and bijective linear mapping, the implicit function theorem [15, Theo-
rem 13.3] implies that the set F(μ, t, v) = 0 around (0, c, 0) consists of a unique C∞ function v = v(μ, t) in
a neighborhood of (μ, t) = (0, c) which satisfies v(0, c) = 0. Now, plugging v(μ, t) in (1.10), we obtain the
bifurcation equation

Φ(μ, t) = ∫
Ω

(t + v(μ, t))p−1 + ∫
∂Ω

b(t + v(μ, t))q−1 = 0 for (μ, t) ≃ (0, c).

It is clear that Φ(0, c∗) = 0. Differentiating Φ with respect to t at (0, c∗), we get

Φt(0, c∗) = ∫
Ω

(p − 1)(c∗ + v(0, c∗))p−2(1 + vt(0, c∗))

+ ∫
∂Ω

(q − 1)b(c∗ + v(0, c∗))q−2(1 + vt(0, c∗))

= (p − 1)(c∗)p−2 ∫
Ω

(1 + vt(0, c∗)) + (q − 1)(c∗)q−2 ∫
∂Ω

b(1 + vt(0, c∗)).

Differentiating (1.9) with respect to t and plugging (μ, t) = (0, c∗) into it, we have vt(0, c∗) = 0. Hence,

Φt(0, c∗) = (p − 1)(c∗)p−2|Ω| + (q − 1)(c∗)q−2 ∫
∂Ω

b = |Ω|(p − q)(c∗)p−2 > 0.

By the implicit function theorem, the function

w(λ) = t(μ) + v(μ, t(μ)) with μ = λ
p−2
p−q

satisfies the desired assertion.

Remark 1.19. Combining Remark 1.15 and the uniqueness result in Proposition 1.18 (ii) for a smooth curve
of bifurcating positive solutions of (1.8) at (0, c∗), we infer that the positive solution λ−1/(p−q)w(λ) of (Pλ)
constructedwith the bifurcating positive solutionw(λ) of (1.8) coincideswith u2,λ for sufficiently small λ > 0.
We summarize our results in Table 1.

1.5 Positivity in the case N = 1
We now show the positivity of nontrivial non-negative weak solutions for the one-dimensional case of (Pλ).
We take Ω = I = (0, 1) and show that nontrivial non-negative solutions satisfy u > 0 on I. More precisely, we
consider nontrivial non-negative weak solutions of the problem

{{{
{{{
{

−u󸀠󸀠 = up−1 in I,
−u󸀠(0) = λb0u(0)q−1,
u󸀠(1) = λb1u(1)q−1,

(1.11)

where 1 < q < 2 < p and b0, b1 ∈ ℝ. A non-negative function u ∈ H1(I) is a non-negative weak solution
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Solution Approach Asymptotic order as λ→ 0+ Positivity Proposition

u1,λ variational (in N+λ ) ∼ λ
1

2−q (up to a subsequence) in Ω ∪ {x ∈ ∂Ω : b(x) > 0} 1.12
u2,λ variational (in N−λ ) ∼ λ

1
p−q in Ω 1.14

Uλ sub- and supersolutions ∼ λ
1

2−q (at most) in Ω ∪ {x ∈ ∂Ω : b(x) > 0} 1.17
λ

1
p−q w(λ) bifurcation ∼ λ

1
p−q in Ω 1.18

Table 1: Results on nontrivial non-negative solutions of (Pλ).

of (1.11) if it satisfies

∫
I

u󸀠ϕ󸀠 = λ(b0u(0)q−1ϕ(0) + b1u(1)q−1ϕ(1)) + ∫
I

up−1ϕ for all ϕ ∈ H1(I).

Proposition 1.20. Let b0, b1 ∈ ℝ be arbitrary. Then any nontrivial non-negative weak solution u of (1.11)
satisfies u > 0 in I.

Proof. If u is a non-negative weak solution of (1.11), then, thanks to the inclusion H1(I) ⊂ C(I) (see [6]), we
have u ∈ C(I). Moreover, we claim that u ∈ H2(I), so that u ∈ C1(I). Indeed, from the definition we derive

∫
I

u󸀠ϕ󸀠 = ∫
I

up−1ϕ for all ϕ ∈ C1c (I).

This implies that (u󸀠)󸀠 = −up−1 in I in the distribution sense. By the chain rule we obtain up−1 ∈ H1(I). By
definition we infer that u ∈ H2(I). From the inclusion H2(I) ⊂ C1(I) it follows that u ∈ C1(I).

In fact, by a bootstrap argument and elliptic regularity, we have u ∈ C2(I). Hence, it follows that
u ∈ C1(I) ∩ C2(I), andwe infer that u > 0 in I by the strongmaximumprinciple. In order to show that u(0) > 0,
we assume by contradiction that u(0) = 0. Then the boundary point lemma yields −u󸀠(0) < 0. However, the
boundary condition in (1.11) is understood in the classical sense under the condition u ∈ C1(I) ∩ C2(I), and
thus u󸀠(0) = 0, which is a contradiction. Likewise, we can show that u(1) > 0.

Remark 1.21. Using the same argument as in Proposition 1.20, we infer that in the case N = 1 nontrivial
non-negative solutions of (Pw) satisfy w > 0 on Ω.
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