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Abstract: We investigate the problem

—Au = |[ulP~%u inQ,
ou

i q-2

5n Ab(O)|u|?“u  on 0Q,

where Q is a bounded and smooth domain of R¥ (N >2),1<g <2 <p,A>0,and b € C**(0Q) for some
a € (0, 1). We show that JaQ b < 01is a necessary and sufficient condition for the existence of nontrivial non-
negative solutions of this problem. Under the additional condition b* # 0 we show that for A > 0 sufficiently
small this problem has two nontrivial non-negative solutions which converge to zero in C(Q) as A — 0. When
p < 2* we also provide the asymptotic profiles of these solutions.
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1 Introduction and statements of the main results

Let Q be a bounded domain of R¥ (N > 2) with smooth boundary 0Q. This article is concerned with the
problem

—Au = |ulP~%u in Q,
ou (Pp)
U b7 20,
5n )|ul’“u  on
where
e A= Zfil a"—; is the usual Laplacian in RV,
e A>0, !

e 1<g<2<p,
e beC™0Q)witha € (0,1),
o nisthe unit outer normal to the boundary 0Q.
Our purpose is to investigate the existence, non-existence and multiplicity of non-negative solutions
of (P). A function u € X := H'(Q) is said to be a solution of (P,) if it is a weak solution, i.e. it satisfies

JVUVW - J-Iulp’zuw -2 J bOO)|ul?2uw =0 forallw e X.
Q Q 20
In this case, u € le(;C’(Q) N C%Q) forsomer > Nand O < 6 < 1 (see [10, Theorem 9.11], [13, Theorem 2.2]).
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A solution of (Py) is said to be positive if it satisfies u > 0 on Q, whereas it is said to be nontrivial and
non-negative if it satisfies u > 0 and u # 0. By the weak maximum principle [10, Theorem 9.1], nontrivial non-
negative solutions of (P;) satisfy u > 0 in Q. In addition, if u is a positive solution of (P;), then u € C2*¢(Q)
for some 6 € (0, 1).

If u is a nontrivial non-negative solution of (P,), then there holds

Jup‘l +A J b(x)u?! =o.
Q 20

It follows that u = 0 is the only non-negative solution of (P;) if b > 0. We then shall assume b~ # 0 throughout
this article.

In view of the condition 1 < g < 2 < p and its weak formulation, when b* # 0, then (P,) belongs to the
class of concave-convex type problems, which has been widely investigated, mostly for Dirichlet boundary
conditions, since the work of Ambrosetti, Brezis and Cerami [3]. To the best of our knowledge, very few works
have been devoted to concave-convex problems under Neumann boundary conditions.

Tarfulea [17] considered the problem

—Au=Au|%u +a)ulP?u inQ,

d (1.1)

U _ 0 on oQ,

on
where a € C(Q). He proved that fQ a < 01is anecessary and sufficient condition for the existence of a positive
solution of (1.1). By making use of the sub-supersolutions method, the author proved the existence of A > 0
such that problem (P,) has at least one positive solution for A < A which converges to 0 in L*°(Q) as A — 0%,
and no positive solution for A > A.

Garcia-Azorero, Peral and Rossi [8] dealt with the problem

~Au+u=uP?u inQ,
ou (1.2)
— =Alu|%u onoQ.
on
By means of a variational approach, they proved thatif 1 < g < 2and p = ﬁ—f’z when N > 2, then there exists
A1 > 0 such that (1.2) has at least two positive solutions for A < Ay, at least one positive solution for A = A1,
and no positive solution for A > Aj.
In [2], Alama investigated the problem
—Au = pu + b(x)u?t +yuP! inQ,
ou
— =0 on o0Q,
on
where p € R and y > 0. A special difficulty in this problem is the possible existence of dead core solutions
when b changes sign. Using variational, bifurcation and sub-supersolutions techniques, the author proved
existence, non-existence and multiplicity results for non-negative solutions in accordance with y and u.
Moreover, these solutions are shown to be positive in the set where b > 0.
First we shall prove that the condition
J b<0 (1.3)
o)
is necessary for the existence of nontrivial non-negative solutions of (P,). This type of condition goes back (at
least) to Bandle, Pozio and Tesei [4]. Next, we show that (1.3) and b* # 0 yield the existence of two nontrivial
non-negative solutions of (P;). Whenever (1.3) holds, we set

_aQbﬁ
(el

c* =
1

We now state our main result.
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Theorem 1.1. The following statements hold:

(i) Problem (P,) has a nontrivial non-negative solution if and only if Iao b <O.

(i) If f 50 b < 0, thenthere exists Ao > O such that (Py) has a nontrivial non-negative solution u 5 for0 < A < Ao.
Moreover, uy p — 0in c29(Q) for some 6 € (0, 1) as A — O*. Ifin addition b* # 0, then (P;) has another
nontrivial non-negative solution uy  for 0 < A < Ao, which also satisfiesui y — Oin HY(Q)n Ce(ﬁ)forsome
0 € (0, 1) as A — 0*. More precisely:

(a) Assumep < 2*.If A, — O*, then, up to a subsequence, Ay > Puy 5. — wo in H(Q) n C°(Q) for some
6 € (0, 1), where wy is a nontrivial non-negative ground state solution of

)

Aw =0 inQ,
ow (Pw)
—=b -2 0Q.
n O)lw|T*w  on
Furthermore, wo > 0in Q, the set {x € 0Q : wo = 0} has no interior points in the relative topology of 0Q,
and it is contained in {x € 0Q : b(x) < O}
(b) A1y, 3 — c* in C2*9(Q) for some 6 € (0, 1) as A — O*. In particular, u; , is a positive solution
of (Py) for A > 0 sufficiently small.

Remark 1.2. From the assertion that w; := A-Y/® @y, ; — c¢* > 0 in €C2*?(Q), we can deduce the fact that
uy p = AY®P-Dw, - 0 in €2*9(Q) as A — 0%, and that u, 4 > 0 in Q for sufficiently small A > 0. Moreover,
when p < 2*, there holds % =0(A9) for any o < % as A — 0. In particular, we have u 2 > u32 >0
for sufficiently small A > O, see Figure 1.
The rest of this article is devoted to the proof of Theorem 1.1. In the next subsection, we show Theorem 1.1 (ii).
In Section 1.2, we assume p < 2* and follow a variational approach to obtain u; 4, u»,2 and their asymptotic
profiles as A — 0*. In Sections 1.3 and 1.4, we use these asymptotic profiles to remove the condition p < 2*.
More precisely, we employ the sub-supersolutions method to obtain a positive solution having some features
of u; . In addition, we employ a Lyapunov-Schmidt-type reduction to obtain u; ,. Finally, in Section 1.5 we
prove a positivity property for non-negative solutions of (P,) in the case N = 1.
Throughout this article we use the following notations and conventions:
o The infimum of an empty set is assumed to be co.
« Unless otherwise stated, for any f € L1(Q) the integral IQ f is considered with respect to the Lebesgue
measure, whereas for any g € L1(0Q) the integral Ia q 8 is considered with respect to the surface measure.
« Forr > 1 the Lebesgue norm in L'(Q) will be denoted by | - ||, and the usual norm of H*(Q) by | - ||.
o The strong and weak convergence are denoted by — and —, respectively.
« The positive and negative parts of a function u are defined by u* := max{zu, 0}.
« IfU c RY, then we denote the closure of U by U and the interior of U by int U.
o The support of a measurable function f is denoted by supp f.

1.1 A necessary condition

Proposition 1.3. If (Py) has a nontrivial non-negative solution, then JBQ b <O.

Proof. Let u be a nontrivial non-negative solution of (P,). By the weak maximum principle we know that
u > 0 in Q. Moreover, by [12, Proposition 5.1] we have u > 0 in {x € 0Q : b(x) > 0}. Given € > 0, we take
w = (u + £)179 in the weak formulation of (P;) to get

1-q [IvuP@+era- [wiwrea-a [ o(-2)"" =o.
(,! u u+ Ju u+ a!) (u+g)

-1
/\Jb( u )q <—Jup‘1(u+s)1‘q,
u+e

Iy Q

Since g > 1, we obtain
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Uz A

Ui, A

Figure 1: Ordering of uy a2 and uz 2.

where I'y, = 0Q N supp u. Letting € — 0 and using the Lebesgue dominated convergence theorem, we get
AJbg—Jwﬁ,
T, Q

so that Jr b < 0. Now, since b < 0in 0Q \ T'y, we have

Jszb+ j stb<0,

0Q Ty 00\T, Iy

as desired. O

1.2 The variational approach

Throughout this subsection, we assume that p < 2*, so that weak solutions of (P,) are critical points of the
C! functional I, defined on X by

1 = SE@) -~ Aw) - A Bw),
p q
where
E(u) = j|Vu|2, Au) = j|u|P, B(u) = j boOulf.
Q Q

0Q

Let us recall that X = H'(Q) is equipped with the usual norm
%
It = [ [ v + )]

Q

We shall study the geometry of I to obtain non-negative weak solutions of (P;) for a small A > 0.
The next result will be used repeatedly in this section.

Lemma 1.4. The following statements hold:
(1) If (up) is a sequence such that u, — ug in X and lim E(u,) = 0, then ug is a constant and u,, — ug in X.
(ii) Assume IaQ b <0.Ifv#0and B(v) > 0, then v is not a constant.
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Proof. (i) Since u, — up in X and E is weakly lower semicontinuous, we have 0 < E(ug) < lim E(u,) = 0
Hence, E(ug) = 0, which implies that ug is a constant. In addition, ifu, + ugin X, then E(ug) < lim E(u,) = 0
which is a contradiction. Therefore, u, — ug in X.

(ii) If v is a non-zero constant and B(v) > 0, then B(v) = |v|? JaQ b < 0, which yields a contradiction. [J

Let us introduce some useful subsets of X:

E*={ueX:Eu) >0},
A" ={ueX:A) >0},
B*={ueX:Bu)20}, Bo={ueX:B(u)=0}, B;=B"UB,.

The Nehari manifold associated to I, is given by
Ny :={ueX\{0}: (I,'\(u), u) =0} ={u € X\ {0} : E(u) = A(u) + AB(u)}.

We shall use the splitting
Np =N; UNj UNY,

where

Ni = {ue Ny ), u) 20 = fue Ny: E@) s
p

- {u €Ny : E(u) 2

and
N{ ={ueNy: Jj(u),u)=0}.

Here, Ja(u) = (I}(u), u) = E(u) — A(u) — AB(u).

Note that any nontrivial weak solution of (P;) belongs to Nj. Furthermore, it follows from the implicit
function theorem that N, \ N/? is a C! manifold and local minimizers of the restriction of I to this manifold
are critical points of I, (see for instance [7, Theorem 2.3]).

To analyze the structure of N¥, we consider the fibering maps corresponding to I, which are defined,
for u # 0, as follows:

t? tP td
ju(t) := H(tu) = —E(u) - —A(u) -A—B(u), t>O0.
2 p q

It is easy to see that
ju(1)=0sj/(1) & ueN;

and, more generally,
ju®) =0Sji(t) & tueN;.

Having this characterization in mind, we look for conditions under which j, has a critical point. Set

24 tP—q
iy (t) := 9y (t) = - (u)—TA(u)—/lB(u), t>0.

Let u € E* n A" n B*. Then i, has a global maximum i,(t*) at some t* > 0 and, moreover, t* is unique. If
iy(t*) > 0, then j, has a global maximum which is positive and a local minimum which is negative. Moreover,
these are the only critical points of j,,.

We shall require a condition on A that provides i, (t*) > 0. Note that

i) = ——dp-apq) - P9 w-a-140y) =

p-q
p
if and only if
e (PQ-qQEu)\75
=t = (S —giw)
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Moreover, )
. P2 (pQ-@\EEwW™ A
() = — - —B 0
iy(t*) 2(p—q)<2(P—q)) A(u)% q (u) >
if and only if i
0<A< CMLP_ZH, (1.4)
B(u)A(u)r=2
where ( 2 (2
(9~ P2 -q)\7s
P (2(p—q))(2(p—q))
Note that -
Flu) = E(u)r

e

Bw)A(u)r?

satisfies F(tu) = F(u) for t > 0, i.e. F is homogeneous of order 0.
We then introduce

Ao = inf{E(u)fZ%g tueETnATnBY, C;;B(u)A(u)l% =1}

Note that if E* N A* n Bt = 0, then Ay = co.
We then deduce the following result, which provides sufficient conditions for the existence of critical
points of j,.

Proposition 1.5. The following statements hold:

(i) If either u e A* N B~ or u € Et nA* n By, then j, has a positive global maximum at some t, > 0, i.e.
ji(t1) =0 > jl(t1) and j,u(t) < ju(t1) for t # t1. Moreover, t; is the unique critical point of jy,.

(ii) Assume Iao b <0.ThenAy > Oandforany0 <A < Agandu € E* n A* n B* the map j, has a negative local
minimum at t; > 0 and a positive global maximum at t, > t1, which are the only critical points of j,.

Proof. The first assertion is straightforward from the definition of j,. Let us assume now Ia Q b < 0. First, we
show that Ag > 0. Assume A, = 0, so that we can choose u, € E* n A* n B* satisfying

2-q

-2

E(up) >0 and CpgB(un)Aun)r2 = 1.

If (uy) is bounded in X, then we may assume that u,, — ug for some up € X and u,, — ugin LP(Q) and L9(Q).
It follows from Lemma 1.4 (i) that ug is a constant and u, — ug in X. From u, € A* n B* we deduce that
uo € A{ n B{.In addition, there holds

-1 2-q
CrLB Ao = 1,

so that ug # 0. From Lemma 1.4 we get a contradiction.

Let us assume now that |u,| — oo. Set v, = ”ﬁ, so that ||v,| = 1. We may assume that v, — vo and
vn — Vo in LP(Q). Since E(v,) — 0 and v, € A*, we can argue as for u, to reach a contradiction. Finally, for
any u € E*f nA* n B* we have

E(u)r?
BuWAw)#

Thus, if 0 < A < Ag, then i, (t*) > O from (1.4). O

Ap < Cpq

Proposition 1.6. We have the following results:

(i) NYisempty.

(ii) Ifb* £ 0 and IaQ b < 0, then Ny is non-empty for 0 < A < Ao.
(iii) If b~ # O, then N, is non-empty.

Proof. (i) From Proposition 1.5 it follows that there is no ¢ > 0 such that j!,(¢) = ji/(t) = 0, i.e. N/‘\) is empty.
(ii) Since b* # 0, we can find u € B*. Moreover, since fao b < 0, by Lemma 1.4 we have u € E*t n A*. By
Proposition 1.5 we infer that for 0 < A < Ao there are 0 < t; < t; such that t;u € N;{ and fru € N;.
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(iii) Since b~ # 0, we can find u € B™, so that u € A* n B~. By Proposition 1.5 we infer that there exists
t; > Osuchthat tju € Nj. O

The following result provides some properties of N} .

Lemma 1.7. Assume b™ # 0 and JaQ b < 0. Then, for 0 < A < Ay, we have the following:
(i) Ny cB*.

(ii) Ny is bounded in X.

(iii) Ix(u) < O for any u € Nj;.

Proof. (i) Letu € N;.Then O < E(u) < A%B(u), i.e.u € B'.
(ii) Assume (u,) c Ny and [up|| — co. Set v, = ”Eﬁ It follows that [|v,| = 1, so we may assume that

Vp — Vo in X, B(vy) is bounded and v,, — vg in LP(Q) (implying A(v) — A(vo)). Since u, € N}T, we see that

-9

p _
B(vn)llunll92,
p-2

E(vp) <A

and thus lim sup, E(v,) < 0. Lemma 1.4 (i) yields that v, is a constant and v, — vo in X. Consequently,
lvoll = 1 and vq is a non-zero constant. On the other hand, since u, € N;(, we have v, € N;{, so vy, € BT, It
follows that vy € B}, a contradiction.

(iii) Let u € N;, so that u € B*. Hence u is not a constant and E(u) > 0. Thus u € E* n A* n B* and by
Proposition 1.5 (ii) we infer that Iy (u) < 0 and t > 1ifj/ (¢) > 0. O

Proposition 1.8. Assume b* # 0 and Ia(z b < 0. Then, for any 0 < A < Ao, there exists ui >0 such that
I(ui ) = minN; I) < 0. In particular, u,) is a nontrivial non-negative solution of (P,).

Proof. Let0O < A < Ao. By Proposition 1.6 we know that N} is non-empty. We consider a minimizing sequence
(un) ¢ N, i.e.
In(uy) — inf I} < 0.
N

Since (uy) is bounded in X, we may assume that u, — up in X, u,, — up in LP(Q) and L9(0Q). It follows that

Iy(up) < 1imninf1/1(un) =infI (u) <O,
Ny

so that ug # 0. Moreover, as u, € B*, we have uy € Bf and uo is not a constant. So ug € E* n A* n B*. Since
0 < A < Ay, Proposition 1.5 yields that t1ug € Nj{ for some t; > 0. Assume u, + up.If 1 < t;, then we have

I(t1uo) = ju, (1) < ju, (1) < limsupjy, (1) = limsup Iy (uy) = iNn+fI,1,
A

which is impossible. If t; < 1, then jl’,n (t1) < O for every n, so that
juo(t1) < limsupj, (t1) <0,

which is a contradiction. Therefore, u, — uo. Now, since u, — uo, we have j;, (1) = 0 < j; (1). Butj,; (1) =0
is impossible by Proposition 1.6 (i). Thus ug € N;{ and Iy (ug) = ianX I). We set uj 2 = uo. O

Next, we obtain a nontrivial non-negative weak solution of (P,), which achieves inf Ny I for A € (0, Ag). The
following result provides some properties of N .

Lemma 1.9. Assume Lm b <0.ThenIx(u) > 0for0 <A< Apand any u € N;.

Proof. Letu € Ny. If u € By, thenuisnotaconstant,sou € E* n A*. Thus, by Proposition 1.5, j, has a positive
global maximum at ¢t = 1. The same conclusion holds if u € B~. Finally, if u € B*, then u is not a constant.
Henceu € E* n A*, and since 0 < A < Ag, Proposition 1.5 yields again that j,, has a positive global maximum
att=1. O

Proposition 1.10. Let fao b < 0.Thenforany A € (0, Ag) there exists uy y > O such thatI;(uz ) = minNA— I > 0.
In particular, us,) is a non-negative solution of (P;).
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Proof. First of all, since fa o b <0, wehave b~ # 0, so that by Proposition 1.6 we know that N is non-empty.
In addition, since Ix(u) > O for u € N, we can choose u, € N, such that

In(u,) — inf I > 0.
Ny

We claim that (uy) is bounded in X. Indeed, there exists C > 0 such that Iy (uy) < C. Since u, € N, we deduce

(-2

1
5 ria E)B(un) = Ii(up) < C.

Un
lunll?

Assume ||u,|| — coandsetv, = sothat ||v,| = 1. We may assume that v, — vgin X and v, — voin L?(Q)

and L9(0Q). Then, from

1 1 1 1
- = - = q-2 -2
(375 )E0m <A(5 = 2 )BOWIl? + Clunl 2,
we infer that lim sup, E(v,) < 0. Lemma 1.4 (i) yields that v, is a constant and v, — v in X, which implies
[voll = 1. On the other hand, since u,, € N, we have

E(un) = AB(uy) + A(uy).

Dividing by |u,||” and passing to the limit as n — co, we get A(vp) = 0, i.e. vo = 0, which is impossible. Hence
(up) is bounded. We may then assume that u, — ug in X and u,, — up in LP(Q) and L7(0Q). If ug = 0, then

we set vy, = m From

Elun) < 5L Aun)
we get
E(vn) < 222 A unl?=2 - 0.

2-q
So we can assume that v, — vq with v constant. Moreover, from

E(upn) = AB(un) + A(up)

we deduce that B(v,) — 0, i.e. B(vg) = 0, which contradicts fag b < 0. Thus, ug # 0. By Proposition 1.5 we
infer the existence of ¢, > 0 such that tuo € N;. Assume uy /> uo. Then, since u, € N,, we get

I\(taup) < limsup I (touy) < limsup I (uy,) = inf I,
Ny

which is a contradiction. Therefore, u, — ugp. In particular, we get j,'10(1) =0and j,’jo (1) < 0. Since Nfl’ is empty
for A € (0, Ao), we infer that up € Ny and Ix(ug) = ianX I). We set uy,z = uo. O

We now discuss the asymptotic profiles of u;  and uy,2 as A — 0*.

Lemma 1.11. Assume b* # 0 and faQ b < 0. Then, for 0 < A < Ag, there holds
In(u1,0) < ~DoAZ7

for some Dy > 0.

Proof. Letu € N;.Thus, u € A* nE* n B*. Then
. 1 A
I(u) < Iy(u) := EE(u) - aB(u).

Thus Iy (tu) < I (tu) for every t > 0. Note that I} (tu) has a global minimum point t, given by

AB(u)\ 7
to:(E(uu) )
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and
~ 2 - 2-q (AB 2
Intow) = - Iy = -4 M DoA™,
2q 2q E(u)z 7
where ,
2 - g B(u)*
24 Fu)*i
It follows that if I, (tu) has a local minimum at ¢, then
Ii(t1u) < —~DoA™d
with Dg > 0. Therefore, I (u) < —Do/lﬁ foreveryu e N/{. In particular,
Ii(upp) < -DoA™4. O

We now determine the asymptotic profile of u; y as A — 0*.

Proposition 1.12. Assume b* £ 0and Iag b <0.Thenuyp — 0inX asA — 0*. Moreover, if A\, — 0%, then, up
to a subsequence, /\ =Dy, 1,4, — Wo in X, where w is a non-negative ground state solution, i.e. a least energy
solution of

Aw =0 inQ,
(Pw)

ow _ q-2
n b(x)|wl9“w onoQ.

Proof First we show that u; , remains bounded in X as A — 0*. Indeed, assume that |[u; 1| — co and set
Vi "u ” We may then assume that for some vy € X we have vy — vgin Xand vy — voin LP(Q)and L(0Q).
Since u;,3 € Nj, we have

EWD)llugal*? = A(vp) + ABwv)lug Al977.

Passing to the limit as A — O*, we obtain A(vp) = 0,i.e. vo = 0. From uj 1 € N;{ we have

E(vy) <}l B(v/\)llumllq 2

so that lim sup, E(v;) < 0. By Lemma 1.4 (i) we infer that v is a constant and vy — 0 in X, which contradicts
[vall = 1 for every A. Thus u; 3 stays bounded in X as A — 0*.

Hence we may assume thatu; , — upinXanduy 2 — uoin LP(Q)and L9(0Q)asA — O*.Sinceu i € Ny,
we observe that

b—-q
E(u <A
(u1,2) P2
Passing to the limit as A — 0, we get lim sup, E(u; 1) < 0. Lemma 1.4 (ii) provides that ug is a constant and
u1,10 — Uo in X. Since uq3 € B*, we have uy € Bf, and Iag b < 0 implies that ug = 0.
Let wy = A~Y/(=9y, ;. We claim that w) remains bounded in X as A — 0*. Indeed, from (1.5) we have

B(ul,}L). (1-5)

Ewy) < Z=IB(wy).
p-2

Let us assume that |w,|| — oo and set ) = "W i We may assume that 4 — o and P — o in LP(Q) and
Li(0Q). It follows that

E@) < D3 BWIwl’?,

so that lim sup, E(y,) < 0. By Lemma 1.4 (i) we infer that i, is a constant and 3 — ¢ in X. On the other
hand, from uq,) € B* wehave i) € B*, and consequently )y € B{.From f 9 b < 0 weinfer that 1o = 0, which
contradicts [[po|| = 1. Hence w, stays bounded in X as A — 0*, and we may assume that wy — wp in X and
wy — Wo in LP(Q) and L1(0Q). Note that w; satisfies

= Jwﬁ_lw - J b(x)wg_lw =0 forallweX.
Q Q o0
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Taking w = wj — wo and letting A — 0, we deduce that wy, — wq in X. Moreover, wg is a weak solution of (P,,).
We claim that wg # 0. Indeed, by Lemma 1.11 we have

Ii(u12) < —DoA77,

with Dy > 0. Hence

F Z
}“ "Ewy) - —A(WA) - TB(wn) < ~DoA7,
so that
p-2
1 A=
EE(WA)— > A(wy) = B(wy) < =Do.

Letting A — 0, we obtain
1
EE(WO) - B(wg) < -Do,

and consequently wg # O.
It remains to prove that wy is a ground state solution of (P,,), i.e.

Ip(wo) = min I,
N,

where ) 1
Ip(u) = EE(H) - —B(u)
q

for u € Xand
Np={ueX\{0}: (I;(u), u) =0} ={u e X\ {0} : E(u) = B(u)}

is the Nehari manifold associated to Ij. Since fao b < 0, it is easily seen that there exists wj, # 0 such that
Ip(wp) = miny, Ip. Note that wy € N, and consequently I;(wp) < Ip(wo). We now prove the reverse inequal-
ity. Since wy, is non-constant, we have wy, € B* N E*. We set up, = AY/@9wy,. Let A, — 0*. Since up € B* N E*
for every n, there exists t,, > 0 such that t,uy € N/J{n. Hence

t2E(up) < /1,, th(ub)

ie.
p-qgBwy) _p-g
p-2Ewy) p-2°

We may then assume that t,, — to. We claim that to = 1. Indeed, note that from t,uy € N/{n we infer that

2_
t, ¢

t2E(up) = AntgB(up) + thA(up),

SO
p-2
tr “E(wp) = B(wp) + t5 AT A(wp).

From E(wp) = B(wp) we infer that ¢ty = 1, as claimed. Now, since t,up € N*n, we have

Iy, (uy,p,) < Iy, (tqup).

It follows that 11 1 1
2 P
I (u1) < (5 = 2 )aE@s) - (5 = 2 )hAw).
Hence
Zq Azpq Alzq q 2 2 q-p P
A - 2-q - 2-q
5 Ewn) = == Alwn) = = =Blwn) £ == toAn E(wp) = == " trA (W),
ie.
p=2
1 /\rzliq 2 2 q D
SE(Wn) = =—A(wWn) - B(wn)< 92 2 )——A tnA(Wp).
2 p 2q bq
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Since w, — wg in X, we obtain
1 1
Iy(wo) < (5 = = )Ews) = In(wn).
q
Therefore, I(wg) = I (wp), as claimed. O
We now consider the asymptotic behavior of u; ) as A — 0*. We shall prove that u, x — 0in Xas A — 0*.
Lemma 1.13. Assume Iag b < 0. Then there exists a constant C > 0 such that ||u; 2| < C as A — O*.

Proof. First we show that there exists a constant C; > 0 such that I} (u»,1) < C; for every A € (0, Ap). To this
end, we consider the eigenvalue problem

-Ap =Ap inQ,
=0 onoQ.

Let A; be the first eigenvalue of this problem and ¢; > 0 be an eigenfunction associated to A;. Note that
@1 € E*NA*NnBpand

) t? tP
Jp () = ?E(q’l) - FA((pl)’

so that j,, has a global maximum at some ¢, > O, which implies t,¢; € N;. Moreover, neither j,, nor t>¢1
depend on A € (0, Ag). Let C1 = jgy, (t2) = In(t2¢01) > 0. Since I (uz,2) = minNA- I, we have
1 1 1 1
(5 - 2)E@an - (5 - 5 )AB@,) = I(uz,) < Ci.
2 p qa p

Assume by contradiction that A, — 0 and |luz,,, [l — co. We set v, = % and assume that v, — vg in X.
Then -

1 1 1 1
(5- E)E(Vn) < (E - E)AB(vn)nuz,An 1972 + Callua,a, 172

We obtain lim sup E(vy,) < 0, and by Lemma 1.4 we infer that v, is a constant and v,, — v¢ in X. In particular,
Ivoll = 1. Moreover, from

E(uz,p,) = AnB(uza,) + A(uz p,)
we get A(vy) — 0, i.e. A(vp) = 0, which provides vy = 0, and we get a contradiction. Therefore, (u3,1) stays
bounded in X as A — 0. O

Proposition 1.14. Assume Iao b <0.Thenuy — 0and A"Y®P~Dy, ), — c*inX asA — 0*.

Proof. By Lemma 1.13, up to a subsequence, we have u, 3 — up in X and uy 3 — up in L?(Q) and L4(0Q)
asA — 0. Since u; ) is a weak solution of (P,), it follows that u, » — up in X and uo is a non-negative solution
of
-Au=uP' inQ,

ou

i
But the only non-negative solution of this problem is u = 0. Hence up =0 and u 4 —» 0in X as A — 0. We
now set wy = A~Y/(P=9y;, ;. Then w, is a non-negative solution of

0 on 0Q).

“Aw = AFawp1 inQ,
_ (1.6)
M A bowst on oQ.
on
We claim that w, stays bounded in X as A — 0. Indeed, assume that |w,;| — coand Y, = "Vvﬁ — o in X with

YA — Yo in LP(Q) and LI(0Q) as A — 0. Let

c _(_Ajagbyl”
Tl '

We now use the fact that ¢y € N forany A > 0. Hence

I(uz,2) < Ia(cp) = D}lp%q,
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where )
j b)r
D= N JeQ T/ .
Pq |Q|p q
Thus 5
_ 5 _ , )
P Ara E(wy) - P qAﬁB(WA) < DAvq,
so that 5 2 2
_ —g e .
P2 pwy) - P9 25 B(wy) < DAV .
2p q

Dividing the latter inequality by [|w,||2, we get E(4) — 0, and consequently ¥, — o in X as A — 0 and
o is a constant. Furthermore, integrating (1.6), we obtain

wa{_l + J bwi™ =0, (1.7)

Q 0Q

so that jQ 1/)1;’_1 — 0, i.e. P = 0, which is impossible since |po]l = 1. Therefore, w, stays bounded in X as
A — 0. We may then assume that wy — wg in X and wj — wg in LP(Q) and L9(0Q) as A — 0. It follows that

JVW0V¢ =0 forallg € X.
Q

Hence wo is a constant and w, — wq in X. It remains to show that wq # 0. If wg = 0, then we set again
Y2 = quay- From

Ewy) < 2205 aowy),
p—-q

we infer that E(3) — 0, so that i, — o in X and 1)y is a constant. Moreover, from
0 < A(wyp) + B(wy)

we have
—[walP~9 A1) < B(¥ha),

so that B(yo) > 0. From j 50 b < 0 we deduce that 1o = 0, which contradicts [[ipo] = 1. Therefore we have
proved that wg is a non-zero constant. Finally, letting A — 0 in (1.7), we obtain Wp Q| = faQ
i.e.wo =c*.

Remark 1.15. By a bootstrap argument based on elliptic regularity just as in the proof of [13, Theorem
2.2], we deduce that as A — 0%, we have w; — ¢* > 0in WL7(Q) for r > N, and therefore in C?(Q) for some
0 € (0, 1). It follows that w; > % on Q for sufficiently small A > 0. Hence, an elliptic regularity argument
yields that wy — c* in C2*%(Q) for some 6 € (0, 1) as A — O*.

1.3 Aresult via sub-supersolutions

We now use the asymptotic profile of u; y asA — 0 to obtain U, by the sub-supersolutions method. Therefore,
the condition p < 2* can be dropped. We shall consider an auxiliary problem first.

Lemma 1.16. Assume that

b
Jb<0 and 0<5<—faQ

Q-
o0
Then the problem
~Aw = §|w|9 2w inQ,
ow (Pp,s5)
= q-2 Q
n =bX)|w|?7*w onoQ.

has a nontrivial non-negative solution wg.
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Proof. First we claim that there exists C > 0 such that

IlVle > Cllw|)* for all w such that 8|w|7 + B(w) > 0.
Q

Indeed, assume by contradiction that (w,) is a sequence such that

1
8lwnll§ + B(wn) =0 and IlVWnlz < E"Wn”z-
Q

Setting v, = ”zﬁ, we may assume thatv, — vpinXandv, — voinL9(Q)and L9(0Q). Thenlim sup E(v,) < O,
so that, by Lemma 1.4, v, — vo in X and vy is a constant. On the other hand, we have § ||v0||3 + B(vp) = O,
so that 6|Q| + Lm b > 0, which contradicts our assumption. The claim is thus proved. We now consider the
functional
Js(w) = SEwW) - =8Il - ZBw), w e X,
2 g g

We claim that J5 is bounded from below. Indeed, assume by contradiction that Js(w,) — —co for some
sequence (wy). Then 6]wy, IIZ + B(wy) — o0, and consequently [|w,| — oco. From the claim above we deduce
that E(wy) = C|lwyn|?, and consequently J5(w,) — oo, a contradiction. Therefore, J; is bounded from below,
and since it is weakly lower semicontinuous, it achieves its infimum. Consequently, choosing wq such that
5||w0||2 + B(wg) > 0, we see that J(twg) < 0if t > 0 is small enough. It follows that the infimum of J, is nega-
tive, and consequently J; has a nontrivial critical point ws, which is a solution of (Py,s). Since ], is even, we
may choose ws non-negative. O

Proposition 1.17. Assume b* # 0 and JaQ b < 0. Then there exists Ao > 0 such that (P;) has a nontrivial non-
negative solution Uy for 0 < A < Ag. Moreover, Uy — OinX as A — 0*.

Proof. First we obtain a supersolution of (P,). To this end, we consider a nontrivial non-negative solution wg
of (Pp,5). We set u = A1/@~Dwg. Then u is a weak supersolution of (Py) if

A7 5 J ws()T 1y + A7 J bx)ws()T v > A5 J ws()P-1v + AT J bx)ws()T v
Q 0Q Q 0Q

for every non-negative v € X. It then suffices to have
p-2
6> ATaws(x)P 4

for a.e. x € Q such that ws(x) > 0. This inequality is satisfied if
.
A< Ao = (BlwsI%P) 7 .
On the other hand, since b* # O there exist a non-empty, open and smooth (N — 1)-dimensional surface
I'p c 0Q and np > 0 such that b > o in T'y. Let ¢p; be a positive eigenfunction associated to o1(A), the first
eigenvalue of

-Ap=0¢p inQ,

0

£ =A¢ on Fo,
¢) =0 on F],

where T'; = 0Q \ T. Note that ¢1 is a weak solution of this problem (see Garcia-Melian, Rossi and Sabina de
Lis [9]), i.e. 1 € H%I(Q) and

JV(I)VV—Ul J(l)v—/\thv: 0 forallve Hf (Q),
Q Q o

where H%l(Q) ={v € X : ulr, = 0}. From Agmon, Douglis and Nirenberg [1] and Stampacchia [16] we know
that ¢1 € C2*9(Q U Ty uT1) n CY(Q) for some 6 € (0, 1), and thus, by the strong maximum principle and the
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oQ
I3

I

Figure 2: Subdomain D.

boundary point lemma, we have "% <0onT; and ¢p; > 0 on QU Ty. As for the W?P-regularity of ¢1, we
know (cf. Beirdo da Veiga [5, Theorem B]) that ¢p; € W?7(Q) for some r € (1, %). Note that o1 (1) < O for A > 0.
We set u = £¢p1, where € > 0. Then u is a weak subsolution of (P,) if

s(/l j drv + o) j ¢1v) <erl j Gy 4 Ned ! J bp?

Lo Q Q To

for every non-negative v € X. Since 01(A) < 0, it then suffices to have (s¢1)2*’1 < b, which holds for € > 0
sufficiently small.

Now, to apply the method of super and subsolutions we need to verify that ws > 0 in a neighborhood
of T'p. Let D be a smooth subdomain of Q such that I'; := Qn oD and I'; := 0D\ T; are non-empty, open
and smooth (N - 1)-dimensional surfaces. In addition, we assume that 0D =T, uy u s with y = T,NnTs,
see Figure 2. By assumption there exists a constant d > 0 such that b > 0in I's = {x € 0Q : dist(x, ['g) < d}.
We then see that ws is a weak supersolution of the concave problem

—Au = su?? inD,
ou _
= b(x)ud! onTs, (Qp)
u=0 onl>.

To construct a subsolution of (Qp), we consider the problem

“Ap=Ad inD,

0

£=0 01’1F3,
¢=0 onl“z.

This eigenvalue problem possesses a smallest eigenvalue, which is positive. We denote by ®; a positive
eigenfunction associated to this eigenvalue. We see that @, is a weak subsolution of (Qp) if | D1 cD) is suffi-
ciently small. Hence, the comparison principle [12, Proposition A.1] shows that ®; < wg on D. In particular,
0 < ®; < ws on I'3, as desired.
Finally, taking € > O smaller if necessary, we have e¢p; < u in Q. By [11, Theorem 2] we deduce that (P;)
has a solution U, which satisfies
ep1 < U < /12%? Ws

in Q for A < Ag. In particular, we have Uy — 0in C (Q), and consequently in X, as A — 07. O

1.4 A bifurcation result

We now use a bifurcation technique to obtain V, for A > O sufficiently close to 0O if Iag b < 0. Saut and
Schereur [14] have originally carried out this kind of bifurcation analysis by using the Lyapunov-Schmidt
method. To the best of our knowledge, this approach has been first applied to the case of nonlinear boundary
conditions in [18].
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We consider the following problem, which corresponds to (P,) after the change of variable w = A~/ @Dy

2 L
—Aw = ArawP in Q,

ow _ AR bwdl onoQ.
on

(1.8)

Let us recall that

o (—Iagbyig
Q]

Proposition 1.18. Assume JaQ b < 0. Then we have the following:

(i) If (1.8) has a sequence of non-negative solutions (A,, wy) such that A, — 0%, w, — ¢ in C(Q) and c is
a positive constant, then ¢ = c*.

(ii) Conversely, (1.8) has, for |A| sufficiently small, a bifurcation branch (A, w(A)) of positive solutions (param-
eterized by A) emanating from the trivial line {(0, c) : c is a positive constant} at (0, c*) and such that, for
0 < 0 < a, the mapping A — w(A) € C2*9(Q) is continuous. Moreover, the set {(A, w)} of positive solutions
of (1.8) around (A, w) = (0, c*) consists of the union

{(0, ¢) : cis a positive constant, |c — c¢*| < 81} U {(A, w(Q)) : A] < 61}
for some 6, > 0.

Proof. The proof is similar to the one of [12, Proposition 5.3].
(i) Let w, be non-negative solutions of (1.8) with A = A, where A,, — 0*. By the Green formula we have

Jwﬁfl + J pwit =o.
Q o0

Passing to the limit as n — oo, we deduce the desired conclusion.
(ii) We reduce (1.8) to a bifurcation equation in R? by the Lyapunov-Schmidt procedure: we use the usual
orthogonal decomposition
L’(Q)=ReV,

where V = {v € L?2(Q) : jQ v = 0}, and the projection Q : L?>(Q) — V given by

1
v:Qu:u——Ju.
19]]
Q

The problem of finding a positive solution of (1.8) then reduces to the following problems:

—ave B j(u VI = pQIt+vP Y inQ,

19]
5 20 (1.9)
a_; = ub(t+v)7t on 0Q,
and
j(t+ vyP 14 j bt+v)I =0, (1.10)
Q 20
where , 1
.
=Ard #0, t:—Jw, v=w-t.
K a1 )

To solve (1.9) in the framework of Hélder spaces, we set

Y - {ve c20(Q) : Jv=0},
Q

Z- {(qb, ) € CP@) x C0(a0) : J¢ " J W= o}.
0Q

Q
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Let ¢ > 0 be a constant and U ¢ R x R x Y be a small neighborhood of (0, ¢, 0). The nonlinear mapping
F: U — Zis given by

F(u,t,v) = <—Av—yQ[(t+ VP + ﬁ j b(t+v)1, % —ub(t+ v)q‘l).

0Q

The Fréchet derivative F, of F with respect to v at (0, c, 0) is given by the formula

Fy(0, ¢, 0)v = (—Av, %).

Since F,(0, ¢, 0) is a continuous and bijective linear mapping, the implicit function theorem [15, Theo-
rem 13.3] implies that the set F(u, t, v) = 0 around (0, ¢, 0) consists of a unique C* function v = v(u, t) in
a neighborhood of (i, t) = (0, ¢) which satisfies v(0, ¢) = 0. Now, plugging v(u, t) in (1.10), we obtain the
bifurcation equation

G, ) = [(eviu 0+ [ e+ vu, 007 =0 for (1, ) = (0, ).
Q 0Q

It is clear that ®(0, c¢*) = 0. Differentiating ® with respect to t at (0, c*), we get

D40, c*) = J(p = 1)(c* +v(0, c*)P2(1 + v¢(0, c*))

Q
+ [ (@-Dbe +v(0, )21 + (0, ")
0Q
= (- DY [0, + (g = D)2 [ b +vi(0,¢).

Q 00
Differentiating (1.9) with respect to t and plugging (i, t) = (0, c*) into it, we have v;(0, c*) = 0. Hence,
@0, c*) = (p - 1(c*)P2Ql + (g - 1)(c*)9? J b =1Q|(p - g)(c*)’* > 0.
00

By the implicit function theorem, the function
W) = () + v, () with = AP

satisfies the desired assertion. O

Remark 1.19. Combining Remark 1.15 and the uniqueness result in Proposition 1.18 (ii) for a smooth curve
of bifurcating positive solutions of (1.8) at (0, c*), we infer that the positive solution A=Y/®-Dw(A) of (P;)
constructed with the bifurcating positive solution w(A) of (1.8) coincides with u; , for sufficiently small A > 0.
We summarize our results in Table 1.

1.5 Positivity in thecase N =1

We now show the positivity of nontrivial non-negative weak solutions for the one-dimensional case of (P,).
We take Q = I = (0, 1) and show that nontrivial non-negative solutions satisfy u > 0 on I. More precisely, we
consider nontrivial non-negative weak solutions of the problem
~u" =uwtinI,
-u'(0) = Abou(0)? ™, (1.11)
u'(1) = Abju(1)77,

where 1 < g <2 < p and by, b; € R. A non-negative function u € H*(I) is a non-negative weak solution
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Solution Approach Asymptotic orderas A — 0* Positivity Proposition
1

Ui variational (in N;) ~AZ9 (up toasubsequence) inQuU{xedQ:b(x)>0} 1.12

uza variational (in N) ~ AP inQ 1.14
1

Uy sub- and supersolutions  ~ A2-9 (at most) inQui{xeoQ:bx) >0} 1.17

A7 w(A)  bifurcation ~ AP inQ 1.18

Table 1: Results on nontrivial non-negative solutions of (P;).

of (1.11) if it satisfies

J u'ep’ = A(bou(0)?1p(0) + b1u(1)T 1 (1)) + j uP1¢ forall ¢ € H(I).
1 1

Proposition 1.20. Let by, b1 € R be arbitrary. Then any nontrivial non-negative weak solution u of (1.11)
satisfies u > 0in 1.

Proof. If u is a non-negative weak solution of (1.11), then, thanks to the inclusion H!(I) ¢ C(I) (see [6]), we
have u € C(I). Moreover, we claim that u € H2(I), so that u € C1(I). Indeed, from the definition we derive

Ju’g‘b’ - IuIH(p forall ¢ € CL(D).

I 1

This implies that (u')’ = —uP~! in I in the distribution sense. By the chain rule we obtain u?~! € H(I). By
definition we infer that u € H2(I). From the inclusion H2(I) ¢ C(I) it follows that u € C*(I).

In fact, by a bootstrap argument and elliptic regularity, we have u € C?(I). Hence, it follows that
u € C*(I) n C2(I), and we infer that u > 0in I by the strong maximum principle. In order to show that u(0) > 0,
we assume by contradiction that u(0) = 0. Then the boundary point lemma yields —u'(0) < 0. However, the
boundary condition in (1.11) is understood in the classical sense under the condition u € C! (I) n C(I), and
thus u'(0) = 0, which is a contradiction. Likewise, we can show that u(1) > O. O

Remark 1.21. Using the same argument as in Proposition 1.20, we infer that in the case N = 1 nontrivial
non-negative solutions of (P,,) satisfy w > 0 on Q.
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