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Abstract: Closed form formulas for well-defined complex-valued solutions to a product-type system of differ-
ence equations of interest with six parameters are presented. The form of the solutions is described in detail
in terms of the parameters and initial values.
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1 Introduction
Difference equations and systems have been studied a lot recently (see, e.g., [1–5, 7, 8, 10, 12, 14–38]).
About two decades ago Papaschinopoulos and Schinas started investigating concrete symmetric and related
systems of difference equations (see, e.g., [14–16]). The investigation later motivated numerous authors to
conduct research in this direction (see, e.g., [3, 7, 10, 18, 19, 23, 26–30, 33–38] and the references therein).
On the other hand, theproblemof solvability of difference equations and systemshas re-attracted some recent
attention, especially after the publication of our note [20] which explains a formula in [5] and the publication
of [21] in which an open problem from population biology was solved by showing the solvability of the dif-
ference equation appearing there (see, e.g., [1–3, 17, 23–32, 34–38]). The ideas in [20] were later developed
in [24] and [25] for some related equations, and in [23] and [34] for some related systems. In some of these
papers, among others, have appeared some new classes of solvable symmetric or closely related systems of
difference equations, as well as solvable cyclic ones [30, 34]. Some max-type systems are solvable too [26].
Classical methods for solving difference equations and systems can be found, e.g., in [9, 11, 13].

Some recent papers have also studied equations and systems whose right-hand sides contain product-
type expressions (see, e.g., [22, 33] and the references therein). In the study of the equations and systems
in [22] and [33] their methodological connection with the product-type ones was essentially noticed. One
of the reasons for this is that some product-type equations and systems are obtained by taking the limits
of some parameters in the equations and systems in [22] and [33]. It is well known that the product-type
systems of difference equations are solvable in some cases (e.g., if initial values are positive), but, in general,
this is not always the case. The problem appears if some initial values are not nonnegative, because power
functions aremulti-valued in the complex plainℂ inmany cases. These facts havemotivated us to investigate
the solvability of some concrete product-type systems of difference equations with complex initial values in
detail. More precisely, the problem is to find systems for which it is possible to find explicit formulas for all
their solutions.
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Recent papers [29, 30, 32, 37, 38] deal with this problem (this problem appeared in [31] too, as some
special cases of the equation treated therein). Papers [29, 32, 37, 38] study some two-dimensional product-
type systems of difference equations with different delays, while [30] studies a three-dimensional. For the
above-mentioned problem connected tomulti-valued functions, all these systems could not be dealt with the
transformation methods presented in some of our previous papers such as [3, 20, 21, 23–25, 27, 34–36].
Hence, we have been developing some other methods for studying the product-type systems, related to some
in [22] and [33], and have some coefficients as the systems in [32] and [38].

Here we continue the study of practical solvability of product-type systems, by investigating the solvabil-
ity of the following one:

zn+1 = αzanwb
n , wn+1 = βwc

n−1z
d
n , n ∈ ℕ0, (1.1)

where a, b, c, d ∈ ℤ, α, β ∈ ℂ and z0, w−1, w0 ∈ ℂ, in detail.
If α = 0 or β = 0, then solutions of (1.1) are trivial or not well-defined. Hence, the case α ̸= 0 ̸= β is of

some interest and it will be treated in the rest of the paper.
Note that the domain of undefinable solutions [27] to (1.1) is a subset of the set

U = {(z0, w−1, w0) ∈ ℂ3 : z0 = 0 or w−1 = 0 or w0 = 0}.

If min{a, b, c} < 0 or min{b, c, d} < 0, then the domain is U. Hence, from now on we will also assume that
z0, w−1, w0 ∈ ℂ \ {0}, althoughmany obtained formulaswill hold on some larger sets or even on thewholeℂ3

(for example, if min{a, b, c, d} > 0).
It is said that the system of the form

zn = f(zn−1, . . . , zn−k , wn−1, . . . , wn−l),
wn = g(zn−1, . . . , zn−s , wn−1, . . . , wn−t), n ∈ ℕ0,

where k, l, s, t ∈ ℕ, is solvable in closed form if its general solution can be found in terms of initial values
z−i, i = 1, max{k, s}, w−j, j = 1, max{l, t}, delays k, l, s, t, and index n only. As usual, if m > n we regard that
∑nk=m ak is equal to zero.

2 Auxiliary results
In this section we present two auxiliary results which will be used in the proofs of the main results. The
following elementary lemma is known (see, e.g., [13]).

Lemma 2.1. Let i ∈ ℕ0 and

s(i)n (z) = 1 + 2iz + 3iz2 + ⋅ ⋅ ⋅ + nizn−1, n ∈ ℕ, (2.1)

where z ∈ ℂ. Then

s(0)n (z) =
1 − zn
1 − z , (2.2)

s(1)n (z) =
1 − (n + 1)zn + nzn+1

(1 − z)2
, (2.3)

s(2)n (z) =
1 + z − (n + 1)2zn + (2n2 + 2n − 1)zn+1 − n2zn+2

(1 − z)3
(2.4)

for every z ∈ ℂ \ {1} and n ∈ ℕ.

Formula (2.2) is something which should be known to any mathematician, while (2.3) and (2.4) can be
obtained by using the following result, which seems not so well known.

Proposition 2.2. Sequences defined in (2.1) satisfy the following recurrent relation:

s(k)n (z) =
∑k−1i=0 Cki (−1)

k−1−is(i)n (z) − nkzn

1 − z (2.5)

for every k ∈ ℕ and z ∈ ℂ \ {0}.
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Proof. We have

s(k)n (z) − zs
(k)
n (z) = 1 +

n
∑
j=2
(jk − (j − 1)k)zj−1 − nkzn

= 1 +
n
∑
j=2

k−1
∑
i=0

Cki (−1)
k−1−i jizj−1 − nkzn

= 1 +
k−1
∑
i=0

Cki (−1)
k−1−i

n
∑
j=2

jizj−1 − nkzn

= Ckk +
k−1
∑
i=0

Cki (−1)
k−1−i(s(i)n (z) − 1) − nkzn

=
k
∑
i=0

Cki (−1)
k−i +

k−1
∑
i=0

Cki (−1)
k−1−is(i)n (z) − nkzn

=
k−1
∑
i=0

Cki (−1)
k−1−is(i)n (z) − nkzk ,

where we have used the fact∑ki=0 Cki (−1)
k−i = 0, from which (2.5) follows.

Example 2.3. If k = 2, then from (2.5) and some calculations it follows that

s(2)n (z) =
−C20s
(0)
n (z) + C21s

(1)
n (z) − n2zn

1 − z =
−1−z

n

1−z + 2
1−(n+1)zn+nzn+1
(1−z)2 − n2zn

1 − z

=
1 + z − (n + 1)2zn + (2n2 + 2n − 1)zn+1 − n2zn+2

(1 − z)3
.

The following result is a known consequence of the Lagrange interpolation formula, but can be also proved
by using some other techniques (see, e.g., [37]).

Lemma 2.4. Let
Pk(z) = fkzk + fk−1zk−1 + ⋅ ⋅ ⋅ + f1z + f0.

If the zeros zj, j = 1, . . . , k, of Pk are mutually different, then

k
∑
j=1

zlj
P󸀠k(zj)
= 0

for each l ∈ {0, 1, . . . , k − 2}, and
k
∑
j=1

zk−1j

P󸀠k(zj)
=

1
fk
.

3 Main results
The main results in this paper are proved in this section.

Theorem 3.1. Assume that b, c, d ∈ ℤ, a = 0, α, β ∈ ℂ \ {0}, and z0, w−1, w0 ∈ ℂ \ {0}. Then system (1.1) is
solvable in closed form.

Proof. Since a = 0, system (1.1) is

zn+1 = αwb
n , wn+1 = βwc

n−1z
d
n , n ∈ ℕ0. (3.1)

Using the first equation in (3.1) in the second one, we obtain

wn+1 = βαdwc+bd
n−1 , n ∈ ℕ. (3.2)
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Iterating relation (3.2), we can easily show that

w2n = (βαd)∑
n−1
j=0 (c+bd)jw(c+bd)

n

0 = αd∑
n−1
j=0 (c+bd)jβ∑

n−1
j=0 (c+bd)jw(c+bd)

n

0 (3.3)

and

w2n+1 = (βαd)∑
n−1
j=0 (c+bd)jw(c+bd)

n

1

= (βαd)∑
n−1
j=0 (c+bd)j (βwc

−1z
d
0)
(c+bd)n

= αd∑
n−1
j=0 (c+bd)jβ∑

n
j=0(c+bd)jwc(c+bd)n

−1 zd(c+bd)
n

0 (3.4)

for every n ∈ ℕ.
Employing (3.3) and (3.4) into the first equation in (3.1), we get

z2n+1 = α1+bd∑
n−1
j=0 (c+bd)jβb∑

n−1
j=0 (c+bd)jwb(c+bd)n

0 (3.5)

and

z2n+2 = α1+bd∑
n−1
j=0 (c+bd)jβb∑

n
j=0(c+bd)jwbc(c+bd)n

−1 zbd(c+bd)
n

0 (3.6)

for every n ∈ ℕ.
If c + bd ̸= 1, then from (3.3)–(3.6) and (2.2) we have

z2n+1 = α
1−c−bd(c+bd)n

1−c−bd βb
1−(c+bd)n
1−c−bd wb(c+bd)n

0 , (3.7)

z2n+2 = α
1−c−bd(c+bd)n

1−c−bd βb
1−(c+bd)n+1

1−c−bd wbc(c+bd)n
−1 zbd(c+bd)

n

0 , (3.8)

w2n = αd
1−(c+bd)n
1−c−bd β

1−(c+bd)n
1−c−bd w(c+bd)

n

0 , (3.9)

w2n+1 = αd
1−(c+bd)n
1−c−bd β

1−(c+bd)n+1
1−c−bd wc(c+bd)n

−1 zd(c+bd)
n

0 (3.10)

for every n ∈ ℕ, while if c + bd = 1, then we have

z2n+1 = α1+bdnβbnwb
0 , (3.11)

z2n+2 = α1+bdnβb(n+1)wbc
−1z

bd
0 , (3.12)

w2n = αdnβnw0, (3.13)
w2n+1 = αdnβn+1wc

−1z
d
0 (3.14)

for every n ∈ ℕ, finishing the proof of the theorem.

Corollary 3.2. Consider system (1.1) with b, c, d ∈ ℤ, a = 0 and α, β ∈ ℂ \ {0}. Furthermore assume that
z0, w−1, w0 ∈ ℂ \ {0}. Then the following statements are true:
(i) If c + bd ̸= 1, then the general solution to system (1.1) is given by (3.7)–(3.10).
(ii) If c + bd = 1, then the general solution to system (1.1) is given by (3.11)–(3.14).

Theorem 3.3. Assume that a, b, d ∈ ℤ, c = 0, α, β ∈ ℂ \ {0}, and z0, w0 ∈ ℂ \ {0}. Then system (1.1) is solvable
in closed form.

Proof. In this case system (1.1) becomes

zn+1 = αzanwb
n , wn+1 = βzdn , n ∈ ℕ0. (3.15)

The system essentially appeared in [29], but we will give a proof for the sake of completeness. Using the
second equation in (3.15) in the first one, we obtain

zn+1 = αβbzanzbdn−1, n ∈ ℕ. (3.16)

Now we consider the subcases bd = 0 and bd ̸= 0 separately.
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Subcase bd = 0. In this case we have
zn = αβbzan−1, n ≥ 2,

from which it follows that

zn = (αβb)∑
n−2
j=0 aj zan−11 = (αβ

b)∑
n−2
j=0 aj (αza0w

b
0)

an−1 = α∑
n−1
j=0 ajβb∑

n−2
j=0 aj zan0 wban−1

0 , n ≥ 2. (3.17)

Using (3.17) in the second equation in (3.15), we get

wn = β(α∑
n−2
j=0 ajβb∑

n−3
j=0 aj zan−10 wban−2

0 )
d = αd∑

n−2
j=0 ajβzdan−10 , n ≥ 3. (3.18)

A direct calculation shows that (3.18) holds also for n = 2.
From (3.17) and (3.18) we have that

zn = α
1−an
1−a βb

1−an−1
1−a zan0 wban−1

0 , n ≥ 2, (3.19)

wn = αd
1−an−1
1−a βzdan−10 , n ≥ 2, (3.20)

in the case a ̸= 1, while in the case a = 1 we have

zn = αnβb(n−1)z0wb
0 , n ≥ 2, (3.21)

wn = αd(n−1)βzd0 , n ≥ 2. (3.22)

Subcase bd ̸= 0. Let
γ := αβb , a1 := a, b1 := bd, x1 := 1.

Then (3.16) can be written as

zn+1 = γx1 za1n zb1n−1, n ∈ ℕ, (3.23)

from which it follows that

zn+1 = γx1 (γza1n−1z
b1
n−2)

a1 zb1n−1 = γ
x1+a1 za1a1+b1n−1 zb1a1n−2 = γ

x2 za2n−1z
b2
n−2 (3.24)

for n ≥ 2, where
a2 := a1a1 + b1, b2 := b1a1, x2 := x1 + a1. (3.25)

Assume that for some k ≥ 2 we have

zn+1 = γxk zakn+1−kz
bk
n−k , n ≥ k, (3.26)

where
ak := a1ak−1 + bk−1, bk := b1ak−1, xk := xk−1 + ak−1. (3.27)

Then, using (3.23) with n → n − k into (3.26), we obtain

zn+1 = γxk (γza1n−kz
b1
n−k−1)

ak zbkn−k = γ
xk+ak za1ak+bkn−k zb1akn−k−1 = γ

xk+1 zak+1n−k z
bk+1
n−k−1 (3.28)

for n ≥ k + 1, where
ak+1 := a1ak + bk , bk+1 := b1ak , xk+1 := xk + ak . (3.29)

From (3.24), (3.25), (3.28), (3.29), and the induction we see that (3.26) and (3.27) hold for every k and n
such that 2 ≤ k ≤ n ((3.26) also holds for k = 1 because of (3.23)).

Now note that from the first two equations in (3.27) we get

ak = a1ak−1 + b1ak−2, k ≥ 3. (3.30)

The equalities in (3.27) with k = 1 yield

a1 = a1a0 + b0, b1 = b1a0, x1 = x0 + a0. (3.31)
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Since b1 = bd ̸= 0, from the second equation in (3.31) we get a0 = 1. This, along with x1 = 1 and the other
two relations in (3.31) implies b0 = x0 = 0.

From this and (3.27) with k = 0, we obtain

1 = a0 = a1a−1 + b−1, 0 = b0 = b1a−1, 0 = x0 = x−1 + a−1. (3.32)

Since b1 ̸= 0, from the second equation in (3.32) we get a−1 = 0. This, along with the other two relations
in (3.32), implies b−1 = 1 and x−1 = 0.

From this and the second equation in (3.27), we have that (ak)k≥−1 and (bk)k≥−1 are solutions to linear
equation (3.30) satisfying the initial conditions

a−1 = 0, a0 = 1, and b−1 = 1, b0 = 0,

respectively, and that (xk)k≥−1 satisfies the third recurrent relation in (3.27) and

x−1 = x0 = 0, x1 = 1.

From (3.26) with n → n − 1 and k = n − 1, along with the equality z1 = αza0w
b
0 and the first and third

relations in (3.27), we have that

zn = γxn−1 zan−11 zbn−10 = (αβ
b)xn−1 (αza0w

b
0)

an−1 zbn−10

= αan−1+xn−1βbxn−1 zaan−1+bn−10 wban−1
0

= αxnβbxn−1 zan0 wban−1
0 , n ∈ ℕ0. (3.33)

Using this in the second equation in (3.15), we obtain

wn = αdxn−1β1+bdxn−2 zdan−10 wbdan−2
0 , n ∈ ℕ. (3.34)

From the third equation in (3.27) and since x1 = 1, we get

xn = 1 +
n−1
∑
j=1

aj , n ∈ ℕ,

which due to the fact a0 = 1 can be written as

xn =
n−1
∑
j=0

aj , n ∈ ℕ. (3.35)

Now note that the characteristic equation associated to difference equation (3.30) is λ2 − aλ − bd = 0,
from which it follows that

λ1,2 =
a ± √a2 + 4bd

2 .

Hence if a2 + 4bd ̸= 0, then

an = c1λn1 + c2λ
n
2 .

From this and since a−1 = 0 and a0 = 1, we have that

an =
λn+11 − λ

n+1
2

λ1 − λ2
, (3.36)

which along with the second equation in (3.27) implies

bn = bd
λn1 − λ

n
2

λ1 − λ2
.
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Using (3.36) in (3.35) for the case when λ1 ̸= 1 ̸= λ2, which is equivalent to a + bd ̸= 1, we get

xn =
n−1
∑
j=0

λj+11 − λ
j+1
2

λ1 − λ2

=
1
(λ1 − λ2)

(λ1
λn1 − 1
λ1 − 1
− λ2

λn2 − 1
λ2 − 1
)

=
(λ2 − 1)λn+11 − (λ1 − 1)λ

n+1
2 + λ1 − λ2

(λ1 − 1)(λ2 − 1)(λ1 − λ2)
, (3.37)

while if a + bd = 1, that is, if one of the characteristic roots is equal to one, say λ2, which implies that
λ1 = −bd, we get

xn =
n−1
∑
j=0

λj+11 − 1
λ1 − 1

=
1
(λ1 − 1)

(λ1
λn1 − 1
λ1 − 1
− n)

=
λn+11 − (n + 1)λ1 + n
(λ1 − 1)2

=
(−bd)n+1 + (n + 1)bd + n

(1 + bd)2
. (3.38)

If a2 + 4bd = 0, then
an = (ĉ1 + ĉ2n)(

a
2)

n
.

From this and since a−1 = 0 and a0 = 1, we have that

an = (n + 1)(
a
2)

n
, (3.39)

which along with the second equation in (3.27) and bd = −a2/4, implies

bn = bdn(
a
2)

n−1
= −n(a2)

n+1
.

Using (3.39) in (3.35) and employing (2.3) for the case a ̸= 2, we get

xn =
n−1
∑
j=0
(j + 1)(a2)

j
=
1 − (n + 1)( a2 )

n + n( a2 )
n+1

(1 − a
2 )2

, (3.40)

while if a = 2, we get

xn =
n−1
∑
j=0
(j + 1) = n(n + 1)2 , (3.41)

as desired.

Corollary 3.4. Consider system (1.1) with a, b, d ∈ ℤ, c = 0 and α, β ∈ ℂ \ {0}. Assume that z0, w0 ∈ ℂ \ {0}.
Then the following statements are true:
(i) If bd = 0 and a ̸= 1, then the general solution to system (1.1) is given by (3.19) and (3.20).
(ii) If bd = 0 and a = 1, then the general solution to system (1.1) is given by (3.21) and (3.22).
(iii) If bd ̸= 0, a2 + 4bd ̸= 0 and a + bd ̸= 1, then the general solution to system (1.1) is given by formulas (3.33)

and (3.34), where the sequences (an)n≥−1 and (xn)n≥−1 are givenby formulas (3.36)and (3.37), respectively.
(iv) If bd ̸= 0, a2 + 4bd ̸= 0 and a + bd = 1, then the general solution to system (1.1) is given by formulas (3.33)

and (3.34), where the sequences (an)n≥−1 and (xn)n≥−1 are givenby formulas (3.36)and (3.38), respectively.
(v) If bd ̸= 0, a2 + 4bd = 0 and a ̸= 2, then the general solution to system (1.1) is given by formulas (3.33)

and (3.34), where the sequences (an)n≥−1 and (xn)n≥−1 are givenby formulas (3.39)and (3.40), respectively.
(vi) If a2 + 4bd = 0 and a = 2, then the general solution to system (1.1) is given by formulas (3.33) and (3.34),

where the sequence (an)n≥−1 is given by formula (3.39) with a = 2, while (xn)n≥−1 is given by (3.41).

Theorem 3.5. Assume that a, c, d ∈ ℤ, b = 0, α, β ∈ ℂ \ {0}, and z0, w−1, w0 ∈ ℂ \ {0}. Then system (1.1) is
solvable in closed form.
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Proof. In this case system (1.1) becomes

zn+1 = αzan , wn+1 = βwc
n−1z

d
n , n ∈ ℕ0. (3.42)

From the first equation in (3.42) we get

zn = α∑
n−1
j=0 aj zan0 , n ∈ ℕ, (3.43)

which for the case a ̸= 1 implies that
zn = α

1−an
1−a zan0 , n ∈ ℕ, (3.44)

while for the case a = 1 it implies that
zn = αnz0, n ∈ ℕ. (3.45)

Employing (3.43) in the second equation in (3.42), we obtain

wn+1 = βαd∑
n−1
j=0 aj zdan0 wc

n−1, n ∈ ℕ. (3.46)

Using (3.46) twice, we obtain

w2n = βαd∑
2n−2
j=0 aj zda2n−10 wc

2n−2

= βαd∑
2n−2
j=0 aj zda2n−10 (βαd∑

2n−4
j=0 aj zda2n−30 wc

2n−4)
c

= β1+cαd∑
2n−2
j=0 aj+dc∑2n−4j=0 aj zda2n−1+dca2n−30 wc2

2n−4, (3.47)

w2n+1 = βαd∑
2n−1
j=0 aj zda2n0 wc

2n−1

= βαd∑
2n−1
j=0 aj zda2n0 (βα

d∑2n−3j=0 aj zda2n−20 wc
2n−3)

c

= β1+cαd∑
2n−1
j=0 aj+dc∑2n−3j=0 aj zda2n+dca2n−20 wc2

2n−3, n ≥ 2. (3.48)

Assume that for a natural number k the equations

w2n = β∑
k−1
j=0 cjαd∑

k−1
i=0 ci ∑2n−2i−2j=0 aj z

d∑k−1j=0 cja2n−2j−1

0 wck
2n−2k , (3.49)

w2n+1 = β∑
k−1
j=0 cjαd∑

k−1
i=0 ci ∑2n−2i−1j=0 aj z

d∑k−1j=0 cja2n−2j

0 wck
2n−2k+1 (3.50)

for every n ≥ k have been proved.
By using (3.46) with n → 2n − 2k − 1 and n → 2n − 2k in (3.49) and (3.50), we get

w2n = β∑
k−1
j=0 cjαd∑

k−1
i=0 ci ∑2n−2i−2j=0 aj z

d∑k−1j=0 cja2n−2j−1

0 (βαd∑
2n−2k−2
j=0 aj zda2n−2k−10 wc

2n−2k−2)
ck

= β∑
k
j=0 cjαd∑

k
i=0 ci ∑

2n−2i−2
j=0 aj z

d∑kj=0 cja2n−2j−1

0 wck+1
2n−2k−2, (3.51)

w2n+1 = β∑
k−1
j=0 cjαd∑

k−1
i=0 ci ∑2n−2i−1j=0 aj z

d∑k−1j=0 cja2n−2j

0 (βαd∑
2n−2k−1
j=0 aj zda2n−2k0 wc

2n−2k−1)
ck

= β∑
k
j=0 cjαd∑

k
i=0 ci ∑

2n−2i−1
j=0 aj z

d∑kj=0 cja2n−2j

0 wck+1
2n−2k−1 (3.52)

for every n ≥ k + 1.
From (3.47), (3.48), (3.51), (3.52), and induction it follows that (3.49) and (3.50) hold for all k, n ∈ ℕ

such that 1 ≤ k ≤ n. Taking k = n in (3.49) and (3.50), we get

w2n = β∑
n−1
j=0 cjαd∑

n−1
i=0 ci ∑2n−2i−2j=0 aj z

d∑n−1j=0 cja2n−2j−1

0 wcn
0 ,

w2n+1 = β∑
n−1
j=0 cjαd∑

n−1
i=0 ci ∑2n−2i−1j=0 aj z

d∑n−1j=0 cja2n−2j

0 wcn
1

= β∑
n−1
j=0 cjαd∑

n−1
i=0 ci ∑2n−2i−1j=0 aj z

d∑n−1j=0 cja2n−2j

0 (βwc
−1z

d
0)

cn

= β∑
n
j=0 cjαd∑

n−1
i=0 ci ∑2n−2i−1j=0 aj z

d∑nj=0 cja2n−2j

0 wcn+1
−1

for n ∈ ℕ.
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Subcase a ̸= 1 ̸= c, c ̸= a2. By multiple use of (2.2) and some calculation, we have

w2n = β
1−cn
1−c αd∑

n−1
i=0 ci 1−a2n−2i−11−a z

da a2n−cn
a2−c

0 wcn
0

= β
1−cn
1−c α

d
1−a (

1−cn
1−c −a

a2n−cn
a2−c
)z

da a2n−cn
a2−c

0 wcn
0

= β
1−cn
1−c α

d(a2−c+(a+c)(1−a)cn−(1−c)a2n+1)
(1−a)(1−c)(a2−c) z

da a2n−cn
a2−c

0 wcn
0 , n ∈ ℕ, (3.53)

w2n+1 = β
1−cn+1
1−c αd∑

n−1
i=0 ci 1−a2n−2i1−a z

d a2n+2−cn+1
a2−c

0 wcn+1
−1

= β
1−cn+1
1−c α

d
1−a (

1−cn
1−c −a

2 a2n−cn
a2−c
)z

d a2n+2−cn+1
a2−c

0 wcn+1
−1

= β
1−cn+1
1−c α

d(a2−c+(1−a2)cn+1−(1−c)a2n+2)
(1−a)(1−c)(a2−c) z

d a2n+2−cn+1
a2−c

0 wcn+1
−1 (3.54)

for every n ∈ ℕ0.

Subcase a ̸= 1 ̸= c, c = a2 ̸= 0. In this case we have

w2n = β∑
n−1
j=0 a2jαd∑

n−1
i=0 a2i ∑2n−2i−2j=0 aj z

d∑n−1j=0 a2ja2n−2j−1

0 wa2n
0

= β
1−a2n
1−a2 αd∑

n−1
i=0 a2i 1−a2n−2i−11−a zdna2n−10 wa2n

0

= β
1−a2n
1−a2 α

d
1−a (

1−a2n
1−a2
−na2n−1)zdna2n−10 wa2n

0

= β
1−a2n
1−a2 α

d(1−na2n−1−a2n+na2n+1)
(a−1)2(a+1) zdna2n−10 wa2n

0 , n ∈ ℕ, (3.55)

w2n+1 = β∑
n
j=0 a2jαd∑

n−1
i=0 a2i ∑2n−2i−1j=0 aj z

d∑nj=0 a2ja2n−2j

0 wa2n+2
−1

= β
1−a2n+2
1−a2 αd∑

n−1
i=0 a2i 1−a2n−2i1−a zd(n+1)a

2n

0 wa2n+2
−1

= β
1−a2n+2
1−a2 α

d
1−a (

1−a2n
1−a2
−na2n)zd(n+1)a

2n

0 wa2n+2
−1

= β
1−a2n+2
1−a2 α

d(1−(n+1)a2n+na2n+2)
(a+1)(a−1)2 zd(n+1)a

2n

0 wa2n+2
−1 (3.56)

for every n ∈ ℕ0.

Subcase a2 ̸= 1 = c. In this case we have

w2n = βnαd∑
n−1
i=0

1−a2n−2i−1
1−a z

ad a2n−1
a2−1

0 w0

= βnα
d

1−a (n−a
a2n−1
a2−1
)z

ad a2n−1
a2−1

0 w0

= βnα
d(a2n+1+n(1−a2)−a)

(a−1)2(a+1) z
ad a2n−1

a2−1
0 w0, n ∈ ℕ, (3.57)

w2n+1 = β∑
n
j=0 1αd∑

n−1
i=0 ∑

2n−2i−1
j=0 aj z

d∑nj=0 a2n−2j

0 w−1

= βn+1αd∑
n−1
i=0

1−a2n−2i
1−a z

d a2n+2−1
a2−1

0 w−1

= βn+1α
d

1−a (n−a
2 a2n−1

a2−1
)z

d a2n+2−1
a2−1

0 w−1

= βn+1α
d(a2n+2+n(1−a2)−a2)

(a−1)2(a+1) z
d a2n+2−1

a2−1
0 w−1 (3.58)

for every n ∈ ℕ0.

Subcase a = −1, c = 1. In this case we have

w2n = β∑
n−1
j=0 1αd∑

n−1
i=0 ∑

2n−2i−2
j=0 (−1)j z

d∑n−1j=0 (−1)2n−2j−1

0 w0

= βnαd∑
n−1
i=0

1−(−1)2n−2i−1
2 z

d∑n−1j=0 (−1)−1

0 w0

= βnαndz−dn0 w0 (3.59)
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for every n ∈ ℕ, and

w2n+1 = β∑
n
j=0 1αd∑

n−1
i=0 ∑

2n−2i−1
j=0 (−1)j z

d∑nj=0(−1)2n−2j

0 w−1

= βn+1αd∑
n−1
i=0

1−(−1)2n−2i
2 z

d∑nj=0 1
0 w−1

= βn+1zd(n+1)0 w−1 (3.60)

for every n ∈ ℕ0.

Subcase a = 1, c ̸= 1. In this case, using (2.3), we have

w2n = β
1−cn
1−c αd∑

n−1
i=0 (2n−2i−1)ci zd

1−cn
1−c

0 wcn
0

= β
1−cn
1−c αd((2n−1)

1−cn
1−c −2c

1−ncn−1+(n−1)cn
(1−c)2

)zd
1−cn
1−c

0 wcn
0

= β
1−cn
1−c α

d(2n−1−(2n+1)c+cn+cn+1)
(1−c)2 zd

1−cn
1−c

0 wcn
0 (3.61)

for n ∈ ℕ, and

w2n+1 = β
1−cn+1
1−c αd∑

n−1
i=0 (2n−2i)ci zd

1−cn+1
1−c

0 wcn+1
−1

= β
1−cn+1
1−c αd(2n

1−cn
1−c −2c

1−ncn−1+(n−1)cn
(1−c)2

)zd
1−cn+1
1−c

0 wcn+1
−1

= β
1−cn+1
1−c α

2d(n−(n+1)c+cn+1)
(1−c)2 zd

1−cn+1
1−c

0 wcn+1
−1 (3.62)

for every n ∈ ℕ0.

Subcase a = c = 1. In this case we have

w2n = βnαd∑
n−1
i=0 (2n−2i−1)zdn0 w0

= βnαdn2 zdn0 w0 (3.63)

for n ∈ ℕ, and

w2n+1 = βn+1αd∑
n−1
i=0 (2n−2i)zd(n+1)0 w−1

= βn+1αdn(n+1)zd(n+1)0 w−1 (3.64)

for every n ∈ ℕ0.

Corollary 3.6. Consider system (1.1) with a, c, d ∈ ℤ, b = 0 and α, β ∈ ℂ \ {0}. Furthermore assume that
z0, w−1, w0 ∈ ℂ \ {0}. Then the following statements are true:
(i) If a ̸= 1 ̸= c and c ̸= a2, then the general solution to system (1.1) is given by (3.44), (3.53) and (3.54).
(ii) If a ̸= 1 ̸= c and c = a2 ̸= 0, then the general solution to system (1.1) is given by (3.44), (3.55) and (3.56).
(iii) If a2 ̸= 1 = c, then the general solution to system (1.1) is given by (3.44), (3.57) and (3.58).
(iv) If a = −1 and c = 1, then the general solution to system (1.1) is given by (3.44), (3.59) and (3.60).
(v) If a = 1 and c ̸= 1, then the general solution to system (1.1) is given by (3.45), (3.61) and (3.62).
(vi) If a = c = 1, then the general solution to system (1.1) is given by (3.45), (3.63) and (3.64).

Theorem 3.7. Assume that a, b, c ∈ ℤ, d = 0, α, β ∈ ℂ \ {0}, and z0, w−1, w0 ∈ ℂ \ {0}. Then system (1.1) is
solvable in closed form.

Proof. In this case system (1.1) becomes

zn+1 = αzanwb
n , wn+1 = βwc

n−1, n ∈ ℕ0. (3.65)

From the second equation in (3.65) it easily follows that

w2n = β∑
n−1
j=0 cjwcn

0 , w2n+1 = β∑
n
j=0 cjwcn+1

−1 , n ∈ ℕ0, (3.66)
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which for the case c ̸= 1 implies that

w2n = β
1−cn
1−c wcn

0 , w2n+1 = β
1−cn+1
1−c wcn+1
−1 , n ∈ ℕ0, (3.67)

while for the case c = 1 we have

w2n = βnw0, w2n+1 = βn+1w−1, n ∈ ℕ0. (3.68)

Employing (3.66) in the first equation in (3.65), we obtain

z2n = αβb∑
n−1
j=0 cjwbcn

−1 za2n−1, (3.69)

z2n+1 = αβb∑
n−1
j=0 cjwbcn

0 za2n , n ∈ ℕ. (3.70)

Combining (3.69) and (3.70), we have that

z2n = αβb∑
n−1
j=0 cjwbcn

−1 (αβ
b∑n−2j=0 cjwbcn−1

0 za2n−2)
a

= α1+aβb∑
n−1
j=0 cj+ab∑n−2j=0 cj (wbc

−1w
ab
0 )

cn−1 za22n−2 (3.71)

for n ≥ 2, and

z2n+1 = αβb∑
n−1
j=0 cjwbcn

0 (αβ
b∑n−1j=0 cjwbcn

−1 za2n−1)
a

= α1+aβb(1+a)∑
n−1
j=0 cj (wab

−1w
b
0)

cn za22n−1 (3.72)

for every n ∈ ℕ.
Assume that for some natural number k we have proved that

z2n = α(1+a)∑
k−1
j=0 a2jβb∑

k−1
i=0 a2i(∑n−i−1j=0 cj+a∑n−i−2j=0 cj)(wbc

−1w
ab
0 )
∑k−1j=0 a2jcn−j−1 za2k2n−2k (3.73)

and
z2n+1 = α(1+a)∑

k−1
j=0 a2jβb(1+a)∑

k−1
i=0 a2i ∑n−i−1j=0 cj (wab

−1w
b
0)
∑k−1j=0 a2jcn−j za2k2n−2k+1 (3.74)

for every n ≥ k.
Using (3.71) with n → n − k into (3.73), and (3.72) with n → n − k into (3.74), we have that

z2n = α(1+a)∑
k−1
j=0 a2jβb∑

k−1
i=0 a2i(∑n−i−1j=0 cj+a∑n−i−2j=0 cj)(wbc

−1w
ab
0 )
∑k−1j=0 a2jcn−j−1

× (α1+aβb∑
n−k−1
j=0 cj+ab∑n−k−2j=0 cj (wbc

−1w
ab
0 )

cn−k−1 za22n−2k−2)
a2k

= α(1+a)∑
k
j=0 a2jβb∑

k
i=0 a2i(∑

n−i−1
j=0 cj+a∑n−i−2j=0 cj)(wbc

−1w
ab
0 )
∑kj=0 a2jcn−j−1 za2k+22n−2k−2 (3.75)

and

z2n+1 = α(1+a)∑
k−1
j=0 a2jβb(1+a)∑

k−1
i=0 a2i ∑n−i−1j=0 cj (wab

−1w
b
0)
∑k−1j=0 a2jcn−j (α1+aβb(1+a)∑

n−k−1
j=0 cj (wab

−1w
b
0)

cn−k za22n−2k−1)
a2k

= α(1+a)∑
k
j=0 a2jβb(1+a)∑

k
i=0 a2i ∑

n−i−1
j=0 cj (wab

−1w
b
0)
∑kj=0 a2jcn−j za2k+22n−2k−1 (3.76)

for every n ≥ k + 1.
From (3.71), (3.72), (3.75), (3.76), and induction we have that (3.73) and (3.74) hold for all k, n ∈ ℕ

such that 1 ≤ k ≤ n.
If we choose k = n in (3.73) and (3.74), we get

z2n = α(1+a)∑
n−1
j=0 a2jβb∑

n−1
i=0 a2i(∑n−i−1j=0 cj+a∑n−i−2j=0 cj)(wbc

−1w
ab
0 )
∑n−1j=0 a2jcn−j−1 za2n0

z2n+1 = α(1+a)∑
n−1
j=0 a2jβb(1+a)∑

n−1
i=0 a2i ∑n−i−1j=0 cj (wab

−1w
b
0)
∑n−1j=0 a2jcn−j za2n1

= α(1+a)∑
n−1
j=0 a2jβb(1+a)∑

n−1
i=0 a2i ∑n−i−1j=0 cj (wab

−1w
b
0)
∑n−1j=0 a2jcn−j (αza0w

b
0)

a2n

= α∑
2n
j=0 ajβb(1+a)∑

n−1
i=0 a2i ∑n−i−1j=0 cjw

ab∑n−1j=0 a2jcn−j

−1 w
b∑nj=0 a2jcn−j

0 za2n+10

for every n ∈ ℕ.
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Subcase c ̸= a2 ̸= 1 ̸= c. In this case we have

z2n = α
1−a2n
1−a βb∑

n−1
i=0 a2i( 1−cn−i1−c +a

1−cn−i−1
1−c )(wbc

−1w
ab
0 )

cn−a2n
c−a2 za2n0

= α
1−a2n
1−a β

b
1−c (

1−a2n
1−a −(c+a)

cn−a2n
c−a2
)(wbc
−1w

ab
0 )

cn−a2n
c−a2 za2n0

= α
1−a2n
1−a β

b(c−a2+(a−1)(a+c)cn+(1−c)a2n+1)
(1−a)(1−c)(c−a2) (wbc

−1w
ab
0 )

cn−a2n
c−a2 za2n0 , (3.77)

z2n+1 = α
1−a2n+1

1−a βb(1+a)∑
n−1
i=0 a2i 1−cn−i1−c w

abc cn−a2n
c−a2

−1 w
b cn+1−a2n+2

c−a2
0 za2n+10

= α
1−a2n+1

1−a β
b(1+a)
1−c (

1−a2n
1−a2
−c cn−a2n

c−a2
)w

abc cn−a2n
c−a2

−1 w
b cn+1−a2n+2

c−a2
0 za2n+10

= α
1−a2n+1

1−a β
b(1+a)(c−a2+(a2−1)cn+1+(1−c)a2n+2)

(1−c)(1−a2)(c−a2) w
abc cn−a2n

c−a2
−1 w

b cn+1−a2n+2
c−a2

0 za2n+10 (3.78)

for every n ∈ ℕ.

Subcase a2 ̸= 1 ̸= c, c = a2. In this case we have

z2n = α
1−a2n
1−a βb∑

n−1
i=0 a2i( 1−a2n−2i

1−a2
+a 1−a2n−2i−2

1−a2
)(wba2
−1 wab

0 )
na2n−2 za2n0

= α
1−a2n
1−a β

b
1−a2
( 1−a2n1−a −(a+1)na

2n−1)(wba2
−1 wab

0 )
na2n−2 za2n0

= α
1−a2n
1−a β

b(1−na2n−1−a2n+na2n+1)
(1−a)2(1+a) (wba2

−1 wab
0 )

na2n−2 za2n0 , (3.79)

z2n+1 = α
1−a2n+1

1−a βb(1+a)∑
n−1
i=0 a2i 1−a2n−2i

1−a2 wbna2n+1
−1 wb(n+1)a2n

0 za2n+10

= α
1−a2n+1

1−a β
b(1+a)(1−(n+1)a2n+na2n+2)

(1−a2)2 wbna2n+1
−1 wb(n+1)a2n

0 za2n+10 (3.80)

for every n ∈ ℕ.

Subcase a2 ̸= 1 = c. In this case, using (2.3), we have

z2n = α(1+a)∑
n−1
j=0 a2jβb∑

n−1
i=0 a2i(∑n−i−1j=0 1+a∑n−i−2j=0 1)(wb

−1w
ab
0 )
∑n−1j=0 a2j za2n0

= α
1−a2n
1−a βb∑

n−1
i=0 a2i((1+a)n−a−(1+a)i)(wb

−1w
ab
0 )

1−a2n
1−a2 za2n0

= α
1−a2n
1−a βb(((1+a)n−a)

1−a2n
1−a2
− a

2−na2n+(n−1)a2n+2
(1−a2)(1−a)

)(wb
−1w

ab
0 )

1−a2n
1−a2 za2n0

= α
1−a2n
1−a β

b(n−a−na2+a2n+1)
(1−a2)(1−a) (wb

−1w
ab
0 )

1−a2n
1−a2 za2n0 , n ∈ ℕ, (3.81)

z2n+1 = α∑
2n
j=0 ajβb(1+a)∑

n−1
i=0 a2i(n−i)w

ab∑n−1j=0 a2j

−1 w
b∑nj=0 a2j

0 za2n+10

= α
1−a2n+1

1−a βb(1+a)(n
1−a2n
1−a2
−a2 1−na2n−2+(n−1)a2n

(1−a2)2
)w

ab 1−a2n
1−a2
−1 w

b 1−a2n+2
1−a2

0 za2n+10

= α
1−a2n+1

1−a β
b(1+a)(n−(n+1)a2+a2n+2)

(1−a2)2 w
ab 1−a2n

1−a2
−1 w

b 1−a2n+2
1−a2

0 za2n+10 (3.82)

for every n ∈ ℕ0.

Subcase a = −1, c = 1. In this case we have

z2n = βb∑
n−1
i=0 (−1)2i(∑

n−i−1
j=0 1−∑n−i−2j=0 1)(wb

−1w
−b
0 )
∑n−1j=0 (−1)2j z(−1)

2n

0

= βbn(wb
−1w
−b
0 )

nz0, (3.83)

z2n+1 = α∑
2n
j=0(−1)jw

−b∑n−1j=0 (−1)2j

−1 w
b∑nj=0(−1)2j

0 z(−1)
2n+1

0

= αw−bn−1 wb(n+1)
0 z−1−1 (3.84)

for every n ∈ ℕ.
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Subcase a = 1 ̸= c. In this case we have

z2n = α2nβb∑
n−1
i=0 (

1−cn−i
1−c +

1−cn−i−1
1−c )(wbc

−1w
b
0)

1−cn
1−c z0

= α2nβ
b

1−c ∑
n−1
i=0 (2n−(c+1) 1−c

n
1−c )(wbc

−1w
b
0)

1−cn
1−c z0

= α2nβ
b(2n−1−(2n+1)c+cn+cn+1)

(1−c)2 (wbc
−1w

b
0)

1−cn
1−c z0, (3.85)

z2n+1 = α2n+1β2b∑
n−1
i=0

1−cn−i
1−c wbc 1−cn

1−c
−1 wb 1−cn+1

1−c
0 z0

= α2n+1β
2b(n−(n+1)c+cn+1)

(1−c)2 wbc 1−cn
1−c
−1 wb 1−cn+1

1−c
0 z0 (3.86)

for every n ∈ ℕ.

Subcase a = c = 1. In this case we have

z2n = α2∑
n−1
j=0 1βb∑

n−1
i=0 (∑

n−i−1
j=0 1+∑n−i−2j=0 1)(wb

−1w
b
0)
∑n−1j=0 1z0

= α2nβb∑
n−1
i=0 (2n−2i−1)(wb

−1w
b
0)

nz0

= α2nβbn2 (w−1w0)bnz0, (3.87)

z2n+1 = α∑
2n
j=0 1β2b∑

n−1
i=0 ∑

n−i−1
j=0 1w

b∑n−1j=0 1
−1 w

b∑nj=0 1
0 z0

= α2n+1β2b∑
n−1
i=0 (n−i)wbn

−1w
b(n+1)
0 z0

= α2n+1βbn(n+1)wbn
−1w

b(n+1)
0 z0 (3.88)

for every n ∈ ℕ, completing the proof.

Corollary 3.8. Consider system (1.1) with a, b, c ∈ ℤ, d = 0 and α, β ∈ ℂ \ {0}. Furthermore assume that
z0, w−1, w0 ∈ ℂ \ {0}. Then the following statements are true:
(i) If c ̸= a2 ̸= 1 ̸= c, then the general solution to system (1.1) is given by (3.67), (3.77) and (3.78).
(ii) If c = a2 ̸= 1 ̸= c, then the general solution to system (1.1) is given by (3.67), (3.79) and (3.80).
(iii) If a2 ̸= 1 = c, then the general solution to system (1.1) is given by (3.68), (3.81) and (3.82).
(iv) If a = −1 and c = 1, then the general solution to system (1.1) is given by (3.68), (3.83) and (3.84).
(v) If a = 1 and c ̸= 1, then the general solution to system (1.1) is given by (3.67), (3.85) and (3.86).
(vi) If a = c = 1, then the general solution to system (1.1) is given by (3.68), (3.87) and (3.88).

Theorem 3.9. Assume that a, b, c, d ∈ ℤ, abcd ̸= 0, α, β ∈ ℂ \ {0}, and suppose that z0, w−1, w0 ∈ ℂ \ {0}.
Then system (1.1) is solvable in closed form.

Proof. The conditions α, β ∈ ℂ \ {0} and z0, w−1, w0 ∈ ℂ \ {0} along with (1.1) imply zn ̸= 0 ̸= wn, n ∈ ℕ.
From the first equation in (1.1), for such a solution, we have

wb
n =

zn+1
αzan

, n ∈ ℕ0, (3.89)

while by taking the second equation in (1.1) to the b-th power it follows that

wb
n+1 = β

bwbc
n−1z

bd
n , n ∈ ℕ0. (3.90)

Putting (3.89) into (3.90), we easily obtain

zn+2 = α1−cβbzan+1z
bd+c
n z−acn−1, n ∈ ℕ, (3.91)

which is a third order product-type difference equation.
Note also that

z1 = αza0w
b
0 and z2 = α(αza0w

b
0)

a(βwc
−1z

d
0)

b = α1+aβbza2+bd0 wab
0 wbc
−1. (3.92)
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Let
δ := α1−cβb , a1 = a, b1 = bd + c, c1 = −ac, y1 = 1. (3.93)

Then equation (3.91) can be written as

zn+2 = δy1 za1n+1z
b1
n zc1n−1, n ∈ ℕ. (3.94)

Putting (3.94) with n → n − 1 into itself, we get

zn+2 = δy1 (δza1n zb1n−1z
c1
n−2)

a1 zb1n zc1n−1
= δy1+a1 za1a1+b1n zb1a1+c1n−1 zc1a1n−2

= δy2 za2n zb2n−1z
c2
n−2 (3.95)

for n ≥ 2, where
a2 := a1a1 + b1, b2 := b1a1 + c1, c2 := c1a1, y2 = y1 + a1. (3.96)

Assume that for a k ≥ 2 we have proved that

zn+2 = δyk zakn+2−kz
bk
n+1−kz

ck
n−k (3.97)

for n ≥ k, and that

ak = a1ak−1 + bk−1, bk = b1ak−1 + ck−1, ck = c1ak−1, (3.98)
yk = yk−1 + ak−1, k ≥ 2. (3.99)

Then, putting relation (3.94) with n → n − k into (3.97), we obtain

zn+2 = δyk (δza1n+1−kz
b1
n−kz

c1
n−k−1)

ak zbkn+1−kz
ck
n−k

= δyk+ak za1ak+bkn+1−k zb1ak+ckn−k zc1akn−k−1

= δyk+1 zak+1n+1−kz
bk+1
n−k z

ck+1
n−k−1 (3.100)

for n ≥ k + 1, where

ak+1 := a1ak + bk , bk+1 := b1ak + ck , ck+1 := c1ak , yk+1 = yk + ak . (3.101)

From (3.95), (3.96), (3.100), (3.101), and using induction,we have that (3.97)–(3.99) hold for every k, n ∈ ℕ
such that 2 ≤ k ≤ n. Moreover, due to (3.94), equation (3.97) holds also for k = 1.

Choosing k = n in (3.97) and using (3.92), (3.98) and (3.99), we have

zn+2 = δyn zan2 zbn1 zcn0
= (α1−cβb)yn (α1+aβbza2+bd0 wab

0 wbc
−1)

an (αza0w
b
0)

bn zcn0
= α(1−c)yn+(1+a)an+bnβb(yn+an)z(a

2+bd)an+abn+cn
0 wbcan

−1 waban+bbn
0

= αyn+2−cynβbyn+1 zan+2−can0 wbcan
−1 wban+1

0 (3.102)

for n ∈ ℕ.
From (3.98) we have that (ak)k≥4 satisfies the following recurrent relation:

ak = a1ak−1 + b1ak−2 + c1ak−3. (3.103)

Since bk−1 = ak − a1ak−1 and ck = c1ak−1, noting that equation (3.103) is linear, we have that (bk)k∈ℕ
and (ck)k∈ℕ also satisfy this equation.

Moreover, ak, bk and ck satisfy (3.103) for k ≥ −2. Indeed, from (3.101) with k = 0 we get

a1 = a1a0 + b0, b1 = b1a0 + c0, c1 = c1a0, 1 = y1 = y0 + a0. (3.104)
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Since c1 = −ac ̸= 0, from the third equation in (3.104) we get a0 = 1. Using this fact in the other three equal-
ities in (3.104), we get b0 = c0 = y0 = 0.

From this and by (3.101) with k = −1 we get

1 = a0 = a1a−1 + b−1, 0 = b0 = b1a−1 + c−1,
0 = c0 = c1a−1, 0 = y0 = y−1 + a−1. (3.105)

Since c1 ̸= 0, from the third equation in (3.105) we get a−1 = 0. Using this fact in the other three equalities
in (3.105), we get b−1 = 1, c−1 = y−1 = 0.

From this and by (3.101) with k = −2 we get

0 = a−1 = a1a−2 + b−2, 1 = b−1 = b1a−2 + c−2,
0 = c−1 = c1a−2, 0 = y−1 = y−2 + a−2. (3.106)

Since c1 ̸= 0, from the third equation in (3.106) we get a−2 = 0. Using this fact in the other three equalities
in (3.106), we get b−2 = y−2 = 0 and c−2 = 1

Hence, the sequences (ak)k≥−2, (bk)k≥−2 and (ck)k≥−2 are solutions to linear difference equation (3.103)
satisfying the initial conditions

a−2 = 0, a−1 = 0, a0 = 1,
b−2 = 0, b−1 = 1, b0 = 0,
c−2 = 1, c−1 = 0, c0 = 0, (3.107)

respectively, and (yk)k≥−2 satisfies recurrent relation (3.99) and

y−2 = y−1 = y0 = 0, y1 = 1.

From (3.99) and since a0 = 1, we have that

yk = 1 +
k−1
∑
j=1

aj =
k−1
∑
j=0

aj , k ∈ ℕ0. (3.108)

Since difference equation (3.103) is solvable, it follows that closed form formulas for (ak)k≥−2, (bk)k≥−2
and (ck)k≥−2 can be found. From this fact, (3.102), (3.108), and since the sum∑mj=0 aj,m ∈ ℕ0, can be calcu-
lated by using Lemma 2.1, we see that equation (3.91) is solvable too.

From the second equation in (1.1) we have that

zdn =
wn+1
βwc

n−1
, n ∈ ℕ0, (3.109)

for every well-defined solution, while by taking the first equation in (1.1) to the d-th power, it follows that

zdn+1 = α
dzadn wbd

n , n ∈ ℕ0. (3.110)

Putting (3.109) into (3.110), we easily obtain

wn+2 = αdβ1−awa
n+1w

bd+c
n w−acn−1, n ∈ ℕ0, (3.111)

which is a related difference equation to (3.91) (only with a different coefficient). Note also that (wn)n∈ℕ0
satisfies the following initial condition:

w1 = βwc
−1z

d
0 . (3.112)

Hence, the above presented procedure for the sequence zn can be repeated and we obtain that for every
k ∈ ℕ such that 1 ≤ k ≤ n we have

wn+2 = ηŷkwak
n+2−kw

bk
n+1−kw

ck
n−k , n ≥ k − 1, (3.113)

where η = αdβ1−a and (ak)k∈ℕ, (bk)k∈ℕ and (ck)k∈ℕ satisfy recurrent relations (3.98) with initial condi-
tions (3.93), and

ŷk+1 = ŷk + ak , k ∈ ℕ,

with ŷ1 = 1, from which it follows that ŷk is also given by formula (3.108).
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From (3.113) with k = n + 1 and by using (3.112), we get

wn+2 = ηŷn+1wan+1
1 wbn+1

0 wcn+1
−1

= (αdβ1−a)ŷn+1 (βwc
−1z

d
0)

an+1wbn+1
0 wcn+1
−1

= αdŷn+1βŷn+2−aŷn+1 zdan+10 wan+2−aan+1
0 wcan+1−acan

−1 , n ∈ ℕ0. (3.114)

Note that (ak)k∈ℕ, (bk)k∈ℕ and (ck)k∈ℕ satisfy (3.103), and, as above, since c1 ̸= 0, they can be prolonged
for k = −2, −1, 0, respectively, so that they satisfy (3.107), and (ŷk)k∈ℕ canbe prolonged also for k = −2, −1, 0
and ŷ−2 = ŷ−1 = ŷ0 = 0.

The solvability of equation (3.103) shows that closed form formulas for (ak)k≥−2, (bk)k≥−2 and (ck)k≥−2
can be found, from which, along with (3.108) and by Lemma 2.1, closed form formulas for (ŷk)k≥−2 can be
found. These facts along with (3.114) imply that equation (3.111) is solvable too. Direct but time-consuming
calculation shows that the sequences zn and wn given by formulas (3.102) and (3.114) are solutions to
system (1.1). Hence, system (1.1) is also solvable in this case, finishing the proof of the theorem.

Corollary 3.10. Consider system (1.1) with a, b, c, d ∈ ℤ, abcd ̸= 0 and α, β ∈ ℂ \ {0}. Assume further that
z0, w−1, w0 ∈ ℂ \ {0}. Then the general solution to system (1.1) is given by (3.102) and (3.114), where the
sequence (ak)k≥−2 satisfies the difference equation (3.103) with initial conditions (3.107), and the sequences
(yk)k≥−2 and (ŷk)k≥−2 are both given by (3.108).

Remark 3.11. Note that if ac ̸= 0, then by using the recurrent relations in (3.98) and (3.99) it can be shown,
similar as in the proof of Theorem 3.9, that the sequences ak, bk, ck can be prolonged for every negative
index k.

The characteristic polynomial associated to equation (3.103) is

P3(λ) = λ3 − a1λ2 − b1λ − c1, (3.115)

where a1, b1 and c1 are defined in (3.93). In the case ac ̸= 0, polynomial (3.115) is of the third degree, so by
the Cardano formula (see, e.g., [6]) the zeros of (3.115) are

λ1 =
a
3 +

3√B − √4A3 + B2

3 3√2
+

3√B + √4A3 + B2

3 3√2
,

λ2 =
a
3 −
(1 + i√3) 3√B − √4A3 + B2

6 3√2
−
(1 − i√3) 3√B + √4A3 + B2

6 3√2
,

λ3 =
a
3 −
(1 − i√3) 3√B − √4A3 + B2

6 3√2
−
(1 + i√3) 3√B + √4A3 + B2

6 3√2
,

where

A := −(a2 + 3bd + 3c), B := 2a3 + 9abd − 18ac.

Let
∆ := 4A3 + B2.

Then if ∆ > 0, one zero of (3.115) is real and the other two are complex conjugate. If ∆ = 0, all the zeros are
real and at least two of them are equal, while if ∆ < 0, all the zeros are real and different (see, e.g., [6]).

Case ∆ ̸= 0. Since ∆ ̸= 0, all the zeros λi, i = 1, 3, of polynomial (3.115) are mutually different, and the
general solution to (3.103) has the form

un = α1λn1 + α2λ
n
2 + α3λ

n
3 , n ∈ ℕ, (3.116)

where αi, i = 1, 3, are arbitrary constants. Since for the case c1 ̸= 0 the solution can be prolonged for every
nonpositive index, we may assume that formula (3.116) holds also for n ≥ −3.
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From Lemma 2.4 with P3(t) = ∏3
j=1(t − λj) we have

3
∑
j=1

λlj
P󸀠3(λj)
= 0 for l = 0, 1,

and
3
∑
j=1

λ2j
P󸀠3(λj)
= 1.

This along with a−2 = a−1 = 0 and a0 = 1 implies that

an =
λn+21

(λ1 − λ2)(λ1 − λ3)
+

λn+22
(λ2 − λ1)(λ2 − λ3)

+
λn+23

(λ3 − λ1)(λ3 − λ2)
(3.117)

for n ≥ −2.
On the other hand, from (3.98) we get

bn = an+1 − a1an , (3.118)
cn = c1an−1 (3.119)

for n ≥ −2.
Putting (3.117) and (3.93) into (3.118), we obtain

bn =
3
∑
j=1

λj − a
P󸀠3(λj)

λn+2j

for n ≥ −2.
Putting (3.117), which also holds for n = −3, and (3.93) into (3.119), we obtain

cn = −
3
∑
j=1

ac
P󸀠3(λj)

λn+1j

for n ≥ −2.
From (3.108) and (3.117) we have

yn =
n−1
∑
i=0

ai =
n−1
∑
i=0
(

λi+21
(λ1 − λ2)(λ1 − λ3)

+
λi+22

(λ2 − λ1)(λ2 − λ3)
+

λi+23
(λ3 − λ1)(λ3 − λ2)

) (3.120)

for every n ∈ ℕ.
Recall also that

ŷn = yn , n ∈ ℕ. (3.121)

Now assume that λi ̸= 1, i = 1, 2, 3. Then, from formula (3.120), it follows that

yn = ŷn = R(1)n (λ1, λ2, λ3) (3.122)

for n ∈ ℕ, where

R(1)n (λ1, λ2, λ3) =
λ21(λ

n
1 − 1)

(λ1 − λ2)(λ1 − λ3)(λ1 − 1)
+

λ22(λ
n
2 − 1)

(λ2 − λ1)(λ2 − λ3)(λ2 − 1)
+

λ23(λ
n
3 − 1)

(λ3 − λ1)(λ3 − λ2)(λ3 − 1)
.

It is easy to verify that formula (3.122) holds also for every n ≥ −2.
If one of the zeros is equal to one, say λ3, then 1 ̸= λ1 ̸= λ2 ̸= 1, and we have

yn = ŷn = R(2)n (λ1, λ2) (3.123)

for n ∈ ℕ, where

R(2)n (λ1, λ2) =
λ21(λ

n
1 − 1)

(λ1 − λ2)(λ1 − 1)2
+

λ22(λ
n
2 − 1)

(λ2 − λ1)(λ2 − 1)2
+

n
(λ1 − 1)(λ2 − 1)

.

It is also easy to verify that formula (3.122) holds also for every n ≥ −2.
From the above consideration and Theorem 3.9 we obtain the following corollary for the case abcd ̸= 0

and ∆ ̸= 0.
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Corollary 3.12. Consider system (1.1) with a, b, c, d ∈ ℤ and abcd ̸= 0. Assume z0, w−1, w0 ∈ ℂ \ {0} and
∆ ̸= 0. Then the following statements are true:
(i) If none of the zeros of characteristic polynomial (3.115) is equal to one, i.e., if P3(1) ̸= 0, then the general

solution to (1.1) is given by formulas (3.102) and (3.114), where the sequence (an)n≥−2, is given by (3.117),
while (yn)n≥−2 and (ŷn)n≥−2 are given by (3.122).

(ii) If only one of the zeros of characteristic polynomial (3.115) is equal to one, say λ3, i.e., if P3(1) = 0 ̸= P󸀠3(1),
then the general solution to (1.1) is given by formulas (3.102) and (3.114), where the sequence (an)n≥−2 is
given by (3.117), while (yn)n≥−2 and (ŷn)n≥−2 are given by (3.123).

Remark 3.13. Equation (3.115) will have a zero equal to one if

P3(1) = 1 − a − bd − c + ac = 0,

that is, if (a − 1)(c − 1) = bd so that

P3(λ) = λ3 − aλ2 − (ac − a + 1)λ + ac.

If bd = 0, then b = 0 or d = 0, which implies a = 1 or c = 1. Assume that a = 1 and c ̸= 1. Then

∆ = −4(1 + 3c)3 + 4(1 − 9c)2 = −108c(c − 1)2

and
P3(λ) = λ3 − λ2 − cλ + c = (λ − 1)(λ2 − c).

Thus, if a = 1, b = 0, c ∈ ℤ \ {0, 1}, d ∈ ℤ, we have that ∆ ̸= 0, so the conditions of Corollary 3.12 (ii) are satis-
fied, only one zero of polynomial (3.115) is equal to one and all three zeros are mutually different. Moreover,
if c > 0 we have that ∆ < 0 and all three zeros are real and different, while if c < 0 we have that ∆ > 0 and all
three zeros are different but two are complex conjugate.

Case ∆ = 0. If ∆ = 0 and ac ̸= 0, then at least two zeros of characteristic polynomial (3.115) are equal, say,
λ2 and λ3. It is easy to see that the polynomial would have three equal zeros only if B = 0, which along
with ∆ = 0 would also imply A = 0. In this case there must be P3(λ1) = P󸀠3(λ1) = P

󸀠󸀠
3 (λ1) = 0. Hence, from the

equality P󸀠󸀠3 (λ1) = 0, it follows that λj = a/3, j = 1, 2, 3, and consequently

P3(a/3) = −
2a3 + 9abd − 18ac

27 = 0 and P󸀠3(a/3) = −
a2 + 3bd + 3c

3 = 0,

which immediately implies 2a3 + 9abd − 18ac = a2 + 3bd + 3c = 0. From these two relations it easily fol-
lows that bd = 8c, and consequently a2 = −27c. Thus, we have

P3(λ) = λ3 − aλ2 +
a2

3 λ − a
3

27 = (λ −
a
3)

3
.

Hence, if a = 9â for some â ∈ ℤ \ {0}, we have that c = −3â2 ∈ ℤ \ {0}, and b, d ∈ ℤ \ {0} can be chosen so
that bd = 8c = −24â2. Thus, there are polynomials of the form in (3.115) such that all three zeros are equal.

For a = c = 1, b = 0, d ∈ ℤ we have that ∆ = 0 and

P3(λ) = (λ + 1)(λ − 1)2,

so that there are polynomials with three real zeros such that two of them are equal and different from the
third one.

If λ1 ̸= λ2 = λ3, then the general solution of (3.103) has the form

an = α̂1λn1 + (α̂2 + α̂3n)λ
n
2 , n ∈ ℕ, (3.124)

where α̂1, α̂2 and α̂3 are arbitrary constants. Since in our case the conditions a−2 = a−1 = 0 and a0 = 1 must
be satisfied, the solution (an)n≥−2 of equation (3.103) can be found by letting λ3 → λ2 in (3.117).
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We have

an = lim
λ3→λ2
(

λn+21
(λ1 − λ2)(λ1 − λ3)

+
λn+22

(λ2 − λ1)(λ2 − λ3)
+

λn+23
(λ3 − λ1)(λ3 − λ2)

)

=
λn+21 − (n + 2)λ1λ

n+1
2 + (n + 1)λ

n+2
2

(λ2 − λ1)2

for n ≥ −2, that is,

an =
λn+21 + (λ2 − 2λ1 + n(λ2 − λ1))λ

n+1
2

(λ2 − λ1)2
(3.125)

for n ≥ −2.
Note that a−2 = a−1 = 0 and a0 = 1, and that (3.125) is of the form (3.124) with

α̂1 =
λ21

(λ2 − λ1)2
, α̂2 =

λ22 − 2λ1λ2
(λ2 − λ1)2

, α̂3 =
λ2

λ2 − λ1
.

Using relations (3.125) in (3.118) and (3.119), we get

bn =
(λ1 − a)λn+21
(λ2 − λ1)2

+
(λ2(2λ2 − 3λ1) − a(λ2 − 2λ1) + n(λ2 − λ1)(λ2 − a))λn+12

(λ2 − λ1)2
,

cn = −ac
λn+11 + (−λ1 + n(λ2 − λ1))λ

n
2

(λ2 − λ1)2
, n ≥ −2.

From (3.108) and (3.125) we have

yn =
n−1
∑
j=0

aj =
n−1
∑
j=0

λj+21 + (λ2 − 2λ1 + j(λ2 − λ1))λ
j+1
2

(λ2 − λ1)2
, n ∈ ℕ. (3.126)

If we assume λ1 ̸= 1 ̸= λ2 = λ3, then (3.126), Lemma 2.1 and (3.121) imply

yn = ŷn = R(3)n (λ1, λ2) (3.127)

for every n ∈ ℕ, where

R(3)n (λ1, λ2) =
λ21(λ

n
1 − 1)

(λ2 − λ1)2(λ1 − 1)
+
(λ2 − 2λ1)λ2(λn2 − 1)
(λ2 − λ1)2(λ2 − 1)

+
λ22(1 − nλ

n−1
2 + (n − 1)λ

n
2)

(λ2 − λ1)(λ2 − 1)2
.

A direct calculation shows that formulas (3.127) hold also for every n ≥ −2.
If we assume that λ1 ̸= 1 and λ2 = λ3 = 1, then from (3.126) it follows that

yn = ŷn = R(4)n (λ1) (3.128)

for every n ∈ ℕ, where

R(4)n (λ1) =
λ21(λ

n
1 − 1)

(λ1 − 1)3
+
(1 − 2λ1)n
(λ1 − 1)2

+
(n − 1)n
2(1 − λ1)

.

A direct calculation shows that formulas (3.128) hold also for every n ≥ −2.
If we assume that λ1 = 1 and λ2 = λ3 ̸= 1, then from (3.126) it follows that

yn = ŷn = dR(5)n (λ2) (3.129)

for every n ∈ ℕ, where

R(5)n (λ2) =
n

(λ2 − 1)2
+
(λ2 − 2)λ2(λn2 − 1)
(λ2 − 1)3

+
λ22(1 − nλ

n−1
2 + (n − 1)λ

n
2)

(λ2 − 1)3
.

A direct calculation shows that formulas (3.129) hold also for every n ≥ −2.
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If λ1 = λ2 = λ3, then the general solution of (3.103) has the form

an = (β̂1 + β̂2n + β̂3n2)λn1 , n ∈ ℕ, (3.130)

where β̂1, β̂2 and β̂3 are arbitrary constants.
To find the solution of equation (3.103) satisfying the conditions a−2 = a−1 = 0 and a0 = 1, we will let

λ2 → λ1 in formula (3.125). We have

an = lim
λ2→λ1

λn+21 − (n + 2)λ1λ
n+1
2 + (n + 1)λ

n+2
2

(λ2 − λ1)2

= lim
λ2→λ1

(λ2 − λ1)((n + 1)λn+12 − λ1∑
n
i=0 λi2λ

n−i
1 )

(λ2 − λ1)2

= lim
λ2→λ1

∑ni=0(λ
n+1
2 − λ

i
2λ

n+1−i
1 )

λ2 − λ1

= lim
λ2→λ1

∑ni=0 λi2(λ
n+1−i
2 − λn+1−i1 )
λ2 − λ1

= lim
λ2→λ1

n
∑
i=0

λi2
n−i
∑
j=0

λj2λ
n−i−j
1 =
(n + 1)(n + 2)

2 λn1 (3.131)

for n ≥ −2.
Note that a−2 = a−1 = 0 and a0 = 1, and that (3.131) is of the form (3.130) with

β̂1 = 1, β̂2 =
3
2 , β̂3 =

1
2 .

Using relations (3.131), as well as the condition c = −a2/27 in (3.118) and (3.119), we get

bn =
n + 2
2 (3λ1 − a + n(λ1 − a))λ

n
1 = −n(n + 2)(

a
3)

n+1
,

cn = −ac
n(n + 1)

2 λn−11 =
n(n + 1)

2 (
a
3)

n+2

for n ≥ −2.
From (3.108) and (3.131) we have

yn =
n−1
∑
j=0

aj =
n−1
∑
j=0

(j + 1)(j + 2)
2 λj1 (3.132)

for every n ∈ ℕ.
If we assume that λ1 = λ2 = λ3 ̸= 1, then from (3.132), Lemma 2.1 and (3.121) it follows that

yn = ŷn =
2s(0)n + 3λ1s

(1)
n−1 + λ1s

(2)
n−1

2

=
2 − (n + 1)(n + 2)λn1 + 2n(n + 2)λ

n+1
1 − n(n + 1)λ

n+2
1

2(1 − λ1)3
(3.133)

for every n ∈ ℕ. A simple calculation shows that (3.133) also holds for n = −2, −1, 0.
If we assume λ1 = λ2 = λ3 = 1, then from (3.132) and (3.121) it easily follows that

yn = ŷn = R(6)n (1) :=
n−1
∑
j=0

(j + 1)(j + 2)
2 =

n(n + 1)(n + 2)
6 (3.134)

for every n ∈ ℕ.
Note that from (3.134) it immediately follows that R(6)j (1) = 0, j = −2, −1, 0.

From the above consideration and Theorem 3.9 we obtain the following corollary for the case abcd ̸= 0
and ∆ = 0.
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Corollary 3.14. Consider system (1.1) with a, b, c, d ∈ ℤ and abcd ̸= 0. Assume that z0, w−1, w0 ∈ ℂ \ {0},
abcd ̸= 0 and ∆ = 0. Then the following statements are true:
(i) If none of the zeros of characteristic polynomial (3.115) is equal to one, i.e., if P3(1) ̸= 0, and if it has two dif-

ferent zeros, then the general solution to (1.1) is given by formulas (3.102) and (3.114), where the sequence
(an)n≥−2 is given by (3.125), while (yn)n≥−2 and (ŷn)n≥−2 are given by (3.127).

(ii) If exactly two of the zeros of characteristic polynomial (3.115) are equal to one, say λ2 and λ3, i.e., if
P3(1) = P󸀠3(1) = 0 ̸= P

󸀠󸀠
3 (1), then the general solution to system (1.1) is given by formulas (3.102) and

(3.114), where the sequence (an)n≥−2 is given by (3.125), while (yn)n≥−2 and (ŷn)n≥−2 are given by (3.128).
(iii) If all three zeros of characteristic polynomial (3.115) are equal, then the general solution to system (1.1)

is given by formulas (3.102) and (3.114), where the sequence (an)n≥−2 is given by (3.131), while (yn)n≥−2
and (ŷn)n≥−2 are given by (3.133).

Remark 3.15. As we know, polynomial (3.115) has a zero equal to one if (a − 1)(c − 1) = bd. If λ = 1 is a
double zero of (3.115), then it must be P󸀠3(1) = 3 − 2a − c − bd = 0, which is possible only if ac = 2 − a, that
is, if a ∈ {±1, ±2} and c = (2/a) − 1. Note that in this case

P3(λ) = λ3 − aλ2 + (2a − 3)λ + 2 − a.

If a = 1, then c = 1 and bd = 0, which is not a case treated in Theorem 3.9 (note that in this case we have
P3(λ) = (λ − 1)2(λ + 1)). If a = 2, then c = 0, which is also not a case treated in Theorem 3.9. If a = −1,
then c = −3, bd = 8 ̸= 0, ∆ = 0, and P3(λ) = (λ − 1)2(λ + 3). If a = −2, then c = −2, bd = 9 ̸= 0, ∆ = 0, and
P3(λ) = (λ − 1)2(λ + 4). Hence, there are two cases in which polynomial (3.115) has exactly two zeros equal
to one, that is, the conditions of Corollary 3.10 (ii) are satisfied.

Remark 3.16. For the case of our system it is not possible that all three zeros of (3.115) are equal to
one. Namely, in this case there must be λi = a/3 = 1, i = 1, 2, 3, which implies a = 3. On the other hand,
c = −a2/27, which in this case implies c = −1/3 ̸∈ ℤ.

Remark 3.17. Assume that only one of the zeros of characteristic polynomial (3.115) is equal to one, say λ1,
abcd ̸= 0 and that ∆ = 0. Then the other two zeros of (3.115) are equal anddifferent fromone, i.e., λ2 = λ3 ̸= 1
and

λ1 =
a
3 +

2 3√B
3 3√2
= 1,

which implies that 3√4B = 3 − a ∈ ℤ. Hence B = 2q3 for some q ∈ ℤ \ {0} (if q = 0, i.e., B = 0, the condi-
tion ∆ = 0 would imply A = 0, and consequently all three zeros of (3.115) would be equal). Moreover, we
have q = (a − 3)/2, which also implies that a is an odd number. From this and since 4A3 = −B2, we would
have that A3 = −q6, i.e., A = −q2. Recall that since polynomial (3.115) has a zero equal to one, it must be
(a − 1)(c − 1) = bd. Hence, we have

(a − 3)2
4 = q2 = a2 + 3bd + 3c = a2 + 3ac − 3a + 3,

which is equivalent to (a − 1)2 = −4ac. This, alongwith the fact that a = 2m + 1 for somem ∈ ℤ, implies that

c = −(a − 1)
2

4a = −
m2

2m + 1 ,

so that
k := m2

2m + 1
must be an integer.

Sincem2 − 2km − k = 0,wehave thatm = k ± √k2 + k, and consequently k2 + kmust be aperfect square,
i.e., k(k + 1) = r2, for some r ∈ ℤ. This would mean that k and k + 1 divide r. From this and since k and k + 1
are mutually prime numbers if k ̸= −1, 0, it would follow that r = ck(k + 1) for some c ∈ ℤ, and consequently
(ck(k + 1))2 = k(k + 1), which is equivalent to

k(k + 1)(c2k(k + 1) − 1) = 0.
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The relation c2k(k + 1) = 1 is not possible since1 is dividedonly by two integers±1. If k = 0, then c = 0,which
would contradict the condition abcd ̸= 0. If k = −1, then c = 1, and consequently bd = 0, which would also
contradict the condition abcd ̸= 0. Hence c cannot be an integer, so that polynomial (3.115) cannot have
only one zero equal to one under the conditions of Theorem 3.9.

Remark 3.18. The formulas presented in this paper can be used in the investigation of the asymptotic behav-
ior of solutions to system (1.1). We leave the problem to the reader.
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