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1 Introduction

Difference equations and systems have been studied a lot recently (see, e.g., [1-5, 7, 8, 10, 12, 14-38]).
About two decades ago Papaschinopoulos and Schinas started investigating concrete symmetric and related
systems of difference equations (see, e.g., [14—16]). The investigation later motivated numerous authors to
conduct research in this direction (see, e.g., [3, 7, 10, 18, 19, 23, 2630, 33-38] and the references therein).
On the other hand, the problem of solvability of difference equations and systems has re-attracted some recent
attention, especially after the publication of our note [20] which explains a formula in [5] and the publication
of [21] in which an open problem from population biology was solved by showing the solvability of the dif-
ference equation appearing there (see, e.g., [1-3, 17, 23-32, 34-38]). The ideas in [20] were later developed
in [24] and [25] for some related equations, and in [23] and [34] for some related systems. In some of these
papers, among others, have appeared some new classes of solvable symmetric or closely related systems of
difference equations, as well as solvable cyclic ones [30, 34]. Some max-type systems are solvable too [26].
Classical methods for solving difference equations and systems can be found, e.g., in [9, 11, 13].

Some recent papers have also studied equations and systems whose right-hand sides contain product-
type expressions (see, e.g., [22, 33] and the references therein). In the study of the equations and systems
in [22] and [33] their methodological connection with the product-type ones was essentially noticed. One
of the reasons for this is that some product-type equations and systems are obtained by taking the limits
of some parameters in the equations and systems in [22] and [33]. It is well known that the product-type
systems of difference equations are solvable in some cases (e.g., if initial values are positive), but, in general,
this is not always the case. The problem appears if some initial values are not nonnegative, because power
functions are multi-valued in the complex plain C in many cases. These facts have motivated us to investigate
the solvability of some concrete product-type systems of difference equations with complex initial values in
detail. More precisely, the problem is to find systems for which it is possible to find explicit formulas for all
their solutions.
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Recent papers [29, 30, 32, 37, 38] deal with this problem (this problem appeared in [31] too, as some
special cases of the equation treated therein). Papers [29, 32, 37, 38] study some two-dimensional product-
type systems of difference equations with different delays, while [30] studies a three-dimensional. For the
above-mentioned problem connected to multi-valued functions, all these systems could not be dealt with the
transformation methods presented in some of our previous papers such as [3, 20, 21, 23-25, 27, 34-36].
Hence, we have been developing some other methods for studying the product-type systems, related to some
in [22] and [33], and have some coefficients as the systems in [32] and [38].

Here we continue the study of practical solvability of product-type systems, by investigating the solvabil-
ity of the following one:

b d
Zne1 = AZGWo,  Wpe1 = fW5_1z4, n e N, (1.1)

wherea, b,c,d € Z, a, B € Cand zp, w_1, Wo € C, in detail.

If @ = 0 or B = 0O, then solutions of (1.1) are trivial or not well-defined. Hence, the case a # 0 # f8 is of
some interest and it will be treated in the rest of the paper.

Note that the domain of undefinable solutions [27] to (1.1) is a subset of the set

U = {(z0, W_1, Wp) € C* : zo = 0 0r w_1 = 0 or W = O}.
If min{a, b, c} < 0 or min{b, c, d} < 0, then the domain is U. Hence, from now on we will also assume that
Zo, W_1, Wo € C \ {0}, although many obtained formulas will hold on some larger sets or even on the whole C3
(for example, if min{a, b, c, d} > 0).
It is said that the system of the form
Zn zf(zn—ly ooy Zn-ksWn-1s+++, anl)’
Wn = 8(Zn-1, -+ +5Zn-s, Wn-1, ..., Wnt), N € N,

where k, I, s, t € N, is solvable in closed form if its general solution can be found in terms of initial values
z_j, 1 =1, max{k, s}, w_j, j = 1, max{l, t}, delays k, I, s, t, and index n only. As usual, if m > n we regard that
Y k-m ak is equal to zero.

2 Auxiliary results

In this section we present two auxiliary results which will be used in the proofs of the main results. The
following elementary lemma is known (see, e.g., [13]).

Lemma 2.1. Leti € Ng and

s(z)=1+2z+322 +...+niz", neN, (2.1)
where z € C. Then
(0) 1 —Z"

Sp(2) = ——, 2.2
n (2) 12 (2.2)
) 1-(n+1)z" + nz"t!

Sy (2) = s 2.3
n (2) 1272 (2.3)
@, l+z—(n+1)22"+(2n* + 2n - 1)2"*! — n?z"+2

Sp(2) = 3 (2.4)

(1-2)

foreveryz e C\{1}andn € N.

Formula (2.2) is something which should be known to any mathematician, while (2.3) and (2.4) can be
obtained by using the following result, which seems not so well known.
Proposition 2.2. Sequences defined in (2.1) satisfy the following recurrent relation:
XK CHED s (2) - ke

1-z

(2.5)

foreveryk e Nand z € C )\ {0}.
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Proof. We have

n

si(@) -zsW)(2) = 1+ Y (F - (G- DR - nfz"

j=2
n k-1 ' ; '
i
:1+z Ci(-1) 727 —n*2"
j=2 i=0
k-1 on
=1+ ) CH-1) Y jigt - nke"
i=0 j=2
k-1

Ck+ Y k-1 (2) - 1) - k2"
i=0
k-1

CH-DF 4+ Y k-1 s (2) - nkzn
i=0

I
~
i
o OM»

CHD s (2) - 2k,

o

where we have used the fact Zf;o C f.‘(—l)k"' = 0, from which (2.5) follows. O

Example 2.3. If k = 2, then from (2.5) and some calculations it follows that

n n n+1
@) = ~C25sV(z) + €25 (2) - n22" _ -+ 2% - n?z"
1-z 1-z
C1+z-(n+1)22"+ (2n% + 2n - 1)z — n?z"+2
- (1-2)3 '

The following result is a known consequence of the Lagrange interpolation formula, but can be also proved
by using some other techniques (see, e.g., [37]).

Lemma 2.4. Let
Pi(2) = fid" + fieaZ 4+ fiz + fo.

Ifthe zeros zj, j = 1, ..., k, of Py are mutually different, then

foreachl e {0,1,...,k-2},and

3 Main results

The main results in this paper are proved in this section.

Theorem 3.1. Assume that b,c,d € Z, a =0, a, 8 € C\ {0}, and zop, w_1, wo € C )\ {0}. Then system (1.1) is
solvable in closed form.

Proof. Since a = 0, system (1.1) is
Zn4l = awﬁ, Wnet = ﬁw;_lzg, n € No. (3.1)
Using the first equation in (3.1) in the second one, we obtain

Wne1 = Bawih, neN. (3.2)
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Iterating relation (3.2), we can easily show that

n-1 j n n-1 j n-1 j n
Wan = (Bad)Zi-o (”bd)'wg”b D" 2 g% (c+bdY pYic (”bd)'wé”b ) (3.3)
and
n-1 j bd)"
Wans1 = (Bad)Zio (€+bd)y lerbd

_ (ﬁad)z}:ol(ubd)i (ﬁwflzg)(ubd)"
— g4 (cxbdy ﬂZ;l:o(C+bd)f W5<1c+bd>" zg(“bd)" (3.4)
for every n € IN.
Employing (3.3) and (3.4) into the first equation in (3.1), we get

n-1 j n-1 j n
Zone1 = a1+bd i (c+bd)’ﬁb Yo (c+bdy Wg(c+bd) (3.5)

and

n-1 j n j n n
Zonsa = - tPA Lo (cxbd) gb Zi:O(c+bd)iwl_Ji(c+bd) ng(c+bd) (3.6)

for every n € IN.
If ¢ + bd # 1, then from (3.3)-(3.6) and (2.2) we have

1-c—bd(c+bd)"* 1-(c+bd)" n
Zopsl = Q& 1-cbd ﬂb T-c-bd W(l;(c+bd) , (3.7)
1-c—bd(c+bd)" 1-(c+bd)*+1 n n
Zops2 = Q 1-c-bd b="a WI_’i(”bd) Z(I;d(c+bd) s (3.8)
1-(c+bd)  1-(c+bd)" n
Won = ad—icpa B icbd Wgc+bd) s (3.9)
1-(c+bd)" _ 1-(c+bd)"*1 n n
Wons1 = @@ Tebd B ieba wf(f*bd) zg(”bd) (3.10)
for every n € N, while if ¢ + bd = 1, then we have
Zonsl = a1+bdnﬁbnwg’ (3'11)
Zonsa = a1+bdnﬁb(n+1)wljgzgd, (3'12)
Won = (anﬁnWo, (313)
Wons1 = a@mgmlye, 24 (3.14)
for every n € N, finishing the proof of the theorem. O

Corollary 3.2. Consider system (1.1) with b,c,d € Z, a=0 and a, B € C\ {0}. Furthermore assume that
2o, W_1, Wo € C\ {0}. Then the following statements are true:

(1) Ifc+ bd # 1, then the general solution to system (1.1) is given by (3.7)-(3.10).

(ii) Ifc + bd = 1, then the general solution to system (1.1) is given by (3.11)—(3.14).

Theorem 3.3. Assumethata, b,d € Z,c =0,a, B € C\ {0}, and zp, wo € C )\ {0}. Then system (1.1) is solvable
in closed form.

Proof. In this case system (1.1) becomes
Znel = azﬁwﬁ, Wnet = Bzﬁ, n € No. (3.15)

The system essentially appeared in [29], but we will give a proof for the sake of completeness. Using the
second equation in (3.15) in the first one, we obtain

Znsl = aﬁbzgzgfl, neN. (3.16)

Now we consider the subcases bd = 0 and bd # O separately.
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Subcase bd = 0. In this case we have
Zn = a/}bzz_l, n>2,
from which it follows that
= (@B 20 = ()T @ (azgwh)™ = o U IS o W iz 2,
Using (3.17) in the second equation in (3.15), we get
wy = B(adio @ gP Y @ @t ybayd g D dpada"t  p >3,

A direct calculation shows that (3.18) holds also for n = 2.
From (3.17) and (3.18) we have that

1-a" p 1-a"1 a. ba"!
Zp=ata P ziwg® , nz=2,
1- a" 1 n-1
Wy = ad Bzda , n>?2,

in the case a # 1, while in the case a = 1 we have

Zn = a"BPVzowd, n > 2,
wy = 4D pzd. n>2.
Subcase bd + 0. Let
Y= aﬁb, a;:=a, by:=bd, x1:=1.
Then (3.16) can be written as

X b
Zns1 =Y 14 'zly, neN,

from which it follows that

b ayai+b, _bia b
Zney = y (YZn 1Zn z)alz 1 yx1+alz 101 1Zn121 — XzZn 1Zn22

for n > 2, where
ap = (11(11+b1, bz = blal, Xy :=X1+ai.

Assume that for some k > 2 we have

Xk oAk bi
Znt1 =Y an+1 n-ie N > k,

where
ay := arax-1 +br-1, by :=biax 1, Xg:i=Xp1+dg1.
Then, using (3.23) with n — n - k into (3.26), we obtain

X ax b Xy+ay ,a1ax+by biag Xis1 ki1 bkl
Zny1 = k(yZn an k— 1) kZ —k— =Yy Tz 1]( ank 1 =Yy kﬂzn +k n+k 1

forn > k + 1, where
As1 := 10k + by, brer := b1ax,  Xps1 = Xg + Ak

— 33

(3.17)

(3.18)

(3.19)
(3.20)

(3.21)
(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

From (3.24), (3.25), (3.28), (3.29), and the induction we see that (3.26) and (3.27) hold for every k and n

such that 2 < k < n ((3.26) also holds for k = 1 because of (3.23)).
Now note that from the first two equations in (3.27) we get

ak:alak_1+b1ak_2, k> 3.
The equalities in (3.27) with k = 1 yield

aq =a1(10+b0, b1 =b1ao, X1 = Xo + dop.

(3.30)

(3.31)
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Since by = bd # 0, from the second equation in (3.31) we get ag = 1. This, along with x; = 1 and the other
two relations in (3.31) implies bg = x¢ = O.
From this and (3.27) with k = 0, we obtain

1=a0=a1a_1+b_1, 0=bo=b10_1, 0=X()=X_1+a_1. (332)

Since b; # 0, from the second equation in (3.32) we get a_; = 0. This, along with the other two relations
in (3.32), implies b_; = 1and x_; = 0.

From this and the second equation in (3.27), we have that (ay)x>_1 and (by)k>_1 are solutions to linear
equation (3.30) satisfying the initial conditions

a1 =0, apg =1, and bfl =1, b() =0,
respectively, and that (xy)x-_1 satisfies the third recurrent relation in (3.27) and
X-1=Xx0=0, x3=1.

From (3.26) with n — n -1 and k = n - 1, along with the equality z; = azgwg and the first and third
relations in (3.27), we have that
Zn — anflz?n—IZgn—l — (aBb)X"kl (azgwg)anflzgnfl
_ aan,1+xn,lﬂbxn,1 Z(a)an—1+bn—1 Wga"‘l
= o X g0y P e N, (3.33)
Using this in the second equation in (3.15), we obtain
Wy = ad"nflﬁ“bd""*zzga"’lwgda“, neN. (3.34)

From the third equation in (3.27) and since x; = 1, we get

n-1
xn=1+Za,-, neN,
j=1
which due to the fact ag = 1 can be written as
n-1
Xap= Y aj, neN. (3.35)
j=0

Now note that the characteristic equation associated to difference equation (3.30) is A2 — ad - bd = 0,
from which it follows that

1 a+ Va2 +4bd
12=—.
’ 2

Hence if a2 + 4bd + 0, then
an = 1A} + c2A5.
From this and since a_; = 0 and ag = 1, we have that

/\?H _ A§1+1
- , 3.36
Aan -, ( )
which along with the second equation in (3.27) implies

A=A
A=A

by = bd
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Using (3.36) in (3.35) for the case when A1 # 1 # A,, which is equivalent to a + bd # 1, we get
n-1 Aj+1 —Aj+1
W= i A
o M-A2
1 AY AD -1
_(/11—7‘2)(/11/11— Az/lz—l)

_ (Az - 1)Ar11+1 - (/\1 - 1)/\5”1 + Al - Az
- (A1 - D(A2 - 1)(A1 - 12) ’

(3.37)

while if a + bd = 1, that is, if one of the characteristic roots is equal to one, say A, which implies that
A1 = —bd, we get

n-1 A]+1 1 1 Al’l -1
=25 (= -n)
/11 - (/11 - 1) Al -1
~ A;’” -(n+ DA +n _ (-bd)™'+(n+1)bd +n (3.38)
B (A =1)2 - (1 + bd)? ) )
If % + 4bd = 0, then
. . a\n
a, = (C1 + czn)(z) .
From this and since a_; = 0 and ag = 1, we have that
a\n
an=m+1)(3) (3.39)
which along with the second equation in (3.27) and bd = —a?/4, implies
a\n-1 a\n+1
by = bdn(z) = —n(i) .
Using (3.39) in (3.35) and employing (2.3) for the case a # 2, we get
- (n+ (" + ("™
Xn _]zo(;+1)( ) oo : (3.40)
while if a = 2, we get
nn+1
xn_Z(] 1) = ( ), (3.41)
j=0
as desired. O

Corollary 3.4. Consider system (1.1) with a, b, d € Z, c = 0 and a, € C\ {0}. Assume that zo, wo € C \ {0}.

Then the following statements are true:

(i) Ifbd = 0and a + 1, then the general solution to system (1.1) is given by (3.19) and (3.20).

(ii) If bd = 0 and a = 1, then the general solution to system (1.1) is given by (3.21) and (3.22).

(iii) If bd # 0, a? + 4bd #+ O and a + bd # 1, then the general solution to system (1.1) is given by formulas (3.33)
and (3.34), where the sequences (an)n>-1 and (X, )n>—1 are given by formulas (3.36) and (3.37), respectively.

(iv) Ifbd + 0, a®> + 4bd + O and a + bd = 1, then the general solution to system (1.1) is given by formulas (3.33)
and (3.34), where the sequences (a,)n>-1 and (x,)ns—1 are given by formulas (3.36) and (3.38), respectively.

(v) If bd #+ 0, a®? + 4bd = 0 and a #+ 2, then the general solution to system (1.1) is given by formulas (3.33)
and (3.34), where the sequences (a,)n>—1 and (x,)ns_1 are given by formulas (3.39) and (3.40), respectively.

(vi) If a® + 4bd = 0 and a = 2, then the general solution to system (1.1) is given by formulas (3.33) and (3.34),
where the sequence (an)n>-1 is given by formula (3.39) with a = 2, while (x)n>_1 is given by (3.41).

Theorem 3.5. Assume that a,c,d € Z, b =0, a, B € C\ {0}, and zp, w_1, wg € C\ {0}. Then system (1.1) is
solvable in closed form.
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Proof. In this case system (1.1) becomes

a c d
Zns1 = QZy, W1 = W, 12y, 1€ Np.

From the first equation in (3.42) we get
Zn = a0 “iZS", nen,

which for the case a # 1 implies that .
Zn = all%aazg", neN,

while for the case a = 1 it implies that
Zn=a"zy, neN.

Employing (3.43) in the second equation in (3.42), we obtain

dy"ra _da",, ¢
W1 = Pa Zjo z"w

1> Ne€N.

Using (3.46) twice, we obtain

Won = Bad zl?:"(;z aizga2"*1 Wgn—Z

= T @ gt (Bad T @ gy e
_ ﬁ1+cadzj‘2:f;2 d+dc Z,‘ZIJQ aizgaZn-l +dca?"3 W;zn_4,
Bad ij:ngl aizgaz” w5

Won+l = n-1

_pa Ayt al dgn dy? 3 a _da*"2 ¢ c
= azro TG0 (Ba s Tz W, 3)
gn—l ‘anfi

_ pltc, dY N dvde YN @ _da*+dca? 2 |, c?
=p " Cat &0 = ©z4 Wi3, N2,

Assume that for a natural number k the equations

L o k=1 j 2n-2j-1
_pYld dyklcyinriig dYi,da ck
Wop = B0 et &0 © & Zy Waon-2k?
1 1 i1 k=1 _j 2n-2j
_ gYfa d dxiy cyitd A atE ek
- B j=0 “ o i=0 j=0 ZO

Wan+1 Won-2k+1

for every n > k have been proved.

By using (3.46) withn — 2n -2k -1and n — 2n - 2k in (3.49) and (3.50), we get

a2n-u-1

k-1 k-1 iy2n-2i-2 i d YKL m-2k-2 n-2k-1
Wap = ﬁZ,:o ¢/ adZ,:() c Z,:o a 2, j=0 (ﬁadZFO a Zga c

. . Y . k J 2n-2j-1
= B d gd Xt e P dl A0 Ca we
=petat ’ Zo 2n-2k-2°
k-1 . k-1 i y2n-2i-1 i d YL a2 m-2k-1 i go2n-2k
o dYiyct Yyl a j=0 ay;:’ @ da c
Wons1 = B0 @ g 2io € 2jso z, (Ba?Zi=0 zg

2n-2j
Ck+1

. o ko
_ zlf:o d d zl_(:O i ZZ:HO 2i-1 a d z]-:() ca
=protat s ! Zo 2n-2k-1

foreveryn > k + 1.

Won-2k-2

Won-2k-1

DE GRUYTER

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

From (3.47), (3.48), (3.51), (3.52), and induction it follows that (3.49) and (3.50) hold for all k,n € N

such that 1 < k < n. Taking k = nin (3.49) and (3.50), we get
n-1 .j n-1 i y2n-2i-2 j dz(lj dan-2d-1
Way = im0 € g1 Zico € Zjso™ " 7 150 WG
n-1 i n-1 iyen-2i-1 j dYRd da?¥ o,
o ¢ dYiy ¢ Yl a =0

Wonsl = BZFO a Yiso Z,,o z, j Wi
nlei n-1 iyon-2i-1 i dY© ) da?y .
= B0 ¢ Tl € 2T 7 S0 T e 28

n i n-1 .iv2n-2i-1 i d¥Y", a2 1
= BZ/’:O d ad Yio ¢ Z;‘:o a@ z, Z1—0 WET

forn e IN.
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Subcasea # 1 # ¢, ¢ # a2.

1-cl

W2n—,Blc

1-c"

_ gEE gital
=fTca

1-c

1-c _

2n-2i-1
d 2:n 1 C'l a

d(a? —c+(a+c)(1-a)c"—(1-c)a?t1)

a2n_cn a?n_cn
f)d o

da®
) 0

a2-c vvgn

on
< Qa

_ﬁll

Cn+1

d21OC

il-a

1_cntl d (l -

:ﬁ ic ql-a

1—cn+1

(1-a)(1-¢)(a?-c)

d(a?-c+(1-a2)c"t1_(1-¢)a2N1*2)

)

In-2i da2n+2,cn+1
a’-c

1-a 2{0

2 g2n_ch )

a2—c Z

L

=f 1< a

for every n € Ny.

(1-a)(1-c)(a?-¢)

)

Subcasea # 1 # ¢, ¢ = a? # 0. In this case we have

n= ﬁZ}:ol ‘

1-qg2n

:ﬁl—aza*

1-qg2n

= ﬁ 1-a2 (14
ﬁzl 0 ‘12]

Won+1 =
1_a2n+2
= ﬁ 1-a2

1-q2n+2
— lg 1-a2 ql-a

17a2"+2

:ﬁ 1-a?
for every n € Np.
Subcase a® # 1 = c. In this case we have
ﬁn dyily

d

_ ﬂnaﬁ(n—a

d(a@®"t14n(1-a?)-a)
(a-1)2(a+1) z,

= B"a

Wons1 =

_ ﬁn+1 dyry

_ ﬁn+10(ﬁ(n—a2 p

d(@®"2 sn(1-a?)-a?)
(afl)z(aﬂ) ZO

— ﬁn+1a
for every n € No.

Subcase a = -1, ¢ = 1. In this case we have

n = BE0 1gdTin T 1>fzd2?:3<*1>2"‘2"‘1

—ﬁn dz“

(=

1|

2, n-1 _2i
](Xd Yiso a

n-1 2i1-a“"~
i=0 4 1-a

1- 2n
= ﬁ e aZico

4 ( 1-a?n
1 1-a

d(linHZn—liaZrleZrHl)
(a-1)2(a+1)

d ZL o a211 a

1-

d(lf(n+1)a2"+na2”+2)
(a+1)(a-1)2

n-1 1-g2n-2i-1
1-a ZO yvo

)Zn—Zi 1
2

—_ngn-1 2n-1
> )Zgna w

n11a2"2’

2n-2i
j=0

2n-2i-1 dna?n-1
)

dnazrl 1
20

a2yt a;Z(c)lZ;LO a

2n-2i

2n_q
ad*
aZ-1

2n
a?n_i ) ad 452
21’z ¢

a?n_q
a2-1

B0l qd Tl Tt “adeZf":o

2n+2_q

da
a2-1

2n_.n
a2n_
da‘—=—

24 dYi)a
)

g(n+1)a2"wa
_ 2n 1 2n
na®") d(n+ )a wa

Zg(n+1)a2'l wé

Wo,
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By multiple use of (2.2) and some calculation, we have

c

2n+2_Cn+1
az—c

2j g2n-2j-1 o

0

a’n

0

a2n
0

aZn

o » NEN,

2j ,2n-2j

a 2n+2
a

-1

2n+2

2n+2
-1

2n+2

nelN,

aZH—E

W_1

W1

a2n+2_q
a-1

a2n_1y d
-1

a2-1

dZ

_ pnynd, —dn
="z wo

W-1

a2"+271

w_1

Wo

(-1
w
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(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)
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for every n € N, and

w_1

n n-1y2n-2i-1,_1\j dz": (_1)2"’27
Wons1 = o tgdZio 2™ (1) 2y

n-11-12""20 gyt o1
=Bn+10(dz":° 5 2, j=0 w_q

= izl by, (3.60)
for every n € Ny.
Subcase a = 1, ¢ # 1. In this case, using (2.3), we have

_cn 1 . ; 1-c"
e DY, (2n—21—1)c’zg Toc

—_c n
Won = B T-c W(C)

1-c" _2¢ 1-nc™ L+ (n-1)c" ) d 1-c"

_ B%ad((Zn—l) Fhrs

o2 T—C 4,,C"
ot Zp W

1_en d(2n-1-@n+1)c+ct+cMl dlfc"

=fTca (1-c? Zy W(C)n (3.61)

forn € N, and

1—ch+l

Wone1 =B a

dy"rt2n-2ic dlilcfn:l cn+l
= 20 Wy

n-1 n _chtl
1=l gopll _polone oDty L 1see el
e o 1 ¢

- —c 1-c)2
(1-¢) ZO W_1
1 e+l 2d(n—(n+1)c+ct1y 1—1C1”1 nel
=B 1 a (o2 zg ©we (3.62)

for every n € Npo.
Subcase a = ¢ = 1. In this case we have
Wap = Blad ?;(}(Zn—zi—l)zgnwo
= ﬂnadnzzgnwo (3.63)

forn € N, and

n+1 ,,d Yl (2n-2i) d(n+1)
Wons1 = B+ a? Zico Gn20 5801 Dy

_ Bn+1adn(n+1)2,g(n+1)V‘L1 (3.64)
for every n € Np. =

Corollary 3.6. Consider system (1.1) with a,c,d € Z, b =0 and a, B € C\ {0}. Furthermore assume that
Zo, W_1, Wo € C\ {0}. Then the following statements are true:

(i) Ifa+ 1+ candc + a?, then the general solution to system (1.1) is given by (3.44), (3.53) and (3.54).

(i) Ifa+ 1+ cand c = a® # 0, then the general solution to system (1.1) is given by (3.44), (3.55) and (3.56).
(iii) If a® # 1 = c, then the general solution to system (1.1) is given by (3.44), (3.57) and (3.58).

(iv) Ifa = -1 and c = 1, then the general solution to system (1.1) is given by (3.44), (3.59) and (3.60).

(v) Ifa =1and c # 1, then the general solution to system (1.1) is given by (3.45), (3.61) and (3.62).

(vi) If a = ¢ = 1, then the general solution to system (1.1) is given by (3.45), (3.63) and (3.64).

Theorem 3.7. Assume that a,b,c € Z,d =0, a, 8 € C\ {0}, and zo, w_1, wo € C\ {0}. Then system (1.1) is
solvable in closed form.

Proof. In this case system (1.1) becomes
Zn+l = azﬂwg, Wnet = BWS_;, n e No. (3.65)
From the second equation in (3.65) it easily follows that

n-1 j n n Jj n+1
in C C iz C C
Wop = BZH) WG, Wl = [32170 wS, neN, (3.66)
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which for the case ¢ # 1 implies that

1—cn+1

1-c" n
= C
W =B Tewy, Wiy =B1¢ w

<, neNo, (3.67)
while for the case ¢ = 1 we have
Wan = B"Wo, Wans1 =" w_q, neNo. (3.68)
Employing (3.66) in the first equation in (3.65), we obtain

Zon = ap? Dy Cjw}_’inz‘z’n_l, (3.69)
Zonsr = af? I Cngcnzgn, neN. (3.70)

Combining (3.69) and (3.70), we have that
Zon = apP T S whS (apP T ¢ whe!

1+apb Yl d+ab Y2 o be., abyc
—a ﬁ 21_0 Z;-o (W71W0 )

Zgn—z)a
22 (3.71)
forn > 2, and
Zanet = aB” T S wh (ap? 2o w25, )
= alrpP O wabwh 2e (3.72)
for every n € IN.
Assume that for some natural number k we have proved that

1+a) Y50 a¥ pb Xt XY dra Y2 ) o be o aby Sy @t gk
Zon = a( ) Zico ﬁ Yico a*'(Xjlo 2i%o )(W—i Wg )Z,_o Zgn—Zk (3 73)
and
1+a) Y50 a¥ pb(1+a) Y50 a2 Y o ab YRS a¥ a2k
Zansa = @O 2o @7 gPAF@ L1 @210 € WDy 2o Zon-2ks1 (3.74)

for every n > k.
Using (3.71) with n — n - kinto (3.73), and (3.72) with n — n - k into (3.74), we have that

1+a) Y5 a? pb YL a2(X T dra Y2 6) . be . aby YKt a¥enit
Zon = a( )z,,o B Yico (Z;,o Z;,o )(W—IWO )Z),o

1+aph Y& dvab Y2 ¢ be. abyctkl _a? a*
x (a7 4pP e =0 T (wliwg) Z3n-2k-2)
14+a)YX , a¥ pb YK a2 (S d+a ¥ ) . b, ab\ YK a¥cn il g2
= q1F O L0 @ b ivo (2o =0 ) (whSwab)Zi-o z5 ks (3.75)
and
1+a) Y} a¥ pb(1+a) YL a? Y I o ab b\YE L @ T 1+a pb(1+a) YKV P o ab bye"K _a? a’
Zons1 = a1 Lo @7 gPOHD 2icg a7 X (W_1Wo)z”° (al*apP+®Lio WIIWo)™ 25, 501
k 2j k 2i yn-i-1 j k 2j ~n—j 2k+2
_ a(Ha)Z/:Oa ﬁb(1+a)21:0a Yico C(Wflfwg)zfzoa c Zgn—zk—l (3.76)

foreveryn > k + 1.

From (3.71), (3.72), (3.75), (3.76), and induction we have that (3.73) and (3.74) hold for all k,n € N
such that 1 < k < n.

If we choose k = nin (3.73) and (3.74), we get

n—i-2

1+a) YL a¥ pb Y a2 (3P dva Y2 ) o be aby YL a¥endl_g2n
Zon = a( )z],o B Yi%o (Z],o Z],o )(W—lwo )z;,o ZO

(1+a) 35 azfﬁb(1+a) s at Z;':’(;’l d (WallJW(L)v)Z;':'(} az"c"’fzaz"

Zn+1 = & 1

n-1 2j n-1 2i yn-i-1 n-1 .2j.n—j 2n
_ (x(1+a)21:O a Bb(1+a)zl:0 a Z]:O [« (Wflfwg)ziz" a‘c (azgwg)a

m n-1 oisn-i-1 i ab¥'la¥c" by a¥c one
— a0 alﬁb(lm) o @ Yo C]W_l Zj-o w, Zjmo Z(a) "

for every n € IN.
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Subcase ¢ # a2 # 1 # c. In this case we have

—clt

2n
Zzn:alaﬁbznl 21(16"'+a s )(WC ab)czza

1—q2n

b1
i ﬁﬁ 13‘1 (C+a) 2 )(Wbcwab) = aZ ng

1_g2n b(c—a?+(a-1)(a+c)c+(1-c)a?n+1l) ab an
—Qq ia ﬁ (1-a)(1-c)(c-a?) (w ) a2 Zy s
_a2n n+l_,2n+2
Lg2n+l b(1+a) 2 1t abc ch,‘:f b 64&:2 a2+l
Zn1 =@ 1a e w_ g Wo 2o
1_g2n+l b(1+a) ( 1-q2n ¢ N_g2n ) abcc'b,zZn w In+l
=Q 1-a 1-a2 c-aZ W_1 c-a WO ca Zg
L2t bUra)(c-a? 1@ =D 4(1-0a?2)  gpedl=a?l  pettloa2Mi2 2n+1
2 2 c-a? c-a? a*"
—q ia B (1-0)(1-a?)(c-a?) w_y W Zg

for everyn € IN.

Subcase a? # 1 # ¢, ¢ = a?. In this case we have

2i/1- aZn 2i 1_a2n72i72
by a”( a2 )(W?’f w,

ab naZn—Z aZn
a’T 0) Zo

Z2n

1-a2" b —(a+1)na®"-1) 2n-2 ,2n
a e ﬁ17a2 14— —(a+1) ( b1 ng)na Zg

1_g2n b(1-na?"=1_g2n pg2n+l)

= ﬁW(WQ?Zng)naz"’zzgz"

>

2i 1-q21-2
1-a2

@l h(14a) Y a bna?!_ b(n+1)a’" _g2n+1
Zoppr =@ 1@ B i=0 w? w, z5

1_g2n+l  b+@)(1-(n+1)a?M+na?*2)
a 1-a ﬁ (1-a2)?

bna?"l . b(n+l)a?" _g2n+1
-1 Wo 2o

for every n € IN.
Subcase a? # 1 = c. In this case, using (2.3), we have
2an = O T @ gh T BT 1 D gy )T g
by} a?((1+a)n-a—(1+a)i) aby =R g
—a1aB i=0 (W WO)P“ZZO

2 2n+2

_g2n - 2n
1-a b((1+a)n—q) 1za?" _ a2-na®+(n-1an+2 1-a’" 5
= q ia («( ) ) a2 (1-a2)(1-a) )(Wﬁlwgb) a2 Zg n
1_g2n _ bn-a- na?+a2nt1ly ab 2
—a1aB (1-a?)(1-a) (W1W )1a2 zZy neNN,
n 2
_ @ pb(1+a) Y1) a(n- Dy ab Z/ o a” bzi=0a a?m+
Zaner = aZio @ pHATOLES w2
_na2"=2 4 (n_1ya2n 1-a?2 1-21+2
1-, a2n+1 b(1+a)(n1 a azl na +(n-1)a ) ab 2 > il
B (1-a2)2 w . 1-a WO 1-a Zg
2n+2
1_g2n+1 b(1+a)(n-(n+1)a?+a?"*2)  gpl=a? 1-a? pla onel
=a 1@ f (1-a2)2 1 1‘“2 1-a? zg i

for every n € Np.
Subcase a = -1, ¢ = 1. In this case we have
n-1 i n—i-1 n—-i-2 n-1 i (_1)2n
— ﬁb Zi=o (*1)2 (Zj=0 1’2;‘:0 1)(W?1W6b)2j=0 (*1)2125) 1)
= P (w?, wib) iz,
2n i -b Z':l —1)% bYE (=1)¥ (_qy2n+1
Zopsr = @20V w ] 2o 1 W, oD z5
—bn,, b(n+1) _-1

=aw "wy UzD;

for every n € IN.

DE GRUYTER

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)
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Subcase a = 1 # c. In this case we have

l_cn—i—l

2npbyrd (et be by
Zom =& B Yiso (5= T—c )(W—1Wo) 1< 2z

1-cn

2npL Yl 2n—(c+1 b, byt
=a nﬂ 12 Lico (2n=(c+1) 5 )(W—EWO) ¢ zg

b2n-1-Q2n+1)c+c+ct1)

1
=a’p e (WP wg) T zo, (3.85)
n-1 1-c"i  bc 1-c" b 1+l
Zons1 = a2n+1ﬁ2b Yico 1= w_, T-c W, T-—c Zo
2b(n—(n+1)c+ctl) be 1-c" b 1-cntl
=B e W w2 (3.86)

for every n € IN.
Subcase a = ¢ = 1. In this case we have

n-1 n-1,yn-i-1 n—i-2 n-1
Zon = @? Tro 1P o o T2 T D (wh w2 1z

1 .
_ aZnﬁb > (2n—21—1)(wl_alwg)nzo

2
= a®" P (w_1wo)""zo, (3.87)
2n niyn-i-1, bY'U'1 by 1
Zn+1 = a0 1ﬁ2b Zizo Zj-o 1W_1] 0 wy ° 20
_ . 2n+1p2b ¥ (n-i),, bn,, b(n+1)
= B i=0 W—1WO ZO

_ a2n+1an(n+1)lerllwg(ml)ZO (3.88)

for every n € IN, completing the proof. O

Corollary 3.8. Consider system (1.1) with a,b,c € Z, d=0 and a, B € C\ {0}. Furthermore assume that
Z0, W_1, Wo € C )\ {0}. Then the following statements are true:

(@) Ifc # a® + 1 # c, then the general solution to system (1.1) is given by (3.67), (3.77) and (3.78).

(i) Ifc =a? + 1 # c, then the general solution to system (1.1) is given by (3.67), (3.79) and (3.80).

(iii) If a*> # 1 = c, then the general solution to system (1.1) is given by (3.68), (3.81) and (3.82).

(iv) Ifa = -1 and c = 1, then the general solution to system (1.1) is given by (3.68), (3.83) and (3.84).

(v) Ifa =1 and c # 1, then the general solution to system (1.1) is given by (3.67), (3.85) and (3.86).

(vi) If a = ¢ = 1, then the general solution to system (1.1) is given by (3.68), (3.87) and (3.88).

Theorem 3.9. Assume that a,b,c,d € Z, abcd + 0, a, § € C\ {0}, and suppose that zy, w_1, wg € C \ {0}.
Then system (1.1) is solvable in closed form.

Proof. The conditions a, 8 € C\ {0} and zo, w_1, wo € C\ {0} along with (1.1) imply z, # O # w,, n € N.
From the first equation in (1.1), for such a solution, we have

z
wh =210 neNo, (3.89)
azi

while by taking the second equation in (1.1) to the b-th power it follows that

b _ pb, bc _bd

wp=pB"wy 224, neNo. (3.90)

Putting (3.89) into (3.90), we easily obtain
Znya = alTOBbZE  Zhdreac L p e N, (3.91)

n-1°

which is a third order product-type difference equation.
Note also that

2
z1 = azqw? and z, = a(azéwd)(Bwe,z9)b = ql+apba‘+bdyyaby,be (3.92)
oWo oWo 1%0 0 o W1
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Let
6= alfcﬁb, ai=a, by=bd+c, c¢y=-ac, y;=1. (3.93)

Then equation (3.91) can be written as

b
Znsa = 81200 zp'z, nmeN. (3.94)

Putting (3.94) with n — n - 1 into itself, we get

b
n

by _c1

a, b1 C1 \a
Zns2 = 871 (620" 2,112, ) M Zn' 201

_ Syitai a1a1+b1 b1a1+(_‘1 Cci1ay
=&z -1 %n2

= 6yzzzzzﬁz_lsz_2 (3.95)
for n > 2, where
ay :=aja; + by, by:=biai+ci, cyi=cia;, y,=yi+ai. (3.96)

Assume that for a k > 2 we have proved that

Zn+2 = 5ykzzﬁrz—kzﬁi1—sz[k—k (3.97)

for n > k, and that
ag = ayai-1 + b1, br=hiai1+cr1, Ck=C10k-1, (3.98)
Vi = Vk-1 + k-1, k=2, (3.99)

Then, putting relation (3.94) with n — n - k into (3.97), we obtain

— V(5,4 by _c1 ay ., br Ck
Zn+2 =0 (6Zn+1—an—an—k—l) Zni1-k%n-k

_ fyk+ay 1 axtbr biar+cr ciak

=6 Zn+1—k Zn—k n-k-1

_ SVt k1 Dkt Cret

=6 Zpi1-k%n-k “n-k-1 (3.100)

for n > k + 1, where
Ais1 = 10k + b,  big1 := b1ar +Ck,  Cks1 := C1ak, Vi1 = Vi + Ak (3.101)

From (3.95), (3.96), (3.100), (3.101), and using induction, we have that (3.97)-(3.99) hold for every k, n € N
such that 2 < k < n. Moreover, due to (3.94), equation (3.97) holds also for k = 1.
Choosing k = nin (3.97) and using (3.92), (3.98) and (3.99), we have

b
Znso = 825"z " Zg"

— 2
_ (al Cﬁb)y,, (a1+aﬁbzg +bdwgbwlzi)an (azgwg)b,,zgn
2
_ a(1—c)yn+(1+a)an+bnﬁb(y,,+a,,)zg)a +bd)an+abn+cnwljian nganerbn
— a}’mz_c}’rlﬁb)’nﬂzgnﬂ_can W’_’ian Wga'”l (3102)
forn e N.
From (3.98) we have that (ay)xs4 satisfies the following recurrent relation:

ay = a1ap-1 + blakfz +C1dk-3. (3.103)

Since by_1 = ax — ajay_1 and cx = c1ay_1, noting that equation (3.103) is linear, we have that (by)xen
and (cx)ken also satisfy this equation.
Moreover, ay, by and ¢y satisfy (3.103) for k > -2. Indeed, from (3.101) with k = 0 we get

ay =a1(10+b0, b1 =b1(10+C0, Cc1 =C1Qp, 1=y1 =Yo +do. (3.104)
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Since ¢; = —ac # 0, from the third equation in (3.104) we get aog = 1. Using this fact in the other three equal-
ities in (3.104), we get bg = ¢o = yo = 0.
From this and by (3.101) with k = -1 we get
l=ap=a1a-1+ b_1, 0= b() = b1(1_1 +C-1,
0=co=C1d-1, O=yp=y-1+a-. (3.105)
Since ¢y # 0, from the third equation in (3.105) we get a_; = 0. Using this fact in the other three equalities
in (3.105),wegetb_1 =1,c_; =y_1 =0.
From this and by (3.101) with k = -2 we get
0= a1 =aa- + b_z, 1= b_1 = bla_z +C-p,
O0=c_1=ci1a_y, 0= Yy-1=Yy2+a-. (3.106)
Since c; # 0, from the third equation in (3.106) we get a_, = 0. Using this fact in the other three equalities
in (3.106),wegetbh_, =y ,=0andc_; =1
Hence, the sequences (ax)ks—2, (bx)k>—2 and (ck)r=—> are solutions to linear difference equation (3.103)
satisfying the initial conditions
a_p = 0, a1 = 0, ap =1,
b,=0, b.1=1, by=0,
cor=1, ¢c.1=0, ¢o=0, (3.107)
respectively, and (yx)ks_2 satisfies recurrent relation (3.99) and
Yy2=y-1=Y0=0, yi=1

From (3.99) and since ag = 1, we have that

k-1 k-1
yk=1+) aj=) aj, keNo. (3.108)
j=1 j=0

Since difference equation (3.103) is solvable, it follows that closed form formulas for (ax)is—2, (bi)ks—2
and (cy)k=—» can be found. From this fact, (3.102), (3.108), and since the sum Zj"io aj, m € No, can be calcu-
lated by using Lemma 2.1, we see that equation (3.91) is solvable too.

From the second equation in (1.1) we have that

24 = e No, (3.109)

c
n-1

for every well-defined solution, while by taking the first equation in (1.1) to the d-th power, it follows that

zgﬂ = adzﬁdwﬁd, n € Np. (3.110)

Putting (3.109) into (3.110), we easily obtain

Wniz = 40w, whdew -4 n e N, (3.111)

which is a related difference equation to (3.91) (only with a different coefficient). Note also that (Wy)nen,
satisfies the following initial condition:
wy = ﬁwflzg. (3.112)
Hence, the above presented procedure for the sequence z, can be repeated and we obtain that for every
k € N such that 1 < k < n we have

_ Py Tk by Ck _
Wnaa =V w)l o  wk  wib, nxk-1, (3.113)

where 1 = adﬁl‘“ and (ay)ken, (bx)kew and (cy)ken satisfy recurrent relations (3.98) with initial condi-
tions (3.93), and

Vier =Yk +ar, keN,

with y1 = 1, from which it follows that yy is also given by formula (3.108).
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From (3.113) with k = n + 1 and by using (3.112), we get

y a b C
er+2 = rIYH+1 W1n+1 W0n+1 W:lfl

_ (a,dﬁl—a ))7,,” (ﬁWflzg)“"” Wgn+1 Wirll+1

= qnst Bini2= @ ganat Ao @lins Chn=acan -y ¢ N, (3.114)

Note that (ay)ken, (Pk)kenw and (cx)ren satisfy (3.103), and, as above, since ¢ # 0, they can be prolonged
for k = -2, -1, 0, respectively, so that they satisfy (3.107), and (J)xen can be prolonged also fork = -2, -1, 0
andy_, =y-1=yo=0.

The solvability of equation (3.103) shows that closed form formulas for (ay)i>-2, (bx)ks=—2 and (Cx)i>-2
can be found, from which, along with (3.108) and by Lemma 2.1, closed form formulas for (yy)>—> can be
found. These facts along with (3.114) imply that equation (3.111) is solvable too. Direct but time-consuming
calculation shows that the sequences z, and w, given by formulas (3.102) and (3.114) are solutions to
system (1.1). Hence, system (1.1) is also solvable in this case, finishing the proof of the theorem. O

Corollary 3.10. Consider system (1.1) with a, b, c,d € Z, abcd # 0 and a, B € C\ {0}. Assume further that
2o, W_1, Wg € C\ {0}. Then the general solution to system (1.1) is given by (3.102) and (3.114), where the
sequence (ay)x=—» satisfies the difference equation (3.103) with initial conditions (3.107), and the sequences
(Vi) ks—2 and (Jx)k=—> are both given by (3.108).

Remark 3.11. Note that if ac # 0, then by using the recurrent relations in (3.98) and (3.99) it can be shown,
similar as in the proof of Theorem 3.9, that the sequences ak, by, cx can be prolonged for every negative
index k.

The characteristic polynomial associated to equation (3.103) is
P3(/\)=/13—a1/\2—b1/1—c1, (3.115)

where a1, by and c¢; are defined in (3.93). In the case ac # 0, polynomial (3.115) is of the third degree, so by
the Cardano formula (see, e.g., [6]) the zeros of (3.115) are

\3/B - V4A3 + B? \3/B + V4A3 + B2
+ +

p—
173 332 32 ’
L_a_ (+iVIVB- VAAT+ B2 (1-iV3)\B+ VAAT + B
2_5_ - s
L_a (1-iV3)\B-V4A3+ B2 (1+iV3)\B+ VaA3 + B2
3_3 6\3/5 )

where

A:=—-(a®>+3bd+3c), B:=2a’+9abd-18ac.
Let

A = 4A° + B,

Then if A > 0, one zero of (3.115) is real and the other two are complex conjugate. If A = 0, all the zeros are
real and at least two of them are equal, while if A < 0, all the zeros are real and different (see, e.g., [6]).

Case A # 0. Since A # 0, all the zeros A;, i = 1, 3, of polynomial (3.115) are mutually different, and the
general solution to (3.103) has the form

Up = AT + AT + azAy, neNN, (3.116)
1 2 3

where q;, i = 1, 3, are arbitrary constants. Since for the case c; # 0 the solution can be prolonged for every
nonpositive index, we may assume that formula (3.116) holds also for n > -3.
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From Lemma 2.4 with P3(t) = H)?:l(t - Aj) we have

3 A
Y —2-=0 forl=0,1,
j=1 P3(Ai)
and
5 i
j=1 P’3(A1')
This along with a_, = a_; = 0 and ap = 1 implies that
/1"+2 /1"+2 /VHZ
an = L + 2 + 3
A1 =A)A1-23) (A -A))(A2 -A3) (A3 -A)(A3 - Ay)
forn > -2.

On the other hand, from (3.98) we get
bn = apy1 — arap,
Cp =C10p-1

forn > -2.
Putting (3.117) and (3.93) into (3.118), we obtain

3 Aj-a
bn — ] /\(z+2
;1 P(4) ’
forn > -2.
Putting (3.117), which also holds for n = -3, and (3.93) into (3.119), we obtain
3

ac
Ch = — A(Hl
n Z P;(/\j) J

j=1
forn > -2.
From (3.108) and (3.117) we have
n-1 n-1 Ai1+2 /\?2 A;+2
= a; =
& ,;’) l 1';)((/11 M -4 - A - A) (R - A —/12))

for every n € IN.
Recall also that
yn = Yny ne N-

Now assume thatA; # 1, i = 1, 2, 3. Then, from formula (3.120), it follows that
Vn =n = R (A1, Az, A3)
for n € IN, where

AT -1) A3(A% 1) AL -1)
RY 1, 15, 43) = e 222 22

— 45

(3.117)

(3.118)
(3.119)

(3.120)

(3.121)

(3.122)

It is easy to verify that formula (3.122) holds also for every n > -2.
If one of the zeros is equal to one, say A3, then 1 # A; # A; # 1, and we have

Yn=Yn= RgzZ)(Al’/lz)
for n € IN, where
AT -1) . (A% -1) N n .
M -)A1-1)2 L -ADA-1)2 A -1)A2-1)
It is also easy to verify that formula (3.122) holds also for every n > -2.

RP (A1, 1p) =

M- ) -3 A - 1) (= AR - A3)(Aa = 1)~ (A - AD)(As — ) (A5 — 1)

(3.123)

From the above consideration and Theorem 3.9 we obtain the following corollary for the case abcd + 0

and A # 0.
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Corollary 3.12. Consider system (1.1) with a, b, c,d € Z and abcd + 0. Assume zg, w_1, Wo € C )\ {0} and

A # 0. Then the following statements are true:

(i) If none of the zeros of characteristic polynomial (3.115) is equal to one, i.e., if P3(1) # 0O, then the general
solution to (1.1) is given by formulas (3.102) and (3.114), where the sequence (a,)n>—2, is given by (3.117),
while (yn)n>—2 and (Yn)n>—> are given by (3.122).

(ii) If only one of the zeros of characteristic polynomial (3.115) is equal to one, say As, i.e., if P3(1) = 0 # P4(1),
then the general solution to (1.1) is given by formulas (3.102) and (3.114), where the sequence (ap)n>_> IS
given by (3.117), while (Yn)n>—2 and (Jn)n>—2 are given by (3.123).

Remark 3.13. Equation (3.115) will have a zero equal to one if
P;(1)=1-a-bd-c+ac=0,
thatis, if (a — 1)(c — 1) = bd so that
Ps(A) =A> —aA* - (ac - a+ 1)A + ac.
If bd = 0, then b = 0 or d = 0, which implies a = 1 or ¢ = 1. Assume that a = 1 and ¢ # 1. Then
A =-4(1+3c)® +4(1-9c)* = -108c(c - 1)*
and
PsA) =2 -A-cA+c=A-1)A*-0).

Thus,ifa =1,b =0,c € Z\ {0, 1}, d € Z, we have that A + 0, so the conditions of Corollary 3.12 (ii) are satis-
fied, only one zero of polynomial (3.115) is equal to one and all three zeros are mutually different. Moreover,
if ¢ > 0 we have that A < 0 and all three zeros are real and different, while if ¢ < O we have that A > 0 and all
three zeros are different but two are complex conjugate.

Case A = 0. If A =0 and ac # 0, then at least two zeros of characteristic polynomial (3.115) are equal, say,
Ay and As. It is easy to see that the polynomial would have three equal zeros only if B = 0, which along
with A = 0 would also imply A = 0. In this case there must be P3(A;) = P§(A;) = P{ (A1) = 0. Hence, from the
equality P} (A,) = 0, it follows that A; = a/3, j = 1, 2, 3, and consequently

2a> + 9abd - 18ac

Ps3(a/3) = - > =0 and Pi(a/3)=-

2 bd
a +33 +3C=O,

which immediately implies 2a® + 9abd — 18ac = a® + 3bd + 3¢ = 0. From these two relations it easily fol-
lows that bd = 8c, and consequently a? = —27¢. Thus, we have

a’ a’ a\3
PV = -ar?>+ A-—=(A-=)".
3 w357 ( 3 )

Hence, if a = 9a for some & € Z \ {0}, we have that c = -3a? € Z\ {0}, and b, d € Z \ {0} can be chosen so
that bd = 8c = —-24a?2. Thus, there are polynomials of the form in (3.115) such that all three zeros are equal.
Fora=c=1,b=0,d € Zwehave that A = 0 and

P3() = A+ DH(A-1)%,

so that there are polynomials with three real zeros such that two of them are equal and different from the
third one.
If A1 # A, = A3, then the general solution of (3.103) has the form

an = A} + (@2 + asm)A}, neN, (3.124)

where a1, &, and a3 are arbitrary constants. Since in our case the conditions a_, = a_; = 0 and ag = 1 must
be satisfied, the solution (a,)n>_» of equation (3.103) can be found by letting A3 — A, in (3.117).
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We have
n+2 n+2 n+2
ap = lim ( A + A + A5 )
=N (AL =A2)(A1 = A3) - (A2 -A)(A2=-A3) (A3 -A1)(A3 - Ap)

_ A2 (n+ 24 A0 + (n+ 1AGH?
(A2 = Ay)?

for n > -2, that is,
_ Arle + (Az - 2/11 + I’l(/\z - Al))}laHl

a
! (A - A1)?

forn > -2.
Note that a_, = a_; = 0 and ag = 1, and that (3.125) is of the form (3.124) with

/1% S A% - 2MA; A

= Lo, = A, A3 = :
- TP - T LA

Using relations (3.125) in (3.118) and (3.119), we get

M- @A (4245 - 3A1) - a(A; - 2A4) + n(A; - A)(A; — @))A5T!

b, = + s
T (-2 (A2 = Aq)?

.o ac/\;“l + (=1 + n(Ay = A))AY ne o
" (A2 = A1)? ’ -

From (3.108) and (3.125) we have

. "Zl . "il N2 4 (A =200 + (A = AL
s (A2 = A1)?

j=0

, neN.

If we assume A1 # 1 # A, = A3, then (3.126), Lemma 2.1 and (3.121) imply
Yn=Yn= R;B)(/ll, A2)
for every n € IN, where

B@AT-1) . (A2 = 2A1)A (A% - 1) . B -nAlt+ (n-1AY)
(A2 =A1)2(A1 - 1) (A2 =A1)2(A2-1) (A2 = A1)(Ag - 1)?

RP (A4, 1,) =

A direct calculation shows that formulas (3.127) hold also for every n > -2.
If we assume that A; # 1 and A, = A3 = 1, then from (3.126) it follows that

Vn =n = R (A1)
for every n € IN, where

AMAT-1) (1-2A)n  (n-1)n
M-17  (h-1? 20-Ay)

RY () =

A direct calculation shows that formulas (3.128) hold also for every n > -2.
If we assume that A; = 1 and A, = A3 # 1, then from (3.126) it follows that

Yn =¥n = dRY (A2)
for every n € IN, where

L (Ge=2h(-1) B -l (- DAY
(A - 1)? (A -1)3 (A -1)3

RY () =

A direct calculation shows that formulas (3.129) hold also for every n > -2.
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(3.125)

(3.126)

(3.127)

(3.128)

(3.129)
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If A1 = A; = A3, then the general solution of (3.103) has the form
an = (B1 +Ban+ B3n®)AT, neN,

where [31, Bz and B3 are arbitrary constants.

(3.130)

To find the solution of equation (3.103) satisfying the conditions a_, = a_; = 0 and ag = 1, we will let

Ay — Aq in formula (3.125). We have

A2 — (n+ 24 A8 + (n+ 1AGH

anp = lim
S v (A2 = A1)?
i 2o A DA - A S A
-y (A3 = Ap)?
D 0 Y
Jo—ly A - Ay
I P 0 )
Ay —Ay AZ - Al
n
- iy i . D+ 2)
- A}:HLIZOA g)l 5 Y
forn>-2.
Note that a_, = a_; = 0 and ag = 1, and that (3.131) is of the form (3.130) with
R .3 .1
Bl_]-’ ﬁz—z, ﬁ3_5
Using relations (3.131), as well as the condition ¢ = —a%/27 in (3.118) and (3.119), we get
1
b, = nt 2(3/(1 —a+nA —a)A" = -n(n+ 2)( )n+ ,
_ n(n +1),,1  nn+1)a\n2
Ccp =—ac 3 AT = 5 (5)

forn > -2.
From (3.108) and (3.131) we have

n-1
(J+1)(J+2)
yﬂzz I_Z X
j=0
for every n € IN.

If we assume that A; = A, = A3 # 1, then from (3.132), Lemma 2.1 and (3.121) it follows that

. +3A1$(1) +A1$§1231
Yn=Yn= >

2—(n+1)(n+2)A" +2n(n + 2)ATH — n(n + AT
2(1-219)3

for every n € IN. A simple calculation shows that (3.133) also holds forn = -2, -1, 0.
If we assume A; = A, = A3 = 1, then from (3.132) and (3.121) it easily follows that

+1)j+2 nn+1)(n+2
v = 50— RO(1) 1= ZU +2) _ rn+ D +2)
for everyn € IN.
Note that from (3.134) it immediately follows that R]@(l) =0,j=-2,-1,0.

(3.131)

(3.132)

(3.133)

(3.134)

From the above consideration and Theorem 3.9 we obtain the following corollary for the case abcd + O

and A = 0.
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Corollary 3.14. Consider system (1.1) with a, b, c,d € Z and abcd + 0. Assume that zy, w_1, wg € C )\ {0},

abcd + 0 and A = 0. Then the following statements are true:

(i) Ifnone ofthe zeros of characteristic polynomial (3.115) is equal to one, i.e., if P3(1) # 0, and if it has two dif-
ferent zeros, then the general solution to (1.1) is given by formulas (3.102) and (3.114), where the sequence
(an)ns—> is given by (3.125), while (Y)ns—2 and (Jn)n>—» are given by (3.127).

(ii) If exactly two of the zeros of characteristic polynomial (3.115) are equal to one, say A, and As, i.e., if
P5(1) = P4(1) = 0 # P (1), then the general solution to system (1.1) is given by formulas (3.102) and
(3.114), where the sequence (ay)ns_> is given by (3.125), while (y;)ns—2 and (Jn)ns—_2 are given by (3.128).

(iii) If all three zeros of characteristic polynomial (3.115) are equal, then the general solution to system (1.1)
is given by formulas (3.102) and (3.114), where the sequence (ay)n>—> is given by (3.131), while (yy)n>-2
and (Jn)ns—» are given by (3.133).

Remark 3.15. As we know, polynomial (3.115) has a zero equal to one if (a —1)(c-1) =bd. If A=11isa
double zero of (3.115), then it must be P’3(1) =3 -2a - c - bd = 0, which is possible only if ac = 2 - a, that
is,if a € {+1, +2} and ¢ = (2/a) - 1. Note that in this case

PsA)=A —ar’* +2a-3)A+2-a.

If a = 1, then ¢ = 1 and bd = 0, which is not a case treated in Theorem 3.9 (note that in this case we have
P3(A) = (A-1)>(A+1)). If a = 2, then ¢ = 0, which is also not a case treated in Theorem 3.9. If a = -1,
then c=-3, bd=8+0,A=0, and P3(A) = (A-1)2(A+3).Ifa=-2, thenc=-2, bd=9%#0, A=0, and
P3(A) = (A—1)2(A + 4). Hence, there are two cases in which polynomial (3.115) has exactly two zeros equal
to one, that is, the conditions of Corollary 3.10 (ii) are satisfied.

Remark 3.16. For the case of our system it is not possible that all three zeros of (3.115) are equal to
one. Namely, in this case there must be A; = a/3 =1, i = 1, 2, 3, which implies a = 3. On the other hand,
¢ = -a?/27, which in this case implies c = -1/3 ¢ Z.

Remark 3.17. Assume that only one of the zeros of characteristic polynomial (3.115) is equal to one, say Ay,
abcd # 0 and that A = 0. Then the other two zeros of (3.115) are equal and different from one, i.e., A = A3 # 1

and

-9 2B

3 332

which implies that V4B = 3 — a € Z. Hence B = 2¢° for some q € Z\ {0} (if ¢ = 0, i.e., B = 0, the condi-
tion A = 0 would imply A = 0, and consequently all three zeros of (3.115) would be equal). Moreover, we
have g = (a — 3)/2, which also implies that a is an odd number. From this and since 443 = -B2, we would
have that A% = —¢®°, i.e., A = —q2. Recall that since polynomial (3.115) has a zero equal to one, it must be
(a-1)(c-1) = bd. Hence, we have

- 3)?
(@ 7 ) =q’=a’+3bd+3c=a’*+3ac-3a+3,
which is equivalent to (a — 1)? = —4ac. This, along with the fact that a = 2m + 1 for some m € Z, implies that
_(a-1)*  m?
- 4a ~ 2m+1’
so that
-—_ m2
T 2m+1

must be an integer.

Since m? — 2km - k = 0, we have that m = k + Vk2 + k, and consequently k? + k must be a perfect square,
i.e., k(k+ 1) = r2, for some r € Z. This would mean that k and k + 1 divide r. From this and since k and k + 1
are mutually prime numbers if k + -1, O, it would follow that r = ck(k + 1) for some c € Z, and consequently
(ck(k + 1))? = k(k + 1), which is equivalent to

k(k + 1)(c?k(k + 1) - 1) = 0.
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Therelation c?k(k + 1) = 1isnot possible since 1 is divided only by two integers +1.If k = 0, then ¢ = 0, which
would contradict the condition abcd # 0. If k = -1, then ¢ = 1, and consequently bd = 0, which would also
contradict the condition abcd # 0. Hence ¢ cannot be an integer, so that polynomial (3.115) cannot have
only one zero equal to one under the conditions of Theorem 3.9.

Remark 3.18. The formulas presented in this paper can be used in the investigation of the asymptotic behav-
ior of solutions to system (1.1). We leave the problem to the reader.
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