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Abstract:We present sufficient conditions on the existence of solutions, with various specific almost period-
icity properties, in the context of nonlinear, generally multivalued, non-autonomous initial value differential
equations,

du
dt
(t) ∈ A(t)u(t), t ≥ 0, u(0) = u0,

and their whole line analogues, du
dt (t) ∈ A(t)u(t), t ∈ ℝ, with a family {A(t)}t∈ℝ of ω-dissipative operators

A(t) ⊂ X × X in a general Banach space X. According to the classical DeLeeuw–Glicksberg theory, functions
of various generalized almost periodic types uniquely decompose in a “dominating” and a “damping” part.
The secondmain object of the study – in the above context – is to determine the corresponding “dominating”
part [A( ⋅ )]a(t) of the operators A(t), and the corresponding “dominating” differential equation,

du
dt
(t) ∈ [A( ⋅ )]a(t)u(t), t ∈ ℝ.
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1 Introduction and preliminaries
We consider general closed and translation invariant subspaces of BUC(ℝ, X), as in [26]. This will give a
framework on how to work with various forms of almost periodicity. Thus, we consider a general splitting of
a closed translation invariant subspace,

Y ⊂ BUC(ℝ, X), Y = Ya ⊕ Y0.

We answer the question of when a solution of the nonlinear evolution equation

du
dt
(t) ∈ A(t)u(t), u(0) = u0,

with A(t) being dissipative, is a member of Y, is asymptotically close to Y, or itself splits in the samemanner,
u = ua + u0, where ua ∈ Ya is a generalized solution to

du
dt
(t) ∈ [A( ⋅ )]a(t)u(t),

where [A( ⋅ )]a denotes the almost periodic part of the family of possibly unbounded nonlinear dissipative
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operators {A(t) : t ∈ ℝ}. We answer questions concerning the perturbations, i.e., of when the following iden-
tity holds:

[A( ⋅ ) + B( ⋅ )]a(t) = [A( ⋅ )]a(t) + [B( ⋅ )]a(t).

The underlying study is divided into sections where the nonlinearity is studied, which is even new in
finite dimensions, and the appendices which show how Eberlein weak almost periodicity (Appendix A) and
asymptotic almost periodicity (Appendix B) come into play, or give a hint on how continuous almost automor-
phy (Appendix C) becomes applicable. In Appendix Awe provide the analysis around Eberlein weakly almost
periodic functions (EWAP). We show, how Appendices A and B apply to obtain the splittings in Section 4. We
give certain conditions on f : 𝕁 × X → X to obtain Eberleinweak almost periodicity in Banach spaces. For spe-
cial cases where the family A(t) ≡ A is time-independent, or the family A( ⋅ ) itself is periodic, cf. [20, 21]. We
also refer to [2], where the result has been proved for the special case of classical almost periodic functions
on the real line. In [29] the existence of an EWAP solution on the whole line is proved in finite dimensions for
a semilinear system of the form

y󸀠 = Ay + f(t, y),

where A denotes a special linear operator and f : ℝ × ℝn → ℝn is Lipschitz.
Applying general existence results, even in the finite dimensional case, more general results on sums of

dissipative operators are obtained while dispensing with the relationship between the ω-dissipativeness and
the Lipschitz continuity of the nonlinear perturbation f : 𝕁 × X → X. In this study general perturbation results
for dissipative operators are used (Section 5). Moreover, for these general perturbation results, we also show
the connections between the differential equation and the almost periodic part of the weakly almost periodic
solution, and, even more abstractly, how the generally defined splitting carries over from the solution to the
differential equation.

Given aBanach space X, a function f ∈ Cb(𝕁, X), 𝕁 ∈ {ℝ,ℝ+ := [0,∞), [a,∞)}, is said to beweakly almost
periodic in the sense of Eberlein (EWAP) if the orbit of f with respect to 𝕁, namely,

O𝕁(f ) := {fr := {t 󳨃→ f(t + r)} : r ∈ 𝕁},

is relatively compact with respect to the weak topology of the sup-normed Banach space (Cb(𝕁, X)‖ ⋅ ‖∞) (cf.
[9, 20, 21, 24, 27]). The space of all such functions will be denoted by W(𝕁, X). Moreover, W0(𝕁, X) denotes
the closed subspace of all f ∈ W(𝕁, X) such that some sequence {fsn }n∈ℕ of translates of f is weakly convergent
to the zero function (“weakly” referring to the weak topology of (Cb(𝕁, X)‖ ⋅ ‖∞)).

Results of DeLeeuw and Glicksberg [5, 6] imply the following decomposition:

W(𝕁, X) = AP(ℝ, X)|𝕁 ⊕W0(𝕁, X).

Here, AP(ℝ, X) denotes the space of almost periodic functions, i.e.,

AP(ℝ, X) := {f ∈ Cb(ℝ, X) : Oℝ(f ) is relatively compact in (Cb(ℝ, X), ‖ ⋅ ‖∞)}.

An exposition of this result is given in the book of Krengel [17]. For technical reasons we introduce the
following spaces on the real line:

W+(ℝ, X) := {f ∈ BUC(ℝ, X) : f|ℝ+ ∈ W(ℝ+, X)}

and
W+0 (ℝ, X) := {f ∈ W

+(ℝ, X) : f|ℝ+ ∈ W0(ℝ+, X)}.

The decomposition ofW(𝕁, X) and the uniqueness of the almost periodic part gives

W+(ℝ, X) = AP(ℝ, X) ⊕W+0 (ℝ, X),

and by the uniform continuity of Eberlein weakly almost periodic functions, we obtain that for a given a ∈ ℝ
and f ∈ W+(ℝ, X), we have f|[a,∞) ∈ W([a,∞), X). Additionally, some examples are given in order to point to
problems in this class of functions.
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2 Preliminaries on integral solutions
In [23] the following two types of equations have been discussed. The initial value problem

u󸀠(t) ∈ A(t)u(t) + ωu(t), t ∈ ℝ+, u(0) = u0, (2.1)

and the whole line equation onℝ,

v󸀠(t) ∈ A(t)v(t) + ωv(t), t ∈ ℝ, (2.2)

with ω ∈ ℝ. For these equations we define integral solutions. First, some prerequisites.
Let X be a general Banach space. As the given ω ∈ ℝ plays a crucial role, let 𝕁 ∈ {ℝ+,ℝ}, and through-

out the paper assume that 0 < λ, μ < 1
|ω| . To obtain the solutions of equations (2.1) and (2.2), we follow the

approach given in [23]. The assumptions for the family {A(t) : t ∈ 𝕁} are as follows.

Assumption 2.1. The set {A(t) : t ∈ 𝕁} is a family of m-dissipative operators.

In comparison to the assumption given in [15], the uniform continuity on 𝕁 for h is added.

Assumption 2.2. There exist h ∈ BUC(𝕁, X) and L : ℝ+ → ℝ+, continuous and monotone non-decreasing,
such that for λ > 0 and t1, t2 ∈ 𝕀, we have

‖x1 − x2‖ ≤ ‖x1 − x2 − λ(y1 − y2)‖ + λ‖h(t1) − h(t2)‖L(‖x2‖)

for all [xi , yi] ∈ A(ti), i = 1, 2.

Recalling the study [23], the next assumption is stronger than that in [15] due to the Lipschitz continuity and
linearized stability in ‖y2‖. This becomes important to obtain uniform convergence on the half line depending
on the Lipschitz constant on forthcoming g and ω ∈ ℝ.

Assumption 2.3. There exist bounded and Lipschitz continuous functions g, h : 𝕀 → X, and a continuous
and monotone non-decreasing function L : ℝ+ → ℝ+ such that for λ > 0, and t1, t2 ∈ 𝕀, we have

‖x1 − x2‖ ≤ ‖x1 − x2 − λ(y1 − y2)‖ + λ‖h(t1) − h(t2)‖L(‖x2‖) + λ‖g(t1) − g(t2)‖‖y2‖

for all [xi , yi] ∈ A(ti), i = 1, 2.

Remark 2.4. Due to Assumptions 2.2 and 2.3, from [23, Definition 2.6, Remark 2.8], we read,

D(A(t)) ⊂ D̂ ⊂ D(A(t)) = DA .

Due to the fact that we consider (A(t) + ωI) as a perturbation of A(t) by ωI, we have to define the perturbed
control functions hω and Lω. We define

hω : 𝕀 → (X × X, ‖ ⋅ ‖1), t 󳨃→ (h(t), |ω|g(t)),

and Lω(t) = L(t) + t.
Now we are in the situation to define the integral solution to the initial value problem. As the integral

solution is defined with the help of Assumptions 2.2 and 2.3, it looks slightly different from the one in [15,
Definition 6.18, pp. 217–218], which is due to Benilan.

Definition 2.5. Let 𝕀 = ℝ+ andassume that eitherAssumption2.2 orAssumption2.3 is satisfied for the family
{A(t) + ωI : t ∈ 𝕀}. Let also 0 ≤ a < b. A continuous function u : [a, b] → X is called an integral solution of
(2.1) if u(0) = u0 and

‖u(t) − x‖ − ‖u(r) − x‖

≤
t

∫
r

([y, u(ν) − x]+ + ω‖u(ν) − x‖) dν + Lω(‖x‖)
t

∫
r

‖hω(ν) − hω(r)‖ dν + ‖y‖
t

∫
r

‖g(ν) − g(r)‖ dν

for all a ≤ r ≤ t ≤ b, and [x, y] ∈ A(r) + ωI (with g ≡ 0 in case of Assumption 2.2).
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In order to solve the initial value problem (2.1), we use the Yosida approximation of the derivative. This leads
to the equation

(
d
dt)λ

uλ(t) ∈ A(t)uλ(t) + ωuλ(t), t ∈ ℝ+, u(0) = u0, (2.3)

with the Yosida approximation

(
d
dt)λ

u(s) := 1
λ(
u(s) − u0 −

1
λ

s

∫
0

e−
τ
λ (u(s − τ) − u0) dτ).

Thus, we obtain the solution uλ to (2.3) as fixpoint (cf. [23, Lemma 3.1]), i.e.,

uλ(t) = Jωλ (t)(e
− tλ u0 +

1
λ

t

∫
0

e−
τ
λ uλ(t − τ) dτ),

with (see [23, Remark 2.7])
Jωλ (t)x := J λ

1−λω
(t)( 1

1 − λω x)

The results for these approximations onℝ+ are the following.

Theorem 2.6 ([23]). Let 𝕀 = ℝ+, and let A(t) fulfill Assumptions 2.1 and 2.2 with ω < 0, or Assumption 2.3 with
Lg < −ω, where Lg is the Lipschitz constant of g. Further, let u0 ∈ DA, and let uλ be the corresponding Yosida
approximations to equation (2.3). Then uλ converges uniformly onℝ+ to the integral solution, as λ → 0+.

Further, we define an integral solution for the whole line problem (2.2).

Definition 2.7. Let 𝕀 = ℝ, and assume that either Assumption 2.2 or Assumption 2.3 is satisfied for the family
{A(t) + ωI : t ∈ 𝕀}. A continuous function u : ℝ → X is called an integral solution onℝ if

‖u(t) − x‖ − ‖u(r) − x‖

≤
t

∫
r

([y, u(ν) − x]+ + ω‖u(ν) − x‖) dν + Lω(‖x‖)
t

∫
r

‖hω(ν) − hω(r)‖ dν + ‖y‖
t

∫
r

‖g(ν) − g(r)‖ dν

for all −∞ < r ≤ t < ∞, and [x, y] ∈ A(r) + ω (with g ≡ 0 in case of Assumption 2.2).

Similar to the initial value case, the Yosida approximation of the derivative was considered and led to the
following result:

(
d
dt)λ

uλ(t) ∈ A(t)uλ(t) + ωuλ(t), t ∈ ℝ,

with

(
d
dt)λ

u(t) := 1
λ(
u(t) − 1

λ

∞

∫
0

exp(− sλ)u(t − s) ds).

Again the uλ are derived by a Banach iteration, i.e.,

uλ(t) = J λ
1−λω
(t)( 1

1 − λω(
∞

∫
0

1
λ
e−

s
λ uλ(t − s) ds)).

For these approximants we have the following result.

Theorem 2.8 ([23]). Let 𝕀 = ℝ.
(i) If Assumption 2.1, and Assumption 2.2 with ω < 0, are fulfilled, then the Yosida approximants (uλ : λ > 0)

are Cauchy in BUC(ℝ, X) when λ → 0. The limit u(t) := limλ→0 uλ(t) is an integral solution onℝ.
(ii) Let Assumptions 2.1 and 2.3 be fulfilled. Further, assume that the Lipschitz constant Lg of g in Assump-

tion 2.3 is less than −ω. Then the Yosida approximants (uλ : λ > 0) are Cauchy in BUC(ℝ, X)when λ → 0+.
The limit u(t) := limλ→0+ uλ(t) is an integral solution onℝ.
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Remark 2.9 ([22]). (i) The construction of the solutions implies u(t) ∈ D(A(t)) = DA .
(ii) In the following, with regard to equations (2.1) and (2.2), we always consider the solutions given by

Theorem 2.6 and Theorem 2.8, respectively.

Moreover, we have a comparison result between the solution found onℝ andℝ+.

Corollary 2.10 ([23]). Let A(t) fulfill Assumption 2.1 and either Assumption 2.2 with ω < 0, or Assumption 2.3
with Lg < −ω, where Lg is the Lipschitz constant of g. Then the solution v of (2.2) and the solution u of (2.1)
satisfy

‖u(t) − v(t)‖ ≤ exp(ωt)‖u0 − v(0)‖ for all 0 ≤ t.

3 Main definitions and context
We start with the notion of pseudo-resolvents:

Definition 3.1 ([25, Definition 7.1, p. 193]). The members of a family of contractions,

{Jλ : D(Jλ) ⊂ X → X | λ > 0},

are called pseudo-resolvents if

R(μλ
I + λ − μ

λ
Jλ) ⊂ D(Jμ), λ, μ > 0,

and
Jλu = Jμ(

μ
λ
u + λ − μ

λ
Jλu), λ, μ > 0, u ∈ D(Jλ).

Lemma 3.2 ([25, Lemma 7.1, pp. 193–194]). Pseudo-resolvents have the generator

A = 1
λ
(I − J−1λ ) for any λ > 0.

Next we motivate a generalization for various types of almost periodicity.

Lemma 3.3. Let Y be a closed linear subspace of BUC(ℝ, X), and {B(t) : t ∈ ℝ} a family of m-dissipative and
Lipschitz continuous operators defined on X with the common Lipschitz constant K. Further, if for all f ∈ Y,
{t 󳨃→ B(t)f(t)} ∈ Y, then for all f ∈ Y, {t 󳨃→ JBλ (t)f(t)} ∈ Y, for small λ > 0.

Proof. For given λ > 0 and x ∈ Y, we define

Tλ : Y → Y, f 󳨃→ {t 󳨃→ λB(t)(f(t) + x(t))}.

Then, for given f, g ∈ Y, we have
‖Tλ f − Tλg‖∞ ≤ λK‖f − g‖∞.

Consequently, for λK < 1, there exists fλ ∈ Y such that

fλ = {t 󳨃→ λB(t)(fλ(t) + x(t))}

and
(I − λB(t))(x(t) + fλ(t)) = x(t) + fλ(t) − λB(t)(x(t) + fλ(t)) = x(t).

Thus, we found that for λK < 1, (I − λB(t))−1x(t) = x(t) + fλ(t) ∈ Y.

Due to the previous results it becomes straightforward to define types of almost periodicity even for multival-
ued ω-dissipative operators.

Definition 3.4. Let Y be a closed linear translation-invariant subspace of BUC(ℝ, X). Anm-dissipative family
{A(t) : t ∈ ℝ} ⊂ X × X is called Y invariant if {t 󳨃→ Jλ(t)x(t)} ∈ Y for all x ∈ Y and 0 < λ ≤ λ0, and λω < 1.
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Remark 3.5. The examples for Y are AP(ℝ, X), AAP(ℝ+, X), W(ℝ, X), WRC(ℝ, X) and CAA(ℝ, X). In the
case of almost automorphy, we have to add uniform continuity (i.e., AA(ℝ, X) ∩ BUC(ℝ, X)). The spaces
AAP(ℝ+, X),W(ℝ+, X) and WRC(ℝ+, X) are considered in the following way:

Y = {f ∈ BUC(ℝ, X) : f|ℝ+ ∈ AAP(ℝ+, X), (WRC(ℝ+, X),W(ℝ+, X))}.

This makes sense even for the splitting, as the almost periodic part is uniquely defined on ℝ while the weak
almost periodic function is only given on ℝ+. This approach allows to consider equations on the real line,
which are given only onℝ+, while extending A(t) by

Ã :=
{
{
{

A(t), t ≥ 0,
A(0), t < 0.

The control functions are extended in the same manner.

Due to Lemma3.3,we candefine the almost periodic part of a generallymultivalued operatorA( ⋅ ). Therefore,
let Y split into the direct sum

Y = Ya ⊕ Y0,

with a projection Pa : Y → Ya satisfying ‖Pa‖ ≤ 1.

Definition 3.6. A linear, closed and translation invariant subspace Y ⊂ BUC(ℝ, X) splits almost periodic if
Y = Ya ⊕ Y0, where Ya , Y0 are closed translation invariant linear subspaces, the constants are in Ya (X ⊂ Ya),
the corresponding projection fulfills

Pa(Y) ⊂ Ya , with ‖Pa‖ ≤ 1,

and, finally, Pa commutes with the translation semigroup.

Lemma 3.7. Let Y split almost periodic, and let {A(t) : t ∈ ℝ} ⊂ X × X be m-dissipative and Y-invariant so that

Jλ(t)x = Jλ,a(t)x + ϕ,

with Jλ,a( ⋅ )x ∈ Ya and ϕ ∈ Y0. If for a given f ∈ Y,

Pa(Jλ( ⋅ )f( ⋅ )) = Jλ,a( ⋅ )Pa f( ⋅ ), (3.1)

then the members of the following family of operators are pseudo-resolvents:

Jλ,a(t) : X → X, x 󳨃→ Pa(Jλ( ⋅ )x)(t)

If {A(t) : t ∈ ℝ} is Y-invariant and (3.1) is fulfilled, we say that {A(t) : t ∈ ℝ} splits almost periodic with respect
to Ya, Y0.

Proof. First we prove that {Jλ,a(t) : t ∈ ℝ} are contractions:

‖Jλ,a(t)x − Jλ,a(t)y‖ = ‖Pa(Jλ( ⋅ )x)(t) − Pa(Jλ( ⋅ )y)(t)‖
≤ ‖Jλ( ⋅ )x − Jλ( ⋅ )y‖∞
≤ ‖x − y‖. (3.2)

Next the range condition, but this is fulfilled, because we assumed A(t) to be m-dissipative, therefore
X = D(Jλ(t)) = D(Jλ,a(t)).

As Jλ(t) are resolvents, we have the following resolvent equation:

Jλ(t)u = Jμ(t)(
μ
λ
u + λ − μ

λ
Jλ(t)u), λ, μ > 0, u ∈ X.

Using, u(t) ≡ u ∈ Ya, the pseudo-resolvent-equation holds in Y. Hence, we can apply the projection Pa on
both sides of the equation. Thus,

PaJλ( ⋅ )u = Pa(Jμ( ⋅ )(
μ
λ
u( ⋅ ) + λ − μ

λ
Jλ( ⋅ )u)), λ, μ > 0, u ∈ X.

Applying (3.1), and evaluating at t ∈ ℝ, serves for the proof.
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Definition 3.8. Let {A(t) : t ∈ ℝ} ⊂ X × X bem-dissipative and split almost periodic with respect to Y, Ya. The
almost periodic part of A( ⋅ ) is defined as follows:

[A( ⋅ )]a :=
1
λ
(I − Jλ,a( ⋅ )−1), λ > 0.

Remark 3.9. By the previous definition, form-dissipative operators {A(t) : t ∈ ℝ} ⊂ X × X which split almost
periodic, we obtain

JAaλ (t)x = Jλ,a(t)x := (Jλ( ⋅ )x)a(t),

where ( ⋅ )a denotes the Ya part of a function given in Y.

Proof. Using the fact that A = 1
λ (I − (J

A
λ )
−1) for A dissipative, we have

A = B ⇐⇒ JAλ = J
B
λ for some λ > 0,

and 1
λ
(I − JAaλ ( ⋅ )

−1) = [A( ⋅ )]a =
1
λ
(I − JAλ,a( ⋅ )

−1).

The first equality comes with the dissipativeness of [A( ⋅ )]a due to (3.2), and the second by definition.

Remark 3.10. Let {A(t) : t ∈ ℝ} ⊂ X × X split almost periodic with respect to Ya , Y0. Due to (3.2), [A( ⋅ )]a is
dissipative. From D(Jλ,a) = X, we derive the m-dissipativeness, and the facts that Pax = x for all x ∈ Ya, and,
together with equation (3.1), that the almost periodic part of A( ⋅ ) is Ya-invariant.

Proof. Given x ∈ Ya, we apply (3.1):

Jλ,a( ⋅ )x( ⋅ ) = Jλ,a( ⋅ )Pax( ⋅ ) = PaJλ( ⋅ )x( ⋅ ) ∈ Ya .

Thus, Jλ,a( ⋅ )x( ⋅ ) ∈ Ya, and therefore Jλ,a( ⋅ )x( ⋅ ) = PaJλ,a( ⋅ )x( ⋅ ).

For an example, we recall the definition of demi-closedness [15, Definition 1.15, p. 18]

Definition 3.11. An operator A ⊂ X × X is called demi-closed if A is norm-(weakly-sequentially) closed as a
subset of X × X, i.e., ‖xn − x‖ → 0, w − limn→∞ yn = y, and [xn , yn] ∈ A for all n ∈ ℕ implies [x, y] ∈ A.

Example 3.12. Let a : ℝ → ℝ be weakly almost periodic and assume that a(t) ≥ q for some q > 0. Using the
splitting a(t) = aa(t) + ϕ(t), with aa ∈ AP(ℝ), for an m-dissipative operator A ⊂ X × X, we define

A(t) := a(t)A.

Let Ya = AP(ℝ, X), and either Y = WRC(ℝ+, X)or Y = W(ℝ+, X). Let alsoA bedemiclosedand Jλ compact.
Then A(t) splits almost periodic, and the Ya-part is given by [A( ⋅ )]a(t) = aa(t)A. The same result can be
obtained using Y = AAP(ℝ+, X), with a ∈ AAP(ℝ+, X).

Proof. For a given λ > 0,wehave to prove that {t 󳨃→ Jλ(t)x} isweakly almost periodic. Note, that Jλ(t)x = Jλa(t)x.
Thus, we obtain the result using the following help function with 0 < r < q:

f : ℝ × ℝ → X, (t, p) 󳨃→ Jλ(|p−r|+r)x

which is Lipschitz continuous, by the resolvent equation (λ(|p − r| + r) ≥ λr > δ > 0), f(t, a(t)) = Jλa(t)x, and
since f ∈ W(ℝ × ℝ, X) (cf. Definition A.4), Corollary A.10 applies. To prove {t 󳨃→ Jλ(t)x(t)} ∈ Y for x ∈ Y in the
case where Y = WRC(ℝ+, X), we can use Corollary A.10 with the help function

f : ℝ × (ℝ × X) → X, (t, (p1, p2)) 󳨃→ Jλ(|p1−r|+r)p2,

and f(t, a(t), x(t)) = Jλa(t)x(t) = Jλ(t)x(t). Hence, for x ∈ Y = W(ℝ+, X), by a further use of the previously
defined help function and an application of TheoremA.8, it remains to prove that, for K1 ⊂ Xweakly compact
metrizable, the following function is continuous:

ι : [a, b] × (K1, w) → (X, ‖ ⋅ ‖), (s, x) 󳨃→ Jλ(|s−r|+r)x.



8 | J. Kreulich, Generalized almost periodic splittings

For a given {xn}n∈ℕ ⊂ K1, weakly convergent to x ∈ K1, and {sn}n∈ℕ ⊂ [a, b] convergent to s ∈ [r, R], we define
λn := λ(|sn − r| + r) → μ ∈ [λr, R] and claim that

Jλn xn → Jμx when n →∞.

To this end, we show that any subsequence of {Jλn xn}n∈ℕ has a subsequence convergent to Jμx. Let such
a subsequence be chosen. Then, without loss of generality, we have un := Jμxn → u. This is equivalent
to xn ∈ un − μAun, and the demiclosedness leads to Jμxn → Jμx. Using the fact that ‖Aλx‖ ≤ ‖Aμx‖ for all
0 < μ < λ, by the resolvent equation, we have

‖Jλn xn − Jμx‖ ≤ ‖Jλn xn − Jμxn‖ + ‖Jμxn − Jμx‖ ≤ |λn − μ|‖Aλrxn‖ + ‖Jμxn − Jμx‖.

The Lipschitz continuity of Aλr proves the boundedness of ‖Aλrxn‖, which finishes the proof.
To compute the almost periodic part of {t 󳨃→ Jλa(t)x}, apply Corollary A.17.

To have a comparison between the classical almost periodicity and the generalized one, we provide the fol-
lowingproposition. It shows that under certain conditions t → B(t)x ∈ Y = Ya ⊕ Y0 (i.e., it splits canonically),
and the splitting is obtained from coinciding resolvents.

Proposition 3.13. Let Y ⊂ BUC(ℝ, X) split almost periodic, and let {B(t) : t ∈ ℝ} be a family of uniformly
Lipschitz operators defined on X, with Lipschitz constant K. Further, let B( ⋅ )x ∈ Y for all x ∈ X. Due to the
splitting, we have B(t)x = Pa(B( ⋅ )x)(t) + ϕ(t).We define

Ba(t)x := Pa(B( ⋅ )x)(t),

and assume that
Pa(B( ⋅ )y( ⋅ ))(t) = Ba(t)Pa(y( ⋅ ))(t) for all y ∈ Y. (3.3)

Then, for Ba( ⋅ )x, the almost periodic part in the sense of Definition 3.8, we have

Ba( ⋅ )x = Ba( ⋅ )x for all x ∈ X.

Proof. To prove the equality we show that the resolvents coincide, i.e.,

(I − λBa(t))−1x = Pa(I − λB(t))−1 = JBλ,a(t)x. (3.4)

The above together with Remark 3.9 will finish the proof. To prove (3.4) we need a representation of the
resolvents. In doing this, we consider

Taλ : Ya → Ya , f 󳨃→ {t 󳨃→ λBa(t)(f(t) + x)}.

For given x, y ∈ X, we have

‖Ba(t)x − Ba(t)y‖ = ‖Pa(B( ⋅ )x)(t) − Pa(B( ⋅ )y)(t)‖ ≤ ‖B( ⋅ )x − B( ⋅ )y)‖∞ ≤ K‖x − y‖.

The Lipschitz continuity of Ba leads to

‖Taλ f − T
a
λ g‖∞ ≤ λK‖f − g‖∞ for f, g ∈ Ya.

Consequently, for λK < 1, we find a net of fixpoints f aλ satisfying

λBa(t)(f aλ (t) + x) = f
a
λ (t),

(I − λBa(t))(f aλ (t) + x) = f
a
λ (t) + x − f

a
λ (t) = x,

f aλ (t) + x = (I − λB
a(t))−1x.

Next we consider the resolvent of Ba which is defined by the almost periodic part of the resolvent of B.
Hence, we need a representation for the resolvent of B and we have to compute the almost periodic part. We
define the fixpoint mapping with respect to B:

Tλ : Y → Y, f 󳨃→ {t 󳨃→ λB(t)(f(t) + x)}.
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Using the fact that B is Lipschitz for λK < 1, we find a net of fixpoints fλ satisfying

λB(t)(fλ(t) + x) = fλ(t),
(I − λB(t))(fλ(t) + x) = fλ(t) + x − fλ(t) = x,

fλ(t) + x = (I − λB(t))−1x.

Using the representation, we compute the almost periodic part and apply assumption (3.3), to obtain

Pa(fλ) + x = Pa(fλ + x) = Pa(λB( ⋅ )(fλ + x) + x = λBa( ⋅ )(Pa fλ + x) + x.

We found that Pa fλ is a fixpoint of Taλ , hence f
a
λ = Pa(fλ). This leads to

(I − λBa(t))−1x = f aλ (t) + x = Pa(fλ)(t) + x = Pa(I − λB( ⋅ ))
−1x = JBλ (t)x,

which finishes the proof.

Kenmochi and Otani [16] considered nonlinear evolution equations governed by time dependent subdiffer-
ential operators in Hilbert space H:

u(t) ∈ −∂φt(u(t)), u(0) = u0.

They constructed anot necessarily completemetric space of convex functions (Φ, d),whereby, d(φtn , φ) → 0,
implies φtn → φ, in the sense of Mosco, cf. [16, Lemma 4.1, p. 75]. For short, we write φtn Φ󳨀→ φ. Next we
show that the notion of almost periodicity on subdifferentials given in [16] is stronger than the one given via
resolvents defined in this study, when viewing −∂φ(t) as a dissipative operator.

Proposition 3.14. Let φt : H → ℝ be proper, lower semicontinuous and convex for all t ∈ ℝ. If

φ( ⋅ ) : ℝ → (Φ, d), t 󳨃→ φt ,

is almost periodic, then
Jφλ ( ⋅ )x : ℝ → H, t 󳨃→ Jφλ (t)x := (I + λ∂φ

t)−1x,

is almost periodic for all x ∈ H.

Proof. We assume that for x ∈ H, the mapping {t 󳨃→ Jφλ (t)x} is not almost periodic. Consequently, we find a
sequence {tn}n∈ℕ such that {J

φ
λ (t + tn)x}n∈ℕ is not uniformly Cauchy. Without loss of generality,

φ(t+tn) Φ󳨀→ ψt uniformly for t ∈ ℝ.

The non-Cauchy assumption on {Jφλ (t + tn)x}n∈ℕ leads to subsequences {tnk }k∈ℕ, {tmk }k∈ℕ ⊂ {tn}n∈ℕ, and
a sequence {sn}n∈ℕ ⊂ ℝ such that

‖Jφλ (sk + tnk )x − J
φ
λ (sk + tmk )x‖ ≥ ε for all k ∈ ℕ.

Note that {t 󳨃→ φt} is assumed to be almost periodic, O(φ) := {{t 󳨃→ φt+s} : s ∈ ℝ} is a compact subset of
Cb(ℝ, (Φ, d)), and ψ( ⋅ +s) ∈ O(φ) for all s ∈ ℝ. Consequently, we may assume that

ψ(t+sk) Φ󳨀→ ϕ(t) uniformly for t ∈ ℝ.

Clearly,
φ(t+sk+tnk ) Φ󳨀→ ϕt and φ(t+sk+tmk ) Φ󳨀→ ϕt

uniformly for t ∈ ℝ. Applying [16, Lemma 4.1, p. 75], we obtain

φ(0+sk+tnk ) → ϕ0 and φ(0+sk+tmk ) → ϕ0,

in the sense of Mosco, which implies, by using [1, Theorem 3.26, p. 305],

Jφλ (sk + tnk )x → Jϕλ x and Jφλ (sk + tmk )x → Jϕλ x

when k →∞. A contradiction to the non-Cauchy assumption.
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4 Main results
In this section we show how the previous results apply to evolution equations of the following type:

du
dt
(t) ∈ A(t)u(t) + ωu(t), t ∈ ℝ, (4.1)

and the corresponding initial value problem

du
dt
(t) ∈ A(t)u(t) + ωu(t), t ∈ ℝ+, u(0) = u0, (4.2)

where A(t) is a possibly nonlinearmultivalued and dissipative operator satisfying a type of almost periodicity
defined above. Throughout this section, we assume Y, Ya, and Y0 to be closed and translation invariant sub-
spaces of BUC(ℝ, X), with X ⊂ Ya. In the case where A(t) is classically almost periodic and Y = AP(ℝ, X), the
result in case of Assumption 2.2 is due to [2]. Even in the book [14, equation (C1), p. 153], Hino et al. consid-
eredAssumption 2.2. Thus, theywere not able to consider operators coming fromExample 3.12. The problem
is considered in the infinite dimensional case, and is even new for finite dimensions. The ω-dissipativeness
(ω < 0) is needed to obtain the uniform convergence of the approximants. Moreover, when ω = 0 and A(t)
only m-dissipative, there exists a counterexample for classical almost periodicity in the case of dimension
two, see [13, Remark 1.3 (2)].

Definition 4.1. A solution u of (4.2) is called asymptotically Y if there exists v ∈ Y such that

lim
t→∞
‖u(t) − v(t)‖ = 0.

The difference to earlier splitting results is that a splitting of the solution is found, but in the case of general
dissipative and time dependent operators, the equation fulfilled by the almost periodic part was unknown.

Theorem 4.2. Let, for a given Y ⊂ BUC(ℝ, X), A( ⋅ ) be Y-invariant, and {A(t) : t ∈ ℝ} fulfill Assumption 2.1 and
either Assumption 2.2 with ω < 0, or Assumption 2.3 with Lg < −ω, where Lg denotes the Lipschitz constant
for the control function g. Then there exists a solution u ∈ Y to (4.1), and all integral solutions of (4.2) are
asymptotically Y.

Let Y and A( ⋅ ) split almost periodic, with Y = Ya ⊕ Y0. Then the almost periodic part ua of the solution
u ∈ Y fulfills ua ∈ Ya, and ua is a generalized solution to the evolution equation

dua

dt
(t) ∈ [A( ⋅ )]a(t)ua(t) + ωua(t), t ∈ ℝ. (4.3)

Proof. The first part is a direct consequence of [22, Theorem 4.10]. For the second part, note that

uλ(t) = J λ
1−λω
(t)( 1

1 − λω(
∞

∫
0

1
λ
e−

s
λ u(t − s) ds)),

and due to the assumption of an almost periodic splitting, we apply Pa and obtain

uaλ = J
a
λ

1−λω
(t)( 1

1 − λω(
∞

∫
0

1
λ
e−

s
λ uaλ (t − s) ds)). (4.4)

Thus,

(
d
dt)λ

uaλ (t) ∈ [A( ⋅ )]a(t)u
a
λ (t) + ωu

a
λ (t), t ∈ ℝ. (4.5)

Applying Theorem 2.8, uλ → u uniformly onℝ, and by the continuity of the projection Pa, we have uaλ → ua.
We call ua the generalized solution to (4.3).
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Remark 4.3. (i) The notion of an integral solution in the case of a general splitting is not possible due to
the missing control functions for {[A( ⋅ )]a(t) : t ∈ ℝ}. Thus, in general we cannot construct a solution
applying existence results of [23] to the equation

du
dt
(t) ∈ [A( ⋅ )]a(t)u(t) + ωu(t),

due to lack of Assumptions 2.2 and 2.3.
(ii) If {[A( ⋅ )]a(t) : t ∈ ℝ} fulfills Assumption 2.2 with a function ha ∈ BUC(ℝ, X), La non-decreasing and

ωa < 0, then ua is an integral solution, in the sense of Definition 2.7, with respect to hωa , La.
(iii) If {[A( ⋅ )]a(t) : t ∈ ℝ} fulfills Assumption 2.3 with ha , ga : ℝ → X bounded and Lipschitz, La non-

decreasing and Lga < −ωa, then the generalized solution is an integral solution, in the sense of Defini-
tion 2.7, with respect to the control functions hωa , ga , La.

Proof. Equation (4.5) and the fixpoint equation (4.4) show that we are in the situation of approximations
used in the study [23, equation (31), p. 1076]. The uniqueness of fixpoints and the corresponding uniform
limits (cf. Theorem 2.8) conclude the proof.

Proposition 4.4. In the context of Theorem 4.2, let Y = WRC(ℝ, X), Ya = AP(ℝ, X) and Y0 = WRC0(ℝ, X). If
the control functions h, g belong to WRC(ℝ, X), then the generalized-(almost periodic)-solution is an integral
solution with respect to Lω, and the almost periodic parts of hω , g.

Proof. Clearly, hω ∈ WRC(ℝ, X × X). From Corollary A.14, we find a sequence {sn}n∈ℕ, with sn →∞, such
that, due to the compact ranges,

hω( ⋅ + sn) → hωa , g( ⋅ + sn) → ga and u( ⋅ + sn) → ua ,

pointwise in the norm of X. As the solution onℝ is an integral solution (see Definition 2.7), we have

‖u(t) − x‖ − ‖u(r) − x‖

≤
t

∫
r

([y, u(ν) − x]+ + ω‖u(ν) − x‖) dν + Lω(‖x‖)
t

∫
r

‖hω(ν) − hω(r)‖ dν + ‖y‖
t

∫
r

‖g(ν) − g(r)‖ dν.

Therefore, for t := t + sn, r := r + sn, we have

‖u(t + sn) − x‖ − ‖u(r + sn) − x‖

≤
t

∫
r

([y, u(ν + sn) − x]+ + ω‖u(ν + sn) − x‖) dν

+ Lω(‖x‖)
t

∫
r

‖hω(ν + sn) − hω(r + sn)‖ dν + ‖y‖
t

∫
r

‖g(ν + sn) − g(r + sn)‖ dν. (4.6)

Using the fact that [y, ⋅ ]+ is upper semicontinuous, we have

lim sup
n→∞
[y, u(ν + sn) − x]+ ≤ [y, ua(ν) − x]+.

Consequently, we may pass to the limit superior on both sides of (4.6), and by Fatou’s lemma we obtain the
inequality.

Corollary 4.5. In the context of Theorem 4.2, let

Y = AAP+(ℝ, X) := {f ∈ BUC(ℝ, X) : f|ℝ+ ∈ AAP(ℝ+, X)},
Ya = AP(ℝ, X) and Y0 = C+0(ℝ, X) := {f ∈ BUC(ℝ, X) : f|ℝ+ ∈ C0(ℝ

+, X)}.

If the control functions h, g belong toAAP+(ℝ, X), then the generalized-(almost periodic)-solution is an integral
solution with respect to Lω, and the almost periodic parts of hω, g.
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Proof. Apply inequality (4.6), the existence of a sequence {sn}n∈ℕ with sn →∞, and the pointwise-norm
convergence.

Theorem 4.6. Let {A(t) : t ∈ ℝ}, {B(t) : t ∈ ℝ} ⊂ X × X split almost periodic to Y = Ya ⊕ Y0. Consider the equa-
tions

du
dt
(t) ∈ A(t)u(t) + ωu(t), t ∈ ℝ+, u(0) = u0 ∈ DA ,

and
dv
dt
(t) ∈ B(t)v(t) + ωv(t), t ∈ ℝ+, v(0) = v0 ∈ DB .

If the families {A(t) : t ∈ ℝ}, {B(t) : t ∈ ℝ} satisfy Assumption 2.1 and either Assumption 2.2 with ω < 0, or
Assumption 2.3 with Lg < −ω, where Lg denotes the Lipschitz constant for the control function g, then

{t 󳨃→ JAλ (t)x − J
B
λ (t)x} ∈ Y0 for all x ∈ X, (4.7)

implies that
{t 󳨃→ UA+ωI(t, s)x − UB+ωI(t, s)y}

is asymptotically Y0 for all x ∈ DA, y ∈ DB.

Proof. It is sufficient to prove that the almost periodic parts of UA+ωI( ⋅ , s)x and UB+ωI( ⋅ , s)y coincide. Due to
theuniformconvergence of the approximants, it suffices to prove it for the approximants.Moreover, asymptot-
ically they are close to their correspondingbounded solutionon thewhole line [23, Corollary 2.16]. Therefore,
let uλ , vλ be the approximants to the whole line solution given by [23, Theorem 2.18]. Due to condition (4.7),

(JAλ ( ⋅ ))
ax = (JBλ ( ⋅ ))

ax.

Thus, using the fixpoint equations for the approximants uλ and vλ, we have

(uλ(t))a = (JA λ
1−λω
)a(t)( 1

1 − λω(
∞

∫
0

1
λ
e−

s
λ uaλ (t − s) ds))

= (JB λ
1−λω
)a(t)( 1

1 − λω(
∞

∫
0

1
λ
e−

s
λ uaλ (t − s) ds)),

Thus, (uλ(t))a is the fixpoint of the strict contraction defining the solution (vλ(t))a. Consequently, by the
uniqueness of the fixpoint, (uλ(t))a = (vλ(t))a . Thus, the almost periodic parts of the solutions of (2.2) coin-
cide. Thanks to Corollary 2.10, the solutions of the initial value problem (2.1) are asymptotically close.

Corollary 4.7 ([22]). Let

Y = AAP+(ℝ, X) := {f ∈ BUC(ℝ, X) : f|ℝ+ ∈ AAP(ℝ+, X)}, Ya = AP(ℝ, X),

and let {A(t) : t ∈ ℝ}, {B(t) : t ∈ ℝ} ⊂ X × X split almost periodic with Y = Ya ⊕ Y0. Consider the equations

du
dt
(t) ∈ A(t)u(t) + ωu(t), t ∈ ℝ+, u(0) = u0 ∈ DA ,

and
dv
dt
(t) ∈ B(t)v(t) + ωv(t), t ∈ ℝ+, u(0) = v0 ∈ DB .

Let also the families {A(t) : t ∈ ℝ}, {B(t) : t ∈ ℝ} satisfy Assumption 2.1 and either Assumption 2.2 with ω < 0,
or Assumption 2.3 with Lg < −ω, where Lg denotes the Lipschitz constant for the control function g. If

lim
t→∞
‖JAλ (t)x − J

B
λ (t)x‖ = 0 for all x ∈ X, λ small,

then, for the corresponding evolution systems UA+ωI(t, s) and UB+ωI(t, s), we have

lim
t→∞
‖UA+ωI(t, 0)x − UB+ωI(t, 0)y‖ = 0 for all x ∈ DA , y ∈ DB ,

i.e., they are asymptotically equivalent.
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In the case of Eberlein weak almost periodicity, we obtain the following corollary.

Corollary 4.8. Let Y = W(ℝ, X), Ya = AP(ℝ, X), Y0 = W0(ℝ, X), and let {A(t) : t ∈ ℝ}, {B(t) : t ∈ ℝ} ⊂ X × X
split almost periodic with Y = Ya ⊕ Y0. Consider the equations

du
dt
(t) ∈ A(t)u(t) + ωu(t), t ∈ ℝ+, u(0) = u0 ∈ DA ,

and
dv
dt
(t) ∈ B(t)v(t) + ωv(t), t ∈ ℝ+, u(0) = v0 ∈ DB .

Let also the families {A(t) : t ∈ ℝ}, {B(t) : t ∈ ℝ} satisfy Assumption 2.1 and either Assumption 2.2 with ω < 0,
or Assumption 2.3 with Lg < −ω, where Lg denotes the Lipschitz constant for the control function g. If for all
α ∈ ℝ,

lim
T→∞

1
T

T

∫
0

exp(−iατ)(JAλ (t + τ)x − J
B
λ (t + τ)x) dτ = 0

for all λ small, x ∈ X, uniformly in t ∈ ℝ+, then

lim
T→∞

1
T

T

∫
0

exp(−iατ)(UA+ωI(t + τ, 0)x − UB+ωI(t + τ, 0)y) dτ = 0

for all x ∈ DA , y ∈ DB, and α ∈ ℝ, uniformly in t ∈ ℝ+.

Proof. From [5, 6] we learn that Y = Ya ⊕ Y0, and that Y0 is characterized by a zero mean.

In the case of ordinary differential equations the result of Theorem 4.6 extends as follows.

Proposition 4.9. Let Y ⊂ BUC(ℝ, X), let f, g : ℝ × X → X be Lipschitz, and let

{t 󳨃→ f(t, x(t)}, {t 󳨃→ g(t, x(t)} ∈ Y for all x ∈ Y.

Further, let
f a( ⋅ , z) = Pa f( ⋅ , z), ga( ⋅ , z) = Pag( ⋅ , z) for all z ∈ X,

and
Pa f( ⋅ , x( ⋅ )) = f a( ⋅ , Pax( ⋅ )), Pag( ⋅ , x( ⋅ )) = ga( ⋅ , Pax( ⋅ )) for all x ∈ Y.

Then

{t 󳨃→ f(t, x) − g(t, x)} ∈ Y0 for all x ∈ X, (4.8)

if and only if

{t 󳨃→ Jfλ(t)x − J
g
λ (t)x} ∈ Y0 for all x ∈ X. (4.9)

Proof. Due (4.8), the almost periodic parts of f, g coincide. Therefore, with respect to the proof of Proposi-
tion 3.13, the resolvents come with a common fixpoint of Tλ, which proves (4.9). If (4.9) holds we have

Jfλ,a = J
g
λ,a ,

which gives fa = ga. An application of Proposition 3.13 concludes the proof.

5 Perturbations
In this sectionwe put some general perturbation theorems for dissipative operators into the context of almost
periodic splittings. This extends the theory of semilinear operators like A(t) + f(t, ⋅ ), as they are considered
in [3], and in [31] for the case of almost automorphy. We start with a Lipschitz perturbation.
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Theorem 5.1. Let {A(t) : t ∈ ℝ} split almost periodic with respect to Y, Ya. Further, let {B(t) : t ∈ ℝ} be uni-
formly Lipschitz with constant K, satisfying Pa(B( ⋅ )f = Ba( ⋅ )Pa f for all f ∈ Y, where Ba( ⋅ )x := PaB( ⋅ )x for all
x ∈ X. Then A(t) + B(t) is ω-dissipative with at least ω = K, and splits almost periodic with respect to Ya , Y0.
Moreover,

{A( ⋅ ) + B( ⋅ )}a = Aa( ⋅ ) + Ba( ⋅ ). (5.1)

Proof. We start with proving the ω-dissipativeness. Let t ∈ ℝ and yi ∈ A(t)xi for i = 1, 2. Then

‖x1 − x2‖ ≤ ‖xy − x2 − λ(y1 − y2)‖ ≤ 󵄩󵄩󵄩󵄩x1 − x2 − λ(y1 + B(t)x1 − y2 − B(t)x2)
󵄩󵄩󵄩󵄩 + λK‖x1 − x2‖.

Thus, A(t) + B(t) is dissipative with ω = K. From the uniform Lipschitz condition of {B(t) : t ∈ ℝ}, we obtain
the uniform Lipschitz condition of {Ba(t) : t ∈ ℝ}. For given x, y ∈ X, we have

‖Ba(t)x − Ba(t)y‖ ≤ ‖Ba( ⋅ )x − Ba( ⋅ )y‖∞ ≤ ‖B( ⋅ )x − B( ⋅ )y‖∞ ≤ K‖x − y‖.

Consequently, we obtain that Aa(t) + Ba(t) is ω-dissipative with ω = K.
To prove the m-dissipativeness and to obtain a representation of the resolvent of A( ⋅ ) + B( ⋅ ), for given

ϕ ∈ Y, we define
Tλ : Y → Y, f 󳨃→ {t 󳨃→ JAλ (t){ϕ(t) + λB(t)(f(t) + ϕ(t))} − ϕ(t)},

with JAλ (t) = (I − λA(t))
−1.

An estimation gives that Tλ is a strict contraction for λK < 1. Thus, the Banach fixpoint principle leads to
a fλ ∈ Y such that

fλ(t) = JAλ (t){ϕ(t) + λB(t)(fλ(t) + ϕ(t))} − ϕ(t).

We have

ϕ(t) + fλ(t) = JAλ (t){ϕ(t) + λB(t)(fλ(t) + ϕ(t))},
(I − λA(t))(ϕ(t) + fλ(t)) ∋ ϕ(t) + λB(t)(ϕ(t) + fλ(t)),
(I − λA(t) − λB(t))(ϕ(t) + fλ(t)) ∋ ϕ(t),
(ϕ(t) + fλ(t)) = (I − λA(t) − λB(t))−1ϕ(t).

As the constants are contained in Ya ⊂ Y, the m-dissipativeness of A(t) + B(t) is proved. We also proved
(I − λ(A(t) + B(t)))−1ϕ(t) = ϕ(t) + fλ(t) ∈ Y. Therefore, it remains to prove the perturbation result (5.1),which
is equivalent to

JA+Bλ,a (t)x = J
Aa+Ba
λ (t)x.

From the previous step, we have (I − λ(A(t) + B(t))−1x = x + fλ(t) for ϕ ≡ x. This leads to

Pa(JA+Bλ ( ⋅ )x)(t) = Pa(x + fλ)(t)
= x + Pa(fλ)(t)
= x + Pa(JAλ (t)(x + λB(t)(fλ(t) + x)) − x)
= x + JAλ,a(t)(x + λBa(t)(f

a
λ (t) + x)) − x.

Noting that JAaλ (t)x = J
A
λ,a(t)x, we define

Taλ : Ya → Ya , f 󳨃→ {t 󳨃→ JAλ,a(t)(x + λBa(t)(f(t) + x)) − x}.

Let f aλ be the net of fixpoints for λK < 1. Then we have

(I − λ(Aa(t) + Ba(t)))−1x = x + f aλ
= JAλ,a(t)(x + λBa(t)(f

a
λ (t) + x))

= Pa(JA+Bλ ( ⋅ )x)(t).

As a consequence, we obtain the same contraction mapping, and the uniqueness of the fixpoint concludes
the proof.
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Remark 5.2. In many studies the existence of solutions to equations like

y󸀠(t) ∈ A(t)y(t) + B(t)y(t), t ∈ ℝ, (5.2)

need the precondition L + ωA < 0, where L denotes the Lipschitz constant of B. Theorem 5.1 can be viewed
as a split of the assumptions on m-dissipativity (i.e., R(I + λ(A(t) + B(t)) = X) and the dissipativity constant
ωA+B of {A(t) + B(t) + ωI : t ∈ ℝ} ⊂ X × X. For the m-dissipativity the Lipschitz constant on B is needed. To
obtain a bounded solution to (5.2) by the methods of Section 2, we obtain that ωA+B < 0 in case of Assump-
tion 2.2, or Lg < ωA+B in case of Assumption 2.3, is sufficient. Consequently, the direct connection between
the Lipschitz constant on x → B(t)x and ωA to obtain a bounded solution onℝ is cut.

If X∗ is strictly convex, then the duality mapping

F : X \ {0} → X∗, x 󳨃→ {y∗ : y∗(x) = ‖x‖2 = ‖y∗‖2},

is single-valued and, in case of a uniform convex dual, uniformly continuous on bounded subsets of X, cf.
[15, Proposition 1.1, p. 2]. Note that a dissipative operator, in this case, is always strictly dissipative (i.e.,
[ ⋅ , ⋅ ]− = [ ⋅ , ⋅ ]+), due to the single valuedness of F. Consequently, a sumof dissipative operators is dissipative.
Next we consider the case where X∗ is uniformly convex.

Lemma 5.3. Let X∗ be uniformly convex, let 𝕀 ⊂ ℝ, and let the families {A(t) : t ∈ 𝕀}, {B(t) : t ∈ 𝕀} ⊂ X × X be
m-dissipative. If there exist R > 0 and x1(t) : 𝕀 → X such that for all t ∈ 𝕀,

x1(t) ∈ D(A(t)) ∩ D(B(t)) ∩ K(0, R) and |A(t)x1(t)|, |B(t)x1(t)| ≤ R, (5.3)

then, for {y(t)}t∈𝕀 ∈ X bounded, there exist C > 0 and a unique xλ(t) ∈ D(A(t)), ‖xλ(t)‖ ≤ C, such that

xλ(t) − A(t)xλ(t) − Bλ(t)xλ(t) ∋ y(t). (5.4)

Further, if for C1 ≥ 0, ‖Bλ(t)xλ(t)‖ ≤ C1 uniformly in λ > 0, t ∈ 𝕀, then, there exists a function x : 𝕀 → X such that
x(t) ∈ D(A(t)) ∩ D(B(t)) ∩ K(0, C) and

x(t) − A(t)x(t) − B(t)x(t) ∋ y(t) for all t ∈ 𝕀. (5.5)

Additionally,
lim
λ→0

xλ(t) = x(t) uniformly in 𝕀.

Proof. As A(t) + Bλ(t) ism-dissipative, the solution xλ(t) of (5.4) is unique for every t. As we need a represen-
tation for xλ(t), from the proof of [15, Lemma 1.23, Theorem 1.24], we read

xλ(t) = (I −
λ

λ + 1A(t))
−1
(

λ
λ + 1 y(t) +

1
λ + 1 (I − λB(t))

−1xλ(t)).

Using Banach’s fixpoint theorem, wewill find xλ(t) ∈ D(A(t)). From the precondition (5.3), we find uniformly
bounded pairs (x1(t), y1,λ(t)) such that

y1,λ(t) ∈ x1(t) − A(t)x1(t) − Bλ(t)x1(t).

Using ‖Bλ(t)x1(t)‖ ≤ |B(t)x1(t)|, we can choose y1,λ so that

‖xλ(t) − x1(t)‖2 ≤ ⟨y(t) − y1,λ(t), F(xλ(t) − x1(t))⟩ ≤ ‖y(t) − y1,λ(t)‖‖xλ(t) − x1(t)‖. (5.6)

Thus, ‖xλ(t)‖ is uniformly bounded. Using (5.4) for λ, μ > 0, and the fact that A(t) is dissipative, we have

‖xλ(t) − xμ(t)‖2 ≤ ⟨Bλ(t)xλ(t) − Bμ(t)xμ(t), F(xλ(t) − xμ(t))⟩.

Using Bλ(t)xλ(t) ∈ B(t)JBλ (t)xλ(t) and the dissipativeness of B, we have

⟨Bλ(t)xλ(t) − Bμ(t)xμ(t), F(JBλ (t)xλ(t) − J
B
μ (t)xμ(t))⟩ ≤ 0.
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In sum this leads with the boundedness of {Bλ(t)xλ(t)}t∈𝕀,λ>0 to some C1 > 0, so that

‖xλ(t) − xμ(t)‖2 ≤ ⟨Bλ(t)xλ(t) − Bμ(t)xμ(t), F(xλ(t) − xμ(t)) − F(JBλ (t)xλ(t) − J
B
μ (t)xμ(t))⟩

≤ 2C1󵄩󵄩󵄩󵄩F(xλ(t) − xμ(t)) − F(J
B
λ (t)xλ(t) − J

B
μ (t)xμ(t))

󵄩󵄩󵄩󵄩. (5.7)

Recalling that λBλ(t)xλ(t) = JBλ (t)xλ(t) − xλ(t), the uniform continuity on bounded sets of the dualitymap
yields that {xλ}λ>0 is uniformly Cauchy when λ → 0. The completeness of X gives uniform convergence in
B(𝕀, X), cf. [8, p. 258]. We define

x(t) = lim
λ→0

xλ(t).

For a given t ∈ 𝕀, we can conclude the proof with the arguments used in the proof of [15, Theorem 1.24,
pp. 25–26, and Theorem 1.17 (ii), p. 18]. Using ‖Bλ(s)xλ(s)‖ ≤ C1 for all s ∈ 𝕀, λ > 0, we have x(t) ∈ D(B(t)).
The reflexivity gives Bλn (t)xλn (t) → w(t)weakly,withw(t) ∈ B(t)x(t). Applying (5.4),wefind abounded selec-
tion yλ(t) ∈ A(t)xλ(t) satisfying

xλ(t) − yλ(t) − Bλ(t)xλ(t) = y(t).
Thus, by the demiclosedness of A(t) and convergence of {yλn (t) : n ∈ ℕ} we have

yλn (t) → z(t) = y(t) − x(t) + w(t)

weakly, with z(t) ∈ A(t)x(t). Summarizing the previous, we have

y(t) = xλn (t) − yλn (t) − Bλn (t)xλn (t) → x(t) − z(t) − w(t)

weakly in X, which concludes the proof.

Theorem 5.4. Let X∗ be uniformly convex, let 𝕀 ⊂ ℝ, and let the families {A(t) : t ∈ 𝕀}, {B(t) : t ∈ 𝕀} ⊂ X × X be
m-dissipative. Assume that there exist R > 0 and x1(t) : 𝕀 → X such that for all t ∈ 𝕀,

x1(t) ∈ D(A(t)) ∩ D(B(t)) ∩ K(0, R) and |A(t)x1(t)|, |B(t)x1(t)| ≤ R.

Further, let ⟨y, F(Bλ(t)x)⟩ ≥ 0 for all [x, y] ∈ A(t), t ∈ 𝕀, λ > 0. Then A(t) + B(t) is m-dissipative and the solution
of (5.4) converges uniformly on 𝕀 to the solution of (5.5).

Proof. The proof is analogous to that of [15, Corollary 1.25], proving the boundedness of Bλ(t)xλ(t).

Remark 5.5. To study the resolvents JA+Bμ (t) = (I + μ(A(t) + B(t)))−1, the same methods, as in Lemma 5.3,
apply. Therefore, assume the condition (5.3). This selection gives a bounded pair (x1(t), y1,λ,μ(t)) satisfying

y1,λ,μ(t) := (1 − μ)x1(t) + μy1,λ(t) ∈ x1(t) − μA(t)x1(t) − μBλ(t)x1(t).

Considering, y ∈ B(𝕀, X) and
y(t) ∈ xμλ (t) − μA(t)x

μ
λ (t) − μBλ(t)x

μ
λ (t),

we find that the solutions are fixpoints of the contractions

xμλ (t) = (I −
λμ
λ + μ

A(t))
−1
(

λ
λ + μ

y(t) + μ
λ + μ

JBλ (t)x
μ
λ (t)).

Moreover, applying the bounded selection (x1(t), y1,λ,μ(t)), we have, similar to (5.6), some C2 > 0 such that
‖xμλ (t)‖ ≤ C2 uniformly in λ > 0, t ∈ 𝕀. Thus, if for a given μ > 0,

‖Bλ(t)x
μ
λ (t)‖ ≤ C1 for all t ∈ 𝕀, λ > 0, (5.8)

then, by an observation similar to (5.7), we have

xμ(t) := lim
λ→0

xμλ (t) uniformly for t ∈ 𝕀.

The uniform convexity of X∗ and the demiclosedness of A(t) and B(t) imply that xμ(t) is a bounded solution
of

xμ(t) − μA(t)xμ(t) − μB(t)xμ(t) ∋ y(t),
which gives

JA+Bμ (t)y(t) = limλ→0
xμλ (t) uniformly for t ∈ 𝕀.
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Theorem 5.6. Let X∗ be uniformly convex, and let Y ⊂ BUC(ℝ, X), Y = Ya ⊕ Y0. Further, let {A(t) : t ∈ ℝ} and
{B(t) : t ∈ ℝ} be families of dissipative operators, which split almost periodic with respect to Ya, Y0. Under the
assumptions (5.3) and (5.8) of Remark 5.5, we have

(A( ⋅ ) + B( ⋅ ))a = Aa( ⋅ ) + Ba( ⋅ ).

Proof. We have to show that the almost periodic part of JA+Bλ (t)x equals J
Aa+Ba
λ (t)x. To prove that the fix-

points are in Y, note that X ⊂ Ya ⊂ Y, and that JAλ and J
B
λ leave Y invariant. Thus, for y ∈ X, we have the strict

contraction
T : Y → Y, x 󳨃→ {t 󳨃→ JAλμ

λ+μ
(t)( λ

λ + μ
y + μ

λ + μ
JBλ (t)x(t))}.

From the Remark 5.5, for a given μ > 0, we obtain the convergence when λ → 0 uniformly for t ∈ ℝ. In doing
so, we use the representations of the fixpoints given in Remark 5.5,

Pax
μ
λ ( ⋅ ) = Pa(J

A
λμ
λ+μ
( ⋅ )(

λ
λ + μ

y + μ
λ + μ

JBλ ( ⋅ )x
μ
λ ( ⋅ )))

= (JAλμ
λ+μ
( ⋅ ))a(

λ
λ + μ

y + μ
λ + μ
(JBλ ( ⋅ ))

aPax
μ
λ ( ⋅ )).

As Pa : Y → Y is bounded, we obtain the uniform convergence of Pax
μ
λ as well. For Aa + Ba, we have the strict

contraction
Ta : Ya → Ya , x 󳨃→ {t 󳨃→ (JAλμ

λ+μ
( ⋅ ))a(t)( λ

λ + μ
y + μ

λ + μ
(JBλ ( ⋅ ))

a(t)x(t))}.

Thus, the projection gives the fixpoint xμλ,a := Pax
μ
λ and uniform convergence when λ → 0. From (5.8),

we conclude

‖(Bλ( ⋅ ))a(t)x
μ
λ,a(t)‖ ≤ ‖PaBλ( ⋅ )x

μ
λ ( ⋅ )‖∞ ≤ ‖Bλ( ⋅ )x

μ
λ ( ⋅ )‖∞ ≤ C1 uniformly in λ > 0.

Hence, we are in the situation of Remark 5.5, and can redo the final steps, similar to the proof of Lemma 5.3.
Consequently, for a given t ∈ ℝ, there exists a sequence {λn : n ∈ ℕ} such that

y = xμλn ,a(t) − μy
μ
λn ,a(t) − μBλn ,a(t)x

μ
λn ,a(t) → xμa(t) − μz

μ
a(t) − μw

μ
a(t)

weakly when n →∞, with zμa(t) ∈ Aa(t)xμ(t) and w
μ
a(t) ∈ Ba(t)xμ(t). This concludes the proof.

In the next example we show how the previous results apply to perturbations to the linear Dirichlet problem
(∆0) on bounded domains Ω.

Example 5.7. Let Ω ⊂ ℝn be open, bounded and with smooth boundary, let H = L2(Ω),

∆ : H1
0(Ω) ∩ H2(Ω) ⊂ L2(Ω) → L2(Ω),

with ω its dissipativity constant, and let φ : 𝕁 × ℝ → ℝ be a proper, lower semicontinuous and convex func-
tion, satisfying ∂φ(t)0 ∋ 0 for all t ∈ 𝕁. Defining, for all t ∈ 𝕁,

∂ϕ(t) := {[u, v] ∈ L2(Ω) × L2(Ω) : u(x) ∈ D(∂φ(t)) a.e., φ(t)(u( ⋅ )) ∈ L1(Ω), and v(x) ∈ ∂φ(t)(u(x)) a.e.},

we have that ∆ − ∂ϕ(t) is m-dissipative and ∂ϕ(t)0 ∋ 0. If additionally, −∂φ and −∂ϕ split almost periodic,
with respect to Ya,ℝ, Y0,ℝ ⊂ BUC(ℝ) and Ya,L2 , Y0,L2 ⊂ BUC(ℝ, L2(Ω)), respectively, with

Pa,YL2 (I + λ∂ϕ( ⋅t))
−1u = {x 󳨃→ Pa,Yℝ (I + λ∂φ( ⋅t))−1u(x)} a.e. for all u ∈ L2(Ω), (5.9)

then we have
(∆ − ∂ϕ( ⋅t))a = ∆ − ∂ϕa( ⋅t) = ∆ − (∂φa( ⋅t)), (5.10)

where −(∂φ( ⋅ ))a and −∂ϕ( ⋅ )a are the generalized almost periodic parts. Moreover, if the Dirichlet problem
with respect to ∆ − ∂φ(t)( ⋅ ) fulfills either Assumption 2.2 (see [4, Example, pp. 88–90]), or Assumption 2.3,
with Lg < −ω, then the solution of equation

u󸀠(t) = ∆u(t) − ∂ϕ(t)u(t) + f(t), t ∈ ℝ,

with f ∈ YL2 , has an almost periodic splitting as well.
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Proof. From [15, Example 1.60 and Lemma 1.61, pp. 53–54], we obtain that ∂ϕ is a subdifferential, and
therefore −∂ϕ is m-dissipative. Further, [15, Proposition 1.63, p. 55] proves the m-dissipativeness of ∆ − ∂ϕ
on L2(Ω). As f(t) ∈ ∆0 + ∂ϕ(t)(0) + f(t), we verified condition (5.3). The claim (5.10) is an application of
Theorem 5.6, Theorem 4.2 and assumption (5.9). To consider right-hand sides f ∈ Y, we use the fact that
the mollified fε ∈ Y is Lipschitz and approximates f uniformly due to the uniform continuity of f . Applying
[23, Proposition 6.1], we obtain, with fε, an additional Lipschitz and bounded control function. Finally, [23,
inequality (43), p. 1084] finishes the proof.

To view the case of Eberlein weak almost periodicity we have the following.

Example 5.8. Let X∗ be uniformly convex and A ⊂ X × X anm-dissipative operator with a compact resolvent.
Further, let {B(t)}t∈𝕁 ⊂ X × X be m-dissipative, and let JBλ ( ⋅ )z ∈ W(𝕁, X) for all z ∈ X. For a given v ∈ X, we
define

Fvλ,μ : 𝕁 × X → X, (t, x) 󳨃→ JAλμ
λ+μ
(

λ
λ + μ

v + μ
λ + μ

JBλ (t)x).

Then Fvλ,μ fulfills Definition A.4 with D = (X, ‖ ⋅‖ ). If A, B(t) fulfill the assumption of Theorem 5.4, then

JA+Bλ ( ⋅ )w( ⋅ ) ∈ WRC(𝕁, X) for all w ∈ W(𝕁, X).

Proof. Following the Definition A.4 and Theorem A.10, for given g ∈ W(𝕁, X), we have to verify that

{t 󳨃→ JAλμ
λ+μ
g(t)} ∈ WRC(𝕁, X).

The Eberleinweak almost periodicity is a consequence of the proof of Example 3.12, and the relative compact
range comes with the compactness of JAλ . For given w ∈ W(𝕁, X), choosing

g(t) = λ
λ + μ

w(t) + μ
λ + μ

JBλ (t)x,

it remains to prove that

ι : K → WRC(𝕁, X), x 󳨃→ (t 󳨃→ JAλμ
λ+μ
(

λ
λ + μ

w(t) + μ
λ + μ

JBλ (t)x)),

is continuous, which comes with the inequality

‖ι(x) − ι(y)‖∞ ≤
μ

λ + μ
‖x − y‖.

From Lemma 5.3 and Remark 5.5, we obtain the resolvent JA+Bμ ( ⋅ )w(t) as uniform limits of fixpoints defined
by WRC(𝕁, X) ∋ xλ,μ(t) = Fvλ,μ(t, xλ,μ(t)), i.e.,

JAλμ
λ+μ
(

λ
λ + μ

w(t) + μ
λ + μ

JBλ (t)xλ,μ(t)) → JA+Bμ w(t) when λ → 0,

uniformly for t ∈ 𝕁, and the proof is finished.

Remark 5.9. From Appendices B and C, we can obtain similar results for asymptotically almost periodic or
continuous almost automorphic functions.

From Remark 3.9 and the previous perturbation results, we obtain the following corollary.

Corollary 5.10. Let X∗ be uniformly convex, and let {A(t) : t ∈ ℝ} and {C(t) : t ∈ ℝ} split almost periodic with
respect to Y = Ya ⊕ Y0, and fulfill the assumptions of Theorem 5.6. Consider the equations

du
dt
(t) ∈ A(t)u(t) + ωu(t), t ∈ ℝ+, u(0) = u0 ∈ DA ,

and
dv
dt
(t) ∈ A(t)v(t) + C(t)v(t) + ωv(t), t ∈ ℝ+, u(0) = v0 ∈ DA+C .

If the families {A(t) : t ∈ ℝ}, {A(t) + C(t) : t ∈ ℝ} satisfy either Assumption 2.2 with ω < 0, or Assumption 2.3
with Lg < −ω, where Lg denotes the Lipschitz constant for the control function g, then {t 󳨃→ Ca(t)} = 0 implies
that {t 󳨃→ UA+C+ω(t, s)y − UA+ω(t, s)x} is asymptotically Y0 for all x ∈ DA and y ∈ DA+C.
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Proof. From the assumptions of Theorem5.6we obtain them-dissipativeness for every operator {A(t) + C(t)},
i.e., Assumption 2.1. Next we apply Remark 3.9 and the perturbation result for A + C, which give

Pa(JA+Cλ ( ⋅ )x − J
A
λ ( ⋅ )x)(t) = J

Aa+Ca
λ (t)x − JAaλ (t)x = 0.

Finally, an application of Theorem 4.6 concludes the proof.

A Eberlein weak almost periodicity
This and the remaining appendices discuss a number of closed and translation invariant subspaces of
BUC(ℝ, X) and (BUC(ℝ+, X)), which under certain conditions satisfy the invariance conditions for the resol-
vent Jλ(t). Moreover, we give some examples for almost periodic splittings. We mainly restrict our attention
to weak almost periodicity, in the sense of Eberlein, and to asymptotically almost periodic functions. These
results demonstrate the use of the above general results in a variety of special cases.

Proposition A.1. (i) If f ∈ Cb(𝕁, X), then f ∈ W(𝕁, X) if and only if for {(tm , x∗m)}m∈ℕ ⊂ 𝕁 × ext BX∗ and for all
{ωn}n∈ℕ ⊂ 𝕁, the following double limits condition holds:

lim
n→∞

lim
m→∞
⟨f(ωn + tm), x∗m⟩ = lim

m→∞
lim
n→∞
⟨f(ωn + tm), x∗m⟩,

whenever the iterated limits exist, see [27].
(ii) If f ∈ W(𝕁, X), then

‖ ⋅ ‖ − lim
R→∞

1
R

R

∫
0

f(t + r) dt = z ∈ X

exists uniformly over r ∈ 𝕁. Moreover, if f ∈ W0(ℝ+, X), then the ergodic limit z is equal to 0 ∈ X (cf. [28]).

Proposition A.2. Let {an,m}n,m∈ℕ ⊂ K with K compact metrizable. Then there exist subsequences {nk}k∈ℕ and
{ml}l∈ℕ such that the following limits exist:

lim
k→∞

lim
l→∞

ank ,ml , lim
l→∞

lim
k→∞

ank ,ml .

Proof. Let m = 1. Then we find a subsequence {n(1, k)}k∈ℕ such that limk→∞ an(1,k),1 exists. Thus, we may
assume that for a given m ∈ ℕ, we can find {n(m, k)}k∈ℕ such that limk→∞ an(m,k),l exist for 1 ≤ l ≤ m.
For the step “m → m + 1”, choose an appropriate subsequence {n(m + 1, k)}k∈ℕ ⊂ {n(m, k)}k∈ℕ such that
limk→∞ an(m+1,k),m+1 exists. After this recursive construction, we define nk := n(k, k), and since n(k, k) <
n(k, k +1) ≤ n(k +1, k +1), we have {n(k, k)}k∈ℕ,k≥m ⊂ {n(m, k)}k∈ℕ,k≥m for allm ∈ ℕ. Computing the limits,
we obtain bm := limk→∞ ank ,m. Passing to an appropriate {ml}l∈ℕ, we are done for the first double limit.
Redoing the previous steps on the found subsequence {ank ,ml }k,l∈ℕ, for the interchanged limits we will find
{mlj }j∈ℕ and {nki }i∈ℕ, the desired subsequences.

The proposition above allows to assume, without loss of generality, that the limits in Proposition A.1 exist.
Recall that only the equality of the limits has to be proven.

In this section we provide an extension of Traple’s result to infinite dimensions.

Theorem A.3 ([29]). If X has finite dimension, g ∈ W(ℝ, X) and f ∈ C(ℝ × ℝn ,ℝn), with the property that

ι : K → W(ℝ,ℝn), p 󳨃→ f( ⋅ , p),

is continuous for every compact K ⊆ ℝn, then {t 󳨃→ f(t, g(t))} ∈ W(ℝ,ℝn).

Traple’s proof does not extend to the infinite dimensional case, for he used both the algebraic structure of
W(ℝ) and the fact that the coordinate-wise polynomials are dense in C(K,ℝn) forK ⊂ ℝn closed andbounded.
Clearly, for general Banach spaces such structure is missing.
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In order to give sufficient conditions for the extension of Traple’s result, hence existence of Eberlein
weakly almost periodic solutions to nonlinear differential equations in infinite dimensions, we need the fol-
lowing definition, where (D, τ) is assumed to be a Hausdorff topological space. Moreover, in this study, D is
X with the weak topology or X with norm topology.

Definition A.4. A function f : 𝕁 × D → X is called DEWAP if
(i) f( ⋅ , p) ∈ W(𝕁, X) for all p ∈ D,
(ii) for every compact and metric subset K ⊂ D, the following map is continuous:

ι : K → W(𝕁, X), p 󳨃→ f( ⋅ , p).

We denote these functions by

W(𝕁 × D, X) := {f ∈ C(𝕁 × D, X) : f is DEWAP}.

With the aim to find a representation for the almost periodic part, we recall some technical results.

Proposition A.5 ([28]). Eberlein weakly almost periodic functions are uniformly continuous.

Thus,W(ℝ, X) fulfills the assumptions made on Y in the previous sections.

Remark A.6. Let f : 𝕁 × D → X fulfill Definition A.4, and let K ⊂ D be compact metric. Then f ∈BUC(𝕁 × K, X).

Proof. As K is compact metric, for given ε > 0, we find δ > 0 such that for all x, y ∈ K with dK(x, y) < δ, we
have ‖ι(x) − ι(y)‖∞ < ε. From the compactness of K we find {xi}ni=1 with the following properties:
(i) supz∈K inf1≤k≤n dK(z, xk) < δ.
(ii) There exists δ1 > 0 such that for |t − s| < δ1, we have sup1≤k≤n‖f(t, xk) − f(s, xk)‖ < ε.
(iii) From Definition A.4 (i), we obtain some K > 0 with max1≤k≤n‖f( ⋅ , xk)‖∞ < K.

First we prove the boundedness. For z ∈ K,

‖f(t, z)‖ ≤ inf
1≤k≤n
‖f(t, z) − f(t, xk)‖ + max

1≤k≤n
‖f(t, xk)‖

≤ inf
1≤k≤n
‖ι(z) − ι(xk)‖∞ + max

1≤k≤n
‖f( ⋅ , xk)‖∞

≤ ε + K.

To prove the uniform continuity, let t, s ∈ 𝕁, |t − s| < δ1 and x, y ∈ K, with d(x, y) < δ. Then, we obtain

‖f(t, x) − f(s, y)‖ ≤ ‖f(t, x) − f(s, x)‖ + ‖f(s, x) − f(s, y)‖
≤ ‖f(t, x) − f(t, xk)‖ + ‖f(t, xk) − f(s, xk)‖ + ‖f(s, xk) − f(s, x)‖ + ‖ι(x) − ι(y)‖∞
≤ 2 sup

z∈K
inf

1≤k≤n
‖ι(z) − ι(xk)‖∞ + ‖ι(x) − ι(y)‖∞ + sup

1≤k≤n
‖f(t, xk) − f(s, xk)‖

≤ 2ε + ε + ε,

which finishes the proof.

Remark A.7. From the previous remark we conclude that if f : 𝕁 × D → X fulfills Definition A.4, and K ⊂ D is
compact metric, then the following map is continuous:

S : 𝕁 × K → W(𝕁, X), (t, x) 󳨃→ {s 󳨃→ f(t + s, x)}.

Note that the continuity of ι does not imply a norm compact range for every f( ⋅ , z) if z is given. For example,
one may take f( ⋅ , z) ≡ g for some g, which is Eberlein weakly almost periodic. Then ι is clearly continuous,
but the range of g is not necessarily compact. If D = (X, weak), then for every g ∈ C(𝕁 × D, X), lipschitzian in
the second variable, with g( ⋅ , x) Eberlein weakly almost periodic for all x ∈ X, and C : X → X compact linear,

f : 𝕁 × D → X, (t, x) 󳨃→ g(t, Cx),
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fulfills the previous definition. Consequently, for each A ∈ W(ℝ, L(X)) and C : X → X compact linear,

f : 𝕁 × D → X, (t, x) 󳨃→ A(t)Cx,

will satisfy the assumptions of Definition A.4. An example for A ∈ W(ℝ+, L(X)) is given by A(t) = S(t)CT(t),
provided the underlying space is reflexive, {S(t)}t∈ℝ+ , {T(t)}t∈ℝ+ are bounded C0-semigroups, and C is a com-
pact linear operator. A proof of this fact can be found in [19].

The restriction on K to be compactmetric comeswith the range of a function f ∈ W(𝕁, X), since f is contin-
uous, span{f(𝕁)} is separable and f(𝕁) is weakly compact. The fact that the weak topology on weakly compact
sets in separable Banach spaces is metrizable, see [8, Section V.6.3., pp. 434], motivates the restriction.

Theorem A.8. If D = (X,weak), g ∈ W(𝕁, X) and f ∈ W(𝕁 × D, X), then {t 󳨃→ f(t, g(t))} ∈ W(𝕁, X).

For the proof, the following technical lemma is needed.

Lemma A.9. Let (D, τ) be a topological Hausdorff space, let f : 𝕁 × D → X with f( ⋅ , z) ∈ W(𝕁, X) for all z ∈ D,
and let

ι : D → W(𝕁, X), p 󳨃→ f( ⋅ , p),

be continuous. Further, let a given sequence {xn,m}n,m∈ℕ ⊂ D satisfy the following double limits condition:

lim
n→∞

lim
m→∞

xn,m = lim
m→∞

lim
n→∞

xn,m = z.

Then the interchanged limits are equal for ⟨f(tm + ωn , xn,m), x∗m⟩, whenever

{(tm , x∗m)}m∈ℕ ⊆ 𝕁 × BX∗ , {ωn}n∈ℕ ⊆ 𝕁,

and the iterated limits exist.

Proof. Applying Proposition A.2 to bounded set onℝwemay assume that the following iterated limits in the
situation of the above lemma exist:

bn,m := ⟨f(tm + ωn , xn,m), x∗m⟩,
b := lim

n→∞
lim
m→∞

bn,m ,

b̃ := lim
m→∞

lim
n→∞

bn,m ,

an,m := ⟨f(tm + ωn , z), x∗m⟩.

By our hypothesis, we have {t 󳨃→ f(t, z)} is EWAP, thus {an,m}n,m∈ℕ satisfies the double limits condition, i.e.,

a = lim
n→∞

lim
m→∞

an,m = lim
m→∞

lim
n→∞

an,m .

Now,

|b − a| ≤ |b − bn,m| + |bn,m − an,m| + |an,m − a|
≤ |b − bn,m| + ‖ι(xn,m) − ι(z)‖ + |an,m − a|.

As the double limits on the right-hand side exist and are equal to 0, we proved b = a. As the same routine
works for b̃, we finished the proof.

Proof of Theorem A.8. To verify the double limits condition, we apply the previous lemma for given

{(tm , x∗m)}m∈ℕ ⊆ 𝕁 × BX∗ and {ωn}n∈ℕ ⊆ 𝕁,

to
D := (X, w) and K := {g(tm + ωn)}

w
n,m∈ℕ.

From [8, Section V.6.3, p. 434], we recall that the weak topology on weakly compact subsets in separable
B-spaces is a metric topology. Noting that continuous images of separable spaces are separable, we obtain
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that Y := span{g(𝕁)}, for g ∈ W(𝕁, X) is separable, hence the weak topology on K := g(𝕁) w is metric, where w
denotes the weak topology. By an application of Proposition A.2, wemay assume that for xn,m = g(tkm + ωln ),
the double limits exist, and g ∈ W(𝕁, X) implies that they have to coincide.

Thus, we are in the situation of the previous lemma and our claim is proved.

From the proof of Lemma A.9, and using that only local continuity is needed, we give the corollary for

WRC(𝕁, X) := {f ∈ W(𝕁, X) : f(𝕁) is relative compact in X},

which was introduced by Goldberg and Irwin [12].

Corollary A.10. Let, for a Banach space Y, D = (Y, ‖ ⋅ ‖), and f ∈ W(𝕁 × D, X). Then, for any given g : 𝕁 → Y,
Eberlein weakly almost periodic with a relatively compact range, we have {t 󳨃→ f(t, g(t))} ∈ W(𝕁, X). Moreover,
if {t 󳨃→ f(t, x)} ∈ WRC(𝕁, X) for all x ∈ Y, then {t 󳨃→ f(t, g(t))} ∈ WRC(𝕁, X).

Proof. The reader will have no difficulty to apply the previous theorem to K := g(𝕁), since (K, w) = (K, ‖⋅‖),
hence obtain the first part.

For the second part, it remains to prove the compactness of {f(t, g(t)) : t ∈ 𝕁}. Thus, for a given sequence
{tn}n∈ℕ, we have to find a subsequence {tnk }nk∈ℕ such that {f(tnk , g(tnk ))}nk∈ℕ is convergent in X. Since g has
compact range, without loss of generality, g(tn) → x. For this x ∈ Y, we may choose a subsequence such that
f(tnk , x) → y for some y ∈ X. From the continuity of ι, we obtain f( ⋅ , g(tnk )) → f( ⋅ , x) uniformly on 𝕁. Thus,

‖f(tnk , g(tnk )) − y‖ ≤ ‖f(tnk , g(tnk )) − f(tnk , x)‖ + ‖f(tnk , x) − y‖
≤ ‖f( ⋅ , g(tnk )) − f( ⋅ , x)‖∞ + ‖f(tnk , x) − y‖,

and the proof is complete.

In [18, Example 2.17, p. 17], it is shown that the compactness assumption on the range of g is essential.

Corollary A.11. Let A ∈WRC(𝕁, L(X)). Then {t 󳨃→ A(t)g(t)} is Eberleinweakly almost periodic for all g ∈W(𝕁, X).

Proof. Letting D := (L(X), ‖ ⋅ ‖∞), g ∈ W(𝕁, X), and

f : 𝕁 × D → X, (t, B) 󳨃→ f(t, B) := Bg(t),

the previous corollary serves for the proof.

From Corollary A.10, we also obtain the next result of Goldberg and Irwin [12].

Corollary A.12. If f ∈ WRC(𝕁, X), then ‖f( ⋅ )‖ ∈ W(𝕁).

Theorem A.8 gives a condition on f such that {t 󳨃→ f(t, x(t))} is Eberlein weakly almost periodic. Noting that
every f ∈ W0(𝕁, X) satisfies

lim
T→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1
T

T

∫
0

fτ dτ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞
= 0,

it is also of interest when {t → f(t, x(t))} ∈ W0(𝕁, X) for a given x ∈ W0(𝕁, X). More generally, we have,

lim
T→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1
T

T

∫
0

(fτ − f aτ ) dτ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞
= 0,

where f a denotes the almost periodic part of f . Thus, the question arises how the almost periodic part of the
map {t 󳨃→ f(t, x(t)} looks like. In order to discuss these problems, we introduce the projection on the almost
periodic part:

Pa : W(𝕁, X) → W(𝕁, X).
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Proposition A.13. For the decomposition

W(ℝ+, X) = AP(ℝ, X)|ℝ+ ⊕W0(ℝ+, X),

we have that the projection Pa onto AP(ℝ, X)|ℝ+ has norm less than or equal to one.

Proof. For f ∈ W(ℝ+, X), we find {sn}n∈ℕ ⊂ ℝ+ such that fsn ⇀ fa. Consequently, for given x∗ ∈ BX∗ and
t ∈ ℝ+, we have

|x∗(fa(t))| = lim
sn→∞
|x∗(f(t + sn)| ≤ ‖f ‖∞,

which leads to the claim.

Corollary A.14. Any two functions f, g ∈ W(𝕁, X) have a common sequence {tn}n∈ℕ, such that the translates
{ftn}n∈ℕ and {gtn}n∈ℕ are weakly convergent to the almost periodic part of f and g, respectively.

Proof. First we consider the case where the almost periodic parts of f and g are equal to zero, and let {un}n∈ℕ
and {sn}n∈ℕ, be chosen such that

fum ⇀ 0 and gsn ⇀ 0.

By the proposition above, we have that every Eberlein weakly almost periodic function is uniformly continu-
ous, hence the semigroup of translations {T(t)}t∈𝕁 is strongly continuous. Since O(f ) = T(𝕁)f , O(f ) is a weakly
compact closure of translates of a uniformly continuous function, hence O(f ) is compact metrizable in the
weak topology of BUC(𝕁, X). As a consequence of Proposition A.2, we may pass to subsequences of {um}m∈ℕ
and {sn}n∈ℕ, such that the iterated limits of {fsn+um }n,m∈ℕ exist in the weak topology of BUC(𝕁, X), and, with-
out loss of generality, the sequences are chosen in thisway. From the interchangeable double limits condition,
we obtain

w − lim
m→∞

w − lim
n→∞

fsn+um = w − limn→∞
w − lim

m→∞
fsn+um .

Thus, ifH := T(𝕁)f ∪ T(𝕁)g, and d : H × H → [0,∞) denotes themetric which induces theweak topology,
then we can repeat the arguments on g, and, without loss of generality, we have

lim
n→∞

lim
m→∞
(d(fsn+um , 0) + d(gsn+um , 0)) = 0.

Thus, the desired result is a consequence of the classical diagonal process for the double sequence

kn,m = d(fsn+um , 0) + d(gsn+um , 0).

If f, g ∈ W(𝕁, X), then for the function h, given by

h : 𝕁 → X × X, t 󳨃→ (f(t), g(t)),

we find, by the double limits criterion and the representation for the dual of X × X, that it is Eberlein weakly
almost periodic if for given sequences {tm}m∈ℕ, {ωn}n∈ℕ ⊂ 𝕁 and {x∗m}m∈ℕ, {y∗m}m∈ℕ ⊂ BX∗ ,

lim
n→∞

lim
m→∞
{⟨f(tm + ωn), x∗m⟩ + ⟨g(tm + ωn), y∗m⟩} = lim

m→∞
lim
n→∞
{⟨f(tm + ωn), x∗m⟩ + ⟨g(tm + ωn), y∗m⟩},

whenever the iterated limits exist. However, by a successive diagonalisation of the double sequences

{⟨f(tm + ωn), x∗m⟩}n,m∈ℕ and {⟨g(tm + ωn), y∗m⟩}n,m∈ℕ,

we may assume that their individual iterated limits exist and are equal, hence h is Eberlein weakly almost
periodic. Thus, h has a unique decomposition into an almost periodic and aW0 part:

hap = (fap , gap), h0 = (f0, g0).

Clearly, from the decomposition of f and g, we obtain

h = (fap , gap) + (f0, g0).
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Further, by the observation in the first part of this proof, we have that (f0, g0) is W0, and choosing subse-
quences two times will prove that (fap , gap) is almost periodic, hence the claim follows from the uniqueness
of the decomposition. Hence, the sequence {tn}n∈ℕ, for which

htn ⇀ hap weakly as n →∞,

is the desired one.

Lemma A.15. For every K ⊆ D compact metric, and f ∈ W(𝕁 × D, X), there exists a sequence {sn}n∈ℕ such that

fsn ( ⋅ , x) = f( ⋅ + sn , x) ⇀ fa( ⋅ , x)

for every x ∈ K, where fa( ⋅ , x) denotes the almost periodic part of f( ⋅ , x).

Proof. Given any ϵ > 0, we find an n(ϵ) and {xi}n(ϵ)i=1 , such that

K ⊆
n(ϵ)
⋃
i=1
{x : ‖f( ⋅ , x) − f( ⋅ , xi)‖∞ < ϵ}.

Since ι(K) is compact metric (therefore separable),

S : 𝕁 × K → W(𝕁, X), (t, x) 󳨃→ T(t)f( ⋅ , x),

is continuous, and S(𝕁, K) separable, by Remark A.7, where {T(t)}t∈𝕁 denotes the semigroup of translations.
Therefore,

L := {f(t + ⋅ , x) : t ∈ 𝕁, x ∈ K} ⊂ S(𝕁, K).

Consequently, L is a subset of a closed and separable subspace Y of Cb(𝕁, X).
By the fact that

L ⊂
n(ϵ)
⋃
i=1

H(f( ⋅ , xi)) + ϵBCb(𝕁,X),

we obtain the relative weak compactness for L. Hence, the weak topology on L is metrizable, and we may
choose a metric of the form

d(f, g) =
∞
∑
i=0

2−i
|⟨f − g, x∗i ⟩|

1 + |⟨f − g, x∗i ⟩|
, with {x∗i }i∈ℕ ⊂ BCb(𝕁,X)∗ .

Choosing ϵ = 1
k , we obtain, by the way of the first observation, elements {xk1, . . . , x

k
n( 1k )
}, and by setting

{y1, y2, . . . } := {(x11, . . . , x1n(1), x
2
1, . . . , x2n( 12 ), . . . },

we construct a dense sequence {yi}i∈ℕ. As a consequence of Corollary A.14 and by a simple induction, we
find, for all n ∈ ℕ, a sequence {snk }k∈ℕ such that

f(snk + ⋅ , yi) → fa( ⋅ , yi)

convergesweakly as k →∞ for all 1 ≤ i ≤ n in BUC(𝕁, X). This, togetherwith the existence of ametric, implies
that for all n ∈ ℕ, there exists ln ∈ ℕ such that

d(f(snl + ⋅ , yi), fa( ⋅ , yi)) <
1
n

for all l ≥ ln and 1 ≤ i ≤ n.
Now, for a given x ∈ K and yk, we have

d(f( ⋅ + snln , x), fa( ⋅ , x)) ≤ d(f( ⋅ + s
n
ln , x), f( ⋅ + s

n
ln , yk)) + d(f( ⋅ + s

n
ln , yk), fa( ⋅ , yk)) + d(fa( ⋅ , yk), fa( ⋅ , x))

≤ 2‖f( ⋅ , x) − f( ⋅ , yk)‖∞ + d(f( ⋅ + snln , yk), fa( ⋅ , yk)),

where the last inequality follows from the definition of the metric and the fact that the norm of the projection
on the almost periodic part is less or equal to one. This completes the proof.
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Theorem A.16. Let D := (X, w), y ∈ W(𝕁, X) and f ∈ W(𝕁 × D, X). Then the following identity holds:

Pa f( ⋅ , y( ⋅ ))(t) = {t 󳨃→ fa(t, ya(t))},

where fa( ⋅ , x) and ya denote the almost periodic parts of f( ⋅ , x) and y, respectively.

Proof. From the notation of the theorem, we find that K := {ya(t) : t ∈ 𝕁} is a norm compact set. Now let
K1 := K ∪ {v, w}, v ̸= w, v, w ̸∈ K. Since v, w are two discrete points attached to K1 with a positive distance
to K we have that K1 is still norm compact. Let

F(t, z) :=
{{{
{{{
{

y(t), z = v,
f(t, y(t)), z = w,
f(t, z), z ∈ K.

By Theorem A.8, F fulfills the hypothesis of Lemma A.15. Note that F is a function on discrete points {x, y}
plus f(t, z) on K, hence ι is continuous on K1. Consequently, we find a sequence {sn}n∈ℕ such that

fsn ( ⋅ , x) ⇀ fa( ⋅ , x) for every x ∈ K,
ysn ⇀ ya ,

f( ⋅ + sn , y( ⋅ + sn)) ⇀ Pa f( ⋅ , y( ⋅ )).

Using that all the sequences are convergent, it remains to compute the limit, which can be done in the
pointwise weak topology as follows:

x∗f(t + sn , y(t + sn)) = x∗{f(t + sn , y(t + sn)) − f(t + sn , ya(t))} + x∗f(t + sn , ya(t)).

Since f ∈ W(𝕁 × D, X), the first term on the right-hand side tends to zero as n tends to infinity, and the theorem
is proved.

Corollary A.17. If for a Banach space Y, D = (Y, ‖ ⋅ ‖) and f ∈ W(𝕁 × D, X), then, for every given g ∈ WRC(𝕁, Y),

Pa(f( ⋅ , g( ⋅ ))) = fa( ⋅ , ga( ⋅ )).

Proof. Using that on K := g(𝕁) the norm and the weak topology coincide leads to the given result.

Remark A.18. We consider the context of Example 5.7 with X = L2(Ω),

YL2 = W(ℝ, L2(Ω)), Ya,L2 = AP(ℝ, L2(Ω)), Y0,L2 = W0(ℝ, L2(Ω))

and

Yℝ = W(ℝ), Ya,ℝ = AP(ℝ), Y0,ℝ = W0(ℝ).

Then, for u ∈ L2(Ω), we have

Pa,YL2 (I + λ∂ϕ( ⋅t))
−1u = {x 󳨃→ Pa,Yℝ((I + λ∂φ( ⋅t))−1u(x))} a.e.

Proof. We give a proof for u ∈ C∞0 (Ω), and note that C∞0 (Ω) = L2(Ω). If u ∈ C
∞
0 (Ω), we have that u(Ω) is

compact. As ((I + λ∂φ( ⋅t))−1 is a contraction, we can apply Lemma A.15 to

f : ℝ × u(Ω) → ℝ × L2(Ω), ( t
y
) 󳨃→ (
(I + λ∂φ(t))−1y
(I + λ∂ϕ(t))−1u

) ,

which leads to a single sequence {sn}s∈ℕ with

(I + λ∂φ( ⋅ + sn))−1y ⇀ J−∂φλ,a ( ⋅ )y for all y ∈ u(Ω),

(I + λ∂ϕ( ⋅ + sn))−1u ⇀ J−∂ϕλ,a ( ⋅ )u
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weakly inBUC(ℝ) andBUC(ℝ, L2(Ω)), respectively. Applying theweaker pointwise andpointwiseweak topol-
ogy, we have, for t ∈ ℝ and v ∈ L2(Ω),

lim
n→∞
(I + λ∂φ(t + sn))−1u(x) = J

−∂φ
λ,a (t)u(x) a.e.,

|(I + λ∂φ(t + sn))−1u(x)| ≤ |u(x)| a.e.,

and

⟨J−∂ϕλ,a (t)u, v⟩ = lim
n→∞
⟨J−∂ϕλ (t + sn)u, v⟩ = ∫

Ω

(I + λ∂φ(t + sn))−1u(x)v(x) dx = ∫
Ω

J−∂φλ,a (t)u(x)v(x) dx,

which concludes the proof.

Remark A.19. Note that the methods apply in a similar way, when W(𝕁, X) is substituted by W+(ℝ, X)
and W0(𝕁, X) by W+0 (ℝ, X), since the weak relative compactness of orbit on a positive half line serves for
W(𝕁, X),W0(𝕁, X) ⊂ BUC(𝕁, X). Thus, W+(ℝ, X)|𝕁 = W(𝕁, X) and W+0 (ℝ, X)|𝕁 = W0(𝕁, X), hence the proofs are
similar.

B Asymptotically almost periodic functions
The classical concepts are due to Frechet [10, 11]. By [5, 6, 10, 11], we have

AAP(ℝ+, X) := {f ∈ BUC(ℝ+, X) : Oℝ+ (f ) is relative compact in BUC(ℝ+, X)}
= {f ∈ BUC(ℝ+, X) : f = g|ℝ+ + ϕ, g ∈ AP(ℝ, X) and ϕ ∈ C0(ℝ+, X)}.

In consequence, we have the following proposition.

Proposition B.1. For the decomposition

AAP(ℝ+, X) = AP(ℝ, X)|ℝ+ ⊕ C0(ℝ+, X)

we have that the projection Pa onto AP(ℝ, X)ℝ+ has norm less than or equal to one.

Using compactness methods we have the following theorem.

Theorem B.2. Let f : ℝ × X 󳨃→ X be such that f( ⋅ , x) ∈ AAP(ℝ+, X), with f(t, ⋅ ) being uniformly Lipschitz with
a constant L, and fa( ⋅ , x) its almost periodic part. Further, let g ∈ AAP(ℝ+, X), with ga its the almost periodic
part. Then

{t 󳨃→ f(t, g(t)} ∈ AAP(ℝ+, X), {t 󳨃→ f(t, g(t))}a = {t 󳨃→ fa(t, ga(t))}.

Proof. As g(ℝ+) is relative compact, Lemma A.15 serves for the needed norm convergent subsequence, so
that for all x ∈ g(ℝ+), f( ⋅ + sn , x) ⇀ fa( ⋅ , x) weakly. The relative compactness O(f( ⋅ , x)) serves for the norm
convergence. The rest of the proof is straightforward.

C Almost automorphic functions
Bochner introduced the notion of almost automorphy.

Definition C.1. A function f ∈ C(ℝ, X) is said to be almost automorphic if for any real sequence {sn}n∈ℕ, there
exists a subsequence {snk }k∈ℕ such that

lim
k→∞

f(t + snk ) = g(t) for all t ∈ ℝ,

and
lim
k→∞

g(t − snk ) = f(t) for all t ∈ ℝ.
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We define
AA(ℝ, X) = {f ∈ C(ℝ, X) : f almost automorphic}.

If the limit g is continuous, then f is called continuous (Bochner)-almost automorphic. We define

CAA(ℝ, X) = {f ∈ C(ℝ, X) : f continuous almost automorphic}.

Noting, that for f ∈ AA(ℝ, X), f(ℝ) is relatively compact, clearly, we have AA(ℝ, X) ⊂ Cb(ℝ, X), and that
AA(ℝ, X) is translation invariant.

The following Theorem is due to [30, Lemma 4.1.1, p. 742].

Theorem C.2. Continuous almost automorphic functions are uniformly continuous, i.e.,

CAA(ℝ, X) ⊂ BUC(ℝ, X).

Remark C.3. In [7], the asymptotically almost automorphic functions AAA(ℝ+, X) are discussed. By defini-
tion, we have

AAA(ℝ+, X) = AA(ℝ, X)|ℝ+ ⊕ C0(ℝ+, X).

For suitable f : ℝ × X → X, the almost automorphic part

Pa{t 󳨃→ f(t, x(t))} = {t 󳨃→ fa(t, xa(t))}

was computed. Thus, the underlying study becomes applicable, when switching from almost automorphy to
continuous almost automorphy, and adding for f( ⋅t , ⋅x) the uniform continuity and the Lipschitz continuity,
in the first and second variable, respectively. As for u = ua + u0,

{ua(t) : t ∈ ℝ} ⊂ {u(t) : t ∈ ℝ+},

and the projection has a norm less than one.
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