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Abstract: We present sufficient conditions on the existence of solutions, with various specific almost period-
icity properties, in the context of nonlinear, generally multivalued, non-autonomous initial value differential
equations,

%(t) e A(Hu(t), t=0, u(0) = up,

and their whole line analogues, %(t) € A(tu(t), t € R, with a family {A(t)};cr of w-dissipative operators
A(t) ¢ X x X in a general Banach space X. According to the classical DeLeeuw—Glicksberg theory, functions
of various generalized almost periodic types uniquely decompose in a “dominating” and a “damping” part.
The second main object of the study — in the above context — is to determine the corresponding “dominating”
part [A(-)]4(t) of the operators A(t), and the corresponding “dominating” differential equation,

du
E(t) € [A()]a(®u(t), teR.
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1 Introduction and preliminaries

We consider general closed and translation invariant subspaces of BUC(R, X), as in [26]. This will give a
framework on how to work with various forms of almost periodicity. Thus, we consider a general splitting of
a closed translation invariant subspace,

Y ¢ BUC(R,X), Y=Y ;&Y.

We answer the question of when a solution of the nonlinear evolution equation
d
SO € AU, u(©) = uo,

with A(t) being dissipative, is a member of Y, is asymptotically close to Y, or itself splits in the same manner,
U = Ug + Ug, Where u, € Y, is a generalized solution to

du
E(t) € [A()]a(Ou(d),

where [A(-)], denotes the almost periodic part of the family of possibly unbounded nonlinear dissipative
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operators {A(t) : t € R}. We answer questions concerning the perturbations, i.e., of when the following iden-
tity holds:
[A(-) + B(-)]a(t) = [A(-)]a(t) + [B(-)]a(D).

The underlying study is divided into sections where the nonlinearity is studied, which is even new in
finite dimensions, and the appendices which show how Eberlein weak almost periodicity (Appendix A) and
asymptotic almost periodicity (Appendix B) come into play, or give a hint on how continuous almost automor-
phy (Appendix C) becomes applicable. In Appendix A we provide the analysis around Eberlein weakly almost
periodic functions (EWAP). We show, how Appendices A and B apply to obtain the splittings in Section 4. We
give certain conditionson f: J x X — X to obtain Eberlein weak almost periodicity in Banach spaces. For spe-
cial cases where the family A(t) = A is time-independent, or the family A( - ) itself is periodic, cf. [20, 21]. We
also refer to [2], where the result has been proved for the special case of classical almost periodic functions
on the real line. In [29] the existence of an EWAP solution on the whole line is proved in finite dimensions for
a semilinear system of the form

y' = Ay +f(t,y),

where A denotes a special linear operator and f: R x R" — R" is Lipschitz.

Applying general existence results, even in the finite dimensional case, more general results on sums of
dissipative operators are obtained while dispensing with the relationship between the w-dissipativeness and
the Lipschitz continuity of the nonlinear perturbation f: J x X — X. In this study general perturbation results
for dissipative operators are used (Section 5). Moreover, for these general perturbation results, we also show
the connections between the differential equation and the almost periodic part of the weakly almost periodic
solution, and, even more abstractly, how the generally defined splitting carries over from the solution to the
differential equation.

Given a Banach space X, a function f € Cp(J, X),J € {R, R* := [0, 00), [a, 00)}, is said to be weakly almost
periodic in the sense of Eberlein (EWAP) if the orbit of f with respect to J, namely,

Oy(f) :=1{fy :=={t > ft+1}:reTJ},

is relatively compact with respect to the weak topology of the sup-normed Banach space (Cp(J, X)| - o) (cf.
[9, 20, 21, 24, 27]). The space of all such functions will be denoted by W(J, X). Moreover, Wy(J, X) denotes
the closed subspace of all f € W(J, X) such that some sequence {fs,}nen Of translates of f is weakly convergent
to the zero function (“weakly” referring to the weak topology of (Cp(J, X)|| - [loo))-

Results of DeLeeuw and Glicksberg [5, 6] imply the following decomposition:

W, X) = AP(R, X)y ® Wo(J, X).
Here, AP(RR, X) denotes the space of almost periodic functions, i.e.,
AP(R, X) := {f € Cp(R, X) : Or(f) is relatively compact in (Cp(R, X), || - o)}

An exposition of this result is given in the book of Krengel [17]. For technical reasons we introduce the
following spaces on the real line:

W*(R, X) := {f € BUC(R, X) : fir € W(R*, X)}

and
WH(R, X) := {f e W (R, X) : fir- € Wo(R", X)}.

The decomposition of W(J, X) and the uniqueness of the almost periodic part gives
W*(R, X) = AP(R, X) ® W{(R, X),

and by the uniform continuity of Eberlein weakly almost periodic functions, we obtain that for a given a € R
and f € W* (R, X), we have fj(4,c0) € W([a, 00), X). Additionally, some examples are given in order to point to
problems in this class of functions.
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2 Preliminaries on integral solutions

In [23] the following two types of equations have been discussed. The initial value problem
u'(t) € Au(t) + wu(t), teR", u(0) = uo, 2.1)
and the whole line equation on R,
VI(t) e A(EV(E) + wv(t), teR, (2.2)

with w € R. For these equations we define integral solutions. First, some prerequisites.

Let X be a general Banach space. As the given w € R plays a crucial role, let J € {R*, R}, and through-
out the paper assume that 0 < A, p < ﬁ To obtain the solutions of equations (2.1) and (2.2), we follow the
approach given in [23]. The assumptions for the family {A(t) : t € J} are as follows.

Assumption 2.1. The set {A(¢) : t € J} is a family of m-dissipative operators.
In comparison to the assumption given in [15], the uniform continuity on J for h is added.

Assumption 2.2, There exist h € BUC(J, X) and L: R* — R*, continuous and monotone non-decreasing,
such that for A > 0 and ¢4, t; € I, we have

lx1 = x2ll < lIx1 = x2 = A(y1 = y2)ll + Alh(t1) = h(t2)IL(lIx2 1)
for all [x;, yi] € A(ty),i=1,2.

Recalling the study [23], the next assumption is stronger than that in [15] due to the Lipschitz continuity and
linearized stability in ||y ||. This becomes important to obtain uniform convergence on the halfline depending
on the Lipschitz constant on forthcoming g and w € R.

Assumption 2.3. There exist bounded and Lipschitz continuous functions g, h: I — X, and a continuous
and monotone non-decreasing function L: R* — R* such that for A > 0, and t1, t, € I, we have

Ix1 = X2l < lIx1 = x2 = A(y1 = y2)ll + Alh(t1) — h(€2)IL(Ix20) + Allg(t1) — g€yl
for all [x;, y;] € A(ty),i=1,2.
Remark 2.4. Due to Assumptions 2.2 and 2.3, from [23, Definition 2.6, Remark 2.8], we read,
D(A(t)) ¢ D ¢ D(A(8) = Da.

Due to the fact that we consider (A(t) + wl) as a perturbation of A(t) by wlI, we have to define the perturbed
control functions h” and L®. We define

h: T — X xX, -1, te (D), lwlg®),

and L¥(t) = L(t) + t.

Now we are in the situation to define the integral solution to the initial value problem. As the integral
solution is defined with the help of Assumptions 2.2 and 2.3, it looks slightly different from the one in [15,
Definition 6.18, pp. 217-218], which is due to Benilan.

Definition 2.5. LetI = R* and assume that either Assumption 2.2 or Assumption 2.3 is satisfied for the family
{A(t) + wl : t € T}. Let also O < a < b. A continuous function u: [a, b] — X is called an integral solution of
(2.1) if u(0) = ug and

llu(t) = x|l = flu(r) - x|

t
[ (V) — h* (M)l dv + [yl Jllg(V) -g)ldv

T——

t
< J([y, u(v) - xls + wlu(v) - x|) dv + L*(lIx|))

foralla <r<t<b,and [x,y] € A(r) + wl (with g = 0 in case of Assumption 2.2).
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In order to solve the initial value problem (2.1), we use the Yosida approximation of the derivative. This leads
to the equation

(%)Au,\(t) e AOur() + wup(t), teR*,  u(0) = uo, (2.3)

with the Yosida approximation
d 1 10
(—) u(s) := —(u(s) —Ug— = J e‘%(u(s -T) - Up) d‘r).
it
0

Thus, we obtain the solution u, to (2.3) as fixpoint (cf. [23, Lemma 3.1]), i.e.,

t
J e‘%u,\(t -T) d‘r),
0

>I»—\

up(t) =Jy (t)( “Rug +

with (see [23, Remark 2.7])

P -

The results for these approximations on R* are the following.

Theorem 2.6 ([23]). Let I = R*, and let A(t) fulfill Assumptions 2.1 and 2.2 with w < 0, or Assumption 2.3 with
Lg < —w, where Ly is the Lipschitz constant of g. Further, let ug € Dy, and let u) be the corresponding Yosida
approximations to equation (2.3). Then u) converges uniformly on R* to the integral solution, as A — 0.

Further, we define an integral solution for the whole line problem (2.2).

Definition 2.7. LetI = R, and assume that either Assumption 2.2 or Assumption 2.3 is satisfied for the family
{A(t) + wl : t € T}. A continuous function u: R — X is called an integral solution on R if

lu(®) - x| — Ju(r) - x|
t t t
< j([y, u(v) - x1, + wlu) - xll) dv + L°(Ix]) jnhw(v) “ROW) L dv + Iy jug(v) gl dv

r
forall -co < r < t < 00, and [x, y] € A(r) + w (with g = 0 in case of Assumption 2.2).

Similar to the initial value case, the Yosida approximation of the derivative was considered and led to the
following result:

(%)Au,\(t) € Au() + wup(t), teR,

(55),10 (u(t)——joexp( ute-s)ds).

Again the u, are derived by a Banach iteration, i.e.,

u)(t) = (t)( T Aw( j %e‘%u,\(t—s) ds)).
0

For these approximants we have the following result.

with

Theorem 2.8 ([23]). LetI =R.

(i) If Assumption 2.1, and Assumption 2.2 with w < 0, are fulfilled, then the Yosida approximants (uy : A > 0)
are Cauchy in BUC(R, X) when A — 0. The limit u(t) := limy_,o u,(t) is an integral solution on R.

(ii) Let Assumptions 2.1 and 2.3 be fulfilled. Further, assume that the Lipschitz constant Lg of g in Assump-
tion 2.3 is less than —w. Then the Yosida approximants (u, : A > 0) are Cauchy in BUC(R, X) when A — 0*.
The limit u(t) := limy_,o+ up(t) is an integral solution on IR.
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Remark 2.9 ([22]). (i) The construction of the solutions implies u(t) € D(A(t)) = D,.
(ii) In the following, with regard to equations (2.1) and (2.2), we always consider the solutions given by
Theorem 2.6 and Theorem 2.8, respectively.

Moreover, we have a comparison result between the solution found on R and R*.

Corollary 2.10 ([23]). Let A(t) fulfill Assumption 2.1 and either Assumption 2.2 with w < 0, or Assumption 2.3
with Ly < —w, where Lg is the Lipschitz constant of g. Then the solution v of (2.2) and the solution u of (2.1)
satisfy

lu(t) — v(t)| < exp(wt)|lug — v(0)]| forallO < t.

3 Main definitions and context

We start with the notion of pseudo-resolvents:

Definition 3.1 ([25, Definition 7.1, p. 193]). The members of a family of contractions,
{A: DU cX > X | A> 0},

are called pseudo-resolvents if

R(E1+ ";“]A) cDU), Au>o0,

and

A
Lemma 3.2 ([25, Lemma 7.1, pp. 193-194]). Pseudo-resolvents have the generator

]Au=1y<%u+ "hu), Au> 0, ueD(y.

1 _
A= X(I_]/\l) forany A > 0.

Next we motivate a generalization for various types of almost periodicity.

Lemma 3.3. Let Y be a closed linear subspace of BUC(R, X), and {B(t) : t € R} a family of m-dissipative and
Lipschitz continuous operators defined on X with the common Lipschitz constant K. Further, if for all f € Y,
{t > B(t)f(t)} e Y, thenforallf € Y, {t » ]f(t)f(t)} €Y, forsmall A > 0.

Proof. For given A > 0 and x € Y, we define
Ta: Y- Y fo {t— AB®OFE) +x(1)}.

Then, for given f, g € Y, we have
ITAf = Taglloo < AKIf - 8lloo-

Consequently, for AK < 1, there exists f € Y such that

fa={t = ABO(fa(t) + x(0)}

and
(I = AB()(x(t) + fa(t)) = x(t) + fa(t) = AB()(x(t) + fa(t)) = x(¢).
Thus, we found that for AK < 1, (I - AB(t))"x(t) = x(t) + f1(t) € Y. O

Due to the previous results it becomes straightforward to define types of almost periodicity even for multival-
ued w-dissipative operators.

Definition 3.4. Let Y be a closed linear translation-invariant subspace of BUC(RR, X). An m-dissipative family
{A(t) : t € R} ¢ X x Xis called Y invariant if {t — Jx(t)x(t)} € Yforallx e Yand 0 < A < Ap, and Aw < 1.
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Remark 3.5. The examples for Y are AP(R, X), AAP(R", X), W(R, X), WRC(R, X) and CAA(R, X). In the
case of almost automorphy, we have to add uniform continuity (i.e., AA(R, X) n BUC(R, X)). The spaces
AAP(R*, X), W(R*, X) and WRC(R*, X) are considered in the following way:

Y = {f € BUC(R, X) : fir- € AAP(R*, X), (WRC(R", X), W(R*, X))}.

This makes sense even for the splitting, as the almost periodic part is uniquely defined on R while the weak
almost periodic function is only given on R*. This approach allows to consider equations on the real line,
which are given only on R*, while extending A(t) by

] {A(t), t>0,
A=
A(0), t<O.

The control functions are extended in the same manner.

Due to Lemma 3.3, we can define the almost periodic part of a generally multivalued operator A( - ). Therefore,
let Y split into the direct sum
Y=Y,@Yo,

with a projection P,: Y — Y, satisfying | P,| < 1.
Definition 3.6. A linear, closed and translation invariant subspace Y ¢ BUC(RR, X) splits almost periodic if

Y = Y, ® Yo, where Y,, Yy are closed translation invariant linear subspaces, the constants arein Y, (X c Y,),
the corresponding projection fulfills

Pa(Y) c Yq, with|Pgll <1,
and, finally, P, commutes with the translation semigroup.
Lemma 3.7. Let Y split almost periodic, and let {A(t) : t € R} c X x X be m-dissipative and Y-invariant so that

JA)x =Jra(Ox + @,

with Jp,qa(-)x € Yoand ¢ € Yo.Ifforagivenf € Y,

PaUa(f()) = Jaa(-)Paf(-), (3.1)
then the members of the following family of operators are pseudo-resolvents:

Ja®): X — X, x e Pa(Ja(-)x)(t)

If{A(t) : t € R} is Y-invariant and (3.1) is fulfilled, we say that {A(t) : t € R} splits almost periodic with respect
toYq, Yo.

Proof. First we prove that {J) 4(t) : t € R} are contractions:

A,a(O)x = Ja,a(®yll = IPaUa(-)x)(t) = PaJa(-)y)(@D)l
< aC)x =2 )y loo
< lx=yl. (3.2)

Next the range condition, but this is fulfilled, because we assumed A(t) to be m-dissipative, therefore

X =D(Ua(t)) = DJp,qa(1)).
As J)(t) are resolvents, we have the following resolvent equation:

A

Using, u(t) = u € Y,, the pseudo-resolvent-equation holds in Y. Hence, we can apply the projection P, on
both sides of the equation. Thus,

Jau = ];At)(%u + yh(t)u), Au>0,uceX.

A-p
A
Applying (3.1), and evaluating at t € R, serves for the proof. O

Pala( = Po( () (But) + = En(on)), Aps 0, uex.
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Definition 3.8. Let {A(¢) : t € R} ¢ X x X be m-dissipative and split almost periodic with respect to Y, Y,. The
almost periodic part of A(-) is defined as follows:

AC)e = 0= Tra()™D), 2> 0.

Remark 3.9. By the previous definition, for m-dissipative operators {A(t) : t € R} ¢ X x X which split almost
periodic, we obtain

T3 (Ox = Ja,a(6)x := Ja(-)x)a(0),

where (-), denotes the Y, part of a function given in Y.

Proof. Using the fact that A = %(I - (]f)‘l) for A dissipative, we have
A=B « J{=J% forsomeA>0,

and 1 1
TI=T (O = [A)a = T =T, (7).
The first equality comes with the dissipativeness of [A(-)], due to (3.2), and the second by definition. O

Remark 3.10. Let {A(t) : t € R} ¢ X x X split almost periodic with respect to Y,, Yo. Due to (3.2), [A(-)]4 is
dissipative. From D(J3,4) = X, we derive the m-dissipativeness, and the facts that P,x = x forall x € Y,, and,
together with equation (3.1), that the almost periodic part of A(-) is Y,-invariant.

Proof. Given x € Y,, we apply (3.1):

Jraa()x(+) =Ja,a(-)Pax(+) = PaJa(+)x(-) € Yq.
Thus, J3,q(-)x(-) € Yq, and therefore J q(-)x(-) = PaJa,a(-)x(-). O
For an example, we recall the definition of demi-closedness [15, Definition 1.15, p. 18]

Definition 3.11. An operator A ¢ X x X is called demi-closed if A is norm-(weakly-sequentially) closed as a
subset of X x X, i.e., [|x, — x|l = 0, w — limp—c0 ¥n = ¥, and [xp, yn] € A for all n € IN implies [x, y] € A.

Example 3.12. Let a: R — R be weakly almost periodic and assume that a(t) > q for some g > 0. Using the
splitting a(t) = a,(t) + ¢(t), with a, € AP(R), for an m-dissipative operator A c X x X, we define

A(t) == a(t)A.

Let Y, = AP(R, X), and either Y = WRC(R", X)or Y = W(R", X). Let also A be demiclosed and J, compact.
Then A(t) splits almost periodic, and the Y,-part is given by [A(-)]4(t) = a4(t)A. The same result can be
obtained using Y = AAP(R", X), with a € AAP(R", X).

Proof. ForagivenA > 0, we have to prove that {¢ — J1(t)x} is weakly almost periodic. Note, that J1(t)x = Jaac)X.
Thus, we obtain the result using the following help function with 0 < r < g:

frRxR— X, (t,p)= Jaqp-ri+nX

which is Lipschitz continuous, by the resolvent equation (A(|Jp —r| + 1) = Ar > § > 0), f(t, a(t)) = JaayX, and
since f € W(R x R, X) (cf. Definition A.4), Corollary A.10 applies. To prove {t — JA(t)x(t)} € Y for x € Y in the
case where Y = WRC(R*, X), we can use Corollary A.10 with the help function

f:Rx(RxX)—X, (t(P1,P2) = Japi-rl+nP2;

and f(t, a(t), x(t)) = Jaayx(t) = Ja(t)x(t). Hence, for x € Y = W(R*, X), by a further use of the previously
defined help function and an application of Theorem A.8, it remains to prove that, for K; ¢ X weakly compact
metrizable, the following function is continuous:

t: [a, bl x (K1, w) = (X, [1- 1D, (8, %) = Jags—ri+nX.
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For a given {x,}nen € K1, weakly convergent to x € Ky, and {Sp}new C [a, b] convergentto s € [r, R], we define
An = A(|sp = 7| + 1) — p € [Ar, R] and claim that

JraXn — Jux  whenn — oo.

To this end, we show that any subsequence of {J),xn}nen has a subsequence convergent to J,x. Let such
a subsequence be chosen. Then, without loss of generality, we have uy, := J,x, — u. This is equivalent
to Xn € uy — pAuy, and the demiclosedness leads to J,x, — Jyx. Using the fact that A x| < [[A,x| for all
0 < u < A, by the resolvent equation, we have

A, Xn = TuX |l < W, Xn = TuXnll + Wpxn = Jux|l < [An = plllAarxall + Ty Xn = Juxll.

The Lipschitz continuity of A;, proves the boundedness of |Aj, x|, which finishes the proof.
To compute the almost periodic part of {t — Jaqt)X}, apply Corollary A.17. O

To have a comparison between the classical almost periodicity and the generalized one, we provide the fol-
lowing proposition. It shows that under certain conditions t — B(t)x € Y = Y, @ Yo (i.e., it splits canonically),
and the splitting is obtained from coinciding resolvents.

Proposition 3.13. Let Y c BUC(RR, X) split almost periodic, and let {B(t) : t € R} be a family of uniformly
Lipschitz operators defined on X, with Lipschitz constant K. Further, let B(-)x € Y for all x € X. Due to the
splitting, we have B(t)x = Ps(B(-)x)(t) + ¢(t). We define

B(t)x = Pa(B(-)x)(t),

and assume that
Pa(B(-)y())(t) = BX(t)Pa(y(-))(t) forally €Y. (3.3)

Then, for B,(-)x, the almost periodic part in the sense of Definition 3.8, we have
B%(-)x = Bga(-)x forallx € X.
Proof. To prove the equality we show that the resolvents coincide, i.e.,
(I - ABY(t)) ' x = Po(I - AB(t)) ™" = J} ,(D)x. (3.4)

The above together with Remark 3.9 will finish the proof. To prove (3.4) we need a representation of the
resolvents. In doing this, we consider

T{: Yo — Yo, f+ {t= ABYO(O) + 1)}
For given x, y € X, we have
IB(0)x = B*(O)yll = I1Pa(B(-)x)(t) = Pa(B(-)y)()ll < IB(-)x = B(-)y)lleo < Klx - yl.
The Lipschitz continuity of B? leads to
IT{f - T{glloo < AKIf - glloo  forf, g € Y.
Consequently, for AK < 1, we find a net of fixpoints f' satisfying
ABE(O R (6) +x) = £ (),

I - ABY(O)(f () +x) = f () + x = f{ () = x,
FE() +x = (I - AB(8)) .

Next we consider the resolvent of B, which is defined by the almost periodic part of the resolvent of B.
Hence, we need a representation for the resolvent of B and we have to compute the almost periodic part. We
define the fixpoint mapping with respect to B:

Ty: Y- Y, f{t— AB@)f() +x)}.
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Using the fact that B is Lipschitz for AK < 1, we find a net of fixpoints f satisfying

AB()(fa(t) + x) = fa(D),
(I - AB()(fa(t) + x) = fa(t) + x - fa(t) = x,
fat) + x = (I - AB(t)) x.

Using the representation, we compute the almost periodic part and apply assumption (3.3), to obtain
Pa(fa) + X = Pa(fa + x) = Pa(AB(-)(fa + X) + X = AB“(-)(Paf + X) + x.

We found that P,f} is a fixpoint of T§, hence f} = P,(f3). This leads to
(I=AB(t)™'x = f{(6) + x = Pa(f)(6) + x = Pa(I = AB(-))"'x = J (O)x,

which finishes the proof. O

Kenmochi and Otani [16] considered nonlinear evolution equations governed by time dependent subdiffer-
ential operators in Hilbert space H:

u(t) € —op'(u(t), u(0) = uo.

They constructed a not necessarily complete metric space of convex functions (@, d), whereby, d(¢', @) — 0,
implies @' — ¢, in the sense of Mosco, cf. [16, Lemma 4.1, p. 75]. For short, we write ¢ 2, ¢. Next we
show that the notion of almost periodicity on subdifferentials given in [16] is stronger than the one given via
resolvents defined in this study, when viewing —0¢(t) as a dissipative operator.

Proposition 3.14. Let ¢‘: H — R be proper, lower semicontinuous and convex for all t € R. If
9 R— (@,d), te 9

is almost periodic, then
J{Cx:R—H, teJr(0x =1 +A0¢") x,

is almost periodic for all x € H.

Proof. We assume that for x € H, the mapping {t — ]f{’(t)x} is not almost periodic. Consequently, we find a
sequence {t,}nen such that {];f(t + tn)X}nen is not uniformly Cauchy. Without loss of generality,

@+t 2yt yniformly for t € R.

The non-Cauchy assumption on {]A‘p(t + tn)X}nen leads to subsequences {ty, }keNs {tm, }keN C {tn}nen, and
a sequence {Sp}new € R such that

9 (sk + ta)x = J§ (Sk + tm )Xl > € forall k e N.

Note that {t — ¢!} is assumed to be almost periodic, O(¢) := {{t — @!*S} : s € R} is a compact subset of
Cp(R, (@, d)), and ¢ *9 € O(p) for all s € R. Consequently, we may assume that

Ps) 2, O yniformly for ¢ € R.

Clearly,
(p(t+sk+tnk) 2 #' and (p(t+sk+tmk) @ P!

uniformly for t € R. Applying [16, Lemma 4.1, p. 75], we obtain
@OsiHtn) 0 and  @O+sittm) _, 0,
in the sense of Mosco, which implies, by using [1, Theorem 3.26, p. 305],
]f{’(sk + ity )x — ]fx and ]j{’(s;< + tm )X — ]fx

when k — co. A contradiction to the non-Cauchy assumption. O
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4 Main results

In this section we show how the previous results apply to evolution equations of the following type:
du
E(t) e A(Hu(t) + wu(t), teR, (4.1)
and the corresponding initial value problem
du +
E(t) e A(Hu(t) + wu(t), teR", u(0) = uo, (4.2)

where A(t) is a possibly nonlinear multivalued and dissipative operator satisfying a type of almost periodicity
defined above. Throughout this section, we assume Y, Y,, and Y, to be closed and translation invariant sub-
spaces of BUC(RR, X), with X ¢ Y,. In the case where A(t) is classically almost periodic and Y = AP(R, X), the
result in case of Assumption 2.2 is due to [2]. Even in the book [14, equation (C1), p. 153], Hino et al. consid-
ered Assumption 2.2. Thus, they were not able to consider operators coming from Example 3.12. The problem
is considered in the infinite dimensional case, and is even new for finite dimensions. The w-dissipativeness
(w < 0) is needed to obtain the uniform convergence of the approximants. Moreover, when w = 0 and A(t)
only m-dissipative, there exists a counterexample for classical almost periodicity in the case of dimension
two, see [13, Remark 1.3 (2)].

Definition 4.1. A solution u of (4.2) is called asymptotically Y if there exists v € Y such that
lim [Ju(t) - v(t)|| = 0.
t—oo

The difference to earlier splitting results is that a splitting of the solution is found, but in the case of general
dissipative and time dependent operators, the equation fulfilled by the almost periodic part was unknown.

Theorem 4.2. Let, foragiven Y ¢ BUC(R, X), A(-) be Y-invariant, and {A(t) : t € R} fulfill Assumption 2.1 and
either Assumption 2.2 with w < 0, or Assumption 2.3 with Ly < —w, where Lg denotes the Lipschitz constant
for the control function g. Then there exists a solution u € Y to (4.1), and all integral solutions of (4.2) are
asymptotically Y.

Let Y and A(-) split almost periodic, with Y = Y, @ Yo. Then the almost periodic part u® of the solution
u €Y fulfills u® € Y,, and u? is a generalized solution to the evolution equation

du®
dt

(t) € [A()]a(Ou(t) + wu(t), teR. (4.3)

Proof. The first part is a direct consequence of [22, Theorem 4.10]. For the second part, note that

1 (71
ux(t) :]1%(0(1 —Aw( J Ze‘iu(t—s) ds)),
0

and due to the assumption of an almost periodic splitting, we apply P, and obtain

a a 1 001 s 4
u; =]1Am(t)<1_/lw<lze Auﬂt—s)ds)). (4.4)
0

Thus,
(%)Au,‘{(t) € [A()]la(tuf(t) + wuf(t), teR. 4.5)

Applying Theorem 2.8, uy — u uniformly on R, and by the continuity of the projection P,, we have uf{ — u“.
We call u® the generalized solution to (4.3). O
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Remark 4.3. (i) The notion of an integral solution in the case of a general splitting is not possible due to
the missing control functions for {[A(-)]4(t) : t € R}. Thus, in general we cannot construct a solution
applying existence results of [23] to the equation

d
d—l:(t) € [A()]a(®u(t) + wu(t),

due to lack of Assumptions 2.2 and 2.3.

(i) If {[A(-)]a(t) : t € R} fulfills Assumption 2.2 with a function h, € BUC(R, X), L, non-decreasing and
wq < 0, then u? is an integral solution, in the sense of Definition 2.7, with respect to h%, L.

(iii) If {[A(-)]a(t) : t € R} fulfills Assumption 2.3 with hg, g;: R — X bounded and Lipschitz, L, non-
decreasing and Lg, < —wg, then the generalized solution is an integral solution, in the sense of Defini-
tion 2.7, with respect to the control functions h?, g4, Lq.

Proof. Equation (4.5) and the fixpoint equation (4.4) show that we are in the situation of approximations
used in the study [23, equation (31), p. 1076]. The uniqueness of fixpoints and the corresponding uniform
limits (cf. Theorem 2.8) conclude the proof. O

Proposition 4.4. In the context of Theorem 4.2, let Y = WRC(R, X), Y, = AP(R, X) and Yo = WRCy(R, X). If
the control functions h, g belong to WRC(R, X), then the generalized-(almost periodic)-solution is an integral
solution with respect to L, and the almost periodic parts of h*, g.

Proof. Clearly, h € WRC(RR, X x X). From Corollary A.14, we find a sequence {s;}sen, With s, — 0o, such
that, due to the compact ranges,

h“(-+sp) > hY, g(-+sn) > 8¢ and u(-+sy) — Ug,
pointwise in the norm of X. As the solution on R is an integral solution (see Definition 2.7), we have

lu(t) — x|l = llu(r) - x|
t t t
< j([y, u(wv) - x, + wlu) - x|) dv + L(lx]) juh"’(v) “ ROl dv + ] jug(v) ~ gl dv.

r

Therefore, for t := t + s, r := r + S», we have

lu(t +sp) — x|l = lu(r + sp) — x|

¢
< j([y, UV + sp) = x4 + wllu(v + sy) - x||) dv

t t
+ LO(lIx1) jllh“’(v +5Sp) —h?(r+sp)ldv +llyl jllg(v +5p) —g(r+sp)ldv. (4.6)

r

Using the fact that [y, - ] is upper semicontinuous, we have
li;n suply, u(v +sp) = xJy < [y, ua(v) - xJ;.

Consequently, we may pass to the limit superior on both sides of (4.6), and by Fatou’s lemma we obtain the
inequality. [
Corollary 4.5. In the context of Theorem 4.2, let
Y = AAP*(R, X) := {f € BUC(R, X) : fir+ € AAP(R*, X)},
Y, =AP(R,X) and Yo =C{(R,X):={f € BUC(R,X) : fir € Co(R", X)}.

If the control functions h, g belong to AAP* (R, X), then the generalized-(almost periodic)-solution is an integral
solution with respect to L%, and the almost periodic parts of h*, g.
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Proof. Apply inequality (4.6), the existence of a sequence {s,}nen With s, — 00, and the pointwise-norm
convergence. O

Theorem 4.6. Let {A(t) : t € R}, {B(t) : t € R} c X x X split almost periodicto Y = Y, & Y. Consider the equa-
tions p
“(t) c A(bu(t) + wu(t), teR*,  u(0)=uo e Dy,
and p
d—‘t’(t) e BOV(E) + wv(t), teR*,  v(0)=voeDg.

If the families {A(t) : t € R}, {B(t) : t € R} satisfy Assumption 2.1 and either Assumption 2.2 with w < 0, or
Assumption 2.3 with Ly < —w, where L¢ denotes the Lipschitz constant for the control function g, then

{t= T Ox-T3(t)x} € Yo forallx € X, (4.7)

implies that
{t = Uprwi(t, )X — Up+wi(t, S))’}
is asymptotically Y, for all x € Dy, y € Dp.
Proof. lItis sufficient to prove that the almost periodic parts of Ua,i(-, S)x and Upi(-, S)y coincide. Due to
the uniform convergence of the approximants, it suffices to prove it for the approximants. Moreover, asymptot-

ically they are close to their corresponding bounded solution on the whole line [23, Corollary 2.16]. Therefore,
let u,, vy be the approximants to the whole line solution given by [23, Theorem 2.18]. Due to condition (4.7),

JEC)x = JE(-))x.

Thus, using the fixpoint equations for the approximants u, and v,, we have

(o)

(u(0)* = (7 )(t)(1 Aw(J%‘Auﬁ(t—s)ds))

0

1 (T .
:(Iﬁ) m(l—)lw(!Xe AuA(t—s)ds>>,

Thus, (ux(t))? is the fixpoint of the strict contraction defining the solution (v;(t))?. Consequently, by the
uniqueness of the fixpoint, (ux(t))? = (va(t))%. Thus, the almost periodic parts of the solutions of (2.2) coin-
cide. Thanks to Corollary 2.10, the solutions of the initial value problem (2.1) are asymptotically close. [

[un

Corollary 4.7 ([22]). Let
Y = AAP*(R, X) := {f € BUC(R, X) : fir: € AAP(R*,X)}, Y, = AP(R, X),

and let {A(t) : t € R}, {B(t) : t € R} ¢ X x X split almost periodic with Y = Y, & Y,. Consider the equations
d _
d—l:(t) c A(bu(t) + wu(t), teR*,  u(0)=uo <Dy,

and p
d—Z(t) e BV + wv(t), teR*,  u(0)=vpeDp.

Let also the families {A(t) : t € R}, {B(t) : t € R} satisfy Assumption 2.1 and either Assumption 2.2 with w < 0,
or Assumption 2.3 with Lg < —w, where Lg denotes the Lipschitz constant for the control function g. If

lim [ (O)x = J5(O)x =0 forall x € X, A small,
t—o0
then, for the corresponding evolution systems Uay1(t, s) and Up.,(t, S), we have
lim U wi(t, 0% = Up.wi(t,0)yl =0 forallx € Dy, y € D,

i.e., they are asymptotically equivalent.
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In the case of Eberlein weak almost periodicity, we obtain the following corollary.
Corollary 4.8. Let Y = W(R, X), Y, = AP(R, X), Yo = Wo(R, X), and let {A(t) : t e R}, {B(t): te R} c X x X
split almost periodic with Y = Y, & Y. Consider the equations
du N —
E(t) e A(Hu(t) + wu(t), teR", u(0) = ug € Dy,
and i
d—‘t’(t) e B(tw(H) + wv(t), teR*,  u(0)=voeDg.

Let also the families {A(t) : t € R}, {B(t) : t € R} satisfy Assumption 2.1 and either Assumption 2.2 with w < 0,
or Assumption 2.3 with Lg < —w, where Lg denotes the Lipschitz constant for the control function g. If for all
a €,

T
Tlim % J exp(—iar)(]f(t +T)X —]f(t +T)x)dt =0
0

forall A small, x € X, uniformly in t € R, then
L T
Tlim T J exp(—iat)(Up4or(t + T, 0)x — Upyor(t + 7,0)y) dT =0
0

forallx € Dy,y € D, and & € R, uniformly in t € R*.
Proof. From [5, 6] we learn that Y = Y, @ Y, and that Y, is characterized by a zero mean. O
In the case of ordinary differential equations the result of Theorem 4.6 extends as follows.
Proposition 4.9. Let Y c BUC(R, X), let f, g: R x X — X be Lipschitz, and let
{t > f(t, x(0)}, {t — g(t,x(t)} € Y forallx €Y.

Further, let
fa("z) :Paf("z): ga("z) :Pag('az) forallZEX;

" Pof(-,x(+)) = (-, Pax(+)), Pqag(+,x(+)) =8%(-,Pax(+)) forallx €Y.
Then

{t— ft,x) - g(t,x)} € Yo forallx € X, (4.8)
if and only if

{t P Ox-JE(Ox} € Yo forallx e X. (4.9)

Proof. Due (4.8), the almost periodic parts of f, g coincide. Therefore, with respect to the proof of Proposi-
tion 3.13, the resolvents come with a common fixpoint of T), which proves (4.9). If (4.9) holds we have

f _ 18
]A,a _]A,a’

which gives f, = g,. An application of Proposition 3.13 concludes the proof. O

5 Perturbations

In this section we put some general perturbation theorems for dissipative operators into the context of almost
periodic splittings. This extends the theory of semilinear operators like A(t) + f(t, - ), as they are considered
in [3], and in [31] for the case of almost automorphy. We start with a Lipschitz perturbation.
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Theorem 5.1. Let {A(t) : t € R} split almost periodic with respect to Y, Y,. Further, let {B(t) : t € R} be uni-
formly Lipschitz with constant K, satisfying Po(B(-)f = B4(-)Pyf for all f € Y, where B,(-)x := PyB(-)x for all
x € X. Then A(t) + B(t) is w-dissipative with at least w = K, and splits almost periodic with respect to Y,, Y.
Moreover,

{A() +B(-)}, = Aa(-) + Ba(+). (5.1)

Proof. We start with proving the w-dissipativeness. Let t € R and y; € A(t)x; fori = 1, 2. Then
Ix1 = x2ll < IXy = x2 = Ay1 = y2)ll < |x1 = x2 = A(y1 + B()x1 = y2 = B(t)x2)| + AK|Ix1 - X2

Thus, A(t) + B(t) is dissipative with w = K. From the uniform Lipschitz condition of {B(¢) : t € R}, we obtain
the uniform Lipschitz condition of {B,(t) : t € R}. For given x, y € X, we have

I1Ba(6)x = Ba(t)yll < 1Ba(-)x = Ba(-)Ylleo < IB(-)x = B(+)yloo < Klx -yl

Consequently, we obtain that A, (t) + B,(t) is w-dissipative with w = K.
To prove the m-dissipativeness and to obtain a representation of the resolvent of A(-) + B(-), for given
¢ € Y, we define
Ti: Y =Y, f e {te JR0[p0 + ABOKO + o)} - o)},

with J4(t) = (I - AA(t) ™.
An estimation gives that T is a strict contraction for AK < 1. Thus, the Banach fixpoint principle leads to
a f) € Y such that
) = ]f(t){tl)(t) + AB(6)(fa(t) + p(0)} - d(8).

We have

P(t) + fa(t) = JEO{p(®) + AB)(fa(t) + p(1)},

(I = AA0)(P(t) + f2(8)) > d(t) + AB(£)((2) + fa(1)),

(I-AA(t) - AB(1))(¢(t) + f2(D)) > ¢(D),

(@(t) + f2(t)) = (I - AA(t) - AB(£)) " (t).
As the constants are contained in Y, c Y, the m-dissipativeness of A(t) + B(t) is proved. We also proved
(I-ACA(t) + B(t)))‘lqb(t) = ¢(t) + fa(t) € Y. Therefore, it remains to prove the perturbation result (5.1), which
is equivalent to

Tl x =T ox.

From the previous step, we have (I - A(A(t) + B(t))"'x = x + fy(¢t) for ¢ = x. This leads to

PR )0)(t) = Palx + f)()
=X + Pa(f)(t)
= X+ Pa(J4 (O (x + AB()(fa(t) + X)) - X)
= x+J1 J(O)(x + ABa()(fF(8) + x)) - X.

Noting that J3* (t)x = ]f’ .(Ox, we define
T{: Yo = Ya,  fr {t = J} (00 + ABa(O(f(t) + X)) - X}.
Let f} be the net of fixpoints for AK < 1. Then we have
(I = A(Aq(t) + Ba(t)) ' x = x + f}
= J3 () (x + AB4(O(f{ (1) + X))
= PaU3 P C0(0).

As a consequence, we obtain the same contraction mapping, and the uniqueness of the fixpoint concludes
the proof. O
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Remark 5.2. In many studies the existence of solutions to equations like
y'(6) € A(y(H) + B(t)y(t), teR, (5.2)

need the precondition L + w4 < 0, where L denotes the Lipschitz constant of B. Theorem 5.1 can be viewed
as a split of the assumptions on m-dissipativity (i.e., R(I + A(A(t) + B(t)) = X) and the dissipativity constant
wa+p Of {A(t) + B(t) + wl : t € R} c X x X. For the m-dissipativity the Lipschitz constant on B is needed. To
obtain a bounded solution to (5.2) by the methods of Section 2, we obtain that wa,p < 0 in case of Assump-
tion 2.2, or Ly < wy4p in case of Assumption 2.3, is sufficient. Consequently, the direct connection between
the Lipschitz constant on x — B(t)x and w4 to obtain a bounded solution on R is cut.

If X* is strictly convex, then the duality mapping
F: X\{0} - X*, x> {y*:y*(0) = IxI” = ly*1%},

is single-valued and, in case of a uniform convex dual, uniformly continuous on bounded subsets of X, cf.
[15, Proposition 1.1, p. 2]. Note that a dissipative operator, in this case, is always strictly dissipative (i.e.,
[-,-]- =[-,-]+), dueto the single valuedness of F. Consequently, a sum of dissipative operators is dissipative.
Next we consider the case where X* is uniformly convex.

Lemma 5.3. Let X* be uniformly convex, let I C R, and let the families {A(t) : t € I}, {B(t) : t € I} ¢ X x X be
m-dissipative. If there exist R > 0 and x1(t): I — X such that for all t € 1,

x1(t) € D(A(t)) n D(B(t)) N K(0,R) and |A(H)x1(t)], |B(t)x1(t)| < R, (5.3)
then, for {y(t)}tc1 € X bounded, there exist C > 0 and a unique x,(t) € D(A(t)), |[xa(t)|| < C, such that
xA () — A(6)xa(t) — Ba(6)xa(t) 3 y(8). (5.4)

Further, iffor C; > 0, | By(t)xA(t)|| < C1 uniformlyinA > 0, t € 1, then, there exists a function x : 1 — X such that
x(t) € D(A(t)) n D(B(t)) n K(0, C) and

x(t) - A(t)x(t) - B(t)x(t) > y(t) foralltel. (5.5)

Additionally,
}in(l) xA(t) = x(t) uniformly in 1.

Proof. As A(t) + By(t) is m-dissipative, the solution x,(t) of (5.4) is unique for every t. As we need a represen-
tation for x,(t), from the proof of [15, Lemma 1.23, Theorem 1.24], we read

1

) A 102 1 »
xa(t) = (I—mA(t)) (my(tnm(l—w(t)) XA(t)).

Using Banach’s fixpoint theorem, we will find x;(t) € D(A(t)). From the precondition (5.3), we find uniformly
bounded pairs (x1(t), y1,1(t)) such that

Y1,A(1) € x1(t) = A(t)x1(t) — Ba(t)x1 ().
Using [|Ba(t)x1 ()| < |B(t)x1(t)|, we can choose y; 3 so that
Ixa(t) = X1 (DI < (Y1) = y1.4(8), Fxa(t) = x1(1)) < ly(t) = y1,2Ollxa(t) = x1 (B)l]. (5.6)
Thus, [|x3(t)| is uniformly bounded. Using (5.4) for A, u > 0, and the fact that A(t) is dissipative, we have
Ixa(t) = xu (O < (Ba()xa(t) = Bu()x,, (), FxXa(t) = x,(1))).
Using B (t)x,(t) € B(t) ]f(t)x,\(t) and the dissipativeness of B, we have

(Ba(t)xa(t) = Bu(t)x,(8), FUR (t)xa(t) = T (Dx,(t))) < 0.



16 —— . Kreulich, Generalized almost periodic splittings DE GRUYTER

In sum this leads with the boundedness of {B(¢)x(t)}ter,150 to some C; > 0, so that
Ixa(t) = xu (D1 < (Bat)xa(t) = Bu()x,(t), F(xa(t) = x,(0)) = FUR(0)xa(t) = T (Dx,(t)))
< 2C1 |F(xa(t) = xu(8)) = FJR (0xa(t) = T (), (D)) (5.7)

Recalling that AB,(t)x,(t) = ]f (H)xa(t) — xx(t), the uniform continuity on bounded sets of the duality map
yields that {x3}>0 is uniformly Cauchy when A — 0. The completeness of X gives uniform convergence in
B(1, X), cf. [8, p. 258]. We define

x(t) = }llli% x(t).

For a given t € I, we can conclude the proof with the arguments used in the proof of [15, Theorem 1.24,
pp. 25-26, and Theorem 1.17 (ii), p. 18]. Using |Ba(s)xa(s)| < C; for all s € I, A > 0, we have x(t) € D(B(t)).
The reflexivity gives B, (t)xa, (t) — w(t) weakly, with w(t) € B(t)x(t). Applying (5.4), we find a bounded selec-
tion y(t) € A(t)x,(t) satisfying
xA(t) — ya(t) = Ba(t)xa(t) = y(t).
Thus, by the demiclosedness of A(t) and convergence of {y,, (t) : n € N} we have
YA, (£) = z(t) = y(t) = x(t) + w(t)
weakly, with z(t) € A(t)x(t). Summarizing the previous, we have
y(t) = x2,(6) = y2,(6) = B, (O)xa, (t) — x(t) — z(£) — w(t)
weakly in X, which concludes the proof. O

Theorem 5.4. Let X* be uniformly convex, let I C R, and let the families {A(t) : t € I}, {B(t) : t e I} ¢ X x X be
m-dissipative. Assume that there exist R > 0 and x1(t) : I — X such that for all t € 1,

x1(t) € D(A() N D(B(t)) N K(0,R) and |A(t)x1(0)], [B(t)x1(t)| < R.

Further, let (y, F(Bx(t)x)) > O forall [x,y] € A(t), t € I, A > 0. Then A(t) + B(t) is m-dissipative and the solution
of (5.4) converges uniformly on I to the solution of (5.5).

Proof. The proof is analogous to that of [15, Corollary 1.25], proving the boundedness of By(t)x(t). O

Remark 5.5. To study the resolvents ];j“B(t) = (I +u(A(t) + B(t)))"!, the same methods, as in Lemma 5.3,
apply. Therefore, assume the condition (5.3). This selection gives a bounded pair (x1(t), y1,1,,(t)) satisfying

V1 au(t) = (1 = p)x1(t) + py1,a(t) € x1(8) = pA)x1(t) — uBr(t)x1(t).

Considering, y € B(I, X) and
y(6) € X5 (6) - pADXY (1) - uBA(t)XY (1),

we find that the solutions are fixpoints of the contractions

Mgy Au A H 1By M
X () = (I— mA(t)) (my(n + L MJA(t)XA(t)>-

Moreover, applying the bounded selection (x1(t), y1,4,4(t)), we have, similar to (5.6), some C;, > 0 such that
IIXf{(t)ll < C; uniformly in A > O, t € L. Thus, if for a given u > 0,

IBA(t)xy (Ol < €1 forallt eI, A>0, (5.8)
then, by an observation similar to (5.7), we have

Xy () := /{in}) x’;(t) uniformly for ¢ € I.

The uniform convexity of X* and the demiclosedness of A(t) and B(¢) imply that x,(t) is a bounded solution
of
Xu(t) = pA(O)xy(t) — uB()x,(t) 3 y(0),
which gives
I y(t) = /{in(l) xh(t) uniformly for ¢ € I.
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Theorem 5.6. Let X* be uniformly convex, and let Y ¢ BUC(RR, X), Y = Y, & Y. Further, let {A(t) : t € R} and
{B(t) : t € R} be families of dissipative operators, which split almost periodic with respect to Y, Yo. Under the
assumptions (5.3) and (5.8) of Remark 5.5, we have

(A(+) +B(+))a = Aqa(+) + Ba().

Proof. We have to show that the almost periodic part of ]ﬁ”B (t)x equals ]f“B“(t)x. To prove that the fix-
points are in Y, note that X c Y, c Y, and that ];14 and ]f leave Y invariant. Thus, for y € X, we have the strict
contraction

T:Y 7, xH{tH]M(t)(MH ﬁ]ﬁ(t)x(t))}.

From the Remark 5.5, for a given u > 0, we obtain the convergence when A — O uniformly for ¢ € R. In doing
so, we use the representations of the fixpoints given in Remark 5.5,

Pax;‘<->:P(M(>(MV LJE(-)x’j(-)))
- 04 O (3 T VRO P ).

As P, : Y — Yisbounded, we obtain the uniform convergence of Paxﬁ aswell. For A, + B, we have the strict
contraction

A+yy A+y

Ty: Y, — Y, XH{tH(IﬁV

Tep

() ()(

Thus, the projection gives the fixpoint x% 0= Pax/1 and unlform convergence when A — 0. From (5.8),
we conclude

T £ LURC D(Ox0)}.

NBAC- DOy (O < IPaBA(- )X} (oo < IBAC )X} ()lleo < €1 uniformly in A > 0.

Hence, we are in the situation of Remark 5.5, and can redo the final steps, similar to the proof of Lemma 5.3.
Consequently, for a given ¢t € R, there exists a sequence {A, : n € N} such that

y=xX) (O =k (O =By, a(X) (6) = Xa(t) - pzh(t) - pwi (D)
weakly when n — oo, with za(t) € Aq(t)x*(t) and wﬁ(t) € Bg(t)x*(t). This concludes the proof. O

In the next example we show how the previous results apply to perturbations to the linear Dirichlet problem
(Ap) on bounded domains Q.

Example 5.7. Let Q ¢ R" be open, bounded and with smooth boundary, let H = L*>(Q),
A: H Q) n H*(Q) c L*(Q) — L*(Q),

with w its dissipativity constant, and let ¢: J x R — R be a proper, lower semicontinuous and convex func-
tion, satisfying 0¢(t)0 > O for all ¢ € J. Defining, forall t € J,

0(t) := {[u, v] € L*(Q) x L*(Q) : u(x) € D(0¢(t)) a.e., p(t)(u(-)) € LY(Q), and v(x) € dp(t)(u(x)) a.e.},

we have that A — 0¢(t) is m-dissipative and 0¢(¢)0 > 0. If additionally, —0¢ and —0¢ split almost periodic,
with respect to Y4 r, Yo,r ¢ BUC(R) and Y, 12, Yo 12 ¢ BUC(R, L?(Q)), respectively, with

Pa,y,, (I +A0¢(-)) 'u = {x = Py y (I +209(-)) tu(x)} a.e.forallu e L*(Q), (5.9)

then we have
(A=0¢(-t))a =A=0¢a(+1) =A-(0@a(+1)), (5.10)
where —(0¢(-))q and —0¢( - ), are the generalized almost periodic parts. Moreover, if the Dirichlet problem
with respect to A — 9¢(t)(-) fulfills either Assumption 2.2 (see [4, Example, pp. 88-90]), or Assumption 2.3,
with Lg < —w, then the solution of equation
u'(t) = Au(t) - op(t)u(t) + f(t), teR,

with f € Y52, has an almost periodic splitting as well.
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Proof. From [15, Example 1.60 and Lemma 1.61, pp. 53—54], we obtain that ¢ is a subdifferential, and
therefore —0¢ is m-dissipative. Further, [15, Proposition 1.63, p. 55] proves the m-dissipativeness of A — 0¢b
on L?(Q). As f(t) € AO + 0¢()(0) + f(t), we verified condition (5.3). The claim (5.10) is an application of
Theorem 5.6, Theorem 4.2 and assumption (5.9). To consider right-hand sides f € Y, we use the fact that
the mollified f, € Y is Lipschitz and approximates f uniformly due to the uniform continuity of f. Applying
[23, Proposition 6.1], we obtain, with f,, an additional Lipschitz and bounded control function. Finally, [23,
inequality (43), p. 1084] finishes the proof. O

To view the case of Eberlein weak almost periodicity we have the following.

Example 5.8. Let X* be uniformly convex and A ¢ X x X an m-dissipative operator with a compact resolvent.
Further, let {B(f)}tejy ¢ X x X be m-dissipative, and let ]f(-)z € W(J, X) for all z € X. For a given v € X, we
define

A )
Voo, A B
FA’H.HXX—)X, (t,x)n—»]m<}t+yv+A+HIA(t)x).

Then FX’ u fulfills Definition A.4 with D = (X, || -]l ). If A, B(¢) fulfill the assumption of Theorem 5.4, then
JEB()w(-) e WRC(J, X) forallw € W(J, X).
Proof. Following the Definition A.4 and Theorem A.10, for given g € W(JJ, X), we have to verify that
[t~ 4, g0} e WRCH, X).

A+u

The Eberlein weak almost periodicity is a consequence of the proof of Example 3.12, and the relative compact
range comes with the compactness of ]f\‘. For given w € W(J, X), choosing

u

B
/1 + ’,1]/1 (t)X,

A
gt) = mw(t) +
it remains to prove that

Lw(t) +

A+u

i: K> WRC(J, X), xw— (tHl’L(

A+

[ ))
t ,
s u] 1 (Dx
is continuous, which comes with the inequality

u
() = t)lleo < A+ n

Ix = yll.

From Lemma 5.3 and Remark 5.5, we obtain the resolvent ]ﬁ*B( -)w(t) as uniform limits of fixpoints defined
by WRC(J, X) 3 xp,u(t) = FX,y(t, xXau(t), ie.,

U
A+

A
A (mw(t) + ]f(t)x/\,y(t)) — JA*Bw(t) when A — 0,

A+u

uniformly for ¢ € J, and the proof is finished. O

Remark 5.9. From Appendices B and C, we can obtain similar results for asymptotically almost periodic or
continuous almost automorphic functions.

From Remark 3.9 and the previous perturbation results, we obtain the following corollary.

Corollary 5.10. Let X* be uniformly convex, and let {A(t) : t € R} and {C(t) : t € R} split almost periodic with
respectto Y = Y, @ Yo, and fulfill the assumptions of Theorem 5.6. Consider the equations

%(t) e A(Hu(t) + wu(t), teR',  u(0)=ug e Dy,
and

%(t) e A(v(t) + C(HHv(t) + wv(t), teR", u(0) =vg € Dy,c.

If the families {A(¢t) : t € R}, {A(t) + C(¢t) : t € R} satisfy either Assumption 2.2 with w < 0, or Assumption 2.3
with Lg < —w, where Lg denotes the Lipschitz constant for the control function g, then {t — C,(t)} = 0 implies
that {t — Ua+c+w(t, S)Y — Ua+w(t, s)x} is asymptotically Yy for all x € D, and y € Dasc.
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Proof. From the assumptions of Theorem 5.6 we obtain the m-dissipativeness for every operator {A(t) + C(t)},
i.e., Assumption 2.1. Next we apply Remark 3.9 and the perturbation result for A + C, which give

Pa(J4C()x = JE(OX)() = T (Ox - J3* (Hx = 0.

Finally, an application of Theorem 4.6 concludes the proof. O

A Eberlein weak almost periodicity

This and the remaining appendices discuss a number of closed and translation invariant subspaces of
BUC(R, X) and (BUC(R", X)), which under certain conditions satisfy the invariance conditions for the resol-
vent J,(t). Moreover, we give some examples for almost periodic splittings. We mainly restrict our attention
to weak almost periodicity, in the sense of Eberlein, and to asymptotically almost periodic functions. These
results demonstrate the use of the above general results in a variety of special cases.

Proposition A.1. (i) If f € Cp(J, X), then f € W(J, X) if and only if for {(tm, X;,)}men C J X ext Bx+ and for all
{wntnen C 7, the following double limits condition holds:

Aim Hm (fwn + tm), Xp) = limHm (fwn + tm), Xpn),

whenever the iterated limits exist, see [27].
(ii) Iff € W(J, X), then

R
. 1
||-||—1;Ln30§jf(t+r)dt_zex
0

exists uniformly over r € J. Moreover, if f € Wo(R", X), then the ergodic limit z is equal to 0 € X (cf. [28]).

Proposition A.2. Let {an,m}n,men C K with K compact metrizable. Then there exist subsequences {ny}ren and
{mi}ien such that the following limits exist:

lim lim anp, m,, lim lim ap,, m,.

k—o00 l—00 -0 k— oo
Proof. Let m = 1. Then we find a subsequence {n(1, k)}xen such that limy_,oo an(1,x),1 exists. Thus, we may
assume that for a given m € N, we can find {n(m, k)}xen such that limy_,co @n(m,i),1 exist for 1 <1< m.
For the step “m — m + 17, choose an appropriate subsequence {n(m + 1, k)}xen € {n(m, k)}xenw such that
limg— 00 Anem+1,k),m+1 €xists. After this recursive construction, we define ny := n(k, k), and since n(k, k) <
n(k, k+1) <n(k+1, k+1), we have {n(k, k)}xen,kem < {n(m, k)}ken,k=m for all m € N. Computing the limits,
we obtain by, := limy_,co an,,m- Passing to an appropriate {m;};en, we are done for the first double limit.
Redoing the previous steps on the found subsequence {an,,m,}k,ien, for the interchanged limits we will find
{my}jen and {ny, }iew, the desired subsequences. O

The proposition above allows to assume, without loss of generality, that the limits in Proposition A.1 exist.
Recall that only the equality of the limits has to be proven.
In this section we provide an extension of Traple’s result to infinite dimensions.

Theorem A.3 ([29]). If X has finite dimension, g € W(R, X) and f € C(R x R", R"), with the property that
K-> WR,RY, pef(-,p),

is continuous for every compact K € R", then {t — f(t, g(t))} € W(R, R").

Traple’s proof does not extend to the infinite dimensional case, for he used both the algebraic structure of
W(R) and the fact that the coordinate-wise polynomials are dense in C(K, R") for K ¢ R" closed and bounded.
Clearly, for general Banach spaces such structure is missing.
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In order to give sufficient conditions for the extension of Traple’s result, hence existence of Eberlein
weakly almost periodic solutions to nonlinear differential equations in infinite dimensions, we need the fol-
lowing definition, where (D, 1) is assumed to be a Hausdorff topological space. Moreover, in this study, D is
X with the weak topology or X with norm topology.

Definition A.4. A function f: J x D — X is called DEWAP if
@ f(-,p) e W({,X)forallp € D,
(ii) for every compact and metric subset K ¢ D, the following map is continuous:

l:I<_>W(]I’X)9 p'_’f(,p)-
We denote these functions by
W@ x D, X) :={f € C(J x D, X) : f is DEWAP}.

With the aim to find a representation for the almost periodic part, we recall some technical results.
Proposition A.5 ([28]). Eberlein weakly almost periodic functions are uniformly continuous.

Thus, W(R, X) fulfills the assumptions made on Y in the previous sections.

Remark A.6. Letf: J x D — X fulfill Definition A.4, and let K ¢ D be compact metric. Then f € BUC(J x K, X).

Proof. As K is compact metric, for given € > 0, we find § > O such that for all x, y € K with dg(x, y) < 6, we
have [|(x) - ((¥)]leo < €. From the compactness of K we find {x,-}lf’=1 with the following properties:
() sup,ek infi<k<n di(z, xx) < 8.
(ii) There exists §; > 0 such that for |t — s| < 81, we have sup; -, If(t, xk) — f(s, xi)|l < €.
(iii) From Definition A.4 (i), we obtain some K > 0 with maxi<x<nllf(-, Xi)leo < K.
First we prove the boundedness. For z € K,

If(t, 2)Il < inf |f(t, 2) — f(t, xi)ll + max [If(¢, xi )]
1<k<n 1<k<n
< inf 1(2) - txi)lleo + max If(-, Xx)lloo
1<k<n 1<k<n
<e+K.

To prove the uniform continuity, let t, s € J, |t — s| < §; and x, y € K, with d(x, y) < 8. Then, we obtain

If(t, x) = f(s, VI < If(t, x) = f(s, )|l + If(s, x) = f(s, Y]
< Ife, x) = f(t, x)ll + (e, xx) = f(s, xi)ll + 1f(s, xx) = f(s, D) + [1(0) = t(W)lloo
< 2sup irlgnlll(Z) — 11X lloo + 1(X) = tW)lleo + sup If(t, xx) = f(s, x1)|l

zeK 1<k< 1<ksn

<2e+€E+eE,

which finishes the proof. O

Remark A.7. From the previous remark we conclude that if f: J x D — X fulfills Definition A.4, and K ¢ D is
compact metric, then the following map is continuous:

S:JxK - W({J,X), (t,x)—{s f(t+s,x)}.

Note that the continuity of  does not imply a norm compact range for every f{( -, z) if z is given. For example,
one may take f(-, z) = g for some g, which is Eberlein weakly almost periodic. Then t is clearly continuous,
but the range of g is not necessarily compact. If D = (X, weak), then for every g € C(J x D, X), lipschitzian in
the second variable, with g( -, x) Eberlein weakly almost periodic forall x € X, and C: X — X compact linear,

f:JxD—-X, (t x) — g(t,Cx),
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fulfills the previous definition. Consequently, for each A € W(R, L(X)) and C: X — X compact linear,
f:JxD—-X, (tx)— A(t)Cx,

will satisfy the assumptions of Definition A.4. An example for A € W(R*, L(X)) is given by A(t) = S(t)CT(t),
provided the underlying space is reflexive, {S(t)}¢cr+, {T(t)}tcr+ are bounded Co-semigroups, and C is a com-
pact linear operator. A proof of this fact can be found in [19].

The restriction on K to be compact metric comes with the range of a function f € W(J, X), since f is contin-
uous, span{f(J)} is separable and f(J) is weakly compact. The fact that the weak topology on weakly compact
sets in separable Banach spaces is metrizable, see [8, Section V.6.3., pp. 434], motivates the restriction.

Theorem A.8. If D = (X, weak), g € W(J, X) and f € W(J x D, X), then {t — f(t, g(t))} € W(J, X).
For the proof, the following technical lemma is needed.

LemmaA.9. Let (D, T) be a topological Hausdorff space, let f: J x D — X with f(-,z) € W(J, X) forall z € D,
and let

I:DHW(U’XL pr()p))

be continuous. Further, let a given sequence {xn m}n,men C D satisfy the following double limits condition:

lim lim xpm,m= lim lim x, ., = z.
n—oco m—oo m—00 Nn—o00

Then the interchanged limits are equal for {f(tm + Wn, Xn,m), X;), Whenever

{(tm; X:n)}me]N cJx Bx-«, {wn}ne]N cJ,
and the iterated limits exist.

Proof. Applying Proposition A.2 to bounded set on R we may assume that the following iterated limits in the
situation of the above lemma exist:

bn,m = (f(tm + wn, Xn,m), X:n>,

b:= lim lim b
n—o00 m—oo n,ms>

b := lim lim by m,
m—00 N—00
an,m = {f(tm + Wy, 2), X:;)
By our hypothesis, we have {t — f(¢, z)} is EWAP, thus {an, m}n,men satisfies the double limits condition, i.e.,

a=lim lim apm= n}im lim an,m.

n—00 Mm—00 —00 N—00

Now,
|b—al<|b-bnml+|bnm— anml|+|anm - al
<|b- bn,m| + ltxn,m) = 1 + lan,m — al.

As the double limits on the right-hand side exist and are equal to 0, we proved b = a. As the same routine
works for b, we finished the proof. O

Proof of Theorem A.8. To verify the double limits condition, we apply the previous lemma for given

{(tm, X))} e €T X Bx- and  {wplnen €7,

to —_—
D:=(X,w) and K := (g(tm + @n)lrmen-

From [8, Section V.6.3, p. 434], we recall that the weak topology on weakly compact subsets in separable
B-spaces is a metric topology. Noting that continuous images of separable spaces are separable, we obtain
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that Y := span{g(J)}, for g € W(J, X) is separable, hence the weak topology on K := g(J}) Yis metric, where w
denotes the weak topology. By an application of Proposition A.2, we may assume that for x,,, = g(tx,, + w1,),
the double limits exist, and g € W(J, X) implies that they have to coincide.

Thus, we are in the situation of the previous lemma and our claim is proved. O

From the proof of Lemma A.9, and using that only local continuity is needed, we give the corollary for
WRC(J, X) := {f € W(J, X) : f(J) is relative compact in X},

which was introduced by Goldberg and Irwin [12].

Corollary A.10. Let, for a Banach space Y, D = (Y, ||-|), and f € W(J x D, X). Then, for any given g: J — Y,
Eberlein weakly almost periodic with a relatively compact range, we have {t — f(t, g(t))} € W(J, X). Moreover,
if {t — f(t,x)} € WRC(JJ, X) forall x € Y, then {t — f{(t, g(t))} € WRC(J, X).

Proof. The reader will have no difficulty to apply the previous theorem to K := g(J), since (K, w) = (K, ||,
hence obtain the first part.

For the second part, it remains to prove the compactness of {f(t, g(t)) : t € J}. Thus, for a given sequence
{tn}nen, we have to find a subsequence {t, }n,en such that {f(¢y,, 8(tn,))}n.en is convergent in X. Since g has
compact range, without loss of generality, g(t,,) — x. For this x € Y, we may choose a subsequence such that
f(tn,, x) — y for some y € X. From the continuity of (, we obtain f( -, g(tn,)) — f(-, x) uniformly on J. Thus,

If(tny 8(tn)) = VI < If(tnys 8(tn,)) = ftnye, 0N + I, x) =yl
<A, 8(tn)) = f- 5 Xlloo + If(Ene, ) = VI,
and the proof is complete. O
In [18, Example 2.17, p. 17], it is shown that the compactness assumption on the range of g is essential.
Corollary A.11. Let A € WRC(J, L(X)). Then {t — A(t)g(t)}is Eberlein weakly almost periodic for allg € W(J, X).
Proof. Letting D := (L(X), || llco)> § € W(J, X), and
f:7xD— X, (t B)w f(t,B):= Bg(t),

the previous corollary serves for the proof. O
From Corollary A.10, we also obtain the next result of Goldberg and Irwin [12].

Corollary A.12. If f €« WRC(J, X), then |f(-)]l € W(J).

Theorem A.8 gives a condition on f such that {t — f(t, x(t))} is Eberlein weakly almost periodic. Noting that
every f € Wy (J, X) satisfies
T
lim |+ I fodr
T—oo || T T
0

it is also of interest when {t — f(¢t, x(t))} € Wy (J, X) for a given x € W (J, X). More generally, we have,

:0,

o0

T
. 1 a _
%LIEOHTJ'(fT_fT)dT _0)
0 (oe]

where f? denotes the almost periodic part of f. Thus, the question arises how the almost periodic part of the
map {t — f(t, x(t)} looks like. In order to discuss these problems, we introduce the projection on the almost
periodic part:

P,: W(J, X) —» W(J, X).
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Proposition A.13. For the decomposition
W(R", X) = AP(R, X)|r+ ® Wo(R", X),

we have that the projection P, onto AP(R, X)r+ has norm less than or equal to one.

Proof. For f € WR", X), we find {Sp}nen ¢ R* such that fs, — f,. Consequently, for given x* € Bx- and
t € R*, we have
Ix*(fa(t) = SliillmIX*(f(HSn)l < Mfllcos

which leads to the claim. O

Corollary A.14. Any two functions f, g € W(J, X) have a common sequence {t,}necN, Such that the translates
{ftntnenw and {8, }nen are weakly convergent to the almost periodic part of f and g, respectively.

Proof. First we consider the case where the almost periodic parts of f and g are equal to zero, and let {u,}nen
and {s,}nen, be chosen such that
fu, =0 and g5, — 0.

By the proposition above, we have that every Eberlein weakly almost periodic function is uniformly continu-
ous, hence the semigroup of translations {T(t)}cy is strongly continuous. Since O(f) = T())f, 0(f)isa weakly
compact closure of translates of a uniformly continuous function, hence 0(f) is compact metrizable in the
weak topology of BUC(J, X). As a consequence of Proposition A.2, we may pass to subsequences of {um}men
and {Sp}nen, such that the iterated limits of {fs +u,,}n,men €xist in the weak topology of BUC(J, X), and, with-
outloss of generality, the sequences are chosen in this way. From the interchangeable double limits condition,
we obtain

— lim w- lim =w- lim w- lim .
w m—»ooW n—>oofs"+u"’ w n—»ooW m—»oofs"+u'"

Thus, if H := T(J)f u T(J)g,and d: H x H — [0, 00) denotes the metric which induces the weak topology,
then we can repeat the arguments on g, and, without loss of generality, we have

lim 1im (d(fs, u,» 0) + d(8s,+u,» 0)) = 0.
Thus, the desired result is a consequence of the classical diagonal process for the double sequence
kn,m = d(fs,+up»> 0) + d(8s,4u, 5 0).
If f, g € W(J, X), then for the function h, given by
h:J - XxX, t— (f(0),8(),

we find, by the double limits criterion and the representation for the dual of X x X, that it is Eberlein weakly
almost periodic if for given sequences {¢y}men, {Wnlnen € J and {x}, }men, Vi }men € Bx+,

Jim Tim {(f(tm + wn), Xp) + ((tm + Wn), Yy} = Hm Hm {(f{tm + wn), Xy} + (8(tm + Wn), ym)},
whenever the iterated limits exist. However, by a successive diagonalisation of the double sequences

{(f(tm*'wn)sx;fn)}n,mgm and {<g(tm+wn),Y;kn>}n,me]Nv

we may assume that their individual iterated limits exist and are equal, hence h is Eberlein weakly almost
periodic. Thus, h has a unique decomposition into an almost periodic and a W, part:

hap = (fap» Sap)> ho = (fo, 8o)-
Clearly, from the decomposition of f and g, we obtain

h= (fap: gap) + (fo, 80)-
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Further, by the observation in the first part of this proof, we have that (fo, go) is Wy, and choosing subse-
quences two times will prove that (fap, g4p) is almost periodic, hence the claim follows from the uniqueness
of the decomposition. Hence, the sequence {t, }nen, for which

h¢, — hgp weaklyasn — oo,
is the desired one. O
Lemma A.15. For every K € D compact metric, and f € W(J x D, X), there exists a sequence {Su}nen Such that
fou (30 = f(- + 8, %) = fal+, %)
forevery x € K, where f,( -, x) denotes the almost periodic part of f(-, x).

Proof. Given any € > 0, we find an n(e) and {xi}?:(i), such that

n(e)

K< [ J{x: I, 0 - f(-, xi)llo < €}

i=1
Since ((K) is compact metric (therefore separable),
S:JxK— W(J,X), (t,x)— TWOf-,x),

is continuous, and S(J, K) separable, by Remark A.7, where {T(t)};cj denotes the semigroup of translations.
Therefore,
L:={f(t+-,x):te], xe K} cS(J,K).

Consequently, L is a subset of a closed and separable subspace Y of Cp(J, X).
By the fact that

n(e)

Lc |JH(C, x) + eBe,g.0,
i=1

we obtain the relative weak compactness for L. Hence, the weak topology on L is metrizable, and we may
choose a metric of the form

N If - 8, x7)|

df,g) =Y 27— with {x] }iew € Bc,g.%:-
S 1+ 1f-gx)l !

Choosing € = %, we obtain, by the way of the first observation, elements {x’l‘ e x’; (1)}’ and by setting
k
1 1 2 2
i ya, b= {0, Xy X1 - Xy 1,

we construct a dense sequence {y;}ien. As a consequence of Corollary A.14 and by a simple induction, we
find, for all n € N, a sequence {s,ﬁ}keN such that

fsg+-,y1) = fa(-,y0)

converges weakly as k — oo forall 1 < i < nin BUC(J, X). This, together with the existence of a metric, implies
that for all n € N, there exists I,, € N such that

S|

d(f(S;l""»Yi),fa(',Yi)) <

foralll>l,and1<i<n.
Now, for a given x € K and yj, we have

d(f(""s;tl’x)’fa('ax)) < d(f('+Sﬁ,x),f('+51r;,)/k))+d(f('+51r:)}/k),fa(',)/k))+d( a(',Yk),fa(',X))
< 20fC, 20 = f, yidlloo + A(fC- + 51, vi), fa (-, yi)),

where the last inequality follows from the definition of the metric and the fact that the norm of the projection
on the almost periodic part is less or equal to one. This completes the proof. O
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Theorem A.16. Let D := (X, w),y € W(J, X) and f € W(J x D, X). Then the following identity holds:

Paf(-,y())(t) = {t — fal(t, Ya(t))},
where f4(-, x) and y, denote the almost periodic parts of f( -, x) and y, respectively.

Proof. From the notation of the theorem, we find that K := {y,(t) : t € J} is a norm compact set. Now let
Ki:=Ku{v,w}, v+ w, v,w ¢ K. Since v, w are two discrete points attached to K; with a positive distance
to K we have that K; is still norm compact. Let

y(0), z=v,
F(t’Z) = f(t’)’(t))’ zZ=W,
f(t, 2), z € K.

By Theorem A.8, F fulfills the hypothesis of Lemma A.15. Note that F is a function on discrete points {x, y}
plus f(¢, z) on K, hence ( is continuous on K;. Consequently, we find a sequence {S,}nen such that

fs, (%) = fa(-,x) foreveryx € K,
yS,, _‘Ya,
fC+8n, y(- +50)) = Paf(-,y(+)).

Using that all the sequences are convergent, it remains to compute the limit, which can be done in the
pointwise weak topology as follows:

X*f(t + sp, y(t +5p)) = X*{f(t + Sp, Y(t + Sn)) = f(t + Sn, Ya(O)} + X*f(t + Sp, Ya(D)).

Since f € W(J x D, X), the first term on the right-hand side tends to zero as n tends to infinity, and the theorem
is proved. O

Corollary A.17. If for a Banach space Y,D = (Y, || -||) and f € W(J x D, X), then, for every given g € WRC(J, Y),

Pa(f(-,8(-) = fa(-, 8a(+))-

Proof. Using that on K := g(J) the norm and the weak topology coincide leads to the given result. O

Remark A.18. We consider the context of Example 5.7 with X = L?(Q),
Y2 = W(R, L*(Q)), Yqr2 = AP(R,L*(Q)), Yor2 = Wo(R, L*(Q))
and
Yr = W(R), Yqr=APR), Yor=Wo(R).
Then, for u € L2(Q), we have
Pay,, T +A0¢(-)) u = {x = Pqy, (I +A09(-)) Mu(x))} ae.

Proof. We give a proof for u € C(Q), and note that C°(Q) = L?(Q). If u € C’(Q), we have that u(Q) is
compact. As ((I + A0¢(+¢))~! is a contraction, we can apply Lemma A.15 to

— . £\, [T+ y
frRxu(Q) —» Rx LY(Q), (y> ((I+Aa¢(t))‘1u>’

which leads to a single sequence {s,}sen With

I +209(-+s2) "ty — J;27(-)y forally e u(Q),
(I +20¢(-+ )" u — ;%8 (- u
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weakly in BUC(RR) and BUC(RR, L?(Q)), respectively. Applying the weaker pointwise and pointwise weak topol-
ogy, we have, for t e Rand v € L*(Q),

Tim (I+ 20¢(t + s2)) u(0) = ;% (hu(x)  ae.,

|(I + A0 (t + 5p)) " tu(x)| < |u(x)| a.e.,
and
TP O, v) = lim G20+ su,v) = [+ 00p(e + s uCove) dx = [ 1,2 Oueoveo d,
Q Q
which concludes the proof. O

Remark A.19. Note that the methods apply in a similar way, when W(J, X) is substituted by W*(R, X)
and Wo(J, X) by W (R, X), since the weak relative compactness of orbit on a positive half line serves for
W, X), Wo(J, X) c BUC(J, X). Thus, W*(R, X);y = W(J, X) and Wg(]R, X)y = Wo(J, X), hence the proofs are
similar.

B Asymptotically almost periodic functions

The classical concepts are due to Frechet [10, 11]. By [5, 6, 10, 11], we have

AAP(R*, X) := {f € BUC(R", X) : Og-(f) is relative compact in BUC(R", X)}
={f e BUC(R", X) : f = gr+ + ¢, g € AP(R, X) and ¢ € Co(R", X)}.

In consequence, we have the following proposition.
Proposition B.1. For the decomposition
AAP(R", X) = AP(R, X)|r+ ® Co(R", X)
we have that the projection P, onto AP(R, X)r+ has norm less than or equal to one.
Using compactness methods we have the following theorem.

Theorem B.2. Let f: R x X — X be such that f(-, x) € AAP(R*, X), with f(t, -) being uniformly Lipschitz with
a constant L, and f,(-, x) its almost periodic part. Further, let g € AAP(R", X), with g its the almost periodic
part. Then

{t = f(t, g(t)} € AAP(RY, X), {t = f(t, g(t)}, = {t = fa(t, a(t))}.

Proof. As g(R") is relative compact, Lemma A.15 serves for the needed norm convergent subsequence, so
that for all x € g(R*), f(- + sn, X) — fa(-, x) weakly. The relative compactness O(f( -, x)) serves for the norm
convergence. The rest of the proof is straightforward. O

C Almost automorphic functions

Bochner introduced the notion of almost automorphy.

Definition C.1. A function f € C(RR, X) is said to be almost automorphic if for any real sequence {s,} N, there
exists a subsequence {sp, }xen such that

lim f(t+sp,) =g(t) forallteR,
k—o00

and
lim g(t-sp,)=f(t) forallteR.
k—o00
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We define
AA(R, X) = {f € C(R, X) : f almost automorphic}.

If the limit g is continuous, then f is called continuous (Bochner)-almost automorphic. We define
CAA(R, X) = {f € C(R, X) : f continuous almost automorphic}.

Noting, that for f € AA(R, X), f(R) is relatively compact, clearly, we have AA(R, X) c Cp(R, X), and that
AA(R, X) is translation invariant.
The following Theorem is due to [30, Lemma 4.1.1, p. 742].

Theorem C.2. Continuous almost automorphic functions are uniformly continuous, i.e.,
CAA(R, X) c BUC(R, X).

Remark C.3. In [7], the asymptotically almost automorphic functions AAA(R*, X) are discussed. By defini-
tion, we have
AAA(RY, X) = AA(R, X) g+ ® Co(R", X).

For suitable f: R x X — X, the almost automorphic part
Poit = f(t, x()} = {t = fa(t, xa(t))}

was computed. Thus, the underlying study becomes applicable, when switching from almost automorphy to
continuous almost automorphy, and adding for f( ¢, -) the uniform continuity and the Lipschitz continuity,
in the first and second variable, respectively. As for u = u4 + uo,

{ug(t) : t e R} c {u(t) : t € R*},

and the projection has a norm less than one.
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