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Abstract: In this paper, we are concerned with the qualitative analysis of solutions to a general class of non-
linear Schrödinger equations with lack of compactness. The problem is driven by a nonhomogeneous dif-
ferential operator with unbalanced growth, which was introduced by Azzollini [1]. The reaction is the sum
of a nonautonomous power-type nonlinearity with subcritical growth and an inde�nite potential. Our main
result establishes the existence of at least one nontrivial solution in the case of low perturbations. The proof
combines variational methods, analytic tools, and energy estimates.
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1 Introduction
In a recent paper, Azzollini [1] introduced a new class of quasilinear operators with a variational structure.
He considered nonhomogeneous di�erential operators of the type

u 7→ div[φ′(|∇u(x)|2)∇u(x)],

where x ∈ RN and φ ∈ C1(R+,R+) is a potential with unbalanced growth near zero and at in�nity. For
instance, such a behaviour occurs ifφ(t) = 2(

√
1 + t−1), which corresponds to the prescribedmean curvature

operator (capillary surface operator), which is de�ned by

div
(

∇u√
1 + |∇u|2

)
. (1.1)

More generally, φ(t) behaves like tq/2 for small t and tp/2 for large t, where 1 < p < q < N. An example of
potential φ of this type is given by

φ(t) = 2
p [(1 + t

q/2)p/q − 1].

This potential generates the di�erential operator

div
[
(1 + |∇u|q)(p−q)/q|∇u|q−2∇u

]
.

Another important example includes the (p, q)-Laplace operator

u 7→ ∆pu + ∆qu,
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which is generated by φ(t) = tp/2 + tq/2 for all t ≥ 0.
Due to the unbalanced growth of φ, the associated functional is a double-phase energy. The study of non-

autonomous variational integrals with double growth has been initiated by Marcellini [15–17]. We also point
out the pioneering work by Zhikov [27], in relationship with phenomena arising in nonlinear elasticity and
strongly anisotropic materials in the context of homogenisation. These functionals revealed to be important
also in the study of duality theory and in the context of the Lavrentiev phenomenon [28].We recall that Zhikov
considered the variational integral

Pp,q(u) :=
∫
Ω

(|∇u|p + a(x)|∇u|q)dx, 0 ≤ a(x) ≤ L, 1 < p < q,

where the modulating potential a(·) dictates the geometry of the composite made by two di�erential materi-
als, with hardening exponents p and q, respectively.

In this paper we study a nonlinear Schrödinger equation driven by the operator de�ned in (1.1) and with
lack of compactness. A feature of this paper is the presence of a power-type subcritical reaction and an indef-
inite potential. Related problems have been studied by Azzollini, d’Avenia and Pomponio [2] and Chor� and
Rădulescu [12].

The study developed in the present paper is motivated by the central role played by the Schrödinger
equation in quantum theory, Newton conservation laws in classical mechanics, Bose-Einstein condensates
and nonlinear optics, stability of Stokes waves in water, propagation of the electric �eld in optical �bers,
self-focusing and collapse of Langmuir waves in plasma physics, deepwater waves and freak waves (or rogue
waves) in the ocean, etc.

Recent papers dealing with (isotropic or anisotropic) double-phase energy include the contributions of
Bahrouni et al. [4–6], Baroni, Colombo and Mingione [7], Cencelj, Rădulescu and Repovš [11], Mingqi, Răd-
ulescu and Zhang [18, 19], Papageorgiou, Rădulescu and Repovš [20–22], Ragusa and Tachikawa [24], and
Zhang and Rădulescu [26]. Some of themain abstract methods used in this paper have been developed in the
monographs by Brezis [8] and Papageorgiou, Rădulescu and Repovš [23].

2 The main result
In this paper, we are concerned with the study of the following quasilinear Schrödinger equation with lack
of compactness

− div[φ′(|∇u|2)∇u] + φ′(u2)u = a(x) |u|r−2u + λf (x) in RN , (2.2)

where N ≥ 3 and λ is a real parameter.
We describe in what follows the main hypotheses on the above considered problem.
Let p, q and r be real numbers such that

1 < p < q < r < p* :=


Np
N − p if p < N

+∞ if p ≥ N .
(2.3)

As in Azzollini, d’Avenia and Pomponio [2], we assume that the potential φ ∈ C1(R+,R+) satis�es the
following hypotheses:
(φ1) φ(0) = 0;
(φ2) there exists c1 > 0 such that φ(t) ≥ c1tp/2 if t ≥ 1 and φ(t) ≥ c1tq/2 if 0 ≤ t ≤ 1;
(φ3) there exists c2 > 0 such that φ(t) ≤ c2tp/2 if t ≥ 1 and φ(t) ≤ c2tq/2 if 0 ≤ t ≤ 1;
(φ4) there exists µ ∈ (0, 1) such that 2tφ′(t) ≤ rµφ(t) for all t ≥ 0;
(φ5) the mapping t 7→ φ(t2) is strictly convex.
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These hypotheses imply that

φ(|∇u|2) '
{

|∇u|p , if |∇u| � 1;
|∇u|q , if |∇u| � 1.

Since our hypotheses allow that φ′ approaches 0, problem (2.2) is both degenerate and non-uniformly
elliptic.

We assume that the weight a : RN → R in problem (2.2) satis�es
(a) a ∈ L∞(RN) and essinfx∈RN a(x) = a0 > 0.

We describe in what follows the abstract setting corresponding to problem (2.2).
Let ‖ · ‖r denote the Lebesgue norm for all 1 ≤ r ≤ ∞ and C∞c (RN) the space of all C∞ functions with a

compact support.

De�nition 1. We de�ne the function space Lp(RN) + Lq(RN) as the completion of C∞c (RN) in the norm

‖u‖Lp+Lq := inf{‖v‖p + ‖w‖q; v ∈ Lp(RN), w ∈ Lq(RN), u = v + w}.

In the same way we can de�ne the space Lp(Ω) + Lq(Ω) for an arbitrary open set Ω ⊂ RN . However, the space
Lp(Ω) + Lq(Ω) is of interest only if p < q and the set Ω has in�nite measure. Indeed, if either |Ω| < +∞ or
p = q, then Lq(Ω) ⊂ Lp(Ω), hence Lp(Ω) + Lq(Ω) = Lq(Ω).

As established in [2, Proposition 2.2], the space Lp(RN) + Lq(RN) is re�exive and (Lp(RN) + Lq(RN))′ =
Lp

′
(RN) + Lq

′
(RN). For more properties of the Orlicz space Lp(RN) + Lq(RN) we refer to Badiale, Pisani, and

Rolando [3, Sect. 2].
On Lp(RN) + Lq(RN) we can also consider the equivalent norm ‖ · ‖* given by

‖u‖* := inf
v+w=u

max{‖v‖p , ‖w‖q}.

Consider the space Lp
′
(RN) ∩ Lq

′
(RN) endowed with the norm

‖u‖Lp′∩Lq′ := ‖u‖p′ + ‖u‖q′ .

According to [3, Lemma 2.9], for all f ∈ Lp
′
(RN)∩Lq

′
(RN) and u ∈ Lp(RN)+Lq(RN), the following Hölder-

type inequality holds: ∫
RN

fudx ≤ ‖f‖Lp′∩Lq′ ‖u‖
*. (2.4)

We de�ne the function space X as the completion of C∞c (RN) in the norm

‖u‖p,q := ‖u‖Lp+Lq + ‖∇u‖Lp+Lq .

De�nition 2. Assume that f ∈ Lp
′
(RN) ∩ Lq

′
(RN). A weak solution of problem (2.2) is a function u ∈ X \ {0}

such that for all v ∈ X∫
RN

[
φ′(|∇u|2)∇u∇v + φ′(u2)uv

]
dx =

∫
RN

a(x) |u|r−2uvdx + λ
∫
RN

f (x)vdx.

According to the terminology introduced by Fučik, Nečas, Souček and Souček [13, p. 117] we can say that u is
an eigenfunction of the nonlinear problem (2.2) corresponding to the eigenvalue λ.

The main result of this paper establishes the following existence property in the case of ’low perturba-
tions’.

Theorem 1. Let f ∈ Lp
′
(RN)∩ Lq

′
(RN) and assume that hypotheses (2.3), (φ1)-(φ5) and (a) are ful�lled. Then

there exists a positive number λ* such that problem (2.2) has at least one solution for all |λ| < λ*.
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We point out that the study of these problems was initiated by Azzollini, d’Avenia and Pomponio [2]. They
studied the problem

−div[φ′(|∇u|2)∇u] + |u|α−2 = |u|s−2u in RN (N ≥ 3).

The potential φ satis�es the same hypotheses as above, while 1 < p < q < N, 1 < α ≤ p*q′/p′, and
max{q, α} < s < p*. The lack of compactness due to the unboundedness of the Euclidean space is handled in
[2] by restricting the study to the case of radially symmetric weak solutions. In the framework developed in
[2], a central role is played by the compact embedding of a related function space with radial symmetry into
a related Lebesgue space. This abstract setting does not hold in this work. Due to the lack of symmetry of the
problem, we develop a general approach that cannot be reduced to the radial case as in [2].

Finally, we point out that with similar arguments we can treat the more general problem

−div[φ′(|∇u|2)∇u] + φ′(u2)u = a(x) h(x, u) + λf (x) in RN (N ≥ 3)

where h : RN ×R→ R is a Carathéodory function satisfying the following conditions:
(h1) h(x, u) = o(uq−1) as u → 0+, uniformly for a.e. x ∈ RN ;
(h2) h(x, u) = O(ur−1) as u →∞, uniformly for a.e. x ∈ RN ;
(h3) there exists θ > r such that 0 < θH(x, u) ≤ uh(x, u) for all u > 0, a.e. x ∈ RN , where H(x, u) =

∫ u
0 h(x, t)dt.

3 Auxiliary results
The energy functional associated to problem (2.2) is J : X→ R de�ned by

J(u) := 1
2

∫
RN

φ(|∇u|2)dx + 1
2

∫
RN

φ(u2)dx − 1
r

∫
RN

a(x)|u|rdx − λ
∫
RN

f (x)udx.

By standard argumentsweobtain that J iswell-de�ned and is of class C1; we refer toAzzollini [2, Theorem
2.5] for more details. Moreover, for all u, v ∈ X its Gâteaux directional derivative is given by

J′(u)(v) =
∫
RN

[
φ′(|∇u|2)∇u∇v − φ′(u2)uv − a(x) |u|r−2uv − λf (x)v

]
dx.

An important role in our argumentswill be played by the following version of themountain pass theorem,
which is due to Brezis and Nirenberg [9].

Theorem 2. Let X be a real Banach space and assume that J : X → R is a C1-functional that satis�es the
following geometric hypotheses:
(i) J(0) = 0 and there exist positive numbers a and ρ such that J(u) ≥ a for all u ∈ X with ‖u‖ = ρ;
(ii) there exists e ∈ X with ‖e‖ > ρ such that J(e) < 0.

Set
P := {p ∈ C([0, 1]; X); p(0) = 0, p(1) = e}

and
c := inf

p∈P
sup
t∈[0,1]

J(p(t)).

Then there exists a sequence (un) ⊂ X such that

lim
n→∞

J(un) = c and lim
n→∞

‖J′(un)‖X* = 0.

Moreover, if J satis�es the Palais-Smale condition at the level c, then c is a critical value of J.

We prove in what follows that the mountain pass geometry described in the above hypotheses (i) and (ii) are
ful�lled.
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Lemma 1. For any R > 0 large enough, there exists ζ ∈ X such that J(ζ ) < 0 and ‖ζ‖ ≥ R.

Proof. Fix ψ ∈ X \ {0}. We �nd ζ of the form ζ = tψ for t > 0 large enough.
By our hypotheses, we have

J(tψ) ≤ c22

∫
|∇ψ|>1/t

tp|∇ψ|pdx + c22

∫
|∇ψ|≤1/t

tq|∇ψ|qdx

+ c22

∫
|ψ|>1/t

tp|ψ|pdx + c22

∫
|ψ|≤1/t

tq|ψ|qdx

− t
r

r

∫
RN

a(x)|ψ|rdx − λt
∫
RN

fψdx

≤ c22

tp ∫
|∇ψ|>1/t

|∇ψ|pdx + tq
∫

|∇ψ|≤1/t

|∇ψ|qdx


+ c22

tp ∫
|ψ|>1/t

|ψ|pdx + tq
∫

|ψ|≤1/t

|ψ|qdx

 − c3tr − c4t,
where c3 and c4 are positive numbers.

By assumption (2.3) we conclude that J(tψ) < 0 for t large enough.

The following result establishes a lowperturbationproperty,which remains valid only for small perturbations
from the origin of the parameter λ. Roughly speaking, this result shows that themountain pass geometry does
not change in the case of ’low’ perturbations.

Lemma 2. There exists positive numbers a and ρ such that J(u) ≥ a for all u ∈ X with ‖u‖p,q = ρ.

Proof. By hypothesis (φ2) we have for all u ∈ X

J(u) ≥ c12

∫
|∇u|>1

|∇u|pdx + c12

∫
|∇u|≤1

|∇u|qdx

+ c12

∫
|u|>1

|u|pdx + 12
2

∫
|u|≤1

|u|qdx

−1r

∫
RN

a(x)|u|rdx − |λ|
∫
RN

|fu|dx.

Thus, there exists c5 > 0 such that for all u ∈ X

J(u) ≥ c5‖u‖qp,q −
‖a‖∞
r ‖u‖rr − |λ|

∫
RN

|fu|dx. (3.5)

By [1, Theorem 2.1], there exists c6 > 0 such that for all u ∈ X

‖u‖r ≤ c6‖u‖p,q . (3.6)

Using (2.4) and (3.6), relation (3.5) yields for all u ∈ X

J(u) ≥ c5‖u‖qp,q −
c6‖a‖∞

r ‖u‖rp,q − c6|λ|‖f‖Lp′∩Lq′ ‖u‖
*

≥ c5‖u‖qp,q −
c6‖a‖∞

r ‖u‖rp,q − c7 |λ| ‖u‖p,q .
(3.7)

Next, using assumption (2.3), we �nd a0 > 0 and ρ > 0 such that J(u) ≥ a0 for all u ∈ X with ‖u‖p,q = ρ.
We �x some small ρ > 0 with this property. Taking λ ∈ R such that |λ| ≤ a0/(2c7ρ) and using (3.7), we
conclude that

J(u) ≥ a := a0/2 > 0 for all u ∈ X with ‖u‖p,q = ρ.

The proof of Lemma 2 is now complete.
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Set
F := {γ ∈ C([0, 1];X); γ(0) = 0, γ(1) = ζ},

where ζ is as in Lemma 1.
We de�ne

c := inf
γ∈F

max
t∈[0,1]

J(γ(t)). (3.8)

We observe that c ≥ 0.
By Theorem 2, there exists a sequence (un) ⊂ X such that

J(un)→ c and J′(un)→ 0 as n →∞. (3.9)

Lemma 3. The sequence (un) ⊂ X satisfying (3.9) is bounded.

Proof. We have

J(un) −
1
r J

′(un)un =
∫
RN

(
1
2φ(|∇un|

2) − 1
r φ

′(|∇un|2)|∇un|2
)
dx

+
∫
RN

(
1
2φ(u

2
n) −

1
r φ

′(u2n)u2n
)
dx

−λ
(
1 − 1

r

)∫
RN

f (x)undx.

(3.10)

By (2.4) we obtain for all n and some positive constant c8

J(un) −
1
r J

′(un)un ≥
∫
RN

(
1
2φ(|∇un|

2) − 1
r φ

′(|∇un|2)|∇un|2
)
dx

+
∫
RN

(
1
2φ(u

2
n) −

1
r φ

′(u2n)u2n
)
dx

−c8 |λ| ‖un‖p,q .

(3.11)

Assumption (φ4) implies that
1
2 φ(t) −

1
r tφ

′(t) ≥ 1 − µ2 φ(t) for all t ≥ 0,

where µ ∈ (0, 1). Returning to (3.11) we deduce that for all n

J(un) −
1
r J

′(un)un ≥ 1 − µ2

∫
RN

[
φ(|∇un|2) + φ(u2n)

]
dx

−c8 |λ| ‖un‖p,q
≥ c10min{‖un‖pp,q , ‖un‖qp,q} − c8 |λ| ‖un‖p,q ,

(3.12)

for some c10 > 0.
On the other hand, since {un} satis�es (3.9), we have

J(un) −
1
r J

′(un)un = c + O(1) + o(‖un‖p,q) as n →∞. (3.13)

Combining relations (3.12) and (3.13) we conclude that the sequence (un) ⊂ X is bounded.

4 Proof of the main result
In this section we give the proof of Theorem 1.

By Lemma 3 and [3, Corollary 2.11] we can assume that, up to a subsequence,

un ⇀ U in X. (4.14)
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Lemma 4. The function U given in (4.14) is a solution of problem (2.2).

Proof. Let η ∈ C∞c (RN) and denote ω := supp (η).
By Lemma 3 and [3, Proposition 2.17(ii)] we can assume, going eventually to a subsequence, that

un → U in Lr(ω). (4.15)

De�ne the functionals J1, J2 : X→ R by

J1(v) =
1
2

∫
ω

φ(|∇v|2)dx + 1
2

∫
ω

φ(v2)dx

and
J2(v) =

1
r

∫
ω

a(x)|v|rdx + λ
∫
ω

f (x)vdx.

Thus, by relation (3.9), we have

J′1(un)(η) − J′2(un)(η)→ 0 as n →∞. (4.16)

Next, by (4.15) and since the function

X 3 u 7→ F(x, u) ∈ L1(ω)

is compact, we obtain
J2(un)→ J2(U) as n →∞

and
J′2(un)(η)→ J′2(U)(η) as n →∞.

Using these relations in conjunction with (4.16) we have

J′1(un)(η)→ J′2(U)(η) as n →∞. (4.17)

Next, by condition (φ5), we deduce that A is a nonlinear convex mapping. It follows that

J1(un) − J1(U) ≤ J′1(un)(un − U) for all n ≥ 1. (4.18)

Combining now (4.14) and (4.17), relation (4.18) implies that

J1(U) ≥ lim sup
n→∞

J1(un).

Since J1 is convex and continuous, then it is lower semicontinuous. It follows that

J1(U) ≤ lim inf
n→∞

J1(un).

Thus, the last two relations yield
A(un)→ A(U) as n →∞.

Using the same ideas as in [2, p. 210], we obtain as n →∞

∇un → ∇U in Lp(ω) + Lq(ω),∫
ω

a(x)|un|rdx →
∫
ω

a(x)|U|rdx

and ∫
ω

f (x)undx →
∫
ω

f (x)Udx.
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It follows that ∫
ω

φ′(|∇U|2)∇U∇ηdx +
∫
ω

φ′(U2)Uηdx =
∫
ω

a(x)|U|r−2Uηdx

+λ
∫
ω

f (x)ηdx.
(4.19)

By density arguments (using the de�nition ofX), we deduce that relation (4.19) holds for all η ∈ X, that is, U
is a solution of (2.2). The proof of Lemma 4 is now complete.

We conclude the proof of Theorem 1 by establishing that U ≠ 0.
By relation (3.9) we deduce that there is a positive integer N such that for all n ≥ N we have

c
2 ≤ J(un) −

1
2 J′(un)(un)

= 1
2

∫
RN

[
φ(|∇un|2) − φ′(|∇un|2)|∇un|2

]
dx

+12

∫
RN

(
φ(u2n) − φ′(u2n)u2n

)
dx

+
(
1
2 −

1
r

)∫
RN

a(x)|un|rdx −
λ
2

∫
RN

f (x)undx.

(4.20)

Since the mapping t 7→ φ(t2) is convex (by hypothesis (φ5)) we have

φ(t2) ≤ φ′(t2)t2,

hence
φ(|∇un|2) − φ′(|∇un|2)|∇un|2 ≤ 0 (4.21)

and
φ(u2n) − φ′(u2n)u2n ≤ 0. (4.22)

Let c be the real number de�ned in (3.8). By de�nition, we have c ≥ 0. We claim that

c > 0. (4.23)

Indeed, if not, then for all ε > 0 there is γ ∈ F such that

0 ≤ max
t∈[0,1]

J(γ(t)) < ε.

Let a be the real positive number given by Lemma 2 and take 0 < ε < a. Fix γ0 ∈ F joining the origin and ζ
given by Lemma 1with R big enough, hence γ0(0) = 0 and γ0(1) = ζ . It follows that γ0(0) = 0 and ‖γ0(1)‖ > R.
By continuity, there exists t0 ∈ (0, 1) such that ‖γ0(t0)‖ = R, hence

‖J(γ0(t0))‖ = a > ε.

This contradiction shows that our claim (4.23) is true.
We �rst assume that r > 2. Returning to (4.20) and using (4.22) and (4.23), it follows that for all n big

enough we have

0 < c2 ≤
(
1
2 −

1
r

)∫
RN

a(x)|un|rdx −
λ
2

∫
RN

f (x)undx. (4.24)

Arguing by contradiction, we assume that U = 0. We �rst assume that r ≤ 2. Then by the Hölder-type
inequality (2.4) and (4.24) we obtain

0 < c2 ≤
|λ|
2 ‖f‖Lp′∩Lq′ ‖un‖

*.
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If either λ = 0 or (up to a subsequence) ‖un‖* → 0 as n → ∞, then we have a contradiction. If not, we can
take |λ| small enough (as requested in Theorem 1) in order to �nd a contradiction. So, U ≠ 0.

We now consider the case r > 2. Using again relation (4.24) we obtain for all n su�ciently large

0 < c2 ≤ c11
∫
RN

a(x)|un|rdx + c12 |λ| ‖un‖*, (4.25)

where c11 and c12 are positive constants. We argue again by contradiction and assume that U = 0. Then with
an argument as above we obtain that for all n large enough we have

0 < c4 ≤ c11
∫
RN

a(x)|un|rdx.

Using now (4.15) and the assumption U = 0 we obtain a contradiction.
We can give a direct argument in order to show that U ≠ 0. Indeed, by (4.25), it follows that (un) does not

converge strongly to 0 in Lr(RN). From now on, with the same argument as in Gazzola and Rădulescu [14, pp.
55-56], we obtain that U ≠ 0.

We conclude that U is a nontrivial solution of problem (2.2) and the proof is complete.

Comments. (i) Related arguments can be applied in order to show that the same low-perturbation result
remains true if hypotheses (a) is replaced by conditions
(a1) a ∈ L∞loc(R

N \ {0}) and essinfx∈RN a(x) > 0;
(a2) limx→0 a(x) = lim|x|→∞ a(x) = +∞.

(ii)We also point out that the same arguments can be developed in order to analyze the “critical frequency
case", which corresponds to potentials a(x) satisfying lim inf|x|→∞ a(x) = 0; see Byeon and Wang [10].

(iii) We do not have any results in the case of “high perturbation", that is, if |λ| is big enough. It seems
that the same arguments based on the mountain pass theorem cannot be applied.

(iv) We conjecture that with arguments as those developed in Rădulescu and Smets [25] we can prove
that, in fact, problem (2.2) has at least two nontrivial solutions, provided that |λ| is small enough.
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