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Abstract: This paper deals with a nonlinear degenerate parabolic equation of order α between 2 and 4 which

is a kind of fractional version of the Thin FilmEquation. Actually, this one corresponds to the limit value α = 4

while the Porous Medium Equation is the limit α = 2. We prove existence of a nonnegative weak solution for

a general class of initial data, and establish its main properties. We also construct the special solutions in

self-similar form which turn out to be explicit and compactly supported. As in the porous medium case, they

are supposed to give the long time behaviour or the wide class of solutions. This last result is proved to be

true under some assumptions.

Lastly, we consider nonlocal equationswith the same nonlinear structure butwith order from4 to 6. For these

equations we construct self-similar solutions that are positive and compactly supported, thus contributing to

the higher order theory.
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1 Introduction
In this paper we are mainly interested in the analysis of the following system of partial di�erential equations

∂tu − div (m(u)∇p) = 0, in Rd × (0, T)

p = Lsu, in Rd × (0, T)

u(x, 0) = u
0

(x), in Rd ,

(1.1)

where Ls := (−∆)

s
, s ∈ (0, 1), is the fractional Laplacian (see, e.g., [51, 65]), the dimension d ≥ 1, and the

mobility function m is linear, namely m(u) = u. From a mathematical point of view, System (1.1) appears, at

least formally, as an interpolationbetween the second-order nonlinear di�usionmodel calledPorousMedium

Equation (case s = 0, described in the survey paper [5] and in themonograph [69], where complete references

to origins, theory and applications are given) and and the fourth-order Thin Film Equation (case s = 1) for

which the theory of existence of weak solutions in one and in higher dimensions is quite advanced. Without

claiming any completeness, we refer to [11, 13, 15, 24, 32] and to the review papers [10, 56].

As for physical applications, the system has been analysed in dimension one for s = 1/2 and power law

mobilities by Imbert-Mellet in [45] on a bounded interval with Neumann boundary conditions as a model for

the dynamics of cracks. The study is continued in [46]. The one dimensional analysis for a general s ∈ (0, 1)

has been completed in [66] and [67]. Selected references to the applied literature are given in those papers.

We recall that Barenblatt was quite involved in the mathematical modeling of hydraulic fractures, [7].
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Another mathematical motivation comes from comparison with the system studied in the papers [16] in

1D and [21] in all dimensions, respectively. This system reads
∂tu − div (u∇p) = 0, in Rd × (0, T)

p = L −1

s u, in Rd × (0, T)

u(x, 0) = u
0

(x), in Rd ,

(1.2)

This model has been widely studied and has interesting applications [16, 39, 40, 44]. The di�erence with

system (1.1) clearly lies in the constitutive law that relates the density u with the pressure p, that implies that

the order of di�erentiation is (formally) 2 − 2s. Consequently, (1.2) can be seen as an interpolation between

the porous medium equation (2nd order) and the (0-th order) superconductor model analysed by Ambrosio

and Serfaty in [4]. Themodel is called in [71] “PorousMediumDi�usionwithNonlocal Pressure”. On the other

hand, the present Model (1.1) has formally order of di�erentiation 2 + 2s ∈ (2, 4).

Our aim in this paper is to develop a basic theory for System (1.1). As a �rst issue, we prove existence of

suitably de�ned weak solution in the general multidimensional setting for linear mobilities (see the Section

Open Problems 7 for a discussion on this topic). A remarkable feature of the weak solutions we construct

is positivity. This property is proved in our general setting along the lines of papers [13] and [45] and it is a

nontrivial e�ect of the degeneracy of the mobility. We also show that weak solutions originating from initial

conditions with �nite �rst moment, keep their �rst moment �nite during the whole evolution. Based on this

estimate, we will also prove (for a particular class of weak solutions, see below and Subsection 5.1) that also

the second moment, if �nite at t = 0, remains �nite.

The investigation of the intermediate range is thus quite important from the mathematical point of view

since both borderline cases belong to very di�erent types of equations. We point out that uniqueness is not

proved, it seems to be a di�cult problem.

A second issue of our analysis concerns the existence of self-similar solutions. Our strategy has some

similarity with the analysis in [22] and, in general, with the analysis of the long time behavior of the porous

medium equation (see [23]). In particular, we show that self-similar solutions to (1.1) with the regularity pro-

vided by the existence Theorem 3.1 are related to stationary solutions of a nonlocal Fokker-Plank type equa-

tion. More precisely, starting from a weak solution u of (1.1), if function v is implicitly de�ned as

u(x, t) =

1

(1 + t)α v
( x

(1 + t)β
, log(1 + t)

)
, (1.3)

with the proper choice of α and β:

α =

d
d + 2(1 + s) , β =

1

d + 2(1 + s) , (1.4)

then (see the details in Section 4) v(y, τ) is a weak solution of the following Fokker-Planck type equation∂τv − div y
(
v
(
∇yw + βy

))
= 0,

w = Lsv.
(1.5)

Among the class of stationary solutions to (1.5) we are interested in those nonnegative functions for which{
v
(
∇yw + βy

)
= 0 in Rd ,

w = Lsv.
(1.6)

The reason for looking at this particular class of stationary solutions is motivated by the fact that these are

the stationary solutions that emerge in the long time behavior of (1.5) as solutions with zero dissipation (see

Section 5). Recalling that we are looking for positive solutions, (1.6) reduces to the free boundary problem

∇
(
Lsv +

β
2

|y|2
)

= 0 on P := {v > 0}. (1.7)
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In principle, the geometry of the positivity setP can be quite complicated (see [38] and the PhDThesis [50] for

the Thin Film case). In particular, P can be disconnected. However, restricting to solutions with connected

support, we have a quite complete picture of the self-similar solutions to (1.1). More precisely, we can show

that solutions to (1.7) are indeed solutions of an obstacle problem (the obstacle being the zero level set) for

the energy

E (v) :=

1

2

ˆ
Rd
|Ls/2

v|2dy +

ˆ
Rd

( β
2

|y|2 − 1

)
vdy, (1.8)

thus showing that self-similar solutions are somehowminimal for the energy E . Remarkably, the self-similar

solutions are radially decreasing, compactly supported and with explicit form given by formula (1.3), with α
and β as in (1.4). Moreover, the stationary pro�le v has the form

v(y) = (C
1
− C

2
|y|2)

1+s
+

, (1.9)

where C
2

= C
2

(d, s) > 0 (see (4.43) for the exact value) while C
1
> 0 is a free constant that allows to adjust

either the mass of the solution or the radius of its support. Showing that from the minimizers of (1.8) one can

obtain solutions with the explicit form (1.9) and with the free constant C
1
requires some work. In particular,

our analysis relies on the following steps. At �rst, by scaling and comparison and relying on the results of

Dyda ([30]) we show that the solution of the obstacle problem for (1.8) has the explicit form (the D in the

subscript refers to Dyda)

vD(y) :=

1

λ2sκs,d
(1 − λ2|y|2)

1+s
+

, (1.10)

where λ :=

√
β/(2γs,d) and is supported in BRD where RD = 1/λ. In a second step, by a further scaling, we

�nally obtain (1.9) These questions are discussed in full detail in Subsection 4.2.1.

Note that the limit cases s = 0 and s = 1, are known and agree with this formula. For s = 0 we get the

well-known Barenblatt pro�le

v = (C
1
− C

2
|y|2)

+
(1.11)

for the porousmediumcase, thatwas found around 1950 in papers by Zeldovich-Kompanyeets [72] andBaren-

blatt [6] (they deal with general power-like mobilities m(u) = uk). For s = 1 we get the zero-angle pro�le

v = (C
1
− C

2
|y|2)

2

+
(1.12)

for the corresponding Thin Film equation (see [60], [14] and [32]). The similarity exponents α and β also agree,

being based only on dimensional considerations. It is interesting to note that these results are somewhat sim-

ilar to the ones obtained in [22] for the porous medium with fractional pressure, which is a quite di�erent

setting. Remarkably, the self-similar solutions of that problem follow formulas (1.3) and (1.9) with s ∈ (0, 1)

replaced by −s, cf. [16], [17] and [70]. In this way we get a panorama of related self-similar patterns for equa-

tions of (formal) order ranging from 0 to 4.

In all cases the self-similar solutions are of the type called source-type solutions, which means that the

initial data of u(x, t) is necessarily a point mass distribution, i.e., a Dirac delta. This property follows easily

from the conservation ofmass due to the divergence formof the equation and the compact expanding support

that shrinks to a point as t → 0. Actually, all of these solutions have free boundaries of the form |x| = R tβ. The
study of the behaviour and regularity of free boundaries for solutions with general initial data is a di�cult

topic (see Section 7 in this paper for some discussion).

Our analysis is purely variational and uses symmetrization comparison arguments to prove the compact-

ness and radial symmetry of the support. Moreover, the analysis works in any dimension of space and for any

s ∈ (0, 1). We must point out that our analysis is restricted to a linear mobility function. The general case of

power function mobility is considered, with a di�erent analysis, only in dimension one and for s = 1/2 in

the paper [46]. In particular, the self-similar solution (1.9) corresponds to the solution of the “Zero Toughness

Case" for dimension one in [46] with a linear mobility function and s = 1/2.

A third issue of the paper is the long-time behavior of the weak solutions to (1.1). As in [22] and in [23],

this is done by working on the Fokker-Planck equation (1.5).
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As we have already mentioned, if we rescale according to (1.3) a weak solution of (1.1) we get a weak

solution of the Fokker-Planck equation (1.5) that preserves mass and positivity. The aim is then to prove that

the rescaled orbits converge to our selected class of self-similar solutions. This is achieved at the prize of

accepting some regularity assumption that restricts the class for which we can justify the classical study

of long time behaviour. We explain the problem at the beginning of Section 5. Let us now say that a main

ingredient in the proof of the needed energy-dissipation estimate is the following equality (see Lemma 5.4)

d − 2s
2

ˆ
Rd
|Ls/2

u|2dx = −

ˆ
Rd
p(x ·∇u)dx. (1.13)

This identity furnishes the exact balance between the second moment and the fractional energy of Section

5. At present, we are able to prove (5.1) for functions that satisfy a suitable decay at in�nity. As the proof

will show, this is needed to ensure the �niteness of the righthand side of (5.1). Therefore, we investigate the

long time behaviour for weak solutions for which the right hand side is �nite (we refer to 5.4 for the precise

assumption). It is important to observe that weak solutions with compact support actually satisfy (5.1). It is

an open problem to prove that (5.1) holds for all weak solutions.

It is interesting to note that an analogous identity holds also the weak solutions of the fractional porous

medium equation (1.2) constructed in [21] (see Lemma 5.5). In this case the term in the left hand side is the

energy for which (1.2) is a Wasserstein gradient �ow (cf. [52]).

The �rst step in the long time behaviour analysis is to prove (see Theorem 5.7) that for large times the

weak solutions to the Fokker-Planck equation approach the stationary solutions, up to the extraction of a

subsequence. It is interesting to observe that the above energy E (1.8) decreases on weak solutions to the

Fokker-Planck equation (namely, properly rescaled weak solutions to (1.1)), thus suggesting that the long-

time behaviour of the weak solutions of (1.1) can be described by the constructed self-similar solutions. This

is indeed the case, as we prove in this paper, under a connectedness condition on the positivity set of the

cluster points for large times of the weak solutions of the nonlocal Fokker-Planck equation.

Due to our success in constructing self-similar solutions for Equation (1.1), and also the interest in treating

nonlinear parabolic equations of even higher order, we devote another section to discuss the existence of self-

similar solutions for equations of the type
∂tu − div (u∇p) = 0 in Rd × (0, T),

p = Ls(−∆u) in Rd × (0, T),

u(x, 0) = u
0

(x) in Rd .

(1.14)

with 0 < s < 1 (hence the total order of the equation goes from 4 to 6). We �nd explicit compactly supported

and nonnegative self-similar solutions with a Barenblatt pro�le of the type similar to (1.9), that is solutions

u(x, t) of the self-similar form (1.3) with adjusted similarity exponents

α =

d
d + 2(2 + s) , β =

1

d + 2(2 + s) , (1.15)

and pro�le of the Barenblatt type:

v(y) = (C
1
− C

2
|y|2)

2+s
+

, (1.16)

This holds for all 0 < s < 1, the constant C
2

= C
2

(s, d) is �xed and C
1
> 0 is a free constant. See whole details

in Section 6where parameter C
2
is explicitly computed. Its value is consistentwith corresponding self-similar

solution for the Thin Film equation in one dimension mentioned in [14].

It is worthwhile commenting on the repeated appearance of the Barenblatt pro�les, that looks surprising.

We recall that these pro�les appear in the Porous Medium equation ut = ∇(um−1∇u) = ∆(um/m), for m > 1,

in the form

v = (C
1
− C

2
|y|2)

σ
(1.17)

in all the range of exponents 0 < σ < ∞ since σ = 1/(m − 1), and they are quite relevant at all levels of the

theory, as amply documented in [69]. As a consequence of our results in our paper, we �nd that they appear
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as relevant self-similar solution for the nonlocal equations (1.1), (1.2) and (1.14), and they are expected to play

a big role in the theory. As a further observation, notice that the solution pro�le (1.9) coincides with the PME

solution pro�le (1.17) for the precise choicesm−1 = 1/(1+s), while (1.16) leads to a similar identi�cationwith

the PME whenm −1 = 1/(2 + s) (see [26] and [55] where this similarity between the Porous Medium equation

and the Thin Film equation is noticed and used).

Outline of results. We gather preliminary material in Section 2. In Section 3 we discuss the existence of

a suitably de�ned weak solution The very important topic of existence of self-similar solutions is settled in

Section 4, and the long-time convergence to a stationary solution is studied in Section 5. We develop the

higher order application in Section 6. A �nal section contains a number of open directions.

2 Preliminary Material
In this section we collect some of the material that is needed for our analysis.

First of all, we recall that the Fractional Laplacian (-∆)

s
(s ∈ (0, 1) is the nonlocal operator de�ned, at

least for functions in the Schwartz class S(Rd), as

(-∆)

s v(x) = C(d, s)p.v.
ˆ
Rd

v(x) − v(y)

|x − y|d+2s dy, (2.1)

where p.v. denotes the principal value and c(d, s) is a scaling constant. If we de�ne the Fourier transform of

v as
Fv(ξ ) = v̂(ξ ) := (2π)

−d/2

ˆ
Rd
e−iξ ·xv(x)dx, ξ ∈ Rd , v ∈ S(Rd), (2.2)

then the Fractional Laplacian can be equivalently de�ned as the operator with symbol |ξ |2s, namely

(̂-∆)

s v(·) = |ξ |2s v̂(·), ∀v ∈ S(Rd). (2.3)

For a function in S(Rd) and for s ∈ (0, 1) we de�ne, component-wise, the operator Ls/2
◦ ∇ by

(Ls/2
◦ ∇)u = Ls/2

(∇u).

Note that using the Fourier transform we have that∇ and Ls/2
commute. More precisely there holds for any

j = 1, . . . , d
̂

Ls/2

∂u
∂xj

= cd i|ξ |sξj û =

∂̂
∂xj

Ls/2
u.

Moreover, again using the Fourier transform, we can express the seminorm in H1+s
(Rd) (s ∈ (0, 1)) using this

operator. Namely,

‖u‖2

˙H1+s
(Rd)

=

ˆ
Rd
|ξ |2+2s|û|2dξ =

ˆ
Rd
|Ls/2

(∇u)|2dx

3 Existence of a weak solution
We discuss the existence of nonnegative weak solution to system (1.1):

∂tu − div (u∇p) = 0, in Rd × (0, T),

p = Lsu, in Rd × (0, T),

u(x, 0) = u
0

(x), in Rd .

Weak solutions are de�ned as follows.
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De�nition 3.1. Given u
0
∈ L1

loc(R
d

) and nonnegative, we say that u is a weak solution of (1.1) if

1. u ≥ 0 a.e. on Rd × (0, +∞),

2. u ∈ L∞(0, +∞;Hs(Rd)) ∩ L2

(0, +∞;H1+s
(Rd)),

3. p = Lsu ∈ L2

(0, +∞;H1−s
(Rd)),

4. The following relation holds for any test function φ ∈ C∞c (Rd × [0, +∞))

−

¨
Q
u∂tφdxdt −

ˆ
Q
pu∆φ dxdt −

ˆ
Q
p∇u ·∇φ dxdt =

ˆ
Rd
u

0
φ(x, 0)dx,

p = Lsu a.e. in Q = Rd × (0, +∞). (3.1)

Here is the Existence Theorem.

Theorem 3.1. Given u
0

: Rd → R measurable and nonnegative such that u
0
∈ Hs(Rd) and such that

F (u
0

) :=

ˆ
Rd
u

0
log u

0
dx < +∞, (3.2)

there exists a weak solution u according to the De�nition 3.1 that moreover satis�es

1. Mass Conservation ˆ
Rd
u(x, t) dx =

ˆ
Rd
u

0
(x)dx for a.a. t ∈ (0, +∞), (3.3)

2. Entropy Estimate

F (u(t)) +

ˆ t

0

ˆ
Rd
|Ls/2

(∇u)|2dxdr ≤ F (u
0

) for a.a. t ∈ (0, +∞), (3.4)

3. Energy Estimate

1

2

ˆ
Rd
|Ls/2

u(t)|2dx +

ˆ t

0

ˆ
Rd
ξ2

dxdr ≤ 1

2

ˆ
Rd
|Ls/2

u
0
|2dx for a.a. t ∈ (0, +∞), (3.5)

where the vector �eld ξ ∈ L2

(0, +∞; L2

(Rd)) satis�es

∇(up) − p∇u = u1/2ξ almost everywhere in Rd × (0, +∞). (3.6)

Important functional remark. The vector �eld ξ emerges as a weak L2

limit of a sequence, in the approxi-

mation scheme we introduce for the proof of the Existence Theorem, and it is related to the product u1/2∇p.
In particular, due to the nonlinear and degenerate structure of the system (1.1) we are not able to rigorously

identify ξ = u1/2∇p, as the formal estimates suggest. However, thanks to the characterization (3.6) we can

conclude that in the regions of Rd × (0, +∞) in which u > 0 we have ξ = u−1/2

(∇(up) − p∇u) and, if p were

regular enough to give a pointwisemeaning to∇p, wewould have (still in the regions where u is nonzero) the

plain expression ξ = u1/2∇p. On the contrary, in the regions where u ≡ 0, (3.6) gives no detailed information

on ξ , we know that ξ ∈ L2

in space and time.

3.1 Approximate problem and main estimates

We approximate Equation (1.1) following [13] and [45]. For any ε > 0 and M > 0 we consider the (strictly

positive and bounded) mobility function mε : R→ (0,∞) de�ned by

mM
ε (y) := min

{
M,mε(y)

}
, (3.7)

where mε(y) := y+

+ ε and y+

= max {y, 0} for y ∈ R.
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We then consider the following nondegenerate approximate problem
∂tu − div (mM

ε (u)∇p) = 0 in Rd × (0, T),

p = Lsu in Rd × (0, T),

u(·, 0) = u
0

(·) in Rd .

(3.8)

To be precise the problem above should be intended in the distributional sense on Rd × (0, T). Note however

that since 0 < ε ≤ mM
ε ≤ M, the �rst equation is not degenerate and with bounded mobility and this will

imply that the approximate solutions uε (for notational simplicity, when no confusion arises we do not write

the dependence on M) are regular enough for positive times to justify all the estimates we perform at the

approximate level. See details below.

3.1.1 Existence for Problem (3.8)

The existence of an approximate solution follows from a nested approximation scheme. Given a bounded

domain Ω, for any s ∈ (0, 1) we introduce the Hilbert space

Xs(Ω) :=

{
v ∈ Hs(Rd) : v ≡ 0 a.e. in Rd \ Ω

}
, ‖v‖2

Xs(Ω)

:=

ˆ
Rd
|Ls/2

v|2dx.

Step 1. We let τ > 0 and R > 0 and we consider the following stationary problem:

(SP): Given v ∈ Xs(BR(0)) to �nd u ∈ Xs(BR(0)){
u = v + τdiv (mM

ε (u)∇p) in BR(0),

p = Lsu in BR(0).

(3.9)

This problem is related (see below) to the implicit Euler scheme for the evolution
∂tu = div (mM

ε (u)∇p) in BR(0) × (0, +∞),

p = Lsu in BR(0) × (0, +∞),

u ≡ 0, in Rd \ BR(0).

Now we discuss, using the Leray-Schauder �xed point Theorem, the existence of a solution of (SP). To this

end, we let σ ∈ [0, 1] and we implement the following scheme

1. Given ū ∈ Xs(BR(0)), we let p ∈ H1

(BR(0)) the weak unique solution of{
τdiv (mM

ε (ū)∇p) = ū − v,
p = 0 on ∂BR(0).

(3.10)

2. Given p from step 1, we let u ∈ Xs(BR(0)) the unique solution of{
Lsu = σp in BR(0)

u = 0 in Rd \ BR(0).

(3.11)

Therefore, the procedure above produces a map A : Xs(BR(0)) × [0, 1]→ Xs(BR(0)) such that

A : (ū, σ) 7→ u,

where (u, p) ∈ Xs(BR(0)) × H1

(BR(0)) is the unique solution of (3.10)-(3.11). We can check that the map A has

the following properties

(1) A(u, 0) = 0 for any u ∈ Xs(BR(0)).

(2) A is compact.
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(3) There exists M > 0 such that

‖u‖Xs(BR(0))
≤ M, ∀(u, σ) satisfying u = A(u, σ). (3.12)

Then, the Leray-Schauder Fixed Point Theorem (see [41, Theorem 11.6]) gives the existence of a �xed point

for the map

A
1
u = A(u, 1), for u ∈ Xs(BR(0)),

namely a solution of (3.9).

The �rst two properties listed above are evident. In particular, the second comes from fractional elliptic

regularity. Concerning this last point, note that from (3.11) and the fact that p ∈ H1

(BR(0)) ⊂ L2

(BR(0)) we

conclude that, at least, u ∈ H3s/2−δ
(Rd) for any δ > 0 (see [2, Corollary 1.1]). In particular, this last space is

compactly embedded in Xs(BR(0)). More regularity can be obtained by bootstrapping but we will not use it.

We still have to verify the boundedness property (3.12). To this end, let u ∈ Xs(BR(0)) such that u =

A(u, σ). Recall that 0 < ε ≤ mM
ε ≤ M and thus mM

ε ∇p ∈ H1

(BR(0)). Then we have
´
BR(0)

(u − v)ϕdx +

´
BR(0)

mM
ε (u)∇p ·∇ϕ dx = 0, ∀ϕ ∈ H1

0
(BR(0))

´
Rd Ls/2

uLs/2
ψdx = σ

´
Rd pψ dx, ∀ψ ∈ Xs(BR(0))

If σ = 0 there is nothing to check, hence we can assume σ > 0. We take ϕ = p in the �rst equation (we

still denote with p the truncation to 0 of p outside BR(0)), and ψ = (u − v)/σ in the second equation. All this

is justi�ed in the above mentioned regularity framework. We thus obtain

1

σ

(ˆ
Rd
|Ls/2

u|2dx −
ˆ
Rd

Ls/2
uLs/2

vdx
)

=

ˆ
Rd

(u − v)pdx

= −τ
ˆ
BR(0)

mM
ε (u)|∇p|2dx ≤ 0,

that easily implies (3.12).

Step 2. Next, we tackle the evolution process. Given u
0
∈ Hs(Rd), we consider a smooth function that is

supported in BR(0) and such that u0

(R)

R→+∞−−−−→ u
0
in Hs(Rd). Then, we introduce the uniform partition P of

(0, +∞), i.e.,

P := {0 = t
0
< t

1
< . . . < tk < . . .} , τ := ti − ti−1

, lim

k→+∞

tk = +∞.

Then, we iteratively solve (3.9) with v = u0

, u1

, . . . , uk−1

, . . ., where uk is a solution of (3.9) with v = uk−1
.

In a standard way we introduce the piecewise-linear (ûk) and the piecewise-constant (ūk) interpolants of the

discrete values uk. We set

ûk(0) := u0

R , ûk(t) := αk(t)uk + (1 − αk(t))uk−1

,

ūk(0) := u0

R , ūk(t) := uk for t ∈ ((k − 1)τ, kτ], k ≥ 1,

where αk(t) := (t − (k − 1)τ)/τ for t ∈ ((k − 1)τ, kτ] and k ≥ 1. The couple (ûk , ūk) solves
∂t ûk = div (mM

ε (ūk)∇p̄k) in BR(0) × (0, +∞),

p̄k = Ls ūk , in BR(0) × (0, +∞),

ūk = 0 in (Rd \ BR(0)) × (0, +∞), ūk(0) = u0

R in BR(0).

(3.13)

Now, in order to pass τ → 0 we perform some a priori estimates on ûk and ūk. First of all, since ûk ≡ 0 in

Rd\BR(0),wehave that ∂t ûk ≡ 0 inRd\BR(0) and thus the second equation in (3.13) gives, for any t ∈ (0, +∞),

ˆ
BR(0)

∂t ûk p̄kdx =

ˆ
Rd
∂t ûk p̄kdx =

ˆ
Rd
∂t ûkLs ūkdx.
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Therefore, �xing T = τN for some N ∈ N and integrating the above relation on (0, T) we have (recall that

2a(a − b) = a2

+ (a − b)

2

− b2

for any a, b ∈ R)

ˆ T

0

ˆ
Rd
∂t ûkLs ūkdx =

N∑
k=1

ˆ
Rd

Ls/2
uk(Ls/2

uk −Ls/2
uk−1

)dx

=

1

2

‖Ls/2
ūk(T)‖2

L2

(Rd)

+

N∑
k=1

‖Ls/2
uk −Ls/2

uk−1
‖2

L2

(Rd)

−

1

2

‖Ls/2
u0

R‖
2

L2

(Rd)

(3.14)

Moreover, the �rst equation in (3.13) gives

ˆ T

0

ˆ
BR(0)

∂t ûk p̄kdxdr = −

ˆ T

0

ˆ
BR(0)

mM
ε (ūk)|∇p̄k|2dxdr

and thus we have the estimate on the discrete solution

1

2

‖Ls/2
ūk(T)‖2

L2

(Rd)

+

ˆ T

0

ˆ
BR(0)

mM
ε (ūk)|∇p̄k|2dxdr ≤ 1

2

‖Ls/2
u0

R‖
2

L2

(Rd)

. (3.15)

This estimate is the core of the existence theory for (3.8) and produces one of two estimates available for (1.1).

Note that, for any �xed ε > 0,

ˆ T

0

ˆ
BR(0)

mM
ε (ūk)|∇p̄k|2dxdr ≥ ε

ˆ T

0

ˆ
BR(0)

|∇p̄k|2dxdr,

and thus a comparison in the �rst equation gives that the time derivative ∂t ûk is bounded in

L2

(0, T;W−1,q
(BR(0))), uniformly in M and in R, for some q > 1. In particular, since ε > 0 is kept �xed,

the bounds above are su�cient to pass to the limit with respect to τ via standard compactness arguments

and �nd in the limit a solution uR of the following problem:
∂tu = div (mM

ε (u)∇p) in BR(0) × (0, T),

p = Lsu in BR(0) × (0, T),

u = 0 in (Rd \ BR(0)) × (0, +∞), u(·, 0) = u0

R(·) in BR(0).

(3.16)

Note that for uR we have,

1

2

‖Ls/2
uR(T)‖2

L2

(Rd)

+

ˆ T

0

ˆ
BR(0)

mM
ε (uR)|∇pR|2dxdr ≤ 1

2

‖Ls/2
u0

R‖
2

L2

(Rd)

. (3.17)

Step 3. Now, since u0

R
R→+∞−−−−→ u0

in Hs(Rd), the estimate above is uniform w.r.t. to R. Then, again as before

we can easily pass to the limit in (3.16) and obtain a solution uε,M of (3.8) with, at least, the energy regularity

(uε,M , pε,M) ∈ L∞(0, +∞;Hs(Rd)) ∩ L2

(0, +∞;H1

(Rd)), namely it satis�es

1

2

‖Ls/2
uε,M(T)‖2

L2

(Rd)

+

ˆ T

0

ˆ
Rd
mM
ε (uε,M)|∇pε,M|2dxdr ≤ 1

2

‖Ls/2
u0‖2

L2

(Rd)

(3.18)

and the companion estimate

‖∇pε,M‖L2

(0,+∞;L2

(Rd))

≤

1

2ε ‖Ls/2
u0‖2

L2

(Rd)

. (3.19)

The above estimate and a comparison in (3.8) guarantees that ∂tuε,M is bounded, uniformly in M, in

L2

(0, T;W−1,q
(Rd)) for some q > 1. Note that for any �xed ε and M we also have that

∂tuε,M ∈ L2

(0, +∞;H−1

(Rd)). (3.20)

The membership of ∂tuε,M to this space of distributions is clearly not uniform with respect to ε and M as it

heavily depends on the boundedness and nondegenerate character of mM
ε .
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At the end, we can let M → +∞ and obtain a (weak) solution uε of
∂tu − div (mε(u)∇p) = 0 in Rd × (0, T),

p = Lsu in Rd × (0, T),

u(·, 0) = u
0

(·) in Rd ,

(3.21)

where we recall mε(y) := y+

+ ε.

3.2 Uniform estimates with respect to ε: Energy and Entropy Estimate

In this Subsectionwederive the twobasic estimates, uniformon the approximate parameter ε, on the solution

uε of the approximate problem (3.21), namely theEnergyEstimate and theEntropyEstimatewhich correspond

to the estimate (3.5) and (3.4) in the limit ε → 0, respectively.

Energy Estimate The Energy Estimate follows by semicontinuity from the analogous estimate (3.18). Note

that mM
ε (uε,M)

M→+∞−−−−−→ mε(uε) strongly in L2

(0, T; L2

(Rd)). We have, for almost any t ≤ T

1

2

ˆ
Rd
|Ls/2

uε(t)|2dx +

ˆ t

0

ˆ
Rd
mε(uε)|∇pε|2dxdt ≤ 1

2

ˆ
Rd
|Ls/2

u
0
|2dx, (3.22)

that is,

1

2

ˆ
Rd
|Ls/2

uε(t)|2dx +

ˆ
∞

0

ˆ
Rd
mε(uε)|∇pε|2dxdt ≤ 1

2

ˆ
Rd
|Ls/2

u
0
|2dx, (3.23)

valid for a.a. t > 0. Moreover, we observe that uε is indeed a bit more regular in space. In fact, being pε =

Lsuε ∈ L2

(0, +∞;H1

(Rd)) (recall thatmε(uε) ≥ ε a.e. inRd×(0, +∞))wehave that uε ∈ L2

(0, +∞;H1+2s
(Rd)).

We will show that this estimate produces, in the ε → 0 limit, the Energy Estimate (3.5).

Entropy Estimate System (3.21) admits a further estimate that is in principle not uniform with respect to the

parameter ε. But this estimate will produce the Entropy Estimate (3.4) in the limit ε → 0. We will need this

observation: for any ε > 0, we consider the smooth and positive real function fε such that

f ′′ε =

1

mε
in R. (3.24)

Without loss of generality we can choose fε in such a way that fε(1) = f
′
ε(1) = 0. Thus,

fε(y) =

ˆ y

1

(ˆ w

1

1

r+

+ εdr
)

dw, y ∈ R. (3.25)

An important property of fε is that, when y < 0, there holds

fε(y) ≥

y2

2ε . (3.26)

To prove the above estimate we observe that for y < 0 we have

fε(y) =

ˆ
1

y

(ˆ 1

w

1

r+

+ εdr
)

dw.

Thus, setting g(w) :=

´
1

w
1

r+

+εdr, we immediately have that

fε(y) ≥

ˆ
0

y
g(w)dw.

Moreover, when w < 0, there holds g(w) ≥

1

εw.
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As a result, we have

fε(y) ≥

ˆ
0

y
g(w)dw ≥ 1

ε

ˆ
0

y
wdw =

y2

2ε .

In order to fully justify the argument, we work at the approximate level of problem (3.8). Therefore we let

uε,M be a solution of (3.8) and we consider, for any M > 0, a positive real function fε,M such that

f ′′ε,M =

1

mM
ε
.

Note that fε,M is de�ned as in (3.25) and that fε,M
M→+∞−−−−−→ fε for any y ∈ R.

We test (3.8) with f ′ε,M(uε,M). Note that, being uε,M ∈ L2

(0, +∞;H1+2s
(Rd)) then f ′ε,M(uε,M) ∈

L2

(0, +∞;H1

(Rd)), at least, together with ∂tuε,M. Thus, the computations are justi�ed.

Therefore, using that pε,M = Lsuε,M and that f ′′ε,M =

1

mε,M
, integrating with respect to time we get

ˆ
Rd
fε,M(uε,M(t))dx +

ˆ t

0

ˆ
Rd
|Ls/2

(∇uε,M)|2dxdt =

ˆ
Rd
fε,M(u

0
)dx, for a.a. t ≤ T . (3.27)

Therefore, if we let M → +∞, we get the Entropy Estimate

ˆ
Rd
fε(uε(t))dx +

ˆ t

0

ˆ
Rd
|Ls/2

(∇uε)|2dxdt ≤
ˆ
Rd
fε(u0

)dx, for a.a. t ≤ T . (3.28)

3.3 Passage to the limit: Proof of Theorem 3.1

The energy and the entropy estimate give some important uniform estimates (with respect to ε) on the ap-

proximate solutions uε. We work on bounded time intervals (0, T) with T > 0 for compactness reasons. First

of all, the energy estimate (3.22) gives that the sequence Ls/2
uε is bounded, uniformly with respect to ε, in

L∞(0, T; L2

(Rd)), namely uε is bounded in L∞(0, T;
˙Hs(Rd)).

Thus, the Hardy-Littlewood-Sobolev inequality [65, Theorem V.1] furnishes that uε is bounded in

L∞(0, T; L
2d
d−2s

(Rd)). Consequently, we have that mε(uε) is bounded in L∞(0, T; L
2d
d−2s
loc (Rd)). The entropy es-

timate (3.28) gives that Ls/2
∇uε is bounded in L2

(0, T; L2

(Rd)). Hence, we gain some spatial regularity for

uε and for pε = Lsuε, namely

‖uε‖L2

(0,T;
˙H1+s

(Rd))

+ ‖pε‖L2

(0,T;
˙H1−s

(Rd))

≤ C, (3.29)

with C possibly depending on T. The energy estimate (3.22) gives that√
mε(uε)∇pε is uniformly bounded in L2

(0, T; L2

(Rd)).

Thus, since

√
mε(uε) is bounded in L∞(0, T; L2ps

loc (Rd)) (ps :=

2d
d−2s ) we get that

mε(uε)∇pε is uniformly bounded in L2

(0, T; L
2ps

1+ps
loc (Rd)).

Consequently, a comparison in the equation (3.21) gives the estimate on the time derivative ∂tuε, namely

∂tuε uniformly bounded in L2

(0, T;W−1,

2ps
1+ps (Rd)). (3.30)

Then, the Aubin-Lions compactness lemma gives that for any δ > 0, uε is strongly compact in

L2

(0, T;H1+s−δ
(K)), for any compact K ⊂ Rd. Thus, there exists u ∈ L2

(0, T;H1+s
loc (Rd)) and a subsequence of

ε for which

uε ε→0−−−→ u weakly star in L∞(0, T; L
2d
d−2s

(Rd)) (3.31)

uε ε→0−−−→ u strongly in L2

(0, T;H1+s−δ
(K)) for any K compact in Rd . (3.32)
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Moreover, uε ε→0−−−→ u almost everywhere in Rd × (0, T). In particular, we have that mε(uε) ε→0−−−→ (u)

+

almost

everywhere in Rd × (0, T). Finally, since we have that for any φ ∈ C∞c (Rd × [0, T))

ˆ T

0

ˆ
Rd

Lsuεφdxdt =

ˆ T

0

ˆ
Rd
uεLsφdxdt ε→0−−−→

ˆ T

0

ˆ
Rd
uLsφdxdt,

we conclude that, denoting with p the weak-star limit of pε in L∞(0, T;H−s(Rd)), we have

p = Lsu,

at least in the sense of distributions. Actually much more is true. In fact, the estimate (3.29) gives that pε is
bounded in L2

(0, T;H1−s
(Rd)). Thus, we have that

pε ε→0−−−→ p weakly in L2

(0, T;H1−s
(Rd)), (3.33)

which implies that p is in L2

(0, T;
˙H1−s

(Rd)) and that the relation p = Lsu holds, at least, almost everywhere

in Rd × (0, T).

We have all the ingredients to pass to the limit in the following weak formulation of (3.21)

ˆ T

0

ˆ
Rd
uε∂tφdxdt −

ˆ T

0

ˆ
Rd
pε∇(mε(uε)) ·∇φ dxdt −

ˆ T

0

ˆ
Rd
mε(uε)pε∆φ dxdt

= −

ˆ
Rd
u

0
φ(x, 0)dx ∀φ ∈ C∞c (Rd × [0, +∞)),

pε = Lsuε a.e. in Rd × (0, T) (3.34)

We note that the �rst term in the left-hand side converges to the expected limit thanks, e.g., to the dominated

convergence. Now we pass to the limit in the nonlinear term. Since (see [61, Lemme 1.1]) almost everywhere

there holds

∇(uε)+
= H (uε)∇uε :=

{
∇uε {uε> 0} ,

0, otherwise

(H is the Heaviside function)

ˆ T

0

ˆ
Rd
pε∇(mε(uε)) ·∇φ dxdt =

ˆ T

0

ˆ
Rd
pεH (uε)∇uε ·∇φ dxdt. (3.35)

Moreover, we decompose

ˆ T

0

ˆ
Rd
mε(uε)pε∆φ dxdt =

ˆ T

0

ˆ
Rd

(uε)+
pε∆φ dxdt − ε

ˆ T

0

ˆ
Rd
∇pε ·∇φ dxdt = Iε

1
+ Iε

2
.

The second term Iε
2
tends to zero when ε ↘ 0. In fact, for a constant C that depends on φ, we have, thanks to

the Schwarz inequality,

|Iε
2
| ≤ ε‖∇pε‖L2

(Rd×(0,T))

‖∇φ‖L2

(Rd×(0,T)

≤ εC
ˆ
Rd
|Ls/2

u
0
|2dx,

thanks to (3.22). The term Iε
1
tends to the expected limit since we have that, for any compact K ⊂ Rd,

uε → u strongly in L2

(0, T;H1+s−δ
(K)), ∀δ > 0,

and

pε → p weakly in L2

(0, T; L2

(K)).

Thus,

lim

ε→0

ˆ T

0

ˆ
Rd
mε(uε)pε∆φ dxdt =

ˆ T

0

ˆ
Rd

(u)
+
p∆φ dxdt,
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Moreover, since for any compact K ⊂ Rd, we also have

∇uε → ∇u strongly in L2

(0, T;Hs−δ(K)), ∀δ > 0,

we get that

lim

ε→0

ˆ T

0

ˆ
Rd
pεH (uε)∇uε ·∇φ dxdt =

ˆ T

0

ˆ
Rd∩{u≥0}

p∇u ·∇φ dxdt.

As a result, we have that u veri�es, for any φ ∈ C∞c (Rd × [0, T)),

ˆ T

0

ˆ
Rd
u∂tφdxdt −

ˆ T

0

ˆ
Rd

(u)

+p∆φ dxdt −
ˆ T

0

ˆ
Rd∩{u≥0}

p∇u ·∇φ dxdt

= −

ˆ
Rd
u

0
φ(x, 0)dx and p = Lsu a.e. in Rd × (0, T). (3.36)

Moreover, we have that by passing to the limit in (3.28) we obtain (3.4) thanks to semincontinuity. Finally,

since (3.22) implies that ξε := m1/2

ε (uε)∇pε is bounded uniformly in L2

(0, T; L2

(Rd)) we have that there exists

a vector �eld ξ ∈ L2

(0, T; L2

(Rd)) to which ξε weakly converges and such that (3.5) holds.

Thus, it remains to identify ξ as in (3.6). To this purpose, we introduce the vector �eld ζε := mε(uε)∇pε =

mε(uε)1/2ξε and we note that, on the one hand, ζε weakly converges to some ζ ∈ L2

(0, T; L2

(Rd)) and ζ =

u1/2ξ . On the other hand, we have that, since ζε = ∇(pεmε(uε)) − pεH(uε)∇uε,

ζε ε→0−−−→ ∇(pu) − p∇u in the sense of distributions on Rd × (0,∞). (3.37)

Thus,

ζ = ∇(pu) − p∇u = u1/2ξ a.e. in Rd × (0, +∞). (3.38)

In particular, for those points in which u > 0 we can express ξ in terms of ζ as ξ = u−1/2ζ
In order to prove that u is indeed a solution of (3.1) it remains to show that u ≥ 0 almost every where in

Rd × (0, T).

Note that since (cf.(3.30))

‖∂tuε‖
L2

(0,T;(W
1,

2ps
1+ps

loc (Rd))

′
)

≤ C, uniformly in ε > 0, (3.39)

we get, by semicontinuity of norms, that ∀T > 0,

‖∂tu‖
L2

(0,T;W
1,

2ps
1+ps

loc (Rd))

′
)

≤ C. (3.40)

Moreover, this estimate is also uniform with respect to time and thus

‖∂tu‖
L2

(0,+∞;W
1,

2ps
1+ps

loc (Rd))

′
)

≤ C. (3.41)

3.3.1 Nonnegativity

To prove positivity we exploit the entropy estimate (3.28). More precisely, the positivity of u follows from the

fact that

sup

ε>0

sup

t∈[0,T]

ˆ
Rd
fε(uε(t))dx < +∞ (3.42)

combined with (3.26). We aim at proving that u ≥ 0 for almost any (x, t) ∈ Rd × (0, T). To this end, we �x

t ∈ (0, T), a compact subset K of Rd and we assume, by contradiction, that the set{
x ∈ Rd ∩ K : u(x, t) < 0

}
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has positive measure. Since{
x ∈ Rd ∩ K : u(x, t) < 0

}
=

+∞⋃
n=1

{
x ∈ Rd ∩ K : u(x, t) < −1

n

}
,

this implies that that for some �xed λ > 0 the set

Nλ :=

{
x ∈ Rd ∩ K : u(x, t) ≤ −λ

}
has positive Lebesque measure. Now, since the sequence uε(·, t) ε→0−−−→ u(·, t) almost everywhere in K, the
Severini-Egorov Theorem furnishes that for any η > 0 there exists ameasurable set Gη ⊂ K such that |K\Gη| ≤
η and such that

uε(·, t) ε→0−−−→ u(·, t) uniformly on Gη .

We �x η and we �nd ε̄ > 0 such that if ε < ε̄ there holds

uε(·, t) ≤ −
λ
2

on Gη ∩ Nλ .

On Gη ∩ Nλ we have (recall (3.26))

fε(uε(x, t)) =

ˆ
1

uε(x,t)
g(w)dw =

ˆ
−λ/2

uε(x,t)
g(w)dw +

ˆ
1

−λ/2

g(w)dw

≥

ˆ
−λ/2

uε(x,t)
g(w)dw = fε(−λ/2) ≥

λ2

8ε2

.

Thus, thanks to Fatou Lemma we get

lim inf

ε→0

ˆ
Rd
fε(uε(x, t))dx ≥ lim inf

ε→0

ˆ
Gη∩Nλ

fε(uε(x, t))dx = +∞.

This is in contradiction with (3.42), which would imply that for all t ≥ 0

lim sup

ε→0

ˆ
Rd
fε(uε(x, t))dx < +∞.

Hence the positivity is proved. As a consequence we have that u is a solution of (3.1).

3.3.2 Conservation of mass

We take a smooth cut-o� function g : [0, +∞)→ [0, 1] such that{
g(r) = 1 in [0, 1]

g(r) = 0 in [2, +∞).

(3.43)

and such that

‖g′‖L∞(R)
+ ‖g′′‖L∞(R)

≤ 2.

Then, for R > 0 we set ϕR(x) := g
( |x|
R
)
. For any h > 0 and t ∈ [0, T) such that t + h < T we also introduce

ζh,t(r) :=


1, 0 ≤ r ≤ t
1 −

r−t
h , t ≤ r ≤ t + h

0, t + h ≤ r ≤ T .

(3.44)

There holds that for any t ∈ [0, T) ζh,t(·)
h→0−−−→ χ

[0,t](·). We choose in the weak formulation (3.1) the test

function

φh,t,R(x, r) := ζh,t(r)ϕR(x), for (x, r) ∈ Rd × [0, T)
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and we obtain

−

ˆ T

0

ˆ
Rd
u∂rφh,t,Rdxdr =

ˆ
Rd×(0,T)

up∆φh,t,Rdxdr +

ˆ
Rd×(0,T)

p∇u ·∇φh,t,Rdxdr
ˆ
Rd
u

0
(x)ϕR(x)dx (3.45)

Since u,∇u and p are, at least L1

loc(R
d
× (0, T)) functions we have

lim

h→0

ˆ T

0

ˆ
Rd
u∂rφh,t,Rdxdr = −

ˆ
Rd
u(x, t)ϕR(x)dx for a.a. t ∈ (0, T)

and

lim

h→0

(ˆ
Rd×(0,T)

up∆φh,t,Rdxdr +

ˆ
Rd×(0,T)

p∇u ·∇φh,t,Rdxdr
)

=

ˆ
Rd×(0,t)

up∆ϕRdxdr +

ˆ
Rd×(0,t)

p∇u ·∇ϕRdxdr

Now, since∇ϕR(x) =

1

R g
′( |x|

R
) x
|x| and ∆ϕR(x) =

1

R2
g′′
( |x|
R
)

+

d−1

R|x| g
′( |x|

R
)
we get

|∇ϕR(x)| ≤ 2

R , |∆ϕR(x)| ≤ C
R2

.

Thus, since, for any compact K ⊂ Rd there holds that u ∈ L2

(0, T; L2

(K)), ∇u ∈ L2

(0, T; L2

(K)) and p ∈
L2

(0, T; L2

(K)), we have that

lim

R→+∞

∣∣∣∣ˆ t

0

ˆ
Rd
u p∆ϕR(x)dxdr +

ˆ t

0

ˆ
Rd
p∇u ·∇ϕR(x)dxdr

∣∣∣∣ = 0. (3.46)

Moreover, as u ≥ 0 in Rd × (0, T), the monotone convergence Theorem gives that, for almost any t ∈ (0, T),

lim

R→+∞

ˆ
Rd
u(x, t)ϕR(x)dx =

ˆ
Rd
u(x, t)dx.

Consequently, since (recall that u
0
∈ L1

(Rd))

lim

R→∞

ˆ
Rd
u

0
ϕRdx =

ˆ
Rd
u

0
dx < +∞,

by passing to the limit R → +∞ in (3.45) we obtain, for almost any t < T
ˆ
Rd
u(x, t)dx =

ˆ
Rd
u

0
dx < +∞,

that gives the desired conservation of mass.

3.3.3 First Moments estimate

Lemma 3.2. Let u be a weak solution as constructed before. Then,ˆ
Rd
|x|u(x, t)dx ≤

ˆ
Rd
|x|u

0
(x)dx + C(T), for a.a. t ≤ T . (3.47)

An interesting feature of this estimate is that it works for all weak solutions constructed in Theorem 3.1.

Proof of Lemma 3.2. First of all we notice that weak solutions verify that for every φ ∈ C2

c (Rd)

ˆ
Rd
u(x, t)φdx =

ˆ
Rd
u

0
(x)φdx +

ˆ t

0

ˆ
Rd
pu∆φ dxdr +

ˆ t

0

ˆ
Rd
p∇u ·∇φ dxdr

p = Lsu a.e. in Rd × (0, +∞). (3.48)



Antonio Segatti and Juan Luis Vázquez, On a fractional thin �lm equation | 1531

We take as a test function in (3.48) the function ϕ(x) = |x|ϕR(x) where ϕR is a smooth cut-o� function (see

(3.43) in Subsection 3.3.2) such that

|∇ϕR(x)| ≤ 2

R , |∆ϕR(x)| ≤ C
R2

.

To be precise, to obtain a smooth ϕ one should also round o� the function |x| around the origin. The proof is

analogous and for the sake of simplicity we use φ = |x|ϕR.
We have

∇φ = |x|∇ϕR +

x
|x|ϕR ,

and

∆φ = |x|∆ϕR + 2

x
|x| ·∇ϕR +

d − 1

|x| ϕR .

Thus, ˆ t

0

ˆ
Rd
p∇u ·∇φ dxdr =

ˆ t

0

ˆ
Rd
p∇u · x|x|ϕR dxdr +

ˆ t

0

ˆ
Rd
|x|p∇u ·∇ϕR dxdr

Due to the regularity of the weak solution, the �rst integral is clearly bounded by a constant that depends on

the �nal time T. Being∇ϕR supported on R ≤ |x| ≤ 2R, thanks to |∇ϕR| ≤ C/R, we have that also the second

integral is bounded by a constant possibly depending on the �nal time T.
We bound the second integral in the right hand side of (3.48). We have

ˆ t

0

ˆ
Rd
pu∆φ dxdr =

ˆ t

0

ˆ
Rd
pu|x|∆ϕR dxdr + 2

ˆ t

0

ˆ
Rd
pu x ·∇ϕR|x| dxdr

+ (d − 1)

ˆ t

0

ˆ
Rd
puϕR|x| dxdr.

The �rst two integrals are easily bounded using the regularity of the weak solutions and the properties of

∇ϕR and of ∆ϕR. Regarding the third integral we can reason as follows. First, we write (R > 1)

(d − 1)

ˆ t

0

ˆ
Rd
puϕR|x| dxdr = (d − 1)

ˆ t

0

ˆ
B

1
(0)

puϕR|x| dxdr

+(d − 1)

ˆ t

0

ˆ
Rd\B

1
(0)

puϕR|x| dxdr.

Now, for |x| > 1 we have that

ϕR
|x| ≤ 1 and thus, the second integral is bounded using that up ∈ L1

(Rd × (0, T)).

Regarding the �rst integral we �rst note that u ∈ L2

(0, T; Lq
*

(Rd)) and that p ∈ L2

(0, T; Lr
*

(Rd)) due to

Sobolev inequality. More precisely,

q* =

2d
d − 2 − 2s , r* =

2d
d − 2 + 2s .

Thus, de�ning q ≥ 1 in such a way that

1

q = 1 −

1

q* −
1

r* ,

we have that q < d and thus |x|−1 ∈ Lq(B
1

(0)). Therefore, the Young inequality shows that

ˆ t

0

ˆ
Rd\B

1
(0)

puϕR|x| dxdr ≤ C(T).

Collecting all the above estimates we have (3.47).
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4 Self-similar Solutions
In this Section we construct self-similar weak solutions of System (1.1) (in the sense of De�nition 3.1). More

precisely, we look for solutions of the form

u(x, t) =

1

(1 + t)α v
( x

(1 + t)β
, log(1 + t)

)
, (4.1)

where the pro�le function v : Rd × R→ R is to be appropriately determined and the parameters α and β are

given by

α =

d
d + 2(1 + s) , β =

1

d + 2(1 + s) , (4.2)

due to the constraints that we will �nd below. In what follows, we will set

y :=

x
(1 + t)β

, τ := log(1 + t), w = Lsv.

It is interesting to observe that the pro�le function v will have compact support. Hence, the self-similar solu-

tions will have compact support as well (in the space variable). As it is now customary (see [23] and [69] and

references therein), the self-similar solutions of (1.1) are related to stationary solutions of a nonlinear (and

nonlocal in this case) Fokker-Planck type equation solved by the pro�le v. Thus, as a �rst step, we look for

an equation to be satis�ed by v. Clearly, since v is related to a weak solution u by the relation (4.1), it has

the very same (low) regularity. Thus, the following computations are only formal at this moment. Therefore,

assuming all the regularity needed to justify the computations, we have

∂tu = −α(1 + t)−α−1v − β(1 + t)−α−1∇v · y + (1 + t)−α−1∂τv.

p = Lsu =

1

(1 + t)α
(
Lsv

)( x
(1 + t)β

)
(1 + t)−2sβ

= (1 + t)−α−2sβw.

Moreover,

∆p = (1 + t)−α−2sβ−2β∆yw

∇u = (1 + t)−α−β∇yv,

∇p = (1 + t)−α−β−2sβ∇yw. (4.3)

Thus, the problem {
∂tu − div (u∇p) = ∂tu −∇u ·∇p − u∆p = 0, in Rd × (0, +∞)

p = Lsu in Rd × (0, +∞)

rewrites as

(1 + t)−α−1∂τv − α(1 + t)−α−1v − β(1 + t)−α−1∇yv · y

−(1 + t)−2α−2β−2sβ∇yv ·∇yw − (1 + t)−2α−2β−2sβv∆yw = 0, (4.4)

w = Lsv. (4.5)

Now, the choice made above for α and β implies the algebraic relation

α + 2β(1 + s) = 1, (4.6)

that allows us to eliminate the time factors in the above equation. We thus obtain an expression involving

only the rescaled variables τ and y. Namely,{
∂τv − αv − β∇yv · y −∇yv ·∇yw − v∆yw = 0 in Rd × (0, +∞)

w = Lsv in Rd × (0, +∞).

(4.7)
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Moreover, since also impose a second relation α = βd, equation (4.7) can be written in divergence form, so

that conservation ofmasswill be guaranteed (at this stage only formally). More precisely, the system contains

the following nonlinear and nonlocal Fokker-Planck type equation:∂τv − div y
(
v
(
∇yw + βy

))
= 0,

w = Lsv.
(4.8)

4.1 The structure of the stationary solutions

Self-similar solutions are thus related to stationary solutions of (4.8). Therefore,we �rst analyse the struc-

ture of the stationary solutions.

(i) First of all, we make a reduction in the set of possible solutions and concentrate on those stationary

solutions of (4.8) such that {
v∇y

(
w +

β
2

|y|2
)

= 0 in Rd ,
w = Lsv in Rd .

(4.9)

As in the parallel study made in [22] for negative values of s, this reduction must be justi�ed by the later

analysis of the long-time behavior and the asymptotic convergence to a self-similar pro�le.

(ii) Assuming for the moment that we have continuous solutions,¹ if we denote by P the positivity set of

v, i.e. the set

P :=

{
y ∈ Rd : v(y) > 0

}
, (4.10)

then we have {
∇
(
w +

β
2

|y|2
)

= 0 in P ,

v ≥ 0, w = Lsv in Rd .
(4.11)

Thus, on the every connected component Ci of P =

⋃
i∈N Ci, there exists a constant ci such that{

Lsv = ci − β
2

|y|2 in Ci

v = 0 in Rd \P .

The above problem can be rewritten as{
Lsv =

∑
i∈N ciχi(x) −

β
2

|y|2 in P ,

v = 0 in Rd \P ,

(4.12)

(χi is the characteristic function of Ci). Necessarily, the constants ci cannot be all negative, otherwise P = ∅
thanks to the maximum principle. Note that since the operator is nonlocal we do not claim positivity of all

constants. In any case, this fact will not be important for our results.

(iii) Now we restrict to look at continuous solutions for which P is connected. Let us denote with v
1
a

solution of (4.12), namely a particular solution of (4.11). In this case, problem (4.12) becomes{
Lsv = C − β

2

|y|2 in P

v = 0 in Rd \P
(4.13)

(C ∈ (0, +∞)). By construction, v
1
is strictly positive on P. Beside v

1
, let us denote with v

2
a solution of the

problem {
Lsv2

= 1 in P

v
2

= 0 in Rd \P .

(4.14)

1 This assumption will be justi�ed a posteriori in our analysis.
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It is necessarily positive, thanks to themaximumprinciple [28, Theorem 1.8]. Therefore, by linearity the (con-

tinuous) solutions of (4.11) for which the positivity set P is connected have the form

v = v
1

+ Kv
2
, K ∈ R. (4.15)

In fact, let v
1
denote a particular solution of the linear equation{

∇(Lsv) = −βy in P

v = 0 in Rd \P .

Then, all the solutions to the equation (4.11) are given by (4.15) provided v
2
solves the homogeneous problem{

∇(Lsv) = 0 in P

v = 0 in Rd \P ,

which corresponds to (4.14).

Wewill relate the v
1
component of the solution (4.15) to an obstacle problem forwhichwe prove existence

and uniqueness of a smooth (C1,α
, α ∈ (0, s), according to the obstacle problem regularity theory), radially

decreasing solution. In such a way we construct a kind of minimal energy solution. As a consequence, we

will conclude that the positivity set P of v is a ball.

Following the analysis, the v
2
component of v in the decomposition (4.15) is a kind of correction of v

1
.

The function v
2
solves (4.14) in a ball, and is explicitly obtained as a rescaling of the solution (the subscript

G refers to Getoor)

vG(y) =

1

κs,d
(1 − |y|2)

s
+

(4.16)

given in [36, Th. 5.2], where κs,d := 2

2sΓ(s + 2)Γ(s +

d
2

)Γ(

d
2

)

−1

and the ball is B
1

(0). Note that this solution

is C0,s
. More importantly (see (4.44) below, this component does not satisfy the regularity assumptions of

the solutions introduced in Section 3, and will be disregarded in our study, though we do not claim that they

cannot be useful in other contexts.

4.2 The obstacle problem

We introduce the following energy

E (v) :=

1

2

ˆ
Rd
|Ls/2

v|2dy +

ˆ
Rd

( β
2

|y|2 − 1

)
vdy (4.17)

that we minimize in a set of nonnegative functions. We chose the constant 1 in the energy just for notational

simplicity. In the next subsubsections and 4.2.1 4.2.2 we will show that the minimizer of (4.17), once properly

rescaled, will solve the stationary equation (4.13). Nonnegative minimizers of (4.17) exist and are unique.

Indeed we have

Theorem 4.1. Let β > 0 be �xed. Then, there exists a unique solution v of the following constrained minimiza-
tion problem

min

{
E (v), v ∈ K

}
(4.18)

where
K :=

{
v ∈ Hs(Rd) :

( β
2

|y|2 − 1

)
v ∈ L1

(Rd), v ≥ 0

}
. (4.19)

Proof. First of all, we prove that the energy is bounded below. Let us �x R :=

√
2/β and note that´

Rd\BR

(
β
2

|y|2 − 1

)
vdy ≥ 0 for any v ∈ K. Then,

1

2

‖v‖2

˙Hs(Rd)

+

ˆ
BR

( β
2

|y|2 − 1

)
vdy. ≤ E (v)
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Therefore, the Hardy-Littlewood-Sobolev inequality (see [65, Theorem V.1]) brings two positive constants C
1

and C
2
depending on d, s, β, such that

E (v) ≥ C
1
‖v‖2

˙Hs(Rd)

− C
2
, ∀v ∈ K. (4.20)

Let vn ∈ K be a minimizing sequence, that is E (vn)

n→+∞−−−−→ infw∈K E (w). We can assume that vn belongs to

a sublevel of the energy for n su�ciently large. Thus, there exists some n̄ and some C > 0 such that

E (vn) ≤ C, ∀n ≥ n̄. (4.21)

Therefore, thanks to (4.20) we have

‖vn‖ ˙Hs(Rd)

≤ C and

∣∣∣ˆ
Rd

( β
2

|y|2 − 1

)
vn(y)dy

∣∣∣ ≤ C, (4.22)

and since
˙Hs(Rd) is compactly embedded in Lp(K) for any compact in Rd and any p < ps :=

2d
d−2s , we have

that, up to a subsequence,

vn n→+∞−−−−→ v in Lp(K), ∀p < ps :=

2d
d − 2s .

In particular, vn n→+∞−−−−→ v almost everywhere in Rd. This guarantees that v ≥ 0. To show that

(
β
2

|y|2 − 1

)
v ∈

L1

(Rd), we use Fatou’s Lemma. We let R = 2/

√
β and use the decomposition

ˆ
RN

(

β
2

|y|2 − 1)vndy =

ˆ
Rd\BR

( β
2

|y|2 − 1

)
vndy +

ˆ
BR

( β
2

|y|2 − 1

)
vndy.

Thanks to the strong convergence in Lp on compact sets we have that

lim

n→∞

ˆ
BR

( β
2

|y|2 − 1

)
vndy =

ˆ
BR

(

β
2

|y|2 − 1)v dy,

and thus (

β
2

|y|2 − 1)v ∈ L1

(BR). For the �rst integral, we have thanks to Fatou’s Lemma (recall that inRd \ BR
we have that

(
β
2

|y|2 − 1

)
v ≥ 0)

+∞ > inf

w∈K
E(w) ≥ lim inf

n→+∞

ˆ
Rd

( β
2

|y|2 − 1

)
vndy

= lim inf

n→+∞

(ˆ
Rd\BR

( β
2

|y|2 − 1

)
vndy

)
+

ˆ
BR

( β
2

|y|2 − 1

)
vdy

≥

ˆ
Rd\BR

( β
2

|y|2 − 1

)
vdy +

ˆ
BR

( β
2

|y|2 − 1

)
vdy. (4.23)

Thus, we conclude that (

β
2

|y|2 − 1)v ∈ L1

(Rd \ BR) and therefore v ∈ K .

Now, to conclude that v is indeed a minimum for the energy, we observe that the semicontinuity of the

Hs seminorm with respect to the weak convergence and (4.23) imply that

infz∈K E (z) = lim inf

n→∞

E (vn) ≥ E (v),

namely the minimality of v. The uniqueness follows from the strict convexity of the energy.

In the next Theorem we prove some important properties of the solution of the obstacle problem (4.18). To

this purpose, we prepare the following

Lemma 4.2. For any v ∈ K there holds
E (v*) ≤ E (v), (4.24)

where v* is the symmetric decreasing rearrangement of v.
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Proof. First of all, we observe that the symmetric decreasing rearrangement reduces the Gagliardo seminorm

(see [3]) and thus ˆ
Rd
|Ls/2

v*|2dy ≤
ˆ
Rd
|Ls/2

v|2dy.

Hence, to obtain (4.24) we have to prove that

ˆ
Rd

( β
2

|y|2 − 1

)
v*dy ≤

ˆ
Rd

( β
2

|y|2 − 1

)
vdy,

which amounts to prove, since

´
Rd vdy =

´
Rd v

*

dy, that
ˆ
Rd
|y|2v*dy ≤

ˆ
Rd
|y|2vdy. (4.25)

As a �rst step, we prove (4.25) for compactly supported v. Thus, we let BR be a ball that contains the support

of v and we set g(y) := (R2

− |y|2)
+
. Since we have that g* = g, Theorem 3.4 in [53] gives

ˆ
Rd

(R2

− |y|2)vdy =

ˆ
Rd
gvdy ≤

ˆ
Rd
gv*dy =

ˆ
Rd

(R2

− |y|2)v*dy, (4.26)

from which we have, being

´
Rd vdy =

´
Rd v

*

dy,
ˆ
Rd
|y|2v*dy ≤

ˆ
Rd
|y|2vdy.

The general case follows by approximation. In fact, for any k > 0, we consider vk := χBk(0)
v (with χBk(0)

we

indicate the characteristic function of Bk(0)). The validity of (4.25) for compactly supported functions gives

ˆ
Rd
|y|2v*kdy ≤

ˆ
Rd
|y|2vkdy.

Moreover, since |y|2vk ≤ |y|2v, the dominated convergence Theorem gives that the right hand side converges

to

´
Rd |y|

2vdy. Hence, thanks to the Fatou’s Lemma, we get

ˆ
Rd
|y|2v*dy ≤

ˆ
Rd
|y|2vdy.

Theorem 4.3. For any β > 0, the solution vO of the obstacle problem (4.18) is smooth, namely C1,α
(Rd) (α ∈

(0, s)), radial decreasing and with compact support. We denote with M
1

= M
1

(d, s, β) its mass, namely

M
1

:=

ˆ
Rd
vO(y)dy. (4.27)

Moreover, vO satis�es the following Euler-Lagrange equations
vO ≥ 0, and LsvO ≥ 1 −

β
2

|y|2 a.e. in Rd ,
vO = 0 in I,
vO > 0, and LsvO = 1 −

β
2

|y|2 a.e. in Ω,

(4.28)

where we have denoted with I the coincidence set
{
y ∈ Rd : vO = 0

}
and with Ω its complement. By radial

symmetry, we have that Ω = BR(0) for some R > 0 and I = Rd \ BR(0).

Proof. The regularity of vO follows from [59] and the derivation of the Euler-Lagrange equations (4.28) is

standard. The validity of (4.28) implies that

BRβ (0) ⊆ Ω, Rβ :=

√
2

β . (4.29)
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In fact, suppose that there is a point ȳ in BRβ (0) such that vO(ȳ) = 0. Then, ȳ is a global minimum point

for vO and thus LsvO(ȳ) ≤ 0. But |ȳ| <
√

2/β and thus the �rst of (4.28) gives LsvO(ȳ) > 0, absurd.

Next, we show that Ω cannot be the whole space. In fact, thanks to [47, Theorem 1.2], solving

Lsv = P in Rd

with P a polynomial, forces u to be a�ne and P to be equal to zero, which is clearly not the case in our

situation.

To conclude that vO is radially symmetric and has compact support, we argue as follows. We denote with

v* : Rd → R the symmetric decreasing rearrangement of vO. Lemma 4.2 gives that

E (v*) ≤ E (vO),

and thus v* is a competitor for vO. Theuniqueness of vO entails that v ≡ v* and thus that vO is radial symmetric

and decreasing. Hence, since vO can not be strictly positive everywhere in Rd, Ω should be a ball BR(0) with

R >

√
2/β.

4.2.1 Explicit form.

The solution vO of the obstacle problem (4.28) can be explicitly computed. We set

ṽ
1

(y) :=

1

κs,d
(1 − |y|2)

1+s
+

for y ∈ Rd , (4.30)

where κs,d := 2

2sΓ(s + 2)Γ(s +

d
2

)Γ(

d
2

)

−1

, with Γ(·) being the Euler Γ-function. This function is supported in

the ball of radius 1. According to the formulas derived by Dyda in [30] we have{
Ls ṽ1

(y) = 1 − γs,d|y|2 =: f (y) in B
1

(0)

v
1

(y) = 0 in Rd \ B
1

(0),

(4.31)

with γs,d := 1 +

2s
d > 1. Notice that Ls ṽ1

(y) is positive for small |y| but negative for |y| ∼ 1. Next, we need to

change the constant γs,d into β/2 in the last formula, and this is done by rescaling as follows: we introduce a

parameter λ > 0 and set

vD(y) :=

1

λ2s ṽ1
(λy) =

1

λ2sκs,d
(1 − λ2|y|2)

1+s
+

, (4.32)

Fixing the value λ :=

√
β/(2γs,d) , and setting RD = 1/λ we observe that:

(i) vD is supported in the ball BRD (0) with

RD :=

√
2γs,d
β =

(
2(1 +

2s
d )(d + 2(1 + s))

)
1/2

, (4.33)

(ii) we have the regularity ṽ
1
∈ C1,s

(Rd), and

(iii) for every y ∈ BRD (0) we have

LsvD(y) =

1

λ2s (Ls ṽ1
)(λy)λ2s

= f (λ y) = 1 −

β
2

|y|2.

Thus, vD solves the problem {
LsvD(y) = 1 −

β
2

|y|2 in BRD (0)

vD = 0 in Rd \ BRD (0).

(4.34)

Finally, we have the following important lemma establishing the link between this solution and the obstacle

problem (4.18).
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Lemma 4.4. The solution vO of the obstacle problem coincides with vD, vD = vO.

Proof. We �rst prove that the supports of vD and of vO coincide and then that equality of solutions, vD ≡ vO.
(i) to deal with the supports we argue by contradiction. Assume that their supports are di�erent. This

means that wemay suppose that R > RD (the opposite situation can be treated with the very same argument).

We let

ṽ(y) :=

(RD
R

)
−2s
vD
(RD
R y
)

in such a way that ṽ is the unique solution of{
Ls ṽ = 1 −

β
2

R2

D
R2
|y|2 in BR(0),

ṽ = 0 in Rd \ BR(0).

(4.35)

We set w := ṽ − vO and we note that w is a C1,s
(Rd) solution ofLsw =

β
2

(
1 −

R2

D
R2

)
|y|2 in BR(0)

w = 0 in Rd \ BR(0).

(4.36)

Therefore, since

β
2

(
1 −

R2

D
R2

)
|y|2 > 0 in BR(0), the fractional version of the Hopf Lemma implies that either w

vanishes in BR(0), and thus R = RD, or there exists some δ
0
> 0 such that for any x ∈ ∂BR(0)

lim inf

Br3z→x

w(z)

dist

s
(z, ∂Br)

≥ δ
0
, Br is an interior ball with radius r at x.

but this is impossible due to the C1,s
regularity of w.

(ii) Now, we call v := vO − vD and we observe that it solves{
Lsv = 0 in BR(0)

v = 0 in Rd \ BR(0).

Thus, v = 0 in Rd and therefore vD = vO.

4.2.2 Adjusting mass and constant.

The fact that vD = vO permits to construct a solution vC of (4.13) for any parameter C > 0 simply by rescaling

the solution vO of the obstacle problem (4.18). The free constant C > 0 allows to �x at will either the radius of

the support or the mass of the self-similar solution. More precisely, we have the following result.

Proposition 4.5. For any C > 0 there exists a unique solution v = vC ∈ C1,α
(Rd), α ∈ (0, s) of the obstacle

problem 
vC ≥ 0, and LsvC ≥ C − β

2

|y|2 a.e. in Rd ,
vC = 0 in IC ,
vC > 0, and LsvC = C − β

2

|y|2 a.e. in BRC (0),

(4.37)

which is supported in the ball of radius
RC = C1/2RD , (4.38)

and has mass
MC :=

ˆ
Rd
vC(y)dy = M

1
C1+d/(2+s)

. (4.39)
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Proof. We let v = vO be the solution of the obstacle problem (4.18)–(4.19). We set wO := LsvO. Then, for any
C > 0, we de�ne

vC(y) := C1+sv(C−1/2y), (4.40)

so that

wC(y) := Cw(C−1/2y) (4.41)

satis�es wC(y) = C(Lsv)(C−1/2y). Consequently, since v and w solve the compatibility equations (4.28), we

get that the couple vC and wC solves (4.37). Moreover, a simple computation gives (recall (4.32))

M =

ˆ
Rd
vCdy = M

1
C1+d/2+s

. (4.42)

Constant and verification. The value for the constant that is called C
2
in formula (1.9) of the introduction

is given by

C1+s
2

=

λ2

κs,d
=

d
2(d + 2 + 2s)(d + 2s)κs,d

. (4.43)

This constant coincides with known values for the limit cases s = 0 and s = 1 agree. More precisely, for s = 0

we get the self-similar solution of Barenblatt type for the PMEwith value C
2

= 1/6 in 1D and C
2

= 1/2(d+2) in

higher dimensions. For s = 1 (Thin Film) it is known that C2

2
= 1/120 in 1D, while we get C2

2
= 1/8(d+2)(d+4)

for d ≥ 1.

4.2.3 Self-similar weak solutions with a connected positivity set.

Now,we address the question of the existence of self-similarweak solutions to (1.1)with a connectedpositivity

set. As we will see, this is a regularity question about the solutions (4.15). More precisely, we remark that we

look for weak solutions in the sense of De�nition 3.1. This means that u belongs to H1+s
(Rd) for a.e. t ∈

(0, +∞). The same regularity holds also for the self-similar pro�le v given by (4.1). Therefore, the arbitrary

constant K in the decomposition formula (4.15) must vanish. In fact, as we have already observed, the v
2

component of the general solution (4.15) is indeed a rescaled version of the Getoor solution vG(y) = κ−1

s,d(1 −

|y|2)

s
+
, y ∈ Rd and we have

vG ∉ H1+s
(Rd). (4.44)

It is interesting to observe that with minor modi�cations one can also prove that in general that v
2
∈ ̸

H1+s
(Rd), where we recall v

2
solves {

Lsv2
= 1 in P

v
2

= 0 in Rd \P ,

when P is smooth, bounded and satisfying the internal ball condition.

To prove (4.44) we can reason as follows. On the one hand, we observe that if s ∈ (0, 1/2] then ∇vG is

neither in L2

(Rd). In fact, we have

∇vG(y) =

{
κ−1

s,d2y(1 − |y|2)

s−1

, |y| ≤ 1

0 otherwise in Rd .

Therefore, ˆ
Rd
|∇vG|2dy = 4κ−2

s,d

ˆ
B

1
(0)

|y|2
(

1 − |y|2
)

2s−2

dy = +∞, if s ≤ 1/2.

On the other hand when s ∈ (1/2, 1), we observe that vG(y) := g(|y|) with g(t) = κ−1

s,d(1 − t2)

s
+
. The function

g does not belong to H1+s
(R). In fact, if g ∈ H1+s

(R) then we would have that g′ ∈ Hs(R) ⊂ C0

(R), thanks to

Sobolev embeddings. This is impossible since g′ → −∞ for t → 1

−

. Now, since (see e.g. [42])

v̂G(ξ ) = ĝ(|ξ |), ξ ∈ Rd ,
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if vG ∈ H1+s
(Rd), then we would have

+∞ >

ˆ
Rd∩{|ξ |>1}

|ξ |2s+2 v̂2

G(ξ )dξ = ωd
ˆ

+∞

1

ρ2s+1+dg2

(ρ)dρ ≥ ωd
ˆ

+∞

1

ρ2s+2g2

(ρ)dρ, (4.45)

where ωd is the measure of the unitary sphere inRd, d ≥ 2. Thus, since we already know that g ∈ L2

(Rd), the

last inequality would imply that g ∈ H1+s
(Rd), absurd.

Therefore, we must take K = 0 in (4.15) and thus the self-similar solutions complying with the regularity

prescribed by Theorem 3.1 are rescaled version of the model solution vD in (4.32). In particular, (see Lemma

4.5) the constant C is �xed according to the mass law (4.39). Moreover, the fact that vD is indeed the solution

of an obstacle problem re�ects in a kind of minimality, with respect to the energy (4.17), of the self-similar

solution.

The following Theorem clari�es the situation.

Theorem 4.6. Given M > 0, we let vC be the solution of (4.5) with the constant C complying with the mass law
(4.39). Then, for

α =

d
d + 2(1 + s) , β =

1

d + 2(1 + s) ,

the self-similar function
uC(x, t) :=

1

(1 + t)α vC
( x

(1 + t)β
)
, (4.46)

is a weak solution (in the sense of De�nition 3.1) of (1.1) with mass M > 0, and it satis�es

lim

t→−1
+

uC(x, t) = Mδ(x) in D ′
(Rd). (4.47)

Proof. Starting from vC, we de�ne, for (see (4.2)) α =

d
d+2(1+s) , β =

1

d+2(1+s) ,

uC(x, t) :=

1

(1 + t)α vC
( x

(1 + t)β
)
, (x, t) ∈ Rd × (0, +∞), (4.48)

and we obtain, by a direct computation that it is a distributional (self-similar) solution of (1.1) such that

lim

t→−1
+

uC(x, t) = Mδ(x) in D ′
(Rd). (4.49)

5 Long time analysis
In this Section we address the long time behavior of the weak solutions constructed in Theorem 3.1. Our �rst

result on the long-time behavior is Theorem 5.7 in which we prove that the set of cluster points for τ → +∞

(that is, the ω-limit set de�ned in (5.35) below) of the weak solution to the Fokker-Planck equation (5.25) (see

below for the de�nition) is not empty and that its elements are indeedweak stationary solutions of (5.25). This

proof needs anextra assumptionon the regularity of the class ofweak solutions, see (5.7), that seems technical

to us. Let us brie�y explain the problem: Unfortunately, the basic energy estimate (see (3.5)) available for

the weak solutions of (1.1) does not rescale directly to an analogous energy estimate (see (5.33)) for the weak

solutions of the Fokker-Planck equation. This estimate should contain, as a formal computation reveals, both

the second moment and the fractional energy

1

2

´
Rd |Ls/2

u|2 and appears to be given by a proper balance

between these two terms. We obtain (5.33) by rescaling an improved energy estimate for the weak solutions

of (1.1) that contains both a fractional energy

1

2

´
Rd |Ls/2

u|2 and the second moment (see Proposition 5.3).

These two terms are properly weighted by precise time dependent factors related to the rescaling (1.3). One

of the main ingredient in the proof of this estimate is the following equality (see Lemma 5.4)

1

2

ˆ
Rd
|Ls/2

u|2dx = −

1

d − 2s

ˆ
Rd
p(x ·∇u)dx. (5.1)
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This identity resembles a Pohozaev identity and furnishes the exact balance between the second moment

and the fractional energy. As the proof of Lemma 5.4 reveals it holds for functions with some decay at in�nity

in order to guarantee that the right hand side makes sense.

Therefore, this is the class for which we address the long time behaviour. It is important to observe that

weak solutions with compact support actually satisfy (5.1). It is an open problem to prove that (5.1) holds for

all weak solutions.

Our second result is Theorem 5.9 in which we are interested in relating the long-time dynamics of (1.1)

with the self-similar solutions constructed in Section 4. At this stage our analysis needs some connectedness

assumption on the elements of the ω-limit set of a weak solution v. This assumption permits to conclude that

the only stationary solution that attracts the dynamics for large times is the compactly supported self-similar

solution vC constructed in Theorem4.6with the constant C adjusted tomatch themass constraint. As a result,

we will obtain the long-time asymptotics

u(·, t) − vC(·, t) t→+∞−−−−→ 0 in L1

(Rd).

As a starting point we prepare the following technical Lemma

Lemma 5.1. Given f ∈ L1

loc(R
d

) with f ≥ 0 and
ˆ
Rd

(1 + |x|2)f (x)dx ≤ C
1
,

ˆ
Rd
|f |p

*

dx ≤ C
2

(p*), p* > 1, (5.2)

there holds ∣∣∣ˆ
Rd
f (x) log f (x)dx

∣∣∣ ≤ C(p*). (5.3)

Proof. We split∣∣∣ˆ
Rd
f (x) log f (x)dx

∣∣∣ ≤ ∣∣∣ˆ
Rd∩{f≥1}

f (x) log f (x)dx
∣∣∣ +

∣∣∣ˆ
Rd∩{0≤f≤1}

f (x) log f (x)dx
∣∣∣

=: A + B. (5.4)

Note that (5.2) and interpolation imply that f is actually controlled in Lp for any p ∈ [1, p*]. Thus, since
t log t ≤ t1+ε

on [1, +∞) for some ε > 0, we conclude that

A ≤
ˆ
Rd∩{f≥1}

f (x)

1+ε
dx ≤ C

2
(p*). (5.5)

To control B, we �rst note that

B ≤
ˆ
{0≤f≤1}

f (x) log

(
1

f (x)

)
dx.

To control the integral in the right hand side, we split it in two parts (see, e.g., [27]). We have

B ≤
ˆ
{0≤f≤1}∩

{
f (x)≥e−|x|2

} f (x) log

(
1

f (x)

)
dx +

ˆ
{0≤f≤1}∩

{
f (x)≤e−|x|2

} f (x) log

(
1

f (x)

)
dx. (5.6)

Now, since t → − log t is decreasing we have that, on the set where f (x) ≥ e−|x|
2

, log

(
1

f (x)

)
≤ |x|2. Thus, the

�rst integral is bounded as

ˆ
{0≤f≤1}∩

{
f (x)≥e−|x|2

} f (x) log

(
1

f (x)

)
dx ≤

ˆ
Rd
|x|2f (x)dx ≤ C

1
.

As regards the second integral, we use the fact that t log(1/t) ≤ C
3

√
t (C

3
> 0) when t ∈ (0, 1). Thus, on the

set {0 ≤ f ≤ 1} ∩
{
f (x) ≤ e−|x|

2

}
we have

f (x) log

(
1

f (x)

)
≤

√
f (x) ≤ C

3
e−

1

2

|x|2

.
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Thus, the second integral is bounded by

ˆ
{0≤f≤1}∩

{
f (x)≤e−|x|2

} f (x) log

(
1

f (x)

)
dx ≤ C

3

ˆ
Rd
e−

1

2

|x|2

dx ≤ C
3

√
(2π)

d
.

Collecting all the estimates we have the thesis.

5.1 Moments and Re�ned Energy Estimate

In this Subsectionwe show that if the initial condition u
0
has �nite secondmoments, then theweak solutions

starting from u
0
maintain their secondmoments �nite. This fact combinedwith the energy estimate (3.5) gives

a re�ned energy estimate that turns to be fundamental for the long time behaviour analysis. The estimate on

the second moments and the re�ned energy estimate hold for those weak solutions constructed in Theorem

3.1 that verify that for a.a. t ∈ (0, +∞)

(x ·∇u) ∈ L2

(Rd) (5.7)

Under this condition we prove (see Lemma 5.4 below) that

d − 2s
2

ˆ
Rd
|Ls/2

u|2dx = −

ˆ
Rd
p (x ·∇u)dx. (5.8)

The condition (5.7) is not optimal in terms of regularity and serves to guarantee that the right hand side of (5.8)

makes sense. In particular, what seems to be needed for the proof is a good decay at in�nity for the solutions.

It is interesting to observe that (5.8) holds, without invoking (5.7), for weak solutions with compact support.

It is an interesting open problem to verify its validity for all the weak solutions given by Theorem 3.1.

5.1.1.
Control of the second moment. We state such control for a special class of weak solutions satisfying the

just stated assumptions.

To ease the presentation and to convey themain ideas, wework at �rst with smooth solutionswith a good

decay at in�nity. Thus, we let u be a smooth solution of{
∂tu = div (u∇p) in Rd × (0, +∞),

p = Lsu, in Rd × (0, +∞).

We have

d
dt

1

2

ˆ
Rd
|x|2udx = −

ˆ
Rd
u(x ·∇p)dx

=

ˆ
Rd
p(x ·∇u)dx + d

ˆ
Rd
updx.

Thus, thanks to Lemma 5.4 below we get

d
dt

1

2

ˆ
Rd
|x|2udx =

d + 2s
2

ˆ
Rd
|Ls/2

u|2dx. (5.9)

This identity is interesting since similar relations are available ([68]) for other evolutions of gradient �ow

type such as the Porous medium equation, both the classical one and both the fractional one (see, for this

last case equation 5.24 below). The computation above is of course only formal since we can not use |x|2 as

a test function in the de�nition of weak solution. However, thanks to the estimate on the �rst moments, we

have the following

Lemma 5.2 (Second Moments). Let u be a weak solution such that (5.7) holds, then
ˆ
Rd

|x|2
2

u(x, t)dx ≤
ˆ
Rd

|x|2
2

u
0

(x)dx +

d + 2s
2

ˆ
Rd×(0,t)

|Ls/2
u|2dxdr. (5.10)
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Proof of Lemma 5.2. To prove (5.10) we �rst use the control the �rst moments of u, proved in Lemma 3.2. For

any R > 0 we consider the real function gR : [0, +∞)→ R such that

gR(t) =

{
t2
2

t ≤ R
Rt − R2

2

t ≥ R.
(5.11)

Then we de�ne φ(x) := gR(|x|) and observe that φ, thanks to the �rst moment estimate, can be used as a test

function in the weak formulation (3.48).

We bound, uniformly in R the integrals in the right hand side of the weak formulation. We have that

ˆ t

0

ˆ
Rd
pu∆φ dxdr =

ˆ t

0

ˆ
Rd
pug′′R(|x|)dxdr + (d − 1)

ˆ t

0

ˆ
Rd
pu g

′
R(|x|)
|x| dxdr,

thus being

g′R(|x|)
|x|

R→+∞−−−−→ 1 and g′R(|x|) ≤ 1, we have by dominated convergence that

lim

R→+∞

ˆ t

0

ˆ
Rd
pu∆φ dxdr = d

ˆ t

0

ˆ
Rd
pu dxdr = d

ˆ t

0

ˆ
Rd
|Ls/2

u|2dxdr.

Now we come to the term

ˆ t

0

ˆ
Rd
p(∇u ·∇φ) dxdr =

ˆ t

0

ˆ
Rd
p(∇u · x)

g′R(|x|)
|x| dxdr.

Now, (5.7) gives that

lim

R→∞

ˆ t

0

ˆ
Rd
p(∇u · x)

g′R(|x|)
|x| dxdr =

ˆ t

0

ˆ
Rd
p(∇u · x)dxdr = −

d − 2s
2

ˆ t

0

ˆ
Rd
|Ls/2

u|2dxdr.

Therefore, collecting all the computations we obtain

ˆ
Rd

|x|2
2

u(x, t)dx +

d − 2s
2

ˆ t

0

ˆ
Rd
|Ls/2

u|2dxdr ≤
ˆ
Rd

|x|2
2

u
0

(x)dx

+ d
ˆ t

0

ˆ
Rd
|Ls/2

u|2dxdr, (5.12)

namely (5.10).

5.1.2. Energies and dissipation.

Proposition 5.3. Let u be a weak solution given by the existence Theorem 3.1 that veri�es also (5.7). Then,
setting

E(u(t)) :=

(1 + t)1−2β

2

ˆ
Rd
|Ls/2

u(x, t)|2dx +

β(1 + t)−2β

2

ˆ
Rd
|x|2u(x, t)dx, (5.13)

where β :=

1

d+2(1+s) , there holds

E(u(t)) − E(u
0

) +

ˆ t

0

ˆ
Rd

(1 + r)1−2β|G|2dxdr ≤ 0, (5.14)

where the vector �eld G ∈ L2

(0, T; L2

(Rd)) is related to the vector �eld ξ in (3.5) by

u1/2G = u1/2ξ + β(1 + t)−1ux,

namely
∇
(

(p + (1 + t)−1
β
2

|x|2)u
)
−

(
p + (1 + t)−1

β
2

|x|2
)
∇u = u1/2G a.e. in Rd × (0, +∞). (5.15)
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Proof of Proposition 5.3. The proof of this Proposition requires to control the second moments of u. We recall

that Theorem 3.1 shows that weak solutions satisfy the energy estimate

1

2

ˆ
Rd
|Ls/2

u(t)|2dx +

ˆ t

0

ˆ
Rd
ξ2

dxdr ≤ 1

2

ˆ
Rd
|Ls/2

u
0
|2dx for a.a. t ∈ (0, +∞), (5.16)

where the vector �eld ξ ∈ L2

(0, +∞; L2

(Rd)) satis�es

∇(up) − p∇u = u1/2ξ almost everywhere in Rd × (0, +∞). (5.17)

We note that (5.10) and (5.16) imply that (actually, both estimates can be shown to hold for almost any

τ ≤ t), respectively,
d

dt
β
2

ˆ
Rd
|x|2u(x, t)dx ≤

ˆ
Rd
|Ls/2

u|sdx,

and

d

dt
1

2

ˆ
Rd
|Ls/2

u|sdx ≤ −
ˆ
Rd
|ξ |2dx,

in the sense of distributions on (0, +∞).

We compute

d

dt E(t). We have

d

dt

(
(1 + t)1−2β

2

ˆ
Rd
|Ls/2

u(x, t)|2dx
)
≤

1 − 2β
2

(1 + t)−2β
ˆ
Rd
|Ls/2

u(x, t)|2dx

− (1 + t)1−2β
ˆ
Rd
|ξ |2dx,

and

d

dt

(β(1 + t)−2β

2

ˆ
Rd
|x|2u(x, t)dx

)
≤ −β2

(1 + t)−2β−1

ˆ
Rd
|x|2udx

+ (1 + t)−2ββ d + 2s
2

ˆ
Rd
|Ls/2

u|2dx.

Therefore,

d

dt E(t) ≤ (1 + t)−2β
(

1 − 2β
2

+ β d + 2s
2

)ˆ
Rd
|Ls/2

u|2dx

− (1 + t)1−2β
ˆ
Rd
|ξ |2dx − β2

(1 + t)−2β−1

ˆ
Rd
|x|2udx

= β(d + 2s)(1 + t)−2β
ˆ
Rd
|Ls/2

u|2dx

− (1 + t)1−2β
ˆ
Rd
|ξ |2dx − β2

(1 + t)−2β−1

ˆ
Rd
|x|2udx, (5.18)

where we used that

1 − 2β
2β =

d + 2s
2

We concentrate on the last two terms. We have that

(1 + t)1−2β
ˆ
Rd
|ξ |2dx + β2

(1 + t)−2β−1

ˆ
Rd
|x|2udx

= (1 + t)1−2β
(ˆ

Rd
|ξ |2dx + β2

(1 + t)−2

ˆ
Rd
|x|2udx

)
= (1 + t)1−2β

ˆ
Rd
|ξ + β(1 + t)−1xu1/2|2dx − 2β(1 + t)−2β

ˆ
Rd
u1/2ξ · xdx.

Now, the de�nition of ξ gives that u1/2ξ = ∇(pu) − p∇u. Moreover, since ξ in L2

(Rd) for a.a. t and u1/2x ∈
L2

(Rd) for a.a. t, there holds that u1/2x · ξ = (∇(pu) − p∇u) · x ∈ L1

(Rd). Therefore, thanks to Lemma 5.4 we
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have

−2β(1 + t)−2β
ˆ
Rd
u1/2ξ · xdx = −2β(1 + t)−2β

ˆ
Rd

(∇(pu) − p∇u) · xdx

= β(d + 2s)(1 + t)−2β
ˆ
Rd
|Ls/2

u|dx.

Therefore (5.18) becomes

d

dt E(t) ≤ −(1 + t)1−2β
ˆ
Rd
|ξ + β(1 + t)−1xu1/2|2dx, (5.19)

that is the thesis.

Now we prove the validity of the key equality (5.8).

Lemma 5.4. Let u ∈ H1+s
(Rd) satisfying (5.7). Then

d − 2s
2

ˆ
Rd
|Ls/2

u|2dx = −

ˆ
Rd
p(x ·∇u)dx (5.20)

Proof of Lemma 5.4. We let u as in (5.7). Integration by parts gives, for any v ∈ S(Rd) (hence in S′(Rd)), that

̂
xj
∂v
∂xj

=

ˆ
Rd
e−iξ ·xxj

∂v
∂xj

dx = iξj x̂jv − v̂ = −ξj
∂v̂
∂ξj

− û.

Therefore,

̂
(x,∇v) =

d∑
j=1

̂
xj
∂v
∂xj

=

d∑
j=1

(
− ξj

∂v̂
∂ξj

− v̂
)

= −div (ξ v̂). (5.21)

The Plancherel identify furnishes

ˆ
Rd
|Ls/2

u|2dx =

ˆ
Rd
pudx =

ˆ
Rd
p̂ûdξ .

Therefore, since p̂ = |ξ |2s û and |ξ |2s =

1

d+2sdiv (ξ |ξ |2s), we have

ˆ
Rd
|Ls/2

u|2dx =

1

d + 2s

ˆ
Rd

div (ξ |ξ |2s)û2

dξ = −

2

d + 2s

ˆ
Rd
|ξ |2s û(ξ ·∇û)dξ .

Now, (ξ ,∇û) = div (ξ û) − dû = −
̂

(x,∇u) − dû. Therefore
ˆ
Rd
|Ls/2

u|2dx = −

2

d + 2s

ˆ
Rd
|ξ |2s û(ξ ·∇û)dξ

=

2

d + 2s

ˆ
Rd
p(x,∇u)dx +

2d
d + 2s

ˆ
Rd
|Ls/2

u|2dx,

namely

d − 2s
2

ˆ
Rd
|Ls/2

u|2dx = −

ˆ
Rd
p(x,∇u)dx.

An important consequence of (5.20) is that, if we know that

(∇(up) − p∇u) · x ∈ L1

(Rd),

there holds that

1

2

ˆ
Rd
|Ls/2

u|2dx = −

1

d + 2s

ˆ
Rd

(
(∇(pu) − p∇u

)
· xdx. (5.22)
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In fact,

−

ˆ
Rd

(
(∇(pu) − p∇u

)
· xdx = d

ˆ
Rd
pudx +

ˆ
Rd
p(x ·∇u)dx

= d
ˆ
Rd
|Ls/2

u|2dx − d − 2s
2

ˆ
Rd
|Ls/2

u|2dx

=

d + 2s
2

ˆ
Rd
|Ls/2

u|2dx.

We conclude by noting that, interestingly, by mimicking the proof above we can prove the following

Lemma 5.5. Let u ∈ Hs(Rd) satisfying (5.7). Then, denoting with p = (−∆)

−su there holds

d − 2s
2

ˆ
Rd
|(−∆)

−s/2u|2dx = −

ˆ
Rd
u(x ·∇p)dx (5.23)

Therefore, at least formally, we have that smooth solutions of the Fractional Porous medium equation (see

[21]) {
∂u = div (u∇p), in Rd × (0, +∞),

Lsp = u, in Rd × (0, +∞),

satisfy

d
dt

1

2

ˆ
Rd
|x|2udx =

d − 2s
2

ˆ
Rd
|(∆)

−s/2u|2dx (5.24)

Asymptotic behaviour. Now we come to the long time analysis. As we saw in Section 4, given a smooth

solution of (1.1) the rescaled solution v according to (4.1) solves the Fokker-Planck type equation∂τv − div y
(
v∇y

(
w +

β
2

|y|2
))

= 0,

w = Lsv.
(5.25)

On the other hand, given v a solution of (5.25) the function u de�ned by

v(y, τ) = e−ατu(yeβτ , eτ − 1), (5.26)

with α and β as in (4.2), is a solution of (1.1).

It is easy to show that given a weak solution of (1.1) the rescaled solution v according to (4.1) is a weak

solution of the Fokker-Planck equation (5.25) in the following sense

De�nition 5.1. Given v
0
∈ L1

loc(R
d

) and nonnegative, we say that v is a weak solution of (1.1) if

1. v ≥ 0 a.e. on Rd × (0, +∞),

2. v ∈ L∞(0, +∞;Hs(Rd)) ∩ L2

(0, +∞;H1+s
(Rd)),

3. Lsv ∈ L2

(0, +∞;H1−s
(Rd)),

4. The following relation holds for any test function φ ∈ C∞c (Rd × [0, +∞))

−

ˆ
+∞

0

ˆ
Rd
v∂tφdydτ −

ˆ
+∞

0

ˆ
Rd
w̃v∆φ dydτ

−

ˆ
+∞

0

ˆ
Rd
w̃∇v ·∇φ dydτ =

ˆ
Rd
v

0
φ(y, 0)dy

w = Lsv, w̃ = w +

β
2

|y|2 a.e. in Rd × (0, +∞). (5.27)

The weak solutions of (5.25) that are obtained from rescaling the weak solutions of the thin �lm equation

obtained in Theorem 3.1 enjoy similar estimates. We have the following
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Proposition 5.6. Let u
0

: Rd → R be a measurable function such thatˆ
Rd
u

0
(x)dx = M, (5.28)

F (u
0

) =

ˆ
Rd
u

0
log u

0
dx < +∞, (5.29)

E (u
0

) :=

ˆ
Rd
|Ls/2

u
0
|2dy +

ˆ
Rd
|y|2u

0
dy < +∞. (5.30)

Let u be a weak solution given by Theorem 3.1 with u
0

: Rd → R as initial condition. We let v be the correspond-
ing weak solution of (5.25) obtained from rescaling u as in (4.1). Then,

1. Mass Conservation ˆ
Rd
v(y, τ)dy =

ˆ
Rd
v(y, 0)dy =

ˆ
Rd
u

0
(x)dx for a.a. τ ∈ (0, +∞), (5.31)

2. Entropy estimate.

F (v(τ)) +

ˆ τ

0

ˆ
Rd
|Ls/2

(∇yv)|2dydr ≤ F (u
0

) + αMτ, ∀τ ≥ 0, (5.32)

where, as in (3.4),
F (v) :=

ˆ
Rd
v log vdy,

3. Energy Estimate. If u veri�es (5.7),

E (v(τ)) +

ˆ
+∞

0

ˆ
Rd
|H|2drdy ≤ E (v(0)), ∀τ ≥ 0, (5.33)

where the vector �eld H ∈ L2

(0, +∞; L2

(Rd)) is given by

∇
(

(w +

β
2

|y|2)v
)
−

(
w +

β
2

|y|2
)
∇v = v1/2H a.e. in Rd × (0, +∞). (5.34)

Proof. The conservation of mass, the entropy and energy estimates follow by rescaling using (4.1). More pre-

cisely, to obtain (5.31) and (5.32) we simply rescale the analogous estimates (3.3) and (3.4) for u. To obtain

estimate (5.33), we just rescale (5.14).

The �rst step in the long time analysis is the following Theorem in which we prove that the set of the cluster

points for large times of the weak solutions to (5.25) is not empty and its elements are indeed stationary

solutions. More precisely, we set

ω(v) :=

{
v
∞
∈ Hs(Rd) ∩ L1

(Rd , (1 + |y|2)L d
) : ∃τn ↗ +∞with v(τn)

n→+∞−−−−→ v
∞

in L1

(Rd)

}
(5.35)

(here L d
denotes the d-dimensional Lebesgue measure) and we prove the following Theorem

Theorem 5.7. Let us take an initial condition u
0
satisfying (5.28)-(5.30)andaweak solution u given by Theorem

3.1 with u
0

: Rd → R as initial condition and satisfying (5.7). Then, denoting with v the weak (rescaled) solution
of (4.1) in the sense of De�nition 5.1, given a sequence of times {τn} such that τn ↗ +∞, there exists a not
relabelled subsequence (that we still denote with τn) and a function

v
∞
∈ H1+s

(Rd) ∩ L1

(Rd , (1 + |y|2)L d
) (5.36)

such that
v(τn)

n→+∞−−−−→ v
∞

strongly in L1

(Rd), (5.37)

namely v
∞
∈ ω(v). Moreover, any v

∞
∈ ω(v) is a weak stationary solution of (5.25) that is,∇

(
(w
∞

+

β
2

|y|2)v
∞

)
−

(
w
∞

+

β
2

|y|2
)
∇v

∞
= 0, in Rd

Lsv∞ = w
∞

in Rd .
(5.38)



1548 | Antonio Segatti and Juan Luis Vázquez, On a fractional thin �lm equation

Proof. Let {τn} be �xed in such a way that τn ↗ +∞. Let v be a weak solution given by Proposition 5.6. Then,

ˆ
Rd
v(τn)dy = M, ∀n ∈ N, (5.39)

sup

n

{ˆ
Rd
|Ls/2

v(τn)|2dy +

ˆ
Rd
|y|2v(τn)dy

}
≤

ˆ
Rd
|Ls/2

u
0
|2dy +

ˆ
Rd
|y|2u

0
dy < +∞. (5.40)

Therefore, the fractional version of the Nash’s Inequality (or using interpolation), implies that

‖v(τn)‖L2

(Rd)

≤ c(d, s), ∀τ ≥ 0.

and therefore, using in particular the uniform bound (see (5.40)) on the secondmoment,

{
v(τn)

}
is relatively

compact in L2

(Rd) and in L1

(Rd) thanks to Rellich-Kondrachov, Dunford-Pettis and Vitali Theorems. We let

v
∞

denote the limit of v(tn). We have ˆ
Rd
v
∞

dy =

ˆ
Rd
u

0
dx,

and by semi-continuity, thanks to (5.40),

E (v
∞

):=

ˆ
Rd
|Ls/2

v
∞
|2dy +

ˆ
Rd
|y|2v

∞
dy < +∞,

namely (5.36) that says that

ω(v) ≠ ∅.

It remains to show that the limit v
∞

is indeed a stationary solution. To this end, we standardly de�ne vn(·) :=

v(·+ τn). For any n ∈ N, vn is a weak solution in the sense of De�nition 5.1 with initial condition vn(0) = v(τn).

Therefore vn satis�es both the estimates (5.32) and (5.33). The second one gives

1

2

(ˆ
Rd
|Ls/2

vn(τ)|2dy +

ˆ
Rd
|y|2vn(τ)dy

)
+

ˆ τ

0

ˆ
Rd
|Hn|2dy

≤

1

2

(ˆ
Rd
|Ls/2

vn(0)|2dy +

ˆ
Rd
|y|2vn(0)dy

)
, ∀τ < +∞ (5.41)

where

w̃n(·) := w̃(· + τn), Hn(·) := H(· + τn).

Since (5.33) is uniform with respect to τ, we can bound the right hand side above with

1

2

(ˆ
Rd
|Ls/2

u
0
|2dy +

ˆ
Rd
|y|2u

0
dy
)

and conclude that, uniformly with respect to n,

‖vn‖L∞(0,+∞;Hs(Rd))

+ ‖vn‖L∞(0,+∞;L1

(Rd ,(1+|y|2

)L d
))

≤ C. (5.42)

Thus, using the Sobolev inequality, we conclude that

‖vn‖L∞(0,+∞;Lps (Rd))

+ ‖vn‖L∞(0,+∞;L1

(Rd ,(1+|y|2

)L d
))

≤ C, ps :=

2d
d − 2s . (5.43)

Consequently, using Lemma 5.1 with f (·) = vn(·, τ) for τ ≥ 0, we get∣∣∣ˆ
Rd
vn(y, τ) log vn(y, τ)dy

∣∣∣ ≤ C, ∀τ ≥ 0, (5.44)

where the constant C depends only on the dimension d and on s. The entropy estimate (5.32) for vn reads

(M :=

´
Rd vn(y)dy)

F (vn(τ)) +

ˆ τ

0

ˆ
Rd
|Ls/2

(∇yv)|2dydr ≤ F (vn(0)) + αMτ
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Thus, for any �xed T > 0, thanks to (5.44) we get

ˆ T

0

ˆ
Rd
|Ls/2

(∇vn)|2dy ≤ C(T,M). (5.45)

As a result, combining the above estimate with (5.42) we get

‖vn‖L2

(0,T;H1+s
(Rd))

+ ‖wn‖L2

(0,T;H1−s
(Rd))

≤ C(T). (5.46)

The weak formulation (5.27) can be rewritten (for vn) asˆ
Rd×(0,T)

vn∂tηdydτ =

ˆ
Rd×(0,T)

w̃ndiv(η∇vn)dydτ,

for all η ∈ C1

c (Rd × (0, T)). Thus, the since wn is bounded in L2

(0, T;H1−s
(Rd)) and vn is bounded in

L2

(0, T;H1+s
(Rd)) we get a bound for ∂τvn in some L2

(0, T;W−1,r
(Rd)) for r > 1. Therefore, there exist v̄

∞

and w̄
∞

and a not relabelled subsequence, such that

vn n→+∞−−−−→ v̄
∞

weakly star in L∞(0, +∞;Hs(Rd)) ∩ L2

(0, T;H1+s
(Rd)), (5.47)

wn n→+∞−−−−→ w̄
∞

weakly star in L∞(0, +∞;H−s(Rd)) ∩ L2

(0, T;H1−s
(Rd)), (5.48)

vn n→+∞−−−−→ v̄
∞

weakly in L1

(Rd × (0, T)), ∀T > 0, (5.49)

vn n→+∞−−−−→ v̄
∞

strongly in L2

(0, T;H1+s−δ
loc (Rd)), ∀δ > 0, ∀T > 0, (5.50)

where the weak L1

-convergence follows fromDunford-Pettis Theorem thanks to the estimate (5.43). Note that

(5.49) and (5.50) imply

vn n→+∞−−−−→ v̄
∞

strongly in L1

(Rd × (0, T)) ∀T > 0, . (5.51)

Clearly, v̄
∞
≥ 0 almost every where in Rd × (0, +∞). Now we proceed with the identi�cation of v̄

∞
as a weak

solution of (5.25) emanating from v
∞
. First of all, w̄

∞
is identi�ed as w̄

∞
= Ls v̄∞, at least in the sense of

distributions. The very same convergence (5.48) holds also for w̃n and we have w̃
∞

= w̄
∞

+

β
2

|y|2. Moreover,

testing the weak L1

convergence with ϕ ≡ 1 in Rd × (0, τ) we get, for any τ > 0,

Mτ = lim

n→∞

ˆ τ

0

ˆ
Rd
vn(y, r)dydr =

ˆ τ

0

ˆ
Rd
v̄
∞

(y, r)dydr.

Thus, ˆ
Rd
v̄
∞

(y, τ)dy = M, ∀τ > 0, (5.52)

namely the mass conservation. The convergences above are enough, as in the proof of Theorem 3.1 to pass to

the limit in the weak formulation (5.27) and obtain that v̄
∞

is indeed a weak solution of (5.25).

Moreover, (5.33) gives that, for any T > 0,

ˆ T

0

ˆ
Rd
|Hn|2dydτ =

ˆ T+τn

τn

ˆ
Rd
|H|2dydτ n→+∞−−−−→ 0. (5.53)

Therefore, thanks to the above proved weak and strong convergences we conclude thatˆ
+∞

0

ˆ
Rd
|H
∞
|2dydr = 0, (5.54)

where the vector �eld H
∞
∈ L2

(0, +∞; L2

(Rd)) is the weak limit of Hn and satis�es

v̄1/2

∞
H
∞

= ∇
(

(w̄
∞

+

β
2

|y|2)v̄
∞

)
−

(
w̄
∞

+

β
2

|y|2
)
∇v̄

∞
,

Therefore (5.54) gives that H
∞

= 0 almost everywhere in Rd × (0, +∞). Thus, (w̃
∞

:= w̄
∞

+

β
2

|y|2)
ˆ T

0

ˆ
Rd
v̄
∞
∂tφdydτ = −

ˆ T

0

ˆ
Rd

(
∇(w̃

∞
v̄
∞

) − w̃
∞
∇v̄

∞

)
·∇φdydr = 0, (5.55)

for any φ ∈ C1

c (Rd × (0, T)) and thus we have that v̄
∞

is constant in time, hence v̄
∞

= v
∞

for all τ ≥ 0. In

particular, we conclude that v
∞

satis�es (5.38).
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We have the following

Proposition 5.8. Let v be a weak solution of (5.25) constructed according to Proposition 5.6 and let v
∞
∈ ω(v).

Then, in each connected component Ci of

P
∞

:=

{
y ∈ Rd : v

∞
(y) > 0

}
=

⋃
i
Ci

we have that there exists a constant ci such that w
∞

= Lsv∞ = ci − β
2

|y|2.

Proof. We observe that the de�nition of H
∞

implies that

∇(w̃
∞
v
∞

) − w̃
∞
∇v

∞
= 0 a.e. in Rd . (5.56)

Thus, from it follows that, in any connected component of P
∞
, we get that w̃

∞
is constant.

In fact, for any δ > 0 let us consider the set

Pδ :=

{
x ∈ Rd : v

∞
≥ δ
}
.

Due to the Sobolev regularity of v
∞

this set is quasi open (see [49] for the de�nition). Now, for any �xed R > 0

and x
0
∈ Rd, thanks to (5.56), we have that

∇(w̃
∞
v
∞

) ∈ Lq(BR(x
0

)),

for some q ≥ 1. Therefore, w̃
∞
∈ W1,q

(BR(x
0

) ∩ Pδ) (see [49, Lemma 2.5]) with

∇w̃
∞

=

1

v
∞

(
∇(w̃

∞
v
∞

) − w̃
∞
∇v

∞

)
, a.e. in BR(x

0
) ∩ Pδ .

Consequently, (5.56) implies that∇w̃
∞

= 0 almost everywhere in BR(x
0

) ∩ Pδ, for any x0
∈ Rd, for any R > 0

and for any δ > 0 which implies that w̃
∞

is constant on any connected component of P
∞
.

We can now state the main result of this Section.

Theorem 5.9. Let us given a measurable function u
0

: Rd → R such that

ˆ
Rd
u

0
log u

0
dx < +∞, (5.57)

ˆ
Rd
|Ls/2

u
0
|2dx +

ˆ
Rd
|x|2u

0
dx < +∞, (5.58)

ˆ
Rd
u

0
dx = M, (5.59)

and let u be a weak solution of (1.1) given by Theorem 3.1 with initial datum u
0
≥ 0 and satisfying (5.7). Let v be

the rescaled weak solution according to (4.1) and to Proposition 5.6. Let us assume that for any v
∞
∈ ω(v) the

set P
∞

is connected. Then, the following convergence holds

v(·, τ)

τ→+∞−−−−→ vC(·), in L1

(Rd), (5.60)

where vC is the solution of the obstacle problem provided by Theorem 4.6 with the constant C determined by
the mass law (4.39). Therefore (recall (4.1), (4.46) and (5.26)), in terms u we have the following large times
convergence

u(·, t) − uC(·, t) t→+∞−−−−→ 0 in L1

(Rd), (5.61)

namely the convergence of the corresponding weak solution of (1.1) to the self-similar solution uC.
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Proof. The Proposition above shows that v
∞

solves{
Lsv∞ =

∑
i∈N ciχi(x) −

β
2

|y|2 in P
∞
,

v
∞

= 0 in Rd \P
∞
,

(5.62)

(χi is the characteristic function of Ci).

Thus, the assumption of connectedness of P
∞
, gives that v

∞
can represented as in (4.15) with K = 0 due

to the regularity. In this way, thanks to Lemma 4.4, we conclude that v
∞

is the obstacle solution vC with the

constant C given according to the mass law (4.39). Therefore, up to a subsequence (see (5.51)),

v(·, τn)

n→∞−−−−→ v
∞

(·) = vC(·) in L1

(Rd).

Then, the uniqueness of the solution of the obstacle problem, gives that the convergence above holds not only

for a subsequence of times and therefore (5.60) is satis�ed. The convergence for u follows from the de�nition

of v in (4.1).

We conclude this Section with some comments. Both Theorems 5.7 and 5.9 work for those weak solutions that

satisfy the extra assumption (5.7). As we observed, the proof that all weak solutions satisfy (5.7) constitutes a

challenging open problem.

We observe that we can actually dispense with this assumption at the price of introducing an extra ap-

proximation at the level of the Fokker Planck equation. This approximation is analogous to the approximation

we used for proving existence in Theorem 3.1 and producesweak solutions of the Fokker Planck equation that

satisfy the estimates (5.32) and (5.33). This would correspond in studying as a �rst the long time behavior of

these weak solutions of the Fokker Planck equation and then in obtaining as a second step the convergence

to the self-similar solution of the weak solutions of the thin �lm equation by rescaling. Unfortunately, this

procedure has a potential oddity since, due to nonuniqueness, the weak solution of the thin �lm equation

that we obtain from rescaling back the weak solution of the Fokker Planck is not necessarily one of the weak

solutions we construct in Theorem 3.1.

This explains why we chose to include (5.7) as a suitable extra regularity assumption.

6 An extension to higher order problems with similar structure
An important feature of equation (1.1) is its conservation law structure, that we may display as

∂tu = div (uF),

F = ∇p,
p = Lsu.

Theparticular equationdependson the closing relationshipbetween u and p. For instance, to obtain equation

(1.2) one considers −s instead of s and to obtain the (local) porous medium equation one considers s = 0).

More in general, a interesting open problem is the analysis of

p = K [u], (6.1)

where K can be a local or nonlocal operator, even of higher order than 2. The case K = (−∆)

m
with m > 1

has been �rst studied to our knowledge in [13] and then in [25, 33–35] and others. Work is mostly done in one

space dimension.

Self-similar higher order solutions. As an advance to the theory of higher order equations, we contribute

here the calculation the regular self-similar solution for the equations of the form
∂tu − div (u∇p) = 0, in Rd × (0, T)

p = A
2+2su, in Rd × (0, T)

u(x, 0) = u
0

(x), in Rd ,

(6.2)
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where s ∈ (0, 1), A
2+2s = (−∆)

1+s
= Ls ◦ (−∆) and Ls, is the fractional Laplacian as in previous section.

The dimension d ≥ 1. The order of the equation is then 4 + 2s ∈ (4, 6). The theory of existence for general

equations of the type (6.2) has not been done but it should follow the steps of Section 3.

(i) If again we look for solutions of the self-similar form

u(x, t) =

1

(1 + t)α v
( x

(1 + t)β
, log(1 + t)

)
, (6.3)

where the function v : Rd × R → R is to be appropriately determined and the parameters α and β are now

given by

α =

d
d + 2(2 + s) , β =

1

d + 2(2 + s) . (6.4)

due to the constraints that we will �nd below. We set

y :=

x
(1 + t)β

, τ := log(1 + t), w = Lsv.

Assuming all the regularity needed to justify the computations, and after calculations that have no novelty,

we arrive following nonlinear and nonlocal Fokker-Planck type equation:∂τv − div y
(
v
(
∇yw + βy

))
= 0, in Rd × (0, +∞)

w = Ls(−∆v) in Rd × (0, +∞).

(6.5)

(ii) Wemake a reduction in the set of possible solutions and concentrate on those stationary solutions of (6.5)

such that {
v∇y

(
w +

β
2

|y|2
)

= 0 in Rd ,
w = Ls(−∆v) in Rd .

(6.6)

As in the parallel study made in [22] for negative values of s, this reduction must be justi�ed by the later

analysis of the long-time behavior and the asymptotic convergence to a self-similar pro�le.

Obtaining a solution is then reduced to the famous complementarity rule: either v = 0 or∇y
(
w+

β
2

|y|2
)

=

0. Furthermore, and the second condition will be simpli�ed to �nding a ball where w = C − β
2

|y|2 for some

C ∈ R.

6.1 Explicit form.

The solution of the stationary self-similar problem can be explicitly computed as follows.

Theorem 6.1. Consider the function

V(y) := (A − a|y|2)

2+s
+

for y ∈ Rd , (6.7)

which is positive in the ball R = (A/a)

2. There exists a = a(d, s) such V solves the problem{
Ls(−∆)V = C − β

2

|y|2 in BR
V = 0 in Rd \ BR .

(6.8)

The precise value of a is computed below, (6.16). A > 0 is a free constant and C = c(s, d)A with c(s, d) computed
at the end of the proof.

Proof. (i) Let us �rst calculate the Laplacian of V in BR. Writing V = f (Z) with f (Z) = Z2+s
, Z = A − ar2

, and

r = |y|, we use the formula

∆f (Z) = f ′(Z) ∆Z + f ′′(Z)|∇Z|2,
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to get at all points where V > 0

−∆V = (2 + s)Z1+s
(2ad) − (2 + s)(1 + s)Zs(4a2r2

) =

= (2 + s)Zs{(2ad)(A − ar2

) − 4a2

(1 + s)r2}.

The coe�cient of −r2

in the last parenthesis is 2a2d + 4a2

(1 + s) that we write µa2

with µ = 2d + 4(1 + s)).
Therefore, we get

−∆V = (2 + s)Zsµa(A − ar2

) + (2d − µ)(2 + s)Aa Zs ,

and �nally we get

−∆V = F
1

(y) + F
2

(y) ,

with

F
1

(y) = (2 + s)µa (A − ar2

)

1+s
, F

2
(y) = −4(1 + s)(2 + s)Aa (A − ar2

)

s
. (6.9)

The splitting into these two functions will be very convenient. Note that −∆V = 0 outside of the support,

and −∆V is a smooth function globally, since there is no delta function (measure) at the support boundary

because the normal derivative of V at r = R is zero.

(ii) Next we prepare some very precise calculations. It is convenient to de�ne

v
1

(y) :=

1

κs,d
(1 − |y|2)

1+s
+

for y ∈ Rd , (6.10)

where κs,d := 2

2sΓ(s + 2)Γ(s +

d
2

)Γ(

d
2

)

−1

, with Γ(·) being the Euler Γ-function. This function is supported in

the ball of radius 1. According to Dyda [30] we have{
Lsv1

(y) = 1 − γs,d|y|2 =: f (y) in B
1

(0)

v
1

(y) = 0 in Rd \ B
1

(0),

(6.11)

with γs,d := 1 +

2s
d > 1. Notice that Lsv1

(y) is positive for small |y| but negative for |y| ∼ 1. Next, we need to

change the constant γs,d into β/2 in the last formula, and this is done by rescaling as follows: we introduce a

parameter λ > 0 and set

vλ(y) :=

1

λ2s v1
(λy) =

1

λ2sκs,d
(1 − λ2|y|2)

1+s
+

, (6.12)

For every y ∈ B
1/λ(0) we have

Lsvλ(y) =

1

λ2s (Lsv1
)(λy)λ2s

= (Lsv1
)(λ y).

Fixing the value λ :=

√
β/(2γs,d) , we get the result:

Lsvλ(y) = 1 −

β
2

|y|2.

We need to introduce another rescaling vK(y) := K1+sv(K−1/2y), that satis�es

LsvK(y) := KLsv(K−1/2y). (6.13)

Combining both scalings we can de�ne

v̂(y) = vλ,K(y) =

1

λ2sκs,d
(K − λ2|y|2)

1+s
+

. (6.14)

This function has the property that

Ls v̂ = K − β
2

|y|2 (6.15)

in the positivity set of v̂, the ball of radius (2K/β)

1/2

= (2K(d + 4 + 2s))1/2

.
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(iii) In this step we proceed towards the solution V by adjusting F
1

(y) in (6.9) to formula (6.14). Forgetting

for the moment about A and K which are the free constants, we determine the main constant a > 0 by the

relationship

(2 + s)µa2+s
=

λ2

κs,d
.

This produces a formula for a = a(d, s):

a−(2+s)
= 2(2 + s)(d + 4 + 2s)γs,dµs,dκs,d . (6.16)

Verification. For s = 0 and d = 1 we are dealing with the Thin Film equation in one dimension, and then

a2

= 1/120 that is consistent with the explicit solution found by Bernis-Peletier-Williams in [14].

Moreover, the free constants K > 0 and A > 0 are related by

((2 + s)µa)

1/(1+s)A = (λ2sκs,d)

−1/(1+s)K , (6.17)

so that

A = K aλ2

. (6.18)

Now, with this choice of A and a we get

LsF1
(y) = K − β

2

|y|2, in BR(0) (6.19)

(iv) Next,we tackle F
2

(y). The choice (6.16) and (6.18) of a andA �x the value ofLsF2
on BR(0).More precisely,

we observe that

F
2

(y) = −4(1 + s)(2 + s)Aa (A − ar2

)

s
= −4(1 + s)(2 + s)A1+sa vG

(a1/2y
A1/2

)
,

where vG is the Getoor solution (4.16). Thus,

LsF2
(y) = −4(1 + s)(2 + s)Aa1+sκs,d =: K

2
, in BR(0). (6.20)

As a result, we have {
(Ls(−∆)V)(y) = Ls(F1

+ F
2

)(y) = K − K
2
−

β
2

|y|2 in BR(0)

V = 0 in Rd \ BR(0).

(6.21)

Therefore,

Ls(−∆)V = K − K
2
−

β
2

r2

.

The proof is done with C = K − K
2

= c(s, d)A with

c(s, d) =

β
2aγs,d

(
1 −

4(1 + s)
κs,d(2d + 4(1 + s))

)
. (6.22)

7 Open problems
In this �nal Section we collect some open problems that we �nd worth considering.

• Gradient Flow. An interesting open problem, motivated by the decaying of the energy E de�ned by (1.8),

is whether the evolution (1.1) is aWasserstein gradient �ow for E . This is the case indeed for the relatedmodel

(1.2), which was shown in [52] to be a Wasserstein gradient �ow for the

1

2

‖ · ‖2

H−s(Rd)

-norm, and for the Thin

Film equation (s = 1) (see [55]). More in general, an interesting problem is to understand whether (1.1) with
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a concave mobility m(u) = uγ is indeed a gradient �ow for E with respect to a weighted Wasserstein distance

of the type of [29].

• Compactly supported solutions. In Section 4 we have constructed self-similar solutions with compact

support. These are weak solutions (for t ≥ 0) according to De�nition 3.1 that originate from a Dirac Mass

located in t = −1. For the moment these are the only solutions we are able to construct that are compactly

supported. It is clearly interesting to understand whether compactly supported initial conditions generate

compactly supported solutions. This is indeed a quite complicated question since the equation is formally of

order 2 + 2s and thus we do not have comparison arguments at our disposal. If the solutions are compactly

supported a free boundary appears and must be studied. This is a di�cult open problem that was been thor-

oughly investigated for the PME, see for instance [69] and the recent work [48], where extensive references

are given. The topic has also attracted lot of attention for the Thin Film equation, see without any claim of

completeness [12], [43] and [37]. A general reference for the mathematics of free boundaries is [18].

• Self-similar solutions. As discussed in the paper, the self-similar solutions of equation (1.1) are given by

the Barenblatt pro�les

v(y) = (C
1
− C

2
|y|2)

1+s
+

, (7.1)

which coincides with the Barenblatt pro�le for the standard Porous Medium equation with m =

s+2

s+1

. We �nd

this coincidence quite interesting and worth to be further analysed. Note on this regard that when s = 1

(hencem = 3/2), namely thin �lms with linear mobility, this observation has been already successfully used

in [24] for the long time behaviour of the thin �lm equation.

• Uniqueness. So far we have proved existence of a weak solution. A natural question is to understand

whether some uniqueness holds, at least in 1-D. This is an interesting problem already for s = 1, namely

the Thin Film equation (see [54] and references therein). In particular, it would be interesting to see if there

is uniqueness when there is a Dirac Mass as initial data. This uniqueness result, if true, would be important

in the convergence to self-similar solutions as in the so called “three steps method" for the classical porous

medium equation, see [69, Chapter 18 ].)

• Multi-Bump stationary states. Theorem 5.9 requires the hypothesis of connectedness of the omega-limit

set of a weak solution v of (5.25). An interesting problem is clearly to understand if this assumption is really

necessary. In particular, it would be interesting to exclude the presence stationary states with disconnected

support or to provide examples of multi-bump asymptotic limits. This problem is clearly related to the con-

struction of self-similar solutions for which the positivity set is disconnected.

• Singular limits. As we have already pointed out, Equation (1.1) interpolates between the Porous Medium

equation (s = 0) and the Thin Film equation (s = 1). A natural question is to investigate these singular limits

for the constructed solutions, and rigorously relate these three equations.

• Power Law mobility function. The analysis of (1.1) has been restricted to a linear mobility function. The

case of a power lawmobility function of the typem(u) = un is, to the best of our knowledge, open indimension

d ≥ 2 (see [66] for the one dimensional case in a bounded interval with Neumann boundary conditions)

and deserves to be studied. In particular, it would be interesting to understand the relation (if any) between

the order of fractional di�erentiation s, the exponent n and the dimension d for the existence of nontrivial

compactly supported self-similar solutions. When s = 1 and d = 1 a quite complete picture is given in [14],

while for s = 0 (PME) the situation is understood in all dimensions [69]. For the porous medium equation

with nonlocal pressure, case −1 < s < 0, this is studied in [62–64], and for s = −1 in [58].

• Relation toCahnHilliardEquation. The analysis of (1.1) suggests that itwould be interesting to consider

the following evolution {
∂tu = div (m(u)∇p) in Rd × (0, +∞)

w = Lsu + f (u), in Rd × (0, +∞),

(7.2)

where f : R → R. The equation above can be considered as fractional version of the Cahn-Hilliard equation

with nonconstant mobility, and to the best of our knowledge, it has been studied only in [1] for bounded
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domainswithNeumannboundary conditions andwithm independent of u. The Cahn-Hilliard equation plays

a central role in material science and its analysis (see, among the others, [8], [9], [31]) suggests that there

should be a precise relation between the mobility function and the nonlinearity f .

• Integrated equation. A transformation that has been very useful in the study of similar equations of order

from 0 to 2 in one space dimension is the integration transformation

v(x, t) =

ˆ x

−∞

u(y, t) dy.

This allows to pass from equation (1.1), i.e., uu = (u(p(u)x)x, to vt = vxp(vx)x, which for p(u) = Lsu gives

vt = vx (Lsv)xx .

Our results can be transferred to the latter equation but otherwise no more seems to be known. Let us point

out that the study of that equation for −1 < s < 0 has been very fruitful thanks to the maximum principle that

allows for the theory of viscosity solutions and comparison results, cf. [16, 62].

• Numerics. The theoretical results would greatly bene�t from the development of e�cient numerical

methods for (1.1), in particular in dimension one, in view of the potential application to cracks dynamics

(see [45] and [46] and the references therein.)
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