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Abstract: The main purpose of this paper is to study a general class of (p, q)-type eigenvalues problems with
lack of compactness. The reaction is a convex-concave nonlinearity described by power-type terms. Ourmain
result establishes a complete description of all situations that can occur. We prove the existence of a critical
positive value λ* such that the following properties hold: (i) the problem does not have any entire solution
in the case of low perturbations (that is, if 0 < λ < λ*); (ii) there is at least one solution if λ = λ*; and (iii)
the problem has at least two entire solutions in the case of high perturbations (that is, if λ > λ*). The proof
combines variational methods, analytic tools, and monotonicity arguments.
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1 Introduction
The initial motivation of this paper goes back to the paper by Alama and Tarantello [1], where there are stud-
ied combined e�ects of convex and concave terms for nonlinear elliptic equations with Dirichlet boundary
condition. Alama and Tarantello were concerned with the following semilinear elliptic problem

−∆u − λu = k(x)uq − h(x)up in Ω
u > 0 in Ω
u = 0 on ∂Ω ,

(1.1)

where 1 < p < q, λ is a real parameter, Ω ⊂ RN is a smooth bounded domain, and the potentials h, k ∈
L1(Ω) are nonnegative. Let λ1 be the �rst eigenvalue of the Laplace operator in H1

0(Ω). The main result in [1]
establishes that for all λ ∈ R in a neighbourhood of λ1, problem (1.1) has nontrivial weak solutions under
natural growth hypotheses on h and k. More precisely, Alama and Tarantello proved existence, nonexistence
andmultiplicity properties dependingon λ andaccording to the integrability properties of the ratio kp−1/hq−1.

Nonlinear boundary value problems with reaction described by convex–concave nonlinear terms have
been also studied in the pioneering paper by Ambrosetti, Brezis and Cerami [2]. The authors considered the
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following semilinear elliptic problem with Dirichlet boundary condition
−∆u = λuq−1 + up−1 in Ω
u > 0 in Ω
u = 0 on ∂Ω ,

(1.2)

where Ω ⊂ RN is a bounded domain with smooth boundary, λ is a positive parameter, and 1 < q < 2 < p < 2*

(2* = 2N/(N − 2) if N ≥ 3, 2* = +∞ if N = 1, 2). The authors proved the existence of a critical value λ0 > 0
such that problem (1.2) has at least two solutions for all λ ∈ (0, λ0), one solution for λ = λ0, and no solution
exists for all λ > λ0.

For related contributions, we refer to Bartsch andWillem [8], Filippucci, Pucci and Rădulescu [13], Pucci
and Rădulescu [23], Rădulescu and Repovš [25], etc.

Motivated by the abovementioned papers,we are concernedwith existence andmultiplicity properties of
solutions in a di�erent abstract setting and with lack of compactness. The feature of the present paper is that
we consider a nonlinear Dirichlet problem driven by a general nonhomogenous di�erential operator, which
was introduced by Barile and Figueiredo [5]. This operator generalizes several standard operators, including
the p-Laplacian, the (p, q)-Laplace operator, the generalized mean curvature operator, etc. In particular, the
associated energy can be a double phase functional.

The study of non-autonomous functionals characterized by the fact that the energy density changes its
ellipticity and growth properties according to the point has been initiated by Marcellini [16–18]. Recently,
important contributions are due to Mingione et al. [6, 12]. These papers are in relationship with the works
of Zhikov [29, 30], which describe the behavior of phenomena arising in nonlinear elasticity. In fact, Zhikov
intended to providemodels for strongly anisotropicmaterials in the context of homogenisation. In particular,
he considered the following model functional

Pp,q(u) :=
∫
Ω

(|Du|p + a(x)|Du|q)dx, 0 ≤ a(x) ≤ L, 1 < p < q, (1.3)

where the modulating coe�cient a(x) dictates the geometry of the composite made of two di�erential mate-
rials, with hardening exponents p and q, respectively.

Another signi�cant model example of a functional with (p, q)–growth studied byMingione et al. is given
by

u 7→
∫
Ω

|Du|p log(1 + |Du|)dx, p ≥ 1,

which is a logarithmic perturbation of the p-Dirichlet energy.
Intensive research work has been devoted to nonlinear PDEs with double phase energy; see, e.g., [4, 7,

11, 19, 20, 24, 26, 28].
Some of the main abstract methods used in this paper can be found in Ambrosetti and Rabinowitz [3],

Brezis and Nirenberg [10], Pucci and Rădulescu [22], and the monograph by Papageorgiou, Rădulescu and
Repovš [21].

Notation

Throughout this paper, we denote byW1,p(RN) the Sobolev space endowed with the norm

‖u‖W1,p =

∫
RN

(|∇u|p + |u|p) dx

1/p

.

We denote by Lsm(RN), 1 ≤ s < ∞ the weighted Lebesgue space

Lsm(RN) =

u ∈ L1loc(RN) :
∫
RN

m(x)|u|sdx < ∞

 ,
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wherem(x) is a positive continuous function onRN . This weighted function space is endowed with the norm

‖u‖m,s =

∫
RN

m(x)|u|sdx

1/s

.

If m(x) ≡ 1 in RN , the norm is denoted by ‖ · ‖s.

2 The main result
Barile and Figueiredo [5] studied nonlinear elliptic problems driven by the potential a : [0,∞) → (0,∞),
which is a continuously di�erentiable function satisfying the following hypotheses:

(a1) there exist positive constants ci (i = 0, 1, 2, 3) and real numbers 1 < p ≤ q such that

c0 + c1t(q−p)/p ≤ a(t) ≤ c2 + c3t(q−p)/p for all t ≥ 0;

(a2) there exists α ≥ q/p such that

1
α a(t)t ≤ A(t) =

t∫
0

a(s)ds for all t ≥ 0;

(a3) the mapping [0,∞) 3 t 7→ a(t)t(p−2)/p is increasing.

In this paper, we are concerned with the study of the following nonlinear eigenvalue problem.
−div(a(|∇u|p)|∇u|p−2∇u) + a(|u|p)|u|p−2u = λ |u|r−2u − m(x)|u|s−2u, x ∈ RN

u ≥ 0, x ∈ RN

u ≢ 0,

(2.4)

where λ is a positive parameter and
1 < p ≤ q < r < s < p*. (2.5)

We assume that m : RN → (0,∞) is a continuous function satisfying the following (normalized) growth
condition ∫

RN

m(x)r/(r−s)dx = 1. (2.6)

As usual, we have denoted by p* the critical Sobolev exponent, that is, p* = Np/(N − p) if p < N and p* = +∞
if p ≥ N.

Let E ⊂ W1,p(RN) ∩W1,q(RN) be the function space de�ned by

E =

u ∈ W1,p(RN) ∩W1,q(RN) :
∫
RN

m(x)|u|sdx < ∞

 .

Then E is a Banach space endowed with the norm

‖u‖E = ‖u‖W1,p + ‖u‖W1,q + ‖u‖m,s .

We point out that by hypothesis (2.5) and Sobolev embeddings, the space E is continuously embedded into
Lr(RN).
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We say that u ∈ E \ {0} is a solution of problem (2.4) if u(x) ≥ 0 a.e. in RN and∫
RN

a(|∇u|p)|∇u|p−2 ∇u∇vdx +
∫
RN

a(|u|p)|u|p−2uvdx =

λ
∫
RN

|u|r−2uvdx −
∫
RN

m(x)|u|s−2uvdx,
(2.7)

for all v ∈ E.
We state in what follows the main result of this paper. Roughly speaking, this results establishes that

problem (2.4) does not have any solutions in the case of small perturbations. However, this problem admits
at least two solutions in the case of high perturbations. In both cases, the term “perturbation" should be
understood in relationship with the values of the positive parameter λ that is associated to the power-type
reaction |u|r−2u in problem (2.4).

Theorem 1. Assume that hypotheses (2.5) and (a1)–(a3) are ful�lled. Then there exists λ* > 0 such that the
following properties hold.

(i) If 0 < λ < λ*, then problem (2.4) does not have any solution.
(ii) If λ = λ*, then problem (2.4) has at least one solution.
(iii) If λ > λ*, then problem (2.4) has at least two solutions.

According to Barile and Figueiredo [5], the following operators are suitable to the hypotheses of Theorem 1.
(i) If a ≡ 1, then div(a(|∇u|)|∇u|p−2∇u) = ∆pu.
(ii) If a(t) = 1 + t(q−p)/p, then div(a(|∇u|)|∇u|p−2∇u) = ∆pu + ∆qu.
(iii) If a(t) = 1 + (1 + t)−p/(p−2), then

div(a(|∇u|)|∇u|p−2∇u) = ∆pu + div
(

|∇u|p−2∇u
(1 + |∇u|p)(p−2)/p

)
.

(iv) If a(t) = 1 + t(q−p)/p + (1 + t)−p/(p−2), then

div(a(|∇u|)|∇u|p−2∇u) = ∆pu + ∆qu + div
(

|∇u|p−2∇u
(1 + |∇u|p)(p−2)/p

)
.

The energy functional associated to problem (2.4) is Jλ : E → R de�ned by

Jλ(u) =
1
p

∫
RN

A(|∇u|p)dx + 1
p

∫
RN

A(|u|p)dx − λr

∫
RN

|u|rdx + 1
s

∫
RN

m(x)|u|sdx.

Recall that A(t) =
∫ t
0 a(s)ds.

Next, by hypothesis (a1), we have

a(t)t(p−1)/p ≤ c2t(p−1)/p + c3t(q−1)/p for all t ≥ 0.

This subcritical growth condition implies that Jλ is well de�ned. Moreover, by standard arguments, the func-
tional Jλ is of class C1 and its Gâteaux directional derivative is given by

〈J′λ(u), v〉 =
∫
RN

a(|∇u|p)|∇u|p−2∇u∇vdx +
∫
RN

a(|u|p)|u|p−2uvdx

−λ
∫
RN

|u|r−2uvdx +
∫
RN

m(x)|u|s−2uvdx for all u, v ∈ E.

This shows that the nonnegative nontrivial critical points of Jλ correspond to the solutions of problem
(2.4).
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Let us assume that u is a solution of problem (2.4). Then the corresponding λ ∈ R is an “eigenvalue"
associated to the “eigenfunction" u. This terminology is in accordance with the related notions introduced
by Fučik, Nečas, Souček and Souček [14, p. 117] in the context of nonlinear operators. Indeed, if we de�ne the
nonlinear operators

Su = 1
p

∫
RN

A(|∇u|p)dx + 1
p

∫
RN

A(|u|p)dx − 1
s

∫
RN

m(x)|u|sdx

and
Tu = 1

r

∫
RN

|u|rdx

then λ is an eigenvalue for the pair (S, T) (in the sense of [14]) if and only if there is a corresponding eigen-
function u which is a solution of problem (2.4) as described in (2.7).

The strategy to prove Theorem 1 is the following.
(a) We �rst establish that there is λ* > 0 such that problem (2.4) has no solution for all λ < λ* (case of

“low perturbations"). This implies that solutions could exist only in the case of “high perturbations", namely
if λ is large enough. The proof of this assertion yields an energy lower bound of solutions in term of λ, which
is useful to conclude that problem (2.4) has a non-trivial solution if λ = λ*.

(b) Next, we show that there exists λ** > 0 such that problem (2.4) has at least two solutions for all λ > λ**.
Finally, combining the properties of λ* and λ** we conclude that λ* = λ**.

The proof of Theorem 1 uses some ideas developed in Alama and Tarantello [1], Filippucci, Pucci and
Rădulescu [13], and Pucci and Rădulescu [23].

3 Preliminary results
We start with a basic property of the energy functional Jλ.

Lemma 1. The functional Jλ is coercive.

Proof. We �rst observe that using hypotheses (a1) and (a2) we have for all u ∈ E

A(|∇u|p) ≥ 1α a(|∇u|
p)|∇u|p ≥ c0|∇u|

p + c1|∇u|q
α

and
A(|u|p) ≥ 1α a(|u|

p)|u|p ≥ c0|u|
p + c1|u|q
α .

Therefore
1
p

∫
RN

A(|∇u|p)dx + 1
p

∫
RN

A(|u|p)dx ≥ c0α ‖u‖
p
W1,p +

c1
α ‖u‖

q
W1,q . (3.8)

Next, for �xed a, b ∈ R and 0 < c < d, we consider the mapping

[0, +∞) 3 t 7→ φ(t) := atc − btd .

By straightforward computation we deduce that

φ(t) ≤ C1a
(a
b

)c/(c−d)
for all t ≥ 0,

where C1 depends only on c, d.
Applying this inequality for a = λ/r, b = m(x)/s, c = r, d = s, we �nd

λ
r |u(x)|

r − 1
s m(x)|u(x)|

s ≤ C2λs/(s−r)(m(x))r/(r−s) for all x ∈ Ω.
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By integration and using the normalized assumption (2.6) we obtain

λ
r ‖u‖

r
r −

1
s ‖u‖

s
m,s ≤ C3(λ). (3.9)

Combining relations (3.8) and (3.9), we conclude that Jλ is coercive.

Next, with the same arguments as in Barile and Figueiredo [5, p. 460] and the proof of Lemma 2 in Pucci
and Rădulescu [23], we can establish that the energy functional Jλ : E → R is weakly lower semicontinuous.

3.1 Case of low perturbations

In this subsection we prove that solutions of problem (2.4) cannot exist if the positive parameter λ is small
enough. This corresponds to the case of “low perturbations".

Assume that u ∈ E is an eigenfunction of problem (2.4) corresponding to the eigenvalue λ > 0. Choosing
v = u in relation (2.7) we obtain∫

RN

a(|∇u|p)|∇u|pdx +
∫
RN

a(|u|p)|u|pdx +
∫
RN

m(x)|u|sdx = λ
∫
RN

|u|rdx,

hence ∫
RN

a(|∇u|p)|∇u|pdx +
∫
RN

a(|u|p)|u|pdx + ‖u‖sm,s = λ ‖u‖rr . (3.10)

Next, by the Young inequality and using hypothesis (2.5),

λ|u|r ≤ rs

(
m(x)r/s|u|r

)s/r
+ s − rs

(
λ

m(x)r/s

)s/(s−r)
.

Integrating this inequality over Ω we obtain

λ ‖u‖rr ≤
r
s ‖u‖

s
m,s +

s − r
s λs/(s−r)

∫
RN

m(x)r/(r−s)dx.

Thus, by the normalized growth condition (2.6),

λ ‖u‖rr ≤
r
s ‖u‖

s
m,s +

s − r
s λs/(s−r). (3.11)

Combining relations (3.10) and (3.11) we �nd∫
RN

a(|∇u|p)|∇u|pdx +
∫
RN

a(|u|p)|u|pdx ≤ r − ss ‖u‖sm,s +
s − r
s λs/(s−r).

Using now hypothesis (2.5) we obtain∫
RN

a(|∇u|p)|∇u|pdx +
∫
RN

a(|u|p)|u|pdx ≤ s − rs λs/(s−r). (3.12)

Next, by (a1),
c0tp + c1tq ≤ a(tp)tp for all t ≥ 0.

Applying this inequality in relation (3.12) it follows that

c0
∫
RN

|∇u|pdx + c1
∫
RN

|∇u|qdx + c0
∫
RN

|u|pdx + c1
∫
RN

|u|qdx ≤ s − rs λs/(s−r).

Therefore
c0 ‖u‖pW1,p + c1 ‖u‖qW1,q ≤

s − r
s λs/(s−r).
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By hypothesis (2.5) we have p < r < p* and q < r < p* < q*. Thus, by the Sobolev embedding theorem, the
spacesW1,p(RN) andW1,q(RN) are continuously embedded into Lr(RN). It follows that there exists a positive
constant C0 such that

‖u‖pr ≤ C0 ‖u‖pW1,p for all u ∈ W1,p(RN) (3.13)

and
‖u‖qr ≤ C0 ‖u‖qW1,q for all u ∈ W1,q(RN). (3.14)

Assuming that u is a solution of problem (2.4), relation (3.10) yields∫
RN

a(|∇u|p)|∇u|pdx +
∫
RN

a(|u|p)|u|pdx ≤ λ ‖u‖rr . (3.15)

Using now hypothesis (a1) and relation (3.15), we obtain

c0‖u‖pW1,p + c1‖u‖qW1,q ≤ λ ‖u‖rr .

Thus, by (3.13) and (3.14), there exists a positive constant C4 not depending on the solution u such that

‖u‖pr + ‖u‖qr ≤ C4

∫
RN

a(|∇u|p)|∇u|pdx +
∫
RN

a(|u|p)|u|pdx


≤ C4λ‖u‖rr .

This relation implies that
‖u‖r ≥ max{(C4λ)1/(p−r), (C4λ)1/(q−r)}.

Using this estimate in conjunction with hypothesis (a1) and relations (3.12), (3.13) and (3.14), we obtain that
there exists Λ > 0 such that λ > Λ. In particular, solutions do not exist if λ ≤ Λ.

We set
λ* := sup{Λ > 0 : problem (2.4) does not have a solution}. (3.16)

The de�nition of λ* implies that problem (2.4) does not have any solution for all λ ∈ (0, λ*).

4 Proof of Theorem 1
We�rst prove the existence of two solutions, provided that λ > 0 is large enough. The �rst solution is obtained
by the direct method of the calculus of variations and the corresponding energy is negative. The second solu-
tion of problem (2.4) is obtained by applying themountain pass theoremwithout the Palais-Smale condition.
The energy of this solution is positive.

Since Jλ is coercive and lower semicontinuous, then it has a global minimizer u0 ∈ E, see Lemmas 1, 2
and Theorem 1.2 in Struwe [27]. It follows that u0 is a critical point of Jλ. In order to show that u0 is a solution
of problem (2.4) it remains to prove that u0 ≠ 0 and u0 is nonnegative, provided that λ is su�ciently large.

We �rst establish that the solution u0 is nontrivial. For this purpose we show that Jλ(u0) < 0.
Consider the following constrained minimization problem

m0 := inf
u∈E

 r
p

∫
RN

[A(|∇u|p)dx + A(|u|p)]dx + rs

∫
RN

m(x)|u|sdx;
∫
RN

|u|rdx = 1

 .

We observe that m0 > 0. Indeed, by Hölder’s inequality and hypothesis (2.6), for all u ∈ E with ‖u‖r = 1

1 =
∫
RN

|u|rdx ≤

∫
RN

m(x)r/(r−s)
(s−r)/r∫

RN

m(x)|u|sdx

r/s

=

∫
RN

m(x)|u|sdx

r/s

,
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hence m0 ≥ r/s > 0.
Fix λ > m0. Then there exists v ∈ E with

∫
RN

|v|rdx = 1 such that

λ > r
p

∫
RN

[A(|∇v|p) + A(|v|p)]dx + rs

∫
RN

m(x)|v|sdx.

Therefore
Jλ(v) = 1

p

∫
RN

A(|∇v|p)dx + 1
p

∫
RN

A(|v|p)dx − λr

∫
RN

|v|rdx

+1s

∫
RN

m(x)|v|sdx < 0.

This shows that infu∈E Jλ(u) < 0 for λ large enough, say for λ > λ*. In this case, problem (2.4) admits
a nontrivial solution u1, which is a global minimizer of Jλ. Moreover, since Jλ(|u0|) ≤ Jλ(u0), we can also
assume that u0 ≥ 0 in Ω.

Our next purpose is to establish the existence of a second solution u1 ≥ 0 of problem (2.4) for all λ >
λ*. This will be done by using the mountain pass theorem without the Palais-Smale condition of Brezis and
Nirenberg [10].

Fix λ > λ*. Since we are looking for nonnegative solutions, it is natural to consider the truncation

h(x, t) =


0 if t < 0
λtr−1 − m(x)ts−1 if 0 ≤ t ≤ u0(x)
λur−10 − m(x)us−10 if t > u0(x).

Set H(x, t) =
∫ t
0 h(x, s)ds and consider the C1-functionalH : E → R de�ned by

H(u) = 1
p

∫
RN

A(|∇u|p)dx + 1
p

∫
RN

A(|u|p)dx −
∫
RN

H(x, u)dx.

A simple argument shows thatH is coercive.
The following auxiliary result establishes an interesting location property of the critical points ofHwith

respect to the solution u0.

Lemma 2. If u is an arbitrary critical point ofH, then u ≤ u0.

Proof. Fix u ∈ E an arbitrary critical point ofH, henceH′(u) = 0. Since u0 solves problem (2.4), then J′λ(u0) =
0. We have

0 = 〈H′(u) − J′λ(u0), (u − u0)
+〉

=
∫
RN

(a(|∇u|p)|∇u|p−2∇u − a(|∇u0|p)|∇u0|p−2∇u0)∇(u − u0)+dx

+
∫
RN

(a(|u|p)|u|p−2u − a(|u0|p)|u0|p−2u0)(u − u0)+dx

−
∫
RN

(h(x, u) − λur−10 + m(x)us−10 )(u − u0)+dx.
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Taking into account the de�nition of h, the last integral in the above expression vanishes. It follows that

0 = 〈H′(u) − J′λ(u0), (u − u0)
+〉 =∫

[u>u0]

(a(|∇u|p)|∇u|p−2∇u − a(|∇u0|p)|∇u0|p−2∇u0)∇(u − u0)+dx+∫
[u>u0]

(a(|u|p)|u|p−2u − a(|u0|p)|u0|p−2u0)(u − u0)+dx =∫
[u>u0]

(a(|∇u|p)|∇u|p−2∇u − a(|∇u0|p)|∇u0|p−2∇u0)∇(u − u0)dx+∫
[u>u0]

(a(|u|p)|u|p−2u − a(|u0|p)|u0|p−2u0)(u − u0)dx.

(4.17)

Since a(t) ≥ c0 for all t ≥ 0 (by hypothesis (a1)) and using the monotonicity assumption (a3), we deduce
that there exists C5 > 0 such that for all x, y ∈ Rn and all n ≥ 1

(a(|x|p)|x|p−2x − a(|y|p)|y|p−2y) · (x − y) ≥ C5|x − y|p .

Combining this inequality with relation (4.17) we obtain

0 = 〈H′(u) − J′λ(u0), (u − u0)
+〉

≥ C5
∫

[u>u0]

(|∇(u − u0)|p + |u − u0|p)dx

≥ 0.

We conclude that u ≤ u0.

We prove in what follows that H satis�es the geometric hypotheses of the mountain pass theorem. The
existence of a “valley" is guaranteed by the fact thatH(u0) = Jλ(u0) < 0. The following result establishes the
existence of a “mountain" between the origin and u0.

Lemma 3. There exist positive numbers r and a with r < ‖u0‖ such that H(u) ≥ a for all u ∈ E satisfying
‖u‖ = r.

Proof. We have
H(u) = 1

p

∫
RN

A(|∇u|p)dx + 1
p

∫
RN

A(|u|p)dx

−
∫

[u>u0]

H(x, u)dx −
∫

[0≤u≤u0]

H(x, u)dx

= 1
p

∫
RN

A(|∇u|p)dx + 1
p

∫
RN

A(|u|p)dx

− λr

∫
[u>u0]

ur0dx −
λ
r

∫
[0≤u≤u0]

urdx

≥ 1p

∫
RN

A(|∇u|p)dx + 1
p

∫
RN

A(|u|p)dx − λr

∫
RN

ur0dx.

(4.18)

On the one hand, by hypotheses (a1) and (a2) we �nd

A(|∇u|p) ≥ 1α a(|∇u|
p)|∇u|p ≥ 1α (c0|∇u|

p + c1|∇u|q). (4.19)

and
A(|u|p) ≥ 1α a(|u|

p)|u|p ≥ 1α (c0|u|
p + c1|u|q). (4.20)
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On the other hand, by the Sobolev embedding theorem, there exists C6 > 0 such that

‖u‖r ≤ C6 ‖u‖W1,p for all u ∈ E. (4.21)

Combining relations (4.18), (4.19), (4.20), (4.21) and hypothesis (2.5), we deduce that there exist r < ‖u0‖
small enough and a > 0 such thatH(u) ≥ a for all u ∈ E satisfying ‖u‖ = r.

Set
P = {p ∈ C([0, 1], E); p(0) = 0 and p(1) = u0}

and
c = inf

p∈P
max
t∈[0,1]

H(p(t)) > 0.

Applying the mountain pass theoremwithout the Palais-Smale condition, there exists a sequence (zn) in
E such that

H(zn)→ c as n →∞ (4.22)

and
‖H′(zn)‖E* → 0 as n →∞. (4.23)

By relation (4.22) and since H is coercive, we deduce that (zn) is bounded. So, there exists u1 ∈ E such
that, up to a subsequence,

zn ⇀ u1 in E.

Using this information in conjunction with (4.23) we deduce that

H′(zn)(φ)→ H′(u1)(φ) for all φ ∈ C∞c (RN).

Since C∞c (RN) is dense inW1,p(RN)∩W1,q(RN) and E is continuously embedded intoW1,p(RN)∩W1,q(RN),
we deduce that

H′(zn)(v)→ H′(u1)(v) for all v ∈ E.

By (4.23) we obtain that H′(u1) = 0, hence u1 is a solution of problem (2.4). We conclude that problem
(2.4) admits at least two solutions for all λ > λ*.

Set
λ** := inf{λ > 0; problem (2.4) has a solution}.

Recall that
λ* := sup{λ > 0; problem (2.4) does not have any solution}.

Then 0 < λ* ≤ λ** < ∞.
To complete the proof, we need to argue the following assertions:

(i) problem (2.4) has at least two solutions for all λ > λ**;
(ii) λ* = λ** and problem (2.4) has a solution for λ = λ*.

Assertion (i) follows by standard arguments based on the monotonicity hypothesis (a3). Assertion (ii) is
a consequence of the fact that problem (2.4) does not have any solution provided that λ < λ**. In both cases
we refer for details to the proof of Theorem 1.1 in [13].

If we replace hypothesis (2.5) with
1 < p ≤ q < s < r < p*,

then the associated energy functional is no longer coercive but has a mountain pass geometry for all λ > 0. A
straightforward argument shows the following properties:
(a) problem (2.4) does not have any solution if λ ≤ 0;
(b) problem (2.4) has at least one solution for all λ > 0.
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In this case we can apply the mountain pass theorem of Ambrosetti and Rabinowitz. The mountain pass
geometry of the problem is generated by the assumption 1 < p ≤ q < s < r < p*. We also point out that since
s < r, then any Palais-Smale sequence is bounded in E. The details of the proof are left to the reader.
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