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Abstract: We study positive solutions to the fractional Lane-Emden system
(A u=v" +pu in Q
A)’v=ul+v in Q (S)
u=v=0 inQ¢=RV\ 0,

where Q is a C2 bounded domains in RY, s € (0, 1), N > 2s, p >0, g >0and y, v are positive measures in Q.

We prove the existence of the minimal positive solution of (S) under a smallness condition on the total mass

of u and v. Furthermore, if p, q € (1, %) and 0 < u, v € L"(Q), for some r > %, we show the existence of at

least two positive solutions of (S). The novelty lies at the construction of the second solution, which is based
on a highly nontrivial adaptation of Linking theorem. We also discuss the regularity of the solutions.

Keywords: nonlocal, system, existence, multiplicity, linking theorem, measure data, source terms, positive
solution
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1 Introduction and main results

In this article we consider elliptic system of the type

(AP u=v" +pu inQ
AP¥v=ul+v inQ
(1.1)

u,vz=0 in Q

u=v=0 inQ°=RV\ 0,

where Q is a C2 bounded domainin RY, s € (0, 1), N > 2s, p >0,q >0and u, vare positive Radon measures
in Q. Here (-A)® denotes the fractional Laplace operator defined as follows

(-A)u(x) = ggrg)(—A)iu(X),

where ‘ 0 - 1)
u(x)-u
(_A): u(x) :=ays / Wdy, 1.2)
RM\B,(x)
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_ 2%sI(N/2+s)
and ay s = SNER(s)

When s = 1, (-A)° coincides the classical laplacian -A and the Lane-Emden system

“Au=VP +p in Q,
(1.3)

Av=ul+v in Q,

has been studied extensively in the literature (see [4, 13, 17, 20, 21, 23, 28, 37, 38] and the references therein).
Bidaut-Véron and Yarur [4] provided various necessary and sufficient conditions in terms of estimates on the
Green kernel for the existence of solutions of (1.3). When y = v = 0, the structure of solution of (1.3) has been
better understood according to the relation between p, g and N. More precisely, if 1% + ﬁ < % then (1.3)
admits some positive (radial, bounded) classical solutions in RY (see Serrin and Zou [38]). On the other hand,
the so-called Lane-Emden conjecture states that if

1 N 1 >N—2
p+1l g+1 N

(1.4)

then there is no nontrivial classical solution of (1.3) in RN. The conjecture is known to be true for radial
solutions in all dimensions (see Mitidieri [23]). In the nonradial case, partial results have been achieved.
Nonexistence was proved by Figueiredo and Felmer in [17] and by Reichel and Zou in [37] for (p, ¢) in certain
subregions of (1.4). Recently, Bidaut-Véron, Nguyen and Véron [5] provided necessary and sufficient condi-
tions for the existence expressed in terms of Riesz or Bessel capacities for quasilinear system of equations.
For nonlocal case, i.e. s € (0, 1), Quaas and Xia [31] showed the existence of at least one positive viscosity

solution for the system of the type

(“APu=v? in Q,

(-A)’v = u? in Q, (1.5)

u=v=0 in Q€.

It has been proved by Quaas and Xia [29] that under some conditions on the exponents p and g, system
(1.5) does not admit any positive bounded viscosity solution. We also refer [14, 30] for further results in this
directions.

Nonlocal equations with measure data have been investigated in [2, 9, 10, 12, 27] and the references
therein. More precisely, fractional elliptic equations with interior measure data were studied by Chen and
Véron [12] and by Chen and Quaas [10], while the equations with measure boundary data were carried out by
Nguyen and Véron [27] (for absorption nonlinearity) and by Bhakta and Nguyen [2] (for source nonlinearity).

1.1 Main results

Before stating the main results, we introduce necessary notations.

For ¢ > 0, denote by M(Q, ¢) the space of Radon measures 7 on Q satisfying [, ¢ d|7| < e and by
M*(Q, ¢) the positive cone of M(Q, ¢). For k > 0, denote by L*(Q, ¢) the space of measurable functions w
such that [, |w|“@dx < oo. We denote §(x) = dist(x, 0Q). When ¢ = 6°, we can define the space M(Q, 6°)
and L*(Q, 6°). Let Gs = G2 be the Green kernel of (-A)* in Q. We denote the associated Green operator Gs as
follows:

Gulrli) = [ GsCey)drt), T e M@, 8.
Q

Important estimates concerning the Green kernel are presented Section 2.
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Definition 1.1. (Weak solution) Let u, v € 9*(Q, 6°). We say that (u, v) is a weak solution of (1.1) if u, v €
LY(Q), v?, u? € LY(Q, 6°) and

/u(—A)Sfdx=/vp£dx+b/£dy,

@ o V& € Xs(Q), (1.6)
v(-AY&dx = | ulédx + | &dv,
[reovse fusece |

where Xs(Q) ¢ C(RY) denotes the space of test functions ¢ satisfying
(i) supp(¢) c 0,
(ii) (-A)°&(x) exists for all x € Q and |(-A4)*&(x)| = C for some C > O,
(iii) there exists ¢ € L}(Q, 6°) and &¢ > 0 such that |(-A4)$¢] < @ a.e. in Q, for all € € (0, &].

Remark 1.2. We observe that, by [27, Proposition Al, (u, v) is a weak solution of (1.1) if and only if

u=Gs[vV’]1+Gs[u]l and v =Gs[u?] + Gslvl. 1.7)
Define N
+S
Ns := N_s" (1.8)

Our first result is the existence of the minimal weak solutions of (1.1).

Theorem 1.3. (Minimal solution) Let p,q > O with p < q, pq # 1 and q{q’%} < Ns. Assume u,v € M(Q, 6%)
and Gs[u] € LY(Q, 6°). Then system (1.1) admits a positive weak solution (u,,, v,)) for ||i||sn(q.5+) and ||Vllon(q.5%)

smallif pq > 1 and for any u,v € M*(Q, 6%) if pq < 1. This solution satisfies
u, 2 Gslul, v, 2Gs[v] ae.inQ.

Moreover, it is the minimal positive weak solution of (1.1) in the sense that if (u, v) is a positive weak solution
of (1.1) then U, su andv, <va.e.in Q.

In addition, if q < N then there exists a positive constant K = K(N, s, p, q, |i|lsnq,s%)» Vllon(a,s5)) such
that K — 0 as (|ullon(a,s5)> Vlon(o,6)) — (0, 0) and

max{u,, v,} < KGsljt +7] a.e.inQ, (1.9)

where i = ndv

R — =Y .
11l on (0,55 vl onca.s9

The existence of the second solution is stated in the following theorem.
Theorem 1.4. (Second solution) Assume O < u, v € L'(Q) for some r > zﬂs and 1 < p < q < N, where Ns is
defined in (1.8). There exists t* > O such that if

max{ |1l ), V@) < €

then system (1.1) admits at least two positive weak solutions (uy, vv) and (gy, v,) with uy > u,and vy > v,,
where (gy, v,) is the minimal solution constructed in Theorem 1.3.
If, in addition, u, v € L'(Q) N L7, .(Q) then uy, > u, andvy > v, in Q.

loc

1.2 Methodology and novelty

It is worth mentioning that the existence results in Theorem 1.3 and Theorem 1.4 rely on completely different
methods. More precisely, the proof of Theorem 1.3 is in spirit of Bidaut-Véron and Yarur [4], based on a delicate
construction of a supersolution. The main ingredient is a series of estimates concerning the Green kernel (see
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Lemmas 2.9, 2.10, 2.11 and 2.12). Theorem 1.4 is obtained by using a variational approach. Because of the
interplay of the two components u and v, the analysis of the associated energy functional (see (5.9)) becomes
complicated and consequently the Mountain-pass theorem is inapplicable. Therefore, we employ the Linking
theorem instead. We would like to point out that though Linking theorem is a classical theorem in variational
methods (due to Rabinowitz [32]) which had been used previously in many papers, see for e.g. Bonheure, dos
Santos and Tavares [7], Figueiredo et al. [18, 19], Lam and Lu [22] in the local cases (also see Ferrero and Saccon
[16] where Linking theorem was used for single equation with measure data in the local case) and Servadei
and Valdinoci [39, 40], Molica Bisci, Radulescu and Servadei [24], Mosconi, Perera, Squassinaa and Yang [25]
in the nonlocal cases, it cannot be applied in a straightforward way in our framework due to the structure of
the system (1.1). In order to construct the second solution of (1.1), we reduce (1.1) to a new system which has
variational structure. Moreover, we require the data u and v to be sufficiently regular, namely u, v € L(Q) for
somer > % This enables us to deduce the boundedness of the minimal solution constructed in Theorem 1.3,
which in turn allows to establish the geometry of the Linking theorem. As a consequence, we are able to prove
the existence of a variational solution which is in fact a weak solution due to a result of Abatangelo [1] and
greater than the minimal solution. The idea to construct second solution for nonlocal system of equations is
relatively new and different from the path of the papers mentioned above. The proof also involves the minimal
solution that was constructed in Theorem 1.3.

Organization of the paper. In Section 2, we collect some known estimates on the Green kernel from
different papers and prove important estimates regarding the Green operator (see Lemmas 2.10, 2.11, 2.12).
These estimates are the main ingredient in the proof of Theorem 1.3 which is presented in Section 3. In Section
4, we discuss a priori estimates, as well as regularity properties, of weak solutions. Section 5 deals with the
proof of Theorem 1.4 which is based on the Linking theorem.

Notations. Throughout the present paper, we denote by c, ¢/, c1, ¢, C, ... positive constants that may
vary from line to line. If necessary, the dependence of these constants will be made precise.

2 Estimates on Green kernel

We denote by Gs the Green kernel of (-A)° in Q respectively. More precisely, for every y € Q,

-AY°Gs(.,y) =6 inQ
(-4)°Gs( y ) y 1)
Gs(.,y)=0 in Q°,
where 6y is the Dirac mass at y.
Following are some useful estimates on the Green kernel.
Lemma 2.1. ([11, Corollary 1.3]) There exists a positive constant c = ¢(N, s, Q) such that
¢ min{|x - y|2s’N,6(x)56(y)s |x - y|’N} < Gs(x,y) 22)

< cmin{|x - y|zs’N, 8(x)°6(0)°|x - y|’N}, VXY, X,y € Q.

Lemma 2.2. ([11, Theorem 1.1]) There exists a positive constant C = C(N, s, Q) such that, for every (x,y) €
QxQ, x#y,

Gs(x, ) < C8)*|x - y[*™, 2.3)
Gs(x,y) < ng;z Ix—y|>N, 2.4)

Remark 2.3. Let 6 € (0, 1], then there exists a positive constant ¢ = c(N, s, 8, Q) such that Gs[A]® > ¢6°
a.e. in Q for every measure A € 9*(Q, 6°) such that ||A||gn(g,s) = 1. Indeed, since |x - y| < dg := diam(Q),
applying (2.2) we have

Gs(x,y) > c ' min{d¥ ™V, dg 6(x)*6(y)*}.
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Further, max{§(x), 8(y)} < d, implies dg'6(x)*6(y)* < d5N. Consequently, Gs(x,y) > ¢ 1dg"6(x)*8(y)*. It
follows that Gs[A] = ¢é° a.e. in Q. Therefore

Gs[A)? 2 ¢?6% > ¢,6° ae.inQ.

Remark 2.4. Let 6 € (0, 1], then there exists a constant ¢ = c(N, s, 8, Q) such that Gs[A]? > c¢Gs[1] in Q for
every measure A € 917 (Q, 6°) such that ||A]|gn (o s+) = 1. Indeed, by [12, (2.18)], we have c116% < Gs[1] < ¢16°
in Q for some constant ¢; = ¢1(N, s, Q). This, combined with Remark 2.3, leads to the desired estimate.

We recall below the definition of Marcinkiewicz space (or weak L? space). See the paper of Benilan, Brezis
and Crandall [6] or the hanbook of Véron [43] for more details.

Definition 2.5. (Marcinkiewicz space) Let @ ¢ R" be a domain and A be a positive Borel measure in Q. For
k>1,k = £ andu € L}, (Q, A), we set

1
lull pmxa,p) = inf{c €[0,00] : /|u|d}t < c(/d)t) ", VE C Borel set}
E E

and
M(Q,2) = {u € Ljpe(Q,A) : [[ullypeqan < oo}

M*(Q, A) is called the Marcinkiewicz space with exponent x (or weak L* space) with quasi-norm ||. || yy¢(q,1)-
The next lemma establishes a relation between Lebesgue space norm and Marcinkiewicz quasi-norm.

Lemma 2.6. ([6, Lemma A.2(ii)]) Assume1<q <k <ocoandu € L}OC(Q, A). Then there exists C(q, k) > O such

that for any Borel subset E of Q
-1
/\u‘q dA < C(q, K)||ullg4x(g’/\)(/d/l> .
E

E
We set
_N+a fa< NV
Kay i= N-2s5+y N-2s 2.5)
N otherwise
N-2s ’

Estimates of Green operator are presented below.

Lemma 2.7. ([12, Proposition 2.2]) Let a, y € [0, s] and ka,y be as in (2.5). There exists c = c(N, s, a,y, Q) > 0
such that
HGS[A]HMW(Q’E“) < c|Allgn.n YA € MQ, ). (2.6)

Lemma 2.8. ([35, Proposition 1.4]) (i) If t > % then there exists ¢ = c¢(N, s, t, Q) such that

IGs A ) g = M) YA € L(). 27)

t
(i) If1 < t < X then there exists a constant ¢ = c(N, s, t) such that

IGSIAN, o o < CIAlLie) YA€ LY(Q). (2.8)

N3 (0)

The following estimate was prove by Chen and Song [11, Theorem 1.6]).

Lemma 2.9. (3G-estimate) There exists a positive constant C = C(Q, s) such that

Gs(, YIGs(y, 2) _ - x - 228

Gotx. 2) Oy o)y — 25 V(x,y,2) € QxQxQ. (2.9)
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Next, in the spirit of [4], we will prove some important estimates concerning the Green operator which will
be used in Section 3.

Lemma2.10. Let 0 < p < Nsand A € IMM*(Q, 6°) such that ||A|lgn(q,ss) = 1. Then there exists a constant
C=C(N,s,p, Q) > 0such that
Gs[Gs[AP] < CGs[A]  a.e.in Q. (2.10)

Proof. First, we consider the case p > 1. From Lemma 2.7 and the embedding M™:(Q, 6%) c LP(Q, §°), we
deduce that Gs[A] € LP(Q, 6%). We write

Gl - [ 6. 200@) - [ G2 anc)
Q Q

Therefore, using Holder inequality, we obtain

p
Gl = [ (G052 aeran),
Q

as [|A]lon(q,ss) = 1. Consequently,

Gs[Gs[AP100) < / / Gs(x, Y)Gs(y, 27 8(2* P dA)dy. 2.11)
0 Q

Now applying Lemma 2.9 and (2.3) to the right-hand side of the above expression, we obtain

/ / Gs(x, Y)Gs(y, 2P 6(z) P dA(z)dy

o Q

] oo (G2 e
0 0

x — 2" ~(N-5)(p-1)
<0 [ 6o [ it ey dydA(z)
Q Q

<G / G(x. 2) / [ly - 225 N0y 1 sW=29))) - N-910-D1 g A ()

(212)
Q 0
< Cs3 / Gs(x,z)[ / ly _Z|25*N7(N—s)(p71)dy
= on{|x-ylzly-zl}

S B S L

on{lx-ylsly-z|}

< Cy | Gs(x, 2)dA(2),
/

where C; = C;(N, s, p, Q) (i = 1, 2, 3, 4). Here in the second estimate, we have used the inequality |x - z| <
|x — y| + |y — z| and in the last estimate we have used the fact that p < Ns. Hence combining (2.11) and (2.12),
we derive that

Gs[Gs[API() = € / Gs(x, 2)dA(2) = CGs ()
0

where C = C(N, s, p, Q). Note that the above argument is still valid for the case p = 1.
Next we consider the case O < p < 1. Then we have

Gs[A]P < C(p)(1 + Gs[A]) a.e.in Q.
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This yields
Gs[Gs[AP] < C(p)(Gs[1] + Gs[Gs[A]D)  a.e.in Q.

By applying the case p = 1, we have Gs[Gs[A]] < CGs[A] with C = C(N, p, s, Q). Therefore, combining the
above results along with Remark 2.4 with 6 = 1, we derive (2.10). O

Lemma 2.11. Let 0 < p < N5, A € IM*(Q, 6°) with ||A||gno,s+) = 1. Let 0 be such that
max(0,p-Ns+1)<0<1. (2.13)
Then there exists a positive constant C = C(N, s, p, 0, Q) such that
Gs[GsIAIP] < CGs[Al°  ace.in Q. (2.14)

Proof. First we assume that p > 1. In view of the proof of Lemma 2.10, we have

Gs[Gs P10 < C / / Gs(x, Y)Gs(y, 27 6(2" P dAZ)dy
Q Q0

Guty. VP (2.15)
- ¢ [ [ 6:t0 ) 06str )Gty 2 ( b2 ) 510 aAz)dy.
Q0
By (2.9) and the inequality |x — z| < |x - y| + |y - z|, we have
Gs(xt, ¥)?Gs(y, 2)? < CGs(x, 2)°(x — y| @5V 4 |y — 225°V8), (2.16)
Combining (2.15) and (2.16) yields
GslGs[API() = € / Gs(x, 2)°8(2)* / Lz(y)dydA(2) (217)

Q Q

where

o [ Gs(y,2)\P? . .
IX,Z(y) _ /GS(X, y)l 6 < ;?;)f)) (|X_y‘(25 N)O + |y _Zl(ZS N)G)dy.
Q

Applying (2.2) and (2.3), we obtain

Lez(y) < C / =y 2Oy — g SIEO (e — |25 |y - (25N gy
Q
<C / |X _ y|23—N+(s—N)(p—9)dy

{yeQ:|x-y|sly-z[} (2.18)

+C / ly - Z‘ZS—N+(S—N)(p—9) dy
{yeQ:|x-y|z|y-z|}
<C.

Here in the last inequlaity we have used the fact that 8 > p — N5 + 1. Thus

Gs(x, 2)
6(z)s

6
<C| [ Gslx, Z)d/\(Z)) 5
/

where in the last line we have used Holder inequality with exponent %. Note that the above approach is still
valid for the case p = 1.

0
GslGAPI00) < € / ( ) 52 dA2)
Q

(219)
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If 0 < p < 1then
Gs[Gs[AIF] < C(Gs[1] + Gs[Gs[AID) < C(Gs[1] + Gs[A1°).

Then (2.14) follows by a similar argument as in the proof of Lemma 2.10 by using Remark 2.4 with6<1. O

In the sequel, without loss of generality, we may assume that

0<p=q. (2.20)
Hence, if pq > 1 then
p+1 q+1
p < q+1spp+1sq. (2.21)

Put
ts:=q(p-Ns+1).
Notice that 1fq1”"1 < Ns then ts < qf}%} < Ns.

Lemma2.12. Letp,q > 0,p < gand A € M (Q, 6°) with ||A||gnqg,5+) = 1. Assume ql‘”1

t € (max(0, ts), ql, there exists a positive constant ¢ = ¢(N, p, q, S, t) such that

< Ns. Then for any

Gs[Gs[AIP]? < cGs[A]Y  ae.in Q. (2.22)

In particular, )
Gs[Gs[AIP]? < CGs[Al9FT  ae.in Q, (2.23)
Gs[Gs[Gs[AIP]9] < CGs[A]  a.e.in Q, (2.24)

where C = C(N, p, q, S).

Proof. Since p < q from (2.20), it follows that p < q"’+1 Therefore, from the assumptlon it follows p < Ns.
Hence max(0,p - Ns + 1) < 1. Let t € (max(0, ts), q] then max(0, p — Ns + 1) < 5 < 1. Therefore, applying
Lemma 2.11 with 6 replaced by ;, we obtain

Gs[Gs[AP] < cGs[Al4,

which implies (2.22).

Since ts < q{q’:} < g, taking t = g2t in (2.22) yields (2.23). Next, since g2*+ < N, combining (2.23) along

g+1 q+1
with Lemma 2.10, we have
Gs[Gs[Gs[AP19] < CGs[Gs[A971] < CGs[A]  ae.in Q.

This completes the proof. O

3 Construction of the minimal solution

This section is devoted to the construction of the minimal solution of (1.1). We borrow some idea from [4].

Lemma3.1. Assume p,q > 0 and u, v € M (Q, 6°). Assume in addition that there exist functions V ¢
LP(Q, 6°) and U € LY(Q, 6°) such that

U2 Gs[VP] + Gs[u] ae.inQ,
]

V = Gs[U?] + Gs[v GD

a.e.in Q.
Then there exists a positive minimal weak solution (u,,, v,) of (1.1) satisfying

Gs[p] < u, <U, Gslvl<y, <V ae.inQ. (3.2)
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Proof. Put ug := Gs[ul, vo := Gs[v] and for n > 1, define

Unp = Gs[Vﬁ_l] +Gspl,

Vn = Gs[ul_; ]+ Gs[v]. 63

Clearly up < U and vqg < V . Therefore,
u = Gs[Vg] + GS[H] < Gs[Vp] + GS[H] <U.

Similarly, v, < Gs[U9] + Gs[v] < V. By induction, it follows that u, < U and v, < V for every n > 1. Also, it is
easy to see that {un} and {vn} are increasing sequences. Hence un t u, < U € L9(Q, 6*) andva T v, < V €
LP(Q, 6°%). Therefore Gs[v}] 1 Gs[vD] and Gs[uf] 1 Gs[ujl] a.e. in Q. Letting n — oo in (3.3), we deduce that

u, = Gs[v)] + Gs[ul and v, = Gs[uf] +Gs[v].

This means that (gy, v,) is a weak solution of (1.1).
Next, let (u, v) be any positive weak solution (1.1). Then

u=Gs[VP]1+Gslul 2 up, v =Gs[ul]+Gsv] 2 vo.

Thus
u>Gs[Vhl+Gslul zu1, vz Gs[ull +Gslv] 2 vy.

By induction it follows that u > up and v = v, foralln = 1. Hence u = u, and v = y,. This completes the

lemma. O

Remark 3.2. In stead of studing system (1.1), in the sequel, we will work on the following system

(-AYu=vP +pu in Q,
(-A’v=ul+7v  inQ, (3.4)

u=v=_0 in Q°,

where p, T are positive parameters and p, v € M*(Q, 6°) such that ||u(lon(q,s) = [IVllon(a,s) = 1. The advan-
tage is when dealing with system (3.4), we can easily apply Lemma 2.11 and Lemma 2.12 for Gs[u] and Gs[v]
and require only the smallness of the parameters p and 1, which improves considerably the exposition.

We recall that in the sequel, we assume that 0 < p < g and hence if pq > 1 then (2.21) holds.

Theorem 3.3. Letp, q, p, T > 0and u,v € M (Q, 6°) such that ||u|sn(q.65) = IVIlm(,6+) = 1. Assume p < q,
pq#1, q%i < Ns and Gs[u] € LY(Q, 6°). Then system (3.4) admits the minimal weak solution @py, vyy) forp
and T smallifpq > 1, foranyp >0and 1 > 0ifpq < 1.

In addition, if p < q < Ns, then there exists a constant K = K(N, s, p, q, Q, p, T) such that K — 0 as
(p, T) — (0, 0) and

max{U,,, Vr,} < KGslu+v] ae.inQ. (3.5)
Proof. Fix numbers 9; > 0, (i = 1, 2) and set
¥ .= Gs[Sly]q + 192V. (36)

For x < (0, 1], put
1
p=xk19;, T=k9; 3.7

and consider system (3.4) with p and 7 as in (3.7). From the assumptions, Gs[u]? ¢ LY(Q,6%) and v ¢

M (Q, 6°), it follows that ¥ € M*(Q, §%). Also we note that p < g and qé% < Ns imply p < Ns. Set

V = AGs[x¥] and U := Gs[VP] + Gs[pp]
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where A > 0 will be determined later on. Then,
U? < c(Gs[VP]? + Gslpul?)
= { AP UGG [WP) + Gslopl?
where ¢ = ¢(p, g). It follows that
GslU] + Gs[tv] < c(APIKPIGs[Gs[Gs[PIP19] + Gs[Gslppl?]) + Gs[Tv]
= c(AP1KPIGs[Gs[Gs[WIP1?] + kGs[Gs[91 u]?]) + kGs[9,v] (3.8)
< c(APIKPIGs[Gs[Gs[WPIP1T] + kGs[P]).

Since q% < Ns, applying Lemma 2.12, we have

Gs[Gs[G[¥IP1] < C|[ P55 9.5, Cs[¥1] (39)

where C = C(N, s, p, q, Q). Combining the definition of ¥ in (3.6), Lemma 2.12, Lemma 2.7 and the assump-
tion that ||illon(q.6) = IVllon(a,6) = 1, we can estimate c1«< |¥llon(q,6+) < C for some positive constant C
independent of A and x. This, combined with (3.8) and (3.9) implies

Gs[U?] + Gs[tv] < C(AP9%PT + 1)Gs[W]. (3.10)

for some positive constant C independent of A and «.
We will choose A and k such that
Gs[U? + Gg[Tv] < V. (3.11)

For that, it is sufficient to choose A and x such that
C(APTPT + )Gs[W] < V.

This holds if
C(APIRPI1 1 1) < A. (3.12)

If pq > 1 then we can choose A > 0 large enough and then choose k > 0 small enough (depending on A) such
that (3.12) holds. If pg < 1 then for any x > O there exists A large enough such that (3.12) holds. For such A
and x > 0, we obtain (3.11). Consequently, (U, V) satisfies (3.1). By Lemma 3.1, there exists a weak solution
@py,zw) of (3.4) forp > 0 and 7 > O small if pg > 1, forany p > O and 7 > 0 if pg < 1. Moreover, (gpy,yw)
satisfies (3.2).

Next, assuming in addition that p < g < Ns, we will demonstrate (3.5). From the definition of V and

Lemma 2.11, we see that
V = AkGs[¥] = Ak(Gs[Gs[91u]9] + Gs[9,v])

(3.13)
< CAxGs[p + V).
It follows that
VP < Ci (Gs[pulP + Gs[vIP).
Therefore,
U < CkP (Gs[Gs[ulP] + Gs[Gs[vIP]) + k1 Gs[9u]
< CkPGs[u +v] + K3.91Gs[y] (3.14)
< Cmax{Kk”, k7 }Gs[u + v].
Combining (3.14) and (3.13) along with (3.2) leads to (3.5). O

Remark 3.4. By Lemma 2.8(i), we see that if y, v € L"(Q) with r > zﬂs then Gs[p +v] € L*°(Q). From Theorem
3.3, if p and 7 are small then system (3.4) admits a minimal solution @py, v,,) which satisfies (3.5). It follows
thatu,,, v,, € L*(Q). Moreover, (gpy,yﬂ,) — (0,0)a.e.in Q as (p, T) — (0, 0).

Proof of Theorem 1.3 completed: Combining Theorem 3.3 along with Remark 3.2, the proof of the theorem
follows.
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4 A priori estimates and regularity

In this section, we provide a priori estimates, as well as regularity properties, of weak solutionsof (1.1).

4.1 A priori estimates

Lemma 4.1. Assumep > 1, q > 1 and u, v € M'(Q, 6°). If (u, v) is a weak solution of (1.1) then there is a
positive constant ¢ = ¢(N, s, p, q, Q) such that

u +]lv o <c(l+ )
Ul + IVliLr 0,59 11|, 69 (4.1)

Vi) + UllLaga,69) < €+ [[VIlan(o,65)-

Proof. We prove this lemma in the spirit of [2, Lemma 4.1]. Let (A1, ¢1) be the first eigenvalue and corre-
sponding positive eigenfunction of (-A)° in Xy(Q) (see the definition of Xy in (5.3)). By [12, Lemma 2.1(ii)],
@1 € Xs(Q), and hence by taking { = ¢, in (1.6), we obtain

Al/wpldx:/vp(pldx+)l1/<p1d}l,
0 o Q

(4.2
/11/V(pldx=/qu01dx+}l1/<p1dv.
Q Q Q
By Young’s inequality, we get
/v<p1dxs(2/11)_1/vp(p1dx+(2/\1)ﬁ/(pldx,
Q 0 1 0 423)
/u(pldxs(2A1)’1/uq<p1dx+(2}t1)ﬁ/(pldx.
Q 0 0
Substituting (4.3) in (4.2) we have
2/vp<p1dx+2/\1/<p1dy < /uq<p1dx+(2/11)?ql/(p1dx,
Q Q 0 Q (44)

2/uq<p1dx+2)l1/(p1dvs/vp<p1dx+(2/11)%/<p1dx.
Q 0 0 o
Therefore,

. _p_
%/ p<p1dx+)[1/(p1d(2y+v)s <(2A12)p1 +(2/\1)‘1%> /<P1dX-
Q Q 0

Since the second term on the left-hand side of above expression is nonnegative, taking into account that
c16% < @1 < ¢6° in Q, we have

V1o (.60 < C(/\l)/ 6°dx<c. (4.5)
o

Similarly
”uHZ‘I(Q,SS) <C. (4.6)

Next, combining (1.7), Lemma 2.6 and Lemma 2.7 with y = s, @ = 0 we obtain
lullpig) < HGs[Vp]HLl(Q) + HGs[ﬂ]HLl(Q)
< C(IGsIV¥ s oy + I1Gs ], ) “.7)
< C(HVHip(Q’ﬁs) + ullmca,5) -

Hence first expression of (4.1) holds by combining (4.5) and (4.7). Similarly, the second expression of (4.1)
follows. O
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4.2 Regularity

Theorem 4.2. Let p,q < (1, Ns). (i) Assume u,v € L'(Q) for some r > 2—1\2 If (u, v) is a nonnegative weak
solution of (1.1) then u, v € Lj;.(Q).

(ii) Assume p, v € L'(Q) N Ly .(Q). If (u, v) is a nonnegative weak solution of (1.1) then u, v € Cf, .(Q) for
some a € (0, 2s).

Proof. (i) We first assume that u, v € L"(Q) for some r > % Let (u, v) be a nonnegative weak solution of (1.1).
Then u € LY(Q) N LY(Q, 6%), v € L (Q) N LP(Q, 6°) and (u, v) satisfies (1.7). Let xo € Q and r > 0 such that
B(xo,2r) cC Q.Foranyj € N, set B; := B(xo, 27r). For any j € N, we can write

u= GS[XQ\B]_VP] + Gs[XB/-Vp] + GS[H]!

(4.8)
V= GS[X.Q\BI- uq] + Gs[XB}. uq] + GS[V].
Observe that, for x € Bj,1, by (2.2),
Gslxas, v7103) = / v(y) Gs(x, y)dy < C5(x)° / v(yY 8()°|x - y[Ndy
Q\B; Q\B;
< C2(]+1)N NHVHLP(Q 5 < oo,

Therefore,
Gslxo\p V'l € L=(Bj,1) VjeN. (4.9)

Similarly,
Gslxa\su?l € L™(Bj;1) VjeN. (4.10)

Since u,v € L'(Q) for r > 25, by Lemma 2.8 (i), we deduce

Gslul, Gslvl € L7(Q). (4.11)

Further, as u € LY(Q, 6°) and v € LP(Q, 6°), we have yg,u € L9(Q) and xp,v € LP(Q) and therefore,
applying Lemma 2.7 and Lemma 2.6 we have

1Gslxp,u q]HLG(Q) < ¢||Gs[xa,u ul]]|

forevery 1 < 0 < ﬁ This in turn implies (GS[XBqu] Gslxp,V*] € L9(By) for every 1 < 6 < % This and
(4.8) - (4.11) yield u, v € L9(B,) for every 1 < 0 < N—Zs' Set,

_ 1 Ns NS
Ly = 5(1 + ?): (1

Then 1 < péy, gly < Ns < Nf’ZS and hence u ¢ ng"(Bz) and v € LP%(B,). Without loss of generality, we can
assume (o, fo/= X.1f 4y, Zo > X, then by Lemma 2.8 (i), Gslxs,v*1, Gslxp,u?] € L°(B,). This and (4.8) -
(4.11) imply u, v € L=(By). If £y < N or y < 25, then by Lemma 2.8 (ii) we obtain Gs[yp,v*] € LPY(B,) or
Gslxp,ull € L4 (B;) respectively, where

/ q
MN 7 (Q) =C HXBouHLq(Q)’

1 Nt 7 1 NZO

0= = —
LT DN = 20s " gN-20s”

Then from (4.8) — (4.11), v € LP“(B,) or u e L9%1(B,). We have
/1 N S 1 N

= == = > .
o pN-2ps pN-2s °

This implies that ¢, > ¢ > ¢o > 1. Similarly, /; > 75 > 75 > 1. Now if ¢; or 7;/= I, then continuing the
bootstrap method as in the proof of [2, Theorem 1.6]), we can conclude that u, v € L=(B,.1)). Consequently,
u, velp. (Q).

() If u, v € L"(Q) N L};.(Q) then by part (i), we have v¥ + u, u? +v € Lj;.(Q). Further, as u, v € LY(Q),
applying Schauder estimate [34], we have u, v € C, .(Q), for some a € (0, 2s).
O
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5 Construction of a second solution
In this section we assume 1 < p < g < Ns. Then it follows that q% < Ns. Using Linking theorem, we will
construct a second weak solution of (3.4) when p, v € L"(Q), for r > & with ||u|| gy = VIl o) = 1-

By Theorem 3.3, if p > O and 7 > O are small then there exists the minimal positive week solution, denoted
by (U, V), of (3.4). We would like to apply Linking theorem to find a variational weak solution of

(=A)u = (v, + VP =18, in
S., _ +\q9 q .
4Yv =y, +u)! -u;,  inQ (5.1)
u=0=v in Q°,
where u* := max(u, 0) and u™ := — min(0, u).

From Remark 3.4, we observe that there exists a constant M > 0 such that
max{u,,, Vs, } <M inQ. (5.2)

Define
Xo:={weH®Y):w=0 in RV\Q}, (5.3)

where H(RN) is the standard fractional Sobolev space on R". It is well-known that

Iwllx, = ( 'W(")‘W(y"zdxdy> , (5:4)
Q

|X _ y|N+Zs

where Q = R?V\ (Q€ x Q°), is a norm on X, and (X, I|.]|x,) is a Hilbert space, with the inner product

(B = [ OO 40D g,

Put

It is easy to check that (see [36])

/ YAY b dx = / AR pCA Ydx V. € Xo.
Q RN

It is also well known that the embedding Xo < L"(RY) is compact, for any r € [1, 25) and Xo < L%(RV) is
continuous.

Definition 5.1. We say that a solution (u, v) of (1.1) is stable (resp. semistable) if

H¢||)2(0 > (resp. 2) p/vpfl(ﬁzdx,

Q

lopllx, > (resp. =) q/uq_l(,'bzdx,

o}

V¢ € Xo \ {0}. (5.5)

Proposition 5.2. Assume p, q € (1, Ns) and u, v are positive functions in L' (Q) for some r > % such that
Ml @) = IVl = 1. Forp > 0 and T > 0 small, let (u,,,, v,,) be the minimal solution of (3.4) obtained in
Theorem 3.3. There exists to > O such that if max{p, 7} < to then @py, v,,) is stable. Moreover, there exists a
positive constant C = C(N, s, p, q, to) such that

1613, - p / Ve p2dx > C|p3,,

Q

1613 - q / ul g2 dx > Clg|,,

Q

Ve e Xo\ {0} (5.6)
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Proof. Step 1: We show that there exists ty > 0 such that (gpy, v,,) is stable provided max{p, 7} < t,.
Indeed, from Remark 3.4, it follows that for any ¢ € X \ {0}, there exists t; > O small such that if
max{p, 7} < to, there hold

1
[t axs v i, / Prdx < Bl
[0}
[t dx< 124 / prax< 191k,
Q

This completes Step 1.
Step 2: We prove (5.6). Assume (p, 7) € (0, to) x (0, to) and put

,_p+t0 T,_T+t0
2’ 2

Set
p 1 T.1
a=max{(l7)4, <F)p} <1.
Let (uy, Vo) and (U, vy,) be the solutions of (3.4) with data (o'u, 7'v) and (pu, Tv) respectively. Since

P, q > 1and a < 1, it is easy to see that

au,, = Gslav?, 1+ Gslap'ul = Gsl(av,., )1 + Gslppl,

vy, = Gs[au pE Gslat'v] = Gsl(au,,)7] + Gs[Tv].

Consequently, in view of the proof of Lemma 3.1, we deduce au,, > u,, and av,, = v,. Furthermore, since

(', ") € (0, to) x (0, to), by Step 1, we assert that (u (Uyy;» Vory) is stable. Therefore,

0< H¢|I§o—p/z€/1¢ dx < |3, - pa "/v” 1¢2dx

Q Q

(5.7)
- ' (@P I3, - p / Vg dx).
o)
Hence,
1613 —p/v" Lp2dx = (1-a® V)| p|3, +a? Vb3, - / VP12 dx
0 0 (5.8)
>(1-aP™Y)|¢)1Z,-
Similarly, one can prove
1613, - q / w1 g2dx > (1 - a8l
Q
Hence (5.6) holds with C = min{1 - a?"1,1 - a?71}. O

The norm of an element z = (u, v) € Xq x X; is defined by
. 2 2\3
1211 x0xx0 = 11y VI xoxxo = (IIUllx, + IVIIx, ) %

Definition 5.3. Let (X, ||.||x) be a real Banach space with its dual (X", |.||x-) and I € C!(X, R). For ¢ € R, we
say that I satisfies Cerami condition at level ¢ (in short, (C)c) if for any sequence {wy} C X with

Iwn) = ¢, |[I'Wn)]x(1 + [[wnlx) = O,

there is a subsequence {wn, } of {wn} such that {wy, } converges strongly in X.
We say that {wn} C X is a Palais-Smale sequence of I at level c if

Iwn) = ¢, |[I'(wn)|[x — O.
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The energy functional associated to (5.1) is

) o / (u(x) - u@y)) (v(x) - v(y)) dxdy / H(v,,, v)dx

‘X _ y|N+25

RNxRN Q (59)
—/I:I@py,u)dx v (u,v) € Xo x Xo,
0

where
H(r, t) := Jlr I {(r+ WY P _(p+ 1)rpt+},
P (5.10)
H(r, t) := qur I {(r + T 0 (g + 1)rqt+], r=0.
Therefore,
/ P(x) - o)) (v - v(y)
I'(u,v)(@, ¥) ( X 36\“25 ) dxdy
RNxRN
u(x) - u(y)) (Y00 - ()
0 4460
RNxRN
- / h(v,,, Viipdx - / R, Wdx,
0 0
where

h(r,t) =+t Y- and h(r,0):=@F+t)I-r1, r=0.

It is easy to see that if z = (u, v) is a critical point of I then (u, v) solves (5.1). We will find these critical points
using Linking Theorem in the spirit of [19].

Lemma 5.4. (i) There hold

I%tpﬂ < H(r, 1), ﬁtq” <H@r,t) for r, t>0. (5.11)

(ii) Given any M > O, there exist @ > 2 and T > O such that
H(r, ) < %h(r, Ot, H(r, b < %fz(r, tOt, for O<r<M, t=T, (5.12)

where T depend on M, p, q, 6.
(iii) Let O < k < p + 1, then there exists a constant C = C(p, q, k) > 0 such that

H(r,t), Hr,) > t*-C for r, t>0. (5.13)

Proof. (i) Estimate (5.11) was proved in [26, Lemma C.2(ii)].
(ii) First let us choose 61 € (2, p + 1) arbitrarily and fix it. Next, we define

y(r, t) := h(r, )t - 0, H(r, t).

From the definition of h(r, t) and H(r, t), a straight forward computation yields that

0 1 plp-1) 0 _ 6 _
y@r, t) =t p(l—il)rp1+ 5 (1—?1)#’ 2t+---+(1—pTll)t1"1 .

Therefore, there exits 0 < T = T(p, M, 6,) such that y(r,t) > Ofor t > T, r < M. Similarly we can prove the
other inequality by choosing 6, € (2, g + 1). Then by take 8 = min{6, 6, }, we obtain (5.12).
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(iii) Since x < p + 1 < q + 1, applying Young’s inequality, we have

t"sitp+1+c1 and t"sitq+1+c2
p+1 +1

where ¢; = c1(x, p) and ¢, = ¢z (k, g). Taking C = max{cy, ¢, }, it follows

]

pilt”” qilt‘“lzt”—C.

Combining this with (i), (5.13) follows. O
Remark 5.5. Combining Lemma 5.4 along with the fact that H(r, t) = 0, for t < 0, it holds
H(r,t)20, H@r, )20, VtcR,Vrz0. (5.14)
We also observe that ([26, Lemma C.2(iii)]) for any £ > 0, there exists c¢ > 0, such that
H(r, t) - grp"lt2 serP 1 v cetP™t, 1, t=20. (5.15)

Notation: For the rest of this section, we denote by || - ||, the norm in Xy, by ||(:, -)|| the norm in X x X¢
and by (-, -) the inner product in Xj.

Next, we prove that I has the geometry of the Linking theorem.

5.1 Geometry of the Linking Theorem

We define,
E":={(u,u) :uecXo} and E :={(u,-u): ucXp}.

Lemma 5.6. There exist p, o > O such that I(u,v) = o for all (u,v) € S := 0B, N E*.

Proof. From the definition of I(u, u), we have

1 _ 1 _
M) = 5 (IR -p [rtac) « 5 (P -g [ugta)
Q Q
—(/H(y,v,u)dx—%/ﬁ;wzdx) - (/I:I(gpy,u)dx—%/gggluzdx)
Q Q 0 0

Applying (5.15) and (5.6) to the above line and using (5.2) and Sobolev inequality, we obtain

Cllu|? - € /z’r’;luzdx— Cg/up”dx—s/gg;luzdx— Ce /uq+1dx
o) Q Q Q
(C-MP IS te — MO IS e)||u|? - Cllu|P*! - Cllu||?*,

I(u, u)

v

v

where S is the Sobolev constant. Now, choosing € > 0 and p > 0 small enough, we find one ¢ > 0 such that
I(u, u) = o when ||u|| = g, as p, g > 1. This proves the lemma. O

Let o € Xo be a fixed nonnegative function with ||1o|| = 1 and
Qy, = {r(Wo,Yo) +w : we E", |w|| <Ro, 07 <R}

Lemma 5.7. There exist constants Ro, Ry > 0, which depend on o, such that I(u, v) < O for all (u, v) € 0Qy,.
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Proof. We note that boundary 0Qy, of the set Qy, is taken in the space R(io, o) ® E~ and consists of three
parts. We estimate I on these parts as below.

Case1: z € 0Qy, N E~ and of the form z = (u, —u) € E". Then, thanks to (5.14), it follows

I(z) = —||ul|® - | H(v,y, -w)dx - [ H(u,,, u)dx <0.
[ e |

Case 2: z = Ry (Yo, o) + (u, —u) € 0Qy, with ||(u, —u)| < Ro. Thus,

H@=Rﬂ¢ﬂLWWV—/HQWJQWVMMX—/H@WJGWHMMK (5.16)
Q Q

For2<xk<p+1<qg+1,set

£0) t* ift=0,
. 0 if t<O0.

Then, applying (5.14) and (5.13) to (5.16), we get

I(z) < R:- /.{(Rll,bo—u)dx—/.{(Rll,b0+u)dx+C
0 0

where C = C(p, g, k) is the constant in (5.13).
Now, using convexity of the function &, we obtain

I(z) < R? - 2R% / [Wo|¥dx + C.
o)

Therefore, since x > 2, taking R, large enough (depending on ), it follows that I(z) < 0.

Case 3: z = (1o, Po) + (u, —u) € 0Qy, with ||(u, -u)|| =Roand 0 < 7 < R;.
Then, using (5.14) it follows that

1
1(2) < *||ol* - Jull* < Rt - 5 Rg.

Choosing Ry = v2R;, we have I(z) < 0.
Combining case 2 and case 3, in order that the geometry of Linking theorem holds, we choose Ry, R1 large
enough with Ry = v2R;. O

Our next aim is to prove that Cerami sequences are bounded.

Proposition 5.8. Let (um, vm) € Xo x X such that
(1) I(um, vm) = € + 6m, where 8, — 0 as m — oo.
@) (1 + || um, vi) DI Um, vin)(, ¥)| < em||(P, P)|| for ¢p, Y € Xo x Xo and em — 0 as m — oo. Then,

[um|| < C, [[vml| < C

/h&ﬂ,, Vm)Vmdx < C, /flmpy, Um)umdx < C
Q o)
/H@TV, vm)dx < C, /ﬁl(gpu, um)dx < C.
0 0

Proof. Choosing (¢, ) = (v, 0) and (¢, ) = (0, um) in (ii), we have

|\vm||2—/f1@py,um)vmdx < em||vml|,
@ (5.17)

™ —/h(g,v,vm)umdx < em||um|.
Q
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Now choosing (¢, ) = (um, 0) and (¢, Y) = (0, vm) in (ii), we have

<Em,

(Um, Vm) — / Fl(ﬂpw Um)Umdx
Q

<E&m.

(Um, Vm) — / h(KTV, Vm)Vmdx
Q

On the other hand, from (i), we obtain

(Um, vm) —/H(zw,vm)dx—/f{(gpy,um)dx= C+6m.
Q Q

Combining (5.17) and (5.19) and using (5.12), we get

2C+ 286m

(Um, Vm) —Z/H&w,vm)dﬁ (Um, Vm) —Z/Fl(gpy,um)dx
Q Q

v

_2£m+/i~1(gpy,um)umdx+/h@rv,vm)vmdx
Q

Q
—Z/H(gp“,um)dx—Z/H@Tv,vm)dx
Q Q

v

Qn{vn,>T} QN{un>T}
where we have used the fact

H(v,,,vm)dx < C and / I:I(gpﬂ, vm)dx < C,

QN {vu<T} QN {umsT}

which follows from the definition of h(r, t), H(r, t) and (3.5). Therefore,

/H(yﬂ,,vm)dx <C and /ﬁ@py, um)dx < C.
Q Q

Using (5.12), similarly it can be also shown that

/h(yw, Vm)Vmdx < C, /fl(gpu, Um)umdx < C.
0 Q

—_ 1497

(5.18)

(5.19)

2em+(0-2) / H(v,,, vm)dx + (6 - 2) / H(gpy,um)dx+ C,

(5.20)

(5.21)
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Observe that h(v,,, vm) = 0if viy < 0 and h(v,,, Vm)um < O if um < 0. Therefore applying Young’s inequality,
(5.11), (5.20) and the fact that u, - and v, are bounded (see (5.2)) yields

/h@n,, Vm)UmdXx < / h(vyy, vm)umdx
Q QN {vin20, up=0}
1
P
g+1

udtdx + qzl / h@rv,vm)%dx

QO {v=0, upy=0} QN {vin=0, um=0}

~ (g+1)
< /H(gpu, um)dx + —2 / (Voy + Vi) 0 dx
5

g+1
ON{vn20, um=0}

* plg+1) g plg+1) (5.22)
<Cq+ C(q)(/yﬂ," dx + / V! dx)
0

QN {vn20, up=0}

(g+1)p
(p+1)g

<C +Cy+ c3< / vf’,,*ldx> Q|7

ON{Vm=0, un=0}

(g+)p
D
sC1+C2+C4< / HQW,vm)dx) "< C.

QN {v;p20, up=0}

In above estimate we have also used the fact p < g implies (g + 1)p/q < p + 1.
Similarly we can show that fr) fl@py, Um)vmdx < C. Therefore substituting back in (5.17), we obtain
|lum]| < Cand ||[vm]| < C. O

5.2 Finite dimensional problem

Since the functional I is strongly indefinite and defined in infinite dimensional space, no suitable linking
theorem is available. We therefore approximate (5.1) with a sequence of finite dimensional problems.

Associated to the eigenvalues 0 < A; < A; < A3 < -+» — oo 0f ((-4)°, Xp), there exits an orthogonal basis
{@1, @2, -} of corresponding eigen functions in Xo and {¢1, ¢, - - - } is an orthonormal basis for L?(Q). We
set

E, := span{(p;, ¢;) :i=1,2,---,n},
Ep, := span{(p;,~-¢;) :i=1,2,---,n},
E, := E; & E,.

Let o € Xp be a fixed nonnegative function with ||| = 1 and
Qn,yo = {r(o, Yo) +w : w € Ey, |[w| s Ro, 01 <Ry},

where Ry and R; are chosen in Lemma 5.7. Here we recall that these constants depend only on ¢, p, q. Next,
define
Hy,y, = R(o, Yo) © En,  Hy y, := R(o, o) ® En,  Hyy, := R(o, Po) @ En.
Ty, := {1 € C(Qn,yo» Hn,yo) : (U, v) = (U, v) on 0Qy y, }

and

c = inf max I(n(u,v)).
n,o 7€ o (W V)E Oy ( )

Using an intersection theorem (see [33, Proposition 5.9]), we have

ﬂ(Qn,lpo) n (6BQ N E+)/= 0, Vme Fn,lpo.
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Thus there exists an (u, v) € (Qy,y,) such that (u, v) € 0B, N E*. Combining this with Lemma 5.6, we get
I(n(u, v)) 2 0. This in turn implies ¢, y, = 0 > 0. Our next goal is to show that c,, ;, has an upper bound.
For that, we observe that the identity map Id : Qy,y, — Hy,y, is in Iy y,. Thus for an element of the form
z := (o, Po) + (u, ~u) € Qy y,, we compute

1(z) (rpo +u, ripg —u) - /H@TV, o — u)dx — /f{@py, rpo + u)dx
0 0
v

=l = | [ Hry o - x| Bt o+ x| < R,
Q Q

where in the last inequality we have used (5.14). Consequently,

max I(z) < R2.
ZEQn,l/)O

Therefore,

Cnpo < max I(Id(z)) = max I(z) < R2.
’ Z2€Qn,y, z€Qn,y,

Hence 0 < 0 < ¢y, < R?. We remark here that upper and lower bound do not depend on n. Define,

In’lpo = I Hn,\/)o.

Thus, in view of Lemmas 5.6 and 5.7, we see that geometry of Linking theorem holds for the functional I,“l,o.
Hence applying the linking theorem [33, Theorem 5.3] to I,, y,, we obtain a Palais-Smale sequence, which is
bounded in view of Proposition 5.8 (also see [19, pg. 1046]). Therefore, using the fact that H, ,, is a finite
dimensional space, we obtain the following proposition:

Proposition 5.9. For every n € N and for every Yo € Xy, a fixed nonnegative function with ||Yo|| = 1, the
functional I, , has a critical point z, y,, such that

Zno € Hugor  Tnpo@npo) =05 Lo (Znpe) = oy € [0, RT], (5.23)

1z, pll < C, (5.24)

where C does not depend on n.

5.3 Existence of solution of (5.1).

Step 1: Let g € Xo be a fixed nonnegative function with |[ipo|| = 1. Then applying Proposition 5.9, we get a
sequence {zy y, } -1 satisfying (5.23) and (5.24). Consequently, there exists (uo, vo) € Xo x Xo such that

Zn,po += Un,yos Vap,) = (o5 Vo) in Xo x Xo, (5.25)

Un,po = U0s Vo — Vo iN L'RY), 1<r<2; andae.in 0. (5.26)

Further, applying Proposition 5.8, we conclude

/h@w, Vi)V, podx < C, /ﬁ(gpu, Un, o ) Un,p, dx < C. (5.27)
o) 0

/ H(¥sy» Vi p)dx < C, / Ay, g, ) < C. (5.28)
0] Q
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Next, taking as test functions (0, ) and (¢, 0) in (5.23), where ¢, 1 are arbitrary functions in F := span{¢; :
i=1,2,:-+,n}, we obtain

(W, un,y,) = /h(y,v,v,,,lpo)lpdx Vi € Fp, (5.29)
0

<<;b,vn,l/,0> = /ﬁ@py, Un,p,)pdX V¢ € Fn. (5.30)
0

Now applying (5.2), (5.26) and the fact that p < Ns < 2g, we also have h(v,,, Vn,p,) and h(v,,, vo) are Lt
functions. Therefore, using (5.27), (5.26) and an argument similar to the one used in [18, Lemma 2.1, it follows
that

h(Vrys Vi) = M0Wrys V0)s Wy, Un y,) = By, u0) in LH(Q).

Hence, taking the limit in (5.29) and (5.30) and using the fact that U;>; Fy, is dense in Xj, it follows that

(W, up) = / h(v,,, vo)dx and (¢, vo) = / h(u,,, uo)gdx,
Q Q

forall ¢, Y € Xy. As a consequence,

(-A)°ug = h(v,,,vo) and (-A)°vy= ﬁ(gpu, ug), up=vep=0 inQ°. (5.31)

Step 2: In this step we show that uy and v are nontrivial and nonnegative.

Suppose not, we assume ug = 0 in Xy. Plugging back to the equation (5.31), it implies (-A)’vg = 0. As a
consequence .
0= [vol-arvodx= [1-vol dx = [volf-
0 Q
Therefore, vo = 0 in Xo, that is, u, y, — 0 and vy, — 0 in X,. Consequently, u, y, — 0 and v, y, — 0in
L'(Q)for1 <r<2;. Sincep +1, g + 1 < 25, computing as in (5.22) we obtain

. : 1
Tim [ h(Veys Vi, oYt o AX lim C Up'y, dx

0 QN {Vy,p, 20, Uy p,20}

g+l
+ / h(Vrys Vo) @ dx)
QN {Vn,py 20, Un,p,20}

IN

IN

n—oo
.Qﬁ{vn,‘,,0 20}

+1
hm C / [&TV + Vn,lpo)p - ng]% dx

g+l

. p p-1 1
1im € [ g+ Pl e

IN

IN

. P(g+1 1p-1 1 g+1
A ey A N
Q Q
= 0’

where for the last inequality we have used the fact that %(q +1) < p+1(since p < q), (5.2) and the fact that
%1 < 25 (since %;ég <1 < q). Similarly it follows that |, ﬁ(gpu, Un, o)V, o dX — 0. As a consequence, taking
Y = Uy, in(5.29) and ¢ = v, y, in (5.30) yields ||uy, y, || = Oand [|vy 4, || — O respectively. Hence, up y, — O
and v, y, — O strongly in X,. This in turn, implies (uy y,, Vy,y,) — (0, 0).

Further, combining (5.15) along with (5.14) and (5.2) yields [, H(v;y,Vyy,)dx — O and
Jo ﬁ@py, Up,yo)dx — 0. Hence, ¢,y = Inyo(Unypes Vny,) — O. This is a contradiction to the fact

that ¢, y, € [0, Ri]. Therefore, uo, v are nontrivial.
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Since ug € Xo, by direct computation it is easy to see that ug, uy € Xo. Thus, taking the test function as
u; for the first equation in (5.31) yields 0 < (ug, ug) — |[ug|* < —|Jugl|®, i.e., uo = O a.e.. Similarly, vo > 0. As a
result, step 2 follows.

Hence we obtain the existence of a nonnegative nontrivial solution (ug, vo) € X x Xg of (5.1).

5.4 Proof of Theorem 1.4 completed

In order to construct the second solution of (3.4), we define

Upp = Y,

PU + Uop, Vv = ZTV + Vo, (5.32)

where (uo, vo) are as defined in Step 1 of Section 5.3. Clearly upy > u,, and vzy > v,,,. Moreover, as u and v are
nontrivial element in Xy, there exist two positive measure sets Q’, Q" ¢ Q such thatug > 0in Q' and, v >0

in Q”. Thus upy > u,, in Q' and v¢y > v, in Q”. Further, as (ug, vo) € Xo x X, is a solution of (5.1), we have
PU PU v

(ug, P /hLTV,vo)ll)dx Vo, @ /h Uy U 0)pdx, V¢, P Xo. (5.33)

Set
T(Q) := {1 € C(Q) : there exists ) € CFT(Q) such that P = Gs[1h]}.

This is a space of test function defined in [1, Page 41]. By [1, Lemma 5.6], T(Q) C X,. Therefore, we deduce
from (5.33) that
/ o (- dx = (ug, / h(v,,, vo)pdx Vi € T(Q),

Q0

(5.34)
/ VoAV ¢ dx = (vo, B) = / Ry, o)pdx v € T(Q),
o) Q
Moreover, [1, Lemma 5.12 and Lemma 5.13] ensures that 7(Q) ¢ Xs(Q) and
/ to(~A) 1 dx = / h(Vey, volpdx  Vip € Xs(Q),
@ e (5.35)
[votcargax= [, updx v <%0
0 0
This means that (ug, vo) is a weak solution of
(-A)up = (v, +vol’ -2, inQ
(-A)°vq = (upy + up)?-u?  inQ (5.36)

Upu
up=vo=0 inQ°.

Hence, (upy, vrv), as defined in (5.32), is clearly a weak solution of (3.4).

Ifu,v e L"(Q)NL};.(Q) then by Theorem 4.2, upy, Vv, Upys Voy € Cf .(Q), for some a € (0, 25). Therefore,
U, Vo € Cf .(Q). Also since we have (-A)*uo, (-4)°vp = 0in Q and 0 = up, vo 2 0 in RY, applying the strong
maximum principle [41, Proposition 2.17], we have ug, vo > 0 in Q. Hence from (5.32), we deduce up, > Uy
and v¢y > v,,. In view of Remark 3.2, this completes the proof. O
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