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Abstract: We study a semilinear parabolic equation that possesses global bounded weak solutions whose
gradient has a singularity in the interior of the domain for all ¢ > 0. The singularity of these solutions is of the
same type as the singularity of a stationary solution to which they converge as t — oo.
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For a bounded, smooth domain Q c R", T > 0 and A € R, consider solutions of the problem

ug=Au+gu,vu) inQx(0,T),
u=A on 00 x (0, T), (0.1)
u(-,0) = ug in Q.

Itis well known (see [1, Thm. V1.4.2]) that this problem has a unique classical solution for small T > 0 provided
g € CY(R™1Y), up € C'(Q) and up = A on 9. In this paper we study a particular case of problem (0.1) in a
radially symmetric setting in Bg := {x € R" | |x| < R}, R > 0, where g is a smooth function of u and u,
but ug is only Hélder continuous in Bg. In our example, the global bounded weak solution emanating from
uo maintains the singularity of the gradient of uq for all ¢ > 0. Thus, there is no smoothing effect which one
usually expects from a semilinear uniformly parabolic equation.

The equation we will be interested in is the following:

up = Au + uu; in (Bg\{0})x(0, o). (0.2)

(Written in Cartesian coordinates, g hence corresponds to g(x, u, Vu) = u(Vuﬁ)3 for x € Bz \ {0}.)
Forn € N, n = 2, the function

W'(r)=-ars for r>o0, where a := v9n - 15, (0.3)

forms a stationary solution of (0.2) (for any R > 0 both in Bg \ {0}, cf. Lemma 5, and - in the weak sense - in
Bp, see Lemma 6).

We will impose several conditions on the initial data uq (and refer to (2.14) in Section 2 below for details)
that, besides radial symmetry, essentially require that uq lies below the stationary solution, but is ’close’ to
it in a suitable sense. Under these conditions we will be able to show the global existence of solutions that
retain the singularity in their gradient throughout the evolution.

Theorem1. Letn = 2and 0 < R < \/%(BH - 5)(2n - 3)3. Assume that uq satisfies (2.14). Then there is a
function
u € C(Bg x [0, 00)) N C>*((Bg \ {0}) x (0, o)) (0.4)
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which solves
Ur = Au+ uui in (Bg \ {0}) x (0, o),
u(0,)=0, u(R,t)=u’(R) forallt>o0, (0.5)
u('9 O) = Uo in ER:

in the classical sense. This solution is unique in the class of functions satisfying (0.4) and with u, being bounded
from above on (B \ {0}) x (0, =0). Moreover, it holds that

liNn(} Ur(r, t) = —o0 forevery t > 0. (0.6)
r

For a more precise description of the singularity see Remark 7. Next we show that the function u from Theo-
rem 1 solves the equation from (0.2) also in By x (0, o) in a suitable weak sense.

Theorem 2. In addition to the assumptions of Theorem 1 let n = 3. Then the solution u from Theorem 1is a
weak solution of
u; = Au+uu; inBg x (0, o0),
u=u"(R) on dBg x (0, =), (0.7)
u(-,0) = ug in Bg.
By this we mean that
uu; € L. (Bgx[0,00)) and Vu e L}, .(Bg x[0, o)), (0.8)

and for every ¢ € CZ(Bg x (0, o)) we have

—/O?/(ptu=—]°/Vu-V(p+7/uu?<p. (0.9)

0 Bp 0 B 0 Bp

We note that Theorem 1 guarantees that the initial and boundary conditions are satisfied.
Concerning the large-time behavior we establish the following:
Theorem 3. Under the assumptions of Theorem 1,
u(,t) > u" ast— oo.
This convergence is uniform in Bg and occurs with an exponential rate.

An equation closely related to (0.2) has been studied before in [2, 3], see also [4]. It was shown in [2] that
interior gradient blow-up may occur for solutions of the problem

U = e+ fW)ux™ux,  xe(-1,1),
u(il, t) = Ai >

where m > 2 and f(u) = u, for example. A global continuation after the interior gradient blow-up has been
constructed recently in [3] for m = 3.

For various parabolic equations, solutions with a standing or moving singularity have been investigated
by many authors. We shall give some references below. But in these references it is the solution itself that is
unbounded while in the present work only the gradient stays unbounded.

For the equation

U =v-Wtvu), (0.10)

solutions with standing singularities were considered in [5-10] for various ranges of m > 0, m # 1, and some
results on moving singularities for the same equation can be found in [11].
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Results on moving singularities for the heat equation were established in [12, 13] and for semilinear equa-
tions of the form
ur = Au+u?, p>1, (0.11)

in [14-19]. The behaviour of solutions with standing singularity for equation (0.11) with positive sign has been
studied in [20, 21].

Counterexamples to the regularizing effect of (0.10) can be found in [22]. There, again, it is the solution
itself that is unbounded.

Next we describe the plan of the paper. Due to the gradient singularity that the solutions have at the
spatial origin, the notion of classical solvability is restricted to (Bg \ {0}) x (0, o). In Section 1 we therefore
begin by establishing a connection between classical solutions in (Bg \ {0}) x (0, o) and weak solutions in
B R X (O, 00)

Section 2 will be concerned with the stationary solution u* mentioned in (0.3) (and already use the result
of Section 1). At the end of this section, we give a precise formulation of the conditions on ug that the theorems
require (and that involve the stationary solution).

We will construct the solutions between a super- and a subsolution. As a supersolution we will use u”,
finding the subsolution will be the goal of Section 3. To this aim, we will find a solution v to a (formal) lin-
earization of (0.5) (see Lemma 8) and then ensure that u* - v is a subsolution (Lemma 10). (This is also the
source of the restriction on R in the theorems.)

The actual construction of solutions takes place in Section 4. We first restrict the spatial domain to Q¢ :=
B \ Be, for the choice of the boundary value on the new boundary 0B x (0, o) already relying on u” - v
from Section 3. In Section 4.1, we take care of the solvability of this problem. (Classical existence results
become applicable after replacing the nonlinearity u; by f(u,), see Lemma 18, and until Lemma 26, we will
have derived sufficient estimates allowing for removal of f, though still e-dependent.) Section 4.2 will then be
concerned with e-independent estimates in preparation of a compactness argument leading to the existence
of solutions. The key to this part will lie in a comparison principle applied to high powers of u, (see Lemma 27).
This is a modification of a classical technique which involves |Vu|? and originated in [23]. Section 4.3 will
contain the passage to the limit € N 0 (Lemma 32) and deal with (0.5) and (0.7).

In Section 5, finally, we give the proofs of the theorems. By this time, they will only consist in collecting
the right lemmata previously proven, and will be accordingly short.

1 Relation between classical and weak solutions

Of course, every classical solution of (0.5) is also a weak solution of (0.5) — in (Bg \ {0}) x (0, o0), which
means that the singularity appears on the boundary of the domain. In order to interpret classical solutions
in (Bg \ {0}) x (0, =) as weak solutions in By, x (0, =), we merely require suitable integrability properties of
the derivative near O:

Lemma 4. Letn > 1 and R > 0. Assume that a radially symmetric function
u € C(Bg % [0, 00)) N C*'((Bg \ {0}) x (0, 00))

satisfies (0.8), (0.5), and for every T > O we have that

e—0 &

T ¢
lim £ / / " Yuy(r, t)|drdt = 0. (1.12)
0 0

Then (0.9) holds for every ¢ € Cg”(Bg x (0, 0)).
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Proof. Forevery i € CZ((Bg \ {0}) x (0, =0)) we obtain

_7/¢tu=_7/w-wp+7/uu?w,

0 Bg 0 Bg 0 Br
as u solves the equation classically in (Bg \ {0}) x (0, o).
We introduce a non-decreasing cut-off function y € C>(R) with 0 < ¥’ < 2 and y(0) = 0, y = 1 on [1, o)
and let ye(x) := X('%‘).
Welet ¢ € CZ(Bg x (0, o0)) and note that for every positive €, 1 := y¢ belongs to CZ°((Bg \ {0}) x (0, =0)).

—7/(ptu=—]°/1/)tu—7/§0z(1-Xs)u

0 Bp 0 Bg 0 Br
=—//Vu-vlp+//uu?!,b—//<pt(l—Xg)u
0 By 0 Bg 0 Bg
=—//X5Vu-v¢—//(qu-VXg
0 Bi 0 Br
+//uu3<pxs—//<pz(1—xs)u
OBR OBR

for every € > 0. As xe — 1 a.e. in supp ¢ and by (0.8) and boundedness of u each of the functions Vu - Ve,
uu; @, @qu belongs to L (supp ¢),

—//XgVu-V(p+//uu3(p)(g—//¢’t(1—)(e)u
0 Bg

OBR OBR

—>—//Vu-V(p+//uu§(p ase —0

0 Bg 0 By

by Lebesgue’s dominated convergence theorem.
Moreover, [Vye(x)| = [xer(r)] = 1x'(£) < 2 if r = |x| < € and |Vxe(x)| = 0 if [x| > &. With T > O such that
supp ¢ C Bg x (0, T), we have

[}

T T ¢
2 _
//‘PVH'VX:»: SH‘PHw//|Vu\|VXS|SEH‘PH°°//rn Yurlr, B)drdt,
. /. /J

0 Br 0 Bg

which vanishes as € — 0 according to (1.12), and (0.9) follows. O

2 The stationary solution and conditions on the initial data

In (0.3), we have introduced a stationary solution u* to (0.2). In this section we first prove that the function
from (0.3) actually has this property (see Lemma 5 for the classical, Lemma 6 for the weak sense) and then for-
mulate the conditions on the initial data, which involve relations with u* and whose formulation we therefore
had postponed.

Lemma5. Let n = 2. Then the function u* from (0.3) solves

A +u W)’ =0 inR"\ {0}.
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Proof. We use radial symmetry and the explicit form of u” to write

* * * 3
A+ u () =t (r"’1 (—gr%)) +ar’ (gr’%>
3 r 3

= %r"% (15 -9n+ a3) =0. O

Lemma 6. Let n > 2. Then for any R > O the function u” defined in (0.3) is a weak solution of (0.7).

Proof. In order to apply Lemma 4, we only have to check integrability of u"(r)(u;)?(r) = g—;r%‘z and u;(r) =

_2 . . .
%r 3, which is satisfied, and

€
.1 n-1,. * . a n-3
- = =0. O
fim 2 [ - lim e

0

Now and in the following, given any n € N we let
v:=v(n) := %\/ 36n2-96n+61. (2.13)

Having introduced u” and v, we are now in a position to give the conditions on initial data that Theorems
1, 2 and 3 have posed.

up € C*(Bg \ {0}), (2.14a)

Ug is radially symmetric, (2.14b)

U = uo, (2.14¢)

lim sup 727’ (7) - uo(n) < oo, (2.14d)
r

uo(R) = u"(R), (2.14¢)

there is C > 0 such that 0 > ug,(r) 2 —Cri for everyr € (O, R). (2.14f)

Remark 7. The shape of the solution from Theorem 1 near the singularity of its gradient can be described
more precisely than in (0.6) by saying that (2.14d) continues to hold for ¢ > 0 in the sense that

lim sup |r%_"_‘”(u*(r) —u(r, t))| < oo forall t > 0.
rNO

We will include a proof in the proof of Theorem 1 in Section 5.

3 Finding a subsolution

In order to construct a subsolution of (0.5) near u”, we first find a solution of the (formal) linearization of (0.5)
around u”.

Lemma8. Letn=>2,C >0,vasin(213), A > 0. Then the function
v(r, t) := Ce""ztr”"%]v()lr), r>0,t>0, (3.15)
where ], denotes the Bessel function of the first kind of order v, solves
Vi =Av+3u Wy +uy in (R"\ {0}) x (0, o)

with u” taken from (0.3).
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Proof. Let us recall that the function defined by x(r) := Jv(Ar), r > 0, satisfies
2" () +ry'(r) + (Azrz - vz) x=0 for every r > 0. (3.16)
We abbreviate A := 4 - 2nand B := 2% and 6 := n - 3 and note that
20+A=1 (3.17)

and

6(6—1)+A6—B=—n2+83—n—§—é=—v2, (3.18)

so that (3.16), (3.17) and (3.18) for ¥(r) := r5x(r), r > 0, entail
r2 " (n) + Anp' (r) + 2r? () - Bp(r) = r*(r°x)" + Ar(r°y) - Bry
= 126(8 - 1)’ 2y + 226157y + r?r%" + A6r%y + Ar® Yy - Brx
_— (rz)(” +(26+A)ry +(6(6-1)+Ab - B))()

=0 (rz)(” +ry - sz) =A% =A%y forr>o0,

and
2 3 2

vir, £) = Ce Vi1, (Ar) = Ce™ tl/)(r), r>0,t>0,

solves
Y 32 A B
V[=Ce At(—)lzl/J)=Ce At<¢//+?lp1_r7¢)

~ 4-2n_  5-3n_ n-1 o a

=Vrr + ’ Vr + 9)’2 V—Vrr+er_§Vr_ﬁv

=Av+3u W vy +u)y in (R™\ {0}) x (0, o0),
where we have used that a = ¥/9n - 15 and u*(r) = —ar3. O

Definition 9. With v from (2.13), welet xg > 0 and x; € (0, x;) be the first positive roots of the Bessel function
Jv of the first kind and its derivative J;, respectively. (As v > 0, J, and J, are positive on (0, xo) and (0, x1),
respectively.)

Lemma 10. Letn > 2, C > 0, A > 0 and, with x, from Definition 9,

0<R<min{’;1,\/z(3n—5)(2n—3)3}. (3.19)
With v from (3.15), the function
uw=u -v
then satisfies
up < Au+ uu in (Bg \ {0}) x (0, o). (3.20)

Proof. Foru = u" - v, we have

—uud = - v v = —u W - )R v - v);
=—u'w)? + 30" W) vy - 3uTupvE + UV}
+W)Pv =3 vy + 3upwvE — vy in (Bg \ {0}) x (0, o).

As u” is a stationary solution according to Lemma 5 and by Lemma 8 v solves the linearized equation, we
conclude
u-Au" -u'(u)* =0  in(Bg\{0})x (0, )
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and
—vi+Av+3u W) vr + u)’v=0 in (Bg \ {0}) x (0, =0).
Accordingly, in (Bg \ {0}) x (0, =) we obtain
3 _ * * * * 3 * * 2 * * 2 * 3
Ur—Au-uuy =us —-ve-Au +Av-u (u,)” +3u (u)ve = 3u uvy +u vy

+W)Pv = 3))? vy + 3upwv? — vy

=3u"upv? = 3w vvr + U'VE + 3upvvE — v
1 2 2 2
= —a?Cr e N WY () + aCPr e M (Y’ ()
2

_ aC3r%e—3A2t(lp/(r))3 _ aC3 r_ie_nztl/)(r)(l/)’(r)f
_ C4e—4/l2tlp(r)(l/)/(r))3 .

Due to rA < RA < x; = min {xg, X1 }, we have that

Y'(r) = <n - %) L) + ArT LAY 2 0 forallr € (0, R),

hence
U — Au - uu; < —ozZCZr'%e"z’lzt(l//(r))2 + aCzr'%e'Mztz/J(r)v,b’(r)
= aCze"Mztl//(r)r"% (—ar%l//(r) + lp(r)) in (0, R).

From (3.21) and AR < x; = min {xo, X1 }, we can also infer

- oA (e g) o

so that
—ar%lp’(r) +P(r) < (—cxr_% (n - %) + 1) Y(r) < (—aR"% (n - %) + 1) Y(r) <0

(3.21)

(3.22)

_1 _
forevery r (0, R), because R™3 > (3Bn-5)2n-3)*)° = (a(n-3)) ! hence (3.22) turns into (3.20). [

4 Existence

4.1 An approximate problem

Construction of the solution to (0.2) will be based on an appropriately modified problem on (Bg \ B¢) x (0, oo).

In preparation of suitable initial data, we first turn our attention to ug.

Lemma1ll. Letn>2,0< R < %(Bn - 5)(2n - 3)3. Assume that ug satisfies (2.14). Let A > O be such that

AR < x1. Thereis C > 0 so that v from (3.15) satisfies

up>u -v(-,0) in Bg.

(4.23)

Proof. Since AR < xq, known asymptotics of the Bessel function [24, p. 360, (9.1.7)] yields the existence of
¢y = c1(A) > O such that ¢11¥ < Jy(Ar) for every r € [0, R]. Therefore, (2.14d) implies that for some ¢, > 0 we

obtain

M <Cy for every r € (0, R).
"2 Jy(Ar)

If we let C = ¢,, this coincides with (4.23).
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Definition 12. Now and in all of the following, we let n, C, R, A, v be as in Lemma 10 and Lemma 11.

Definition 13. Let £ > 0 and uj satisfy (2.14). We denote Q; := By \ B;. Moreover, let ug, € C*(Q;) be radially
symmetric and such that

Uoe(€) = u"(e) - v(e, 0), (4.24a)
Uor < Uger < 0, (4.24b)
u' > upe2u” - v(-,0), (4.24¢)
Uos = Up on the set {r € (&, Rl | up(r) < u"(e) - v(&, 0) - e} . (4.24d)

Remark 14. For (4.24c), we rely on Lemma 11; that the other conditions can be fulfilled is more immediate
from (2.14).

Remark 15. As u’(e) - v(e, 0) — € — O as € — 0, (4.24d) ensures that for every § > 0 there is o > 0 such that
for all € € (0, g¢) we have ug, = ug on By \ Bs.

Definition 16. Let £ > 0. First let us note that
A%t
cy:i=—-e" v(e, t)

is positive and constant with respect to t according to (3.15).
We choose c; > 1 large enough so as to satisfy

ce > sup [uy|, (4.25)
[e,R]

ce > sup|(u” - v(-, 0))], (4.25b)
[e,R]

Ce > Sup |Uoer|, (4.25¢)
[e,R]

e+ P v uw (@) <o0. (4.254d)

Definition 17. We let f: € C°(R) be such that f:(s) = s> for every s € [-c;, c;| (with c; from Definition 16)
and fe < 0 on (-o0, 0).

With ug, and f; as in Definitions 13 and 17, we now consider

Uer = Aule + Uefe(Uer) in Q¢ x (0, o0),
ue(, )op, = (U = v(-, 1) [op, forallt>o0,
ue(, Olop, = uo(R) =u'(R)  forallt >0,

ué‘(" 0) = Upe ln .(273.

(4.26)

By classical theory for parabolic PDEs, this problem has a solution.
Lemma 18. Let € > 0. Then (4.26) has a unique solution
8,5 = 2+p,1+£ . o [
Ug € C 2 (QS X [0, 00)) N C 2 (QS X (O, 00)) Wlth Vué‘ S Lloc(QS x [0, oo))
for some B € (0, 1). This solution is radially symmetric.

Proof. Boundedness of f: and the regularity requirements on ug, ensure applicability of [1, Thm. V.6.2], which
yields existence and uniqueness of the solution. Radial symmetry of ug. together with the uniqueness asser-
tion implies radial symmetry of the solution. O
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Later (in Lemmata 25 and 27) we want to invoke comparison principles for the derivative. In order to make
them applicable, we need slightly more regularity than provided by Lemma 18.

Lemma19. Let € > 0. Then thereis B € (0, 1) such that
+ B —
ue € CFF Qe x (0,00)  and  Vue € CB(Q x [0, ).

Proof. Letting n € CZ(Q¢ x (0, o)) we observe that nu solves (nu); = A(nu) + g, where g = —-nu-2Vn-vVu -
uAn + nufe(ur) and that, thanks to u C2+ﬁ’“§(supp n) by Lemma 18, g ¢ c*B 5 @z x (0, 00)). [1, Thm.
IV.5.2] therefore implies nu e C3+ﬁ’¥(ﬂig x [0, o0)). Holder continuity of Vue up to t = 0 and to the spatial
boundary follows from [25, Thm. 4.6]. O

As a first estimate of u,, the following lemma not only affirms boundedness of u,, but also forms the founda-
tion of estimate (4.30) for u.

Lemma 20. Let ¢ > 0. Then
wWeru2u —v in Q¢ x (0, o0). (4.27)

Proof. Dueto (4.25a) and (4.25b), each of the functions w € {u*, Ue, U - v} satisfies fe(w;) = w3 in Qex(0, o0)
and hence for w € {u”, us } we have
we = Aw + fe(wr)w,

whereas w; < Aw + fe(wy)w for w = u” — v (cf. Lemma 10). By construction, u"(R) = us(R, t) = u"(R) - v(R, t)
and u™(€) = ue(e, t) = u'(e) - v(e, t) forall t > 0, and u” = uge = u* - v(-, 0), so that the comparison principle
([4, Prop. 52.6]) implies (4.27). O

We prepare for an estimate of uer by comparison, first providing some information on its value on the spatial
boundary, beginning with the outer part 0By x (0, o).

Lemma 21. Foreverye > 0andt > 0 we have
uy(R) < uer(R, t) < 0.

Proof. Since u*(R) = u<(R, t) forall t > 0, (4.27) shows that u;(R) < uer(R, t) for all t > 0. Moreover, u(r, t) :=
U (R), (r, t) € [, R] x [0, =0), satisfies u, < Au+f(u,)uin (g, R) x (0, o0) and u(R, t) < u«(R, t), u(e, t) < ue(e, t)
forall t > 0 and u(r,0) < uc(r,0) for all r € (¢, R). By the comparison principle [4, Prop. 52.6] therefore
ue(r, t) = u"(R) = us(R, t) for every (r, t) € (0, R) x (0, o) so that u/(R, t) < 0 for every t > 0. O

On the inner boundary, we first establish the sign of ugy.
Lemma 22. Forevery e > 0and t > 0 it holds that
Ugr(e, t) < 0.
Proof. With M[¢] := ¢¢ — Ap — usu,¢r and u(x, t) := u’(€) - v(e, t) for (x, t) € Q¢ x [0, o0), we have
Mluel =0, Mul=us=-vi(e, )20 in Q¢ x (0, o0),

which together with ue(e, t) = (e, t), us(R, t) = u"(R) < u(R, t) for all t > 0 and the consequence ups(r) <
Uoe(€) = u(r, 0) of (4.24b) and (4.24a) enables us to invoke [4, Prop. 52.6] once more to conclude ug(r, t) <
u(r, t) = ug(e, t)forall r € (¢, R) and t > 0, which implies uer(e, t) < O forall ¢ > 0. O

The upper estimates in Lemma 21 and Lemma 22 determine the sign of u¢, throughout Q¢ x [0, o).

Lemma 23. Let ¢ > 0. Then
Ugr < 0 in .Qg X [0, 00).
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Proof. As w := ugr belongs to C(Q¢ x (0, o)) N C([0, o0); L?(Q¢)) with wy, Vw, D*w € L2 (Q¢ x (0, o0)) by
Lemma 19, solves wy = Aw + fe(uer)W + usft(uer)wr in Qe x (0, 00), f(uer) is bounded in Q¢ x (0, o0) due
to boundedness of fr, and so is usfz(usr) because of Lemma 20, we can apply [4, Prop. 52.8] to conclude
nonpositivity of w from nonpositivity of w on Q¢ x {0} (see (4.24b)) and on 0Q; x (0, o) as guaranteed by

Lemmata 21 and 22. O
We now turn our attention to the counterpart of Lemma 22.
Lemma 24. For every € > 0 we obtain
Uer(e, t) > —Cr
for every t € (0, o0), where c; is as in Definition 16.

Proof. We define u(r, t) := (u” - v)(e, t) + cz(e — r). Then u(e, t) = ue(e, t) for all t > 0 due to the boundary
condition in (4.26); by (4.24a) and (4.25¢),

r
u(r, 0) = upe(€) - ce(r - €) < uge(e) - / sup |Uogr| < Uoe(r),
£

for every r € (g, R), and similarly by (4.25a),
uR, ) =u'(e)-v(e, ) —c;(R-&) su'(e) - co(R-&) s u (R) = ue(R, 1)

for every t > 0. Due to Definition 17, fe(c;) = (cz)® and hence, by Lemma 20 and (4.25d),

n-1 22 n-
o+ (cusseMley, + cr+u'(e)cy)? <.

Uy - Au - uefe(u,) = -vele, t) +
Therefore, comparison ([4, Prop. 52.6]) implies
ue(r, t) = u(r, t) forallt >0, r € (¢, R),
and as u¢(e, t) = u(e, t) for every t > 0, this shows that ue (e, t) > u,(¢, t) = —c; for every t > 0. O
The previous lemmata and a first Bernstein-type comparison of u2, confirm that including f in (4.26) — al-

though necessary for application of the classical existence theorems — has not altered the equation.

Lemma 25. For every € > 0 we have

sup |Vug| < cp.
0:x(0,00)

Proof. We let M[@] := ¢ — A — ft(uer)usdr. Then M[ce] = 0 and

M[|VUS|2] = Zvug . VAUE + 2|vug|2fg(usr) + zusfgl(ugr)vu;; . VUgr
- V * (ZDZHgVug) - Zfé(Ugr)Ugvug * VUgr
= 2|Vug|2fg(ug,) - 2|D2ug|2 in Q¢ x (0, o).
In view of Lemma 23, M[|Vue|?] < 0. Lemma 21 and (4.25a) together with Lemmata 22 and 24 show that
(ce)? = |Vue|? on 0Q; x (0, o0), and (4.25c) ensures the same on Q; x {0}. Therefore, comparison (in the form

of [4, Prop. 52.10], if one allows f to also depend on t there — the necessary adaptations in the corresponding
proof are minor) proves supg_,(o.o) |Vue|? < (cz)? and thus the lemma. O

Lemma 26. The function u; solves

Ugt = Aug + u‘guzr in -QS X (O’ OO),
Uelop, (-, 0) =u” = v(:, t)|op, forallt>O0,
Ue|op, (- t) = uo(R) = u'(R) forallt >0,

ué‘(': O) = Upe in Eg.

(4.28)
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Proof. Lemma 25 guarantees that |ugr| = |[Vue| < s in Q¢ x (0, o0), therefore f(uer) = uz, by Definition 17, and
Lemma 26 becomes a corollary of Lemma 18. O

4.2 A priori estimates

Inspired by the reasoning in [2, Sec. 2], which goes back to [23], we will now obtain an e-independent bound
for uer from a comparison principle applied to, essentially, a large, even power of u¢,. Lack of e-independent
control over ugr on the inner boundary (for which we refer to Lemma 24 and which is natural if seen in light
of the unbounded derivative of u” near r = 0) makes inclusion of a cutoff function necessary.

Lemma 27. Let p = 4 be an even integer. There is ¢ > 0 such that

(r-6P2ub,(r,t) < c(1 + su};(r - 5P+ ub,, + ) (4.29)
r>

forevery 6 >0, €(0,6)andt >0, r € (0,R).

pt3
3

Proof. We define ¢ := max{l, RP3 Uy (R)P, B(p + 3)P3u"(R)P3 + (Rp%f?)z) } and fix § > 0and € €
(0, 8). Letting w(r, t) := (r — 8?2 ub,(r, t) for (r, t) € (6, R) x (0, o), in (8, R) x (0, o) we compute

wr=(p+3)r- 5)€+2u5r +p(r- 5)€+3u5r_1usrr
and

Wrr =(p + 2)(p + 3)(r - 6)2 L, + 2p(p + 3)(r - 622 M uerr
+plp -1 - 5)€+3 ué’;zugr, +p(r- 5)£+3 ulep;l Uerrr
as well as

n-1 n-1 4 2
Ugrt = Uerrr + fuerr - rTuer + Ugr + 3UeUg Uerr.

For M[¢] := ¢p¢ — A — 3usuz, ¢, we thus obtain from (4.28)

-1 n-1
Mw] = p(r - 6)f+3u€, Ugrt = Wrr — fwr - 3usu§rWr

n-1

-1 -1
=p(r- 6)€+3ulgjr Uerrr + P (r- 6)€+3 ugr Uerr

r
n-1 1
P53 (r= 88Ul + p(r - 62 uly” + 3p(r - 6wl ey

—(+2)(p+3)r- 8" - 2p(p +3)(r - 8 ul M uerr
-p(p - D)(r - 82 ub 2 uz, - p(r - P2 ul; M uerrr

-0+ - 0l - - O e
-3(p +3)(r - 6" uculy? - 3p(r - 6P P ucul  uen

n-1
r

n-1
= -p" (= O+ plr - 8 uly

~(p+3)(p+2)(r -6 ub, - 2p(p + 3)(r - 8P 2 M uerr
~p(p - 1(r - 6P >ub2ud,
@+ - 8l - 3(p + 3)(r - 6wy
< p(r- 872 uby® - 2p(p + 3)(r - O 2l M uer - p(p - 1)(r - 8 ub; udy,
-3(p+3)(r- 8} Pusuly®>  in(Bg\Bs) x (0, 0).
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Here, by Young’s inequality
~2p(p +3)(r - 82 2L P ugrr

2
< p(p -1)(r- 5)€+3u€r_2ugrr + p(g%:l-})(r - 6)p+1u€,
p+3

2\ 3
< (o = 10 = 8l "+ (=88 e + (-0, P20 )

and
3 +3)(r - O ueuly? < (r = 87 uerlP? + G(p + 3 e

in (Bg \ Bs) x (0, o0). Recalling the sign of us from Lemma 23 and setting c; := (3(p + 3))’?|u"(R)|P*> +
3

p+3
(R’%) > we hence obtain

Mw] < ¢; in (Bg \ Bs) x (0, o).
Furthermore,
w(R, t) < RPPUL(R, t) < RPP(u;(R)P =: ¢, forallt>0

by Lemma 21. With ¢ = max {c1, ¢3, 1} and W := c(1 + sup,,5(r - 5)P+3 uga + t) we not only have M[w] = ¢ >

M[w]in (Bg\Bgs)x(0, oo), butalso W(R, t) > ¢, > w(R, t) forall t > 0 and W(r, 0) > sup,,5(r-86)2uf_ > w(r, 0)

Oer
forall r € (0, R) as well as w(6, t) 2 0 = w(8, t) for all ¢ > 0. Comparison (again by means of an adaptation of

[4, Prop. 52.10]) allows us to conclude (r—6)?2ub, = w s W = c(1 +sup,,5(r— 82" u, +t)in (Bg \ Bs) x (0, o).

Additionally, for r € (0, 6), the left-hand side of this inequality is zero, and (4.29) holds. O

Next we bring Lemma 27 in a more directly applicable form.
Lemma 28. Let p = 4 be an even integer. For every T > O there is ¢ > O such that
|ugr(r, t)| < cr"%3
foreverye>0,tc[0,T], rc (2¢,R).
Proof. Conditions (2.14f) and (4.24b) ensure the existence of ¢; > 0 such that
|Uoer| < cir3 onBg\Be

for every € > 0, and hence
+3 +3, -2
(r-88"ub,, <ci(r-657r >

for every r € (6, R) and € < 6. Noting that r — (r - 8)f+3r‘27p is increasing on (6, R) duetop + 3 > 271’, we
conclude that

_z e
(r-8P7ub_ <ciRP5 =c1R>

for every r € (6, R) and € < (0, §). Lemma 27 hence implies that there is ¢, > O such that
(r-622ub,(r, ) < c2(1+ 1)

forevery 6 >0,e € (0,68)and t > 0, r € (0, R). If we insert r = 26, we obtain
uer(26, O] < c328)" % (1 + 0)

forevery 6 > 0, € € (0, 6), t > O, where c3 := Z%BCZ. We conclude by letting ¢ := c3(1 + T). O

As preparation of the compactness argument that will finally establish existence of a solution of (0.5) in (Bg \
{0}) x (0, =), we use classical regularity theory for parabolic PDEs and rely on Lemma 28 as a starting point.
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Lemma 29. Let 8 € (0, 1). Let K be a compact subset of (Bg \ {0}) x (0, o). Then there are &5 > 0 and c > 0
such that for every € € (0, &g)

ot 32, <
Proof. Let us choose § > 0 so small that (Bs x (0,0)) N K = 0. Let n € CZ((Bg \ Bs) x (0, o)) be such that
n = 1 on K. Then for each € € (0, &), & := g, nue is well-defined on (Bg \ Bg) x (0, o) and (qu¢)(8, t) = 0,
(nue)(R, t) = 0 for every t > 0, (nue)(r, 0) = O for every r € (8, R) and

(Mue)e = Aque) + g in (Bg \ Bs) x (0, o),

where g¢ := —uAn - 2Vue - Vn + nusuz, — n¢ues. Lemma 28 enables us to find c¢; > O satisfying

18l L=((Br\Bs)x(0,00)) = I8elz=(supp ) < €1
for every € € (0, £9). Consequently, [26, Thm. 74, p. 191] shows that with some c, > 0,

u . <c for every € € (0, &). O
e 15 0y € €2 y e € (0, &)

Leveraging Lemma 29, we can achieve higher regularity analogously.

Lemma 30. Let 8 € (0, 1). Let K be a compact subset of (Bg \ {0}) x (0, o). Then there are gy > 0 and ¢ > 0
such that

HUSHC2+/3,1+§(K) <c  foreverye € (0, g).
Proof. Again, we choose § > 0 so small that (Bs x (0,00)) N K = 0, n € CZ((Bg \ Bs) x (0, o)) such that
n = 1onK and &g := § and consider the Dirichlet problem of (qu¢); = A(que) + g¢ in (B \ Bg) x (0, o0), with
ge 1= —UeAN - 2VUe - VN + QUeUZ, — Nelte. Thanks to Lemma 29, applied to the compact set supp 1, there is
c1 > 0 fulfilling
c1 for every € € (0, &9).

lIgel )~ el

oy Y =
C™ 2 ((Br\B5)x(0,00 C™ 2 (supp n)

We can therefore rely on [26, Thm. 3.6, p. 65] so as to conclude the existence of ¢, > 0 such that

Hnugucw,h c for every € € (0, ). O

B <
2 ((Br\B5)x(0,9))

In the next step we aim for lower Holder regularity, but strive to include the boundaries at r = R and ¢ = 0.

Lemma 31. Thereis B < (0, 1) such that for every compact subset K of (Bg \ {0}) x [0, o) there are g > 0 and
¢ > 0 satisfying

luell forevery € € (0, &9).

B <C
ct 1)

Proof. We choose 6 > 0 so small that (B x (0, o)) N K = ¢ and let &y € (0, &) be such that ugs = uo on Bg \ Bs
for every € € (0, g9) (cf. Remark 15). With n € CZ°((Bg \ Bg) % (0, 00)) such that = 1 on K and relying on
Lemma 28, we can conclude from [1, Thm. II1.10.1] that with some ¢ > 0,

HnuEHC c for every € € (0, &),

<
£5 (K)

where f can be determined independently of §, K and 7. O

4.3 Solving the limit problem

With these estimates at hand, we are ready to carry out the existence proof.
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Lemma 32. There is a function u € C(Bg x [0, o)) N C>1((Bg \ {0}) x (0, o0)) solving (0.5). This function is
radially symmetric, satisfies

w2 ulr, )2 u' () - v(r, t) forall(r, t) € [0, R] x [0, o) (4.30)
and, in particular, with some ¢ > 0 we have
0>us-cr3 in Bg x [0, o0), (4.31)
as well as
ur<0 in (Bg \ {0}) x (0, o0), (4.32)

and for every T > O there is some ¢ = ¢(T) > O such that
u>-cr’®  in(Bg\{0})x(0, T). (4.33)
Proof. 1f we apply Lemmata 30 and 31 to sequences of compact sets exhausting (Bg \ {0}) x (0, =) and

(Bg \ {0}) x [0, o0), respectively, use the Arzela-Ascoli theorem and a diagonalization procedure, we obtain a
sequence (gj)jey N 0 and a function u € C((Bg \ {0}) x [0, o0)) N C*((Bg \ {0}) x (0, o)) such that

Ug; — U locally uniformly in (Bg \ {0}) x [0, cc) (4.34)
and with respect to the topology of C*>**((Bg \ {0}) x (0, =0)). (4.35)

The latter convergence statement (4.35) together with Lemma 23 already entails (4.32), whereas (4.33) similarly
results from Lemma 28 upon the choice of p = 28.

Additionally, we define u(0, t) := 0. Then u is continuous in By x [0, oo). In light of (4.34), only continuity
at (0, t) for t > 0 remains to be proven. Let > 0. Choose § > 0 such that u"(8) - v(8, 0) > 1. Then for every
€€ (0,6),everyr e (0,6) and every t > 0 we have 0 > u(r, t) > us(8, t) > u"(8) - v(8, t) > u"(8) - v(6,0) > -
and, by (4.34), hence O = u(r, t) = -n forevery r € (0, 6) and t = 0.

Finally, (4.30) and hence (4.31) are obvious for r = 0 and easily obtained from Lemma 20 for r > 0. O

Theorem 1 also includes a uniqueness statement. The following lemma takes care of it.

Lemma 33. Let u, ii be functions satisfying

u, it € C**((Bg \ {0}) x (0, 00)) N C(Bg x [0, o0)),

supur < oo, Supily < oo
that solve (0.5). (The suprema are supposed to be taken over (Bg \ {0}) x (0, 0).) Then u = ii.
Proof. The difference w := u - i solves w; = Aw + bw, + cw in (Bg \ {0}) x (0, o0)), where b := fi(u? + uy ity + i12)

and c := u; has a finite supremum. Moreover, w = 0 on (B x {0}) U (0(Bg \ {0}) x (0, =0)), and [4, Prop. 52.4]
shows w < 0. O

The final piece of the proof of Theorem 2 is the combination of Lemma 32 with Lemma 4.
Lemma 34. Let n > 3. Then the function u obtained in Lemma 32 is a weak solution of (0.7).

Proof. We observe that according to (4.33) there is ¢; = ¢1(T) such that

T ¢ €
1 _ T 1 31 c1T o5
= " 1\ur(r, t)|drdt < 2 lyaEgr= 2L 31 s 50
I & n—ﬁ

0 0 0

as € — 0. By (4.33) and (4.31)

(731

13, _251 .
|uu§| <crir =cr s in By x (0, o0),

. _31
and because -2 = -3+ L > —n, hence uu? € L} (Bg x (0, o0)). Finally, |u;| < cr'» € L} and Lemma 4
84 84 loc\°R loc

becomes applicable. O
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5 Proofs of the theorems

Proof of Theorem 1 and Remark 7. Solvability is ensured by Lemma 32, which by means of (4.30) also ensures
that for every t > O there are ¢; = ¢1(t) > 0 and ¢, = ¢, (t) > O such that

02u' () -ulr,t)z-v(r,t) 2 —c1r"_%]v(/lr) > —czr""%“’ for every r € [0, R].

(The last estimate therein used AR < xo and [24, p. 360, (9.1.7)].) This proves Remark 7 and implies (0.6).
Uniqueness of solutions, on the other hand, has been asserted in Lemma 33. O
Proof of Theorem 2. This is the outcome of Lemma 34. O

Proof of Theorem 3. The construction of u during the proof of Theorem 1 had ensured that u”(r) = u(r, t) =
u'(r) - v(r, t) forall (r, t) € [0, R] x [0, o) (cf. (4.30)), and Theorem 3 can be seen from the explicit definition
(3.15) of v. O
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