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Abstract: We study a semilinear parabolic equation that possesses global bounded weak solutions whose
gradient has a singularity in the interior of the domain for all t > 0. The singularity of these solutions is of the
same type as the singularity of a stationary solution to which they converge as t →∞.
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For a bounded, smooth domain Ω ⊂ Rn, T > 0 and A ∈ R, consider solutions of the problem
ut = ∆u + g(u,∇u) in Ω × (0, T),
u = A on ∂Ω × (0, T),
u(·, 0) = u0 in Ω.

(0.1)

It iswell known (see [1, Thm.VI.4.2]) that this problemhas aunique classical solution for small T > 0provided
g ∈ C1(Rn+1), u0 ∈ C1(Ω) and u0 = A on ∂Ω. In this paper we study a particular case of problem (0.1) in a
radially symmetric setting in BR := {x ∈ Rn | |x| < R}, R > 0, where g is a smooth function of u and ur
but u0 is only Hölder continuous in BR. In our example, the global bounded weak solution emanating from
u0 maintains the singularity of the gradient of u0 for all t > 0. Thus, there is no smoothing e�ect which one
usually expects from a semilinear uniformly parabolic equation.

The equation we will be interested in is the following:

ut = ∆u + uu3r in (BR \ {0}) × (0,∞). (0.2)

(Written in Cartesian coordinates, g hence corresponds to g(x, u,∇u) = u(∇u x
|x| )

3 for x ∈ BR \ {0}.)
For n ∈ N, n ≥ 2, the function

u*(r) = −αr
1
3 for r > 0, where α := 3√9n − 15, (0.3)

forms a stationary solution of (0.2) (for any R > 0 both in BR \ {0}, cf. Lemma 5, and – in the weak sense – in
BR, see Lemma 6).

We will impose several conditions on the initial data u0 (and refer to (2.14) in Section 2 below for details)
that, besides radial symmetry, essentially require that u0 lies below the stationary solution, but is ’close’ to
it in a suitable sense. Under these conditions we will be able to show the global existence of solutions that
retain the singularity in their gradient throughout the evolution.

Theorem 1. Let n ≥ 2 and 0 < R <
√

3
8 (3n − 5)(2n − 3)3. Assume that u0 satis�es (2.14). Then there is a

function
u ∈ C(BR × [0,∞)) ∩ C2,1((BR \ {0}) × (0,∞)) (0.4)

Marek Fila, Department of Applied Mathematics and Statistics, Comenius University, Mlynská dolina, 84248 Bratislava, Slo-
vakia, E-mail: �la@fmph.uniba.sk
*Corresponding Author: Johannes Lankeit, Department of Applied Mathematics and Statistics, Comenius University, Mlynská
dolina, 84248 Bratislava, Slovakia, E-mail: jlankeit@math.upb.de

https://doi.org/10.1515/anona-2020-0059


1438 | M. Fila and J. Lankeit, Lack of smoothing for bounded solutions

which solves 
ut = ∆u + uu3r in (BR \ {0}) × (0,∞),
u(0, t) = 0, u(R, t) = u*(R) for all t > 0,
u(·, 0) = u0 in BR ,

(0.5)

in the classical sense. This solution is unique in the class of functions satisfying (0.4) and with ur being bounded
from above on (BR \ {0}) × (0,∞). Moreover, it holds that

lim
r↘0

ur(r, t) = −∞ for every t > 0. (0.6)

For a more precise description of the singularity see Remark 7. Next we show that the function u from Theo-
rem 1 solves the equation from (0.2) also in BR × (0,∞) in a suitable weak sense.

Theorem 2. In addition to the assumptions of Theorem 1 let n ≥ 3. Then the solution u from Theorem 1 is a
weak solution of 

ut = ∆u + uu3r in BR × (0,∞),
u = u*(R) on ∂BR × (0,∞),
u(·, 0) = u0 in BR .

(0.7)

By this we mean that
uu3r ∈ L1loc(BR × [0,∞)) and ∇u ∈ L1loc(BR × [0,∞)), (0.8)

and for every φ ∈ C∞c (BR × (0,∞)) we have

−
∞∫
0

∫
BR

φtu = −
∞∫
0

∫
BR

∇u ·∇φ +
∞∫
0

∫
BR

uu3r φ. (0.9)

We note that Theorem 1 guarantees that the initial and boundary conditions are satis�ed.

Concerning the large-time behavior we establish the following:

Theorem 3. Under the assumptions of Theorem 1,

u(·, t)→ u* as t →∞.

This convergence is uniform in BR and occurs with an exponential rate.

An equation closely related to (0.2) has been studied before in [2, 3], see also [4]. It was shown in [2] that
interior gradient blow-up may occur for solutions of the problem{

ut = uxx + f (u)|ux|m−1ux , x ∈ (−1, 1),
u(±1, t) = A± ,

where m > 2 and f (u) = u, for example. A global continuation after the interior gradient blow-up has been
constructed recently in [3] for m = 3.

For various parabolic equations, solutions with a standing or moving singularity have been investigated
by many authors. We shall give some references below. But in these references it is the solution itself that is
unbounded while in the present work only the gradient stays unbounded.

For the equation
ut = ∇ · (um−1∇u), (0.10)

solutions with standing singularities were considered in [5–10] for various ranges of m > 0, m ≠ 1, and some
results on moving singularities for the same equation can be found in [11].



M. Fila and J. Lankeit, Lack of smoothing for bounded solutions | 1439

Results onmoving singularities for the heat equationwere established in [12, 13] and for semilinear equa-
tions of the form

ut = ∆u ± up , p > 1, (0.11)

in [14–19]. The behaviour of solutionswith standing singularity for equation (0.11) with positive sign has been
studied in [20, 21].

Counterexamples to the regularizing e�ect of (0.10) can be found in [22]. There, again, it is the solution
itself that is unbounded.

Next we describe the plan of the paper. Due to the gradient singularity that the solutions have at the
spatial origin, the notion of classical solvability is restricted to (BR \ {0}) × (0,∞). In Section 1 we therefore
begin by establishing a connection between classical solutions in (BR \ {0}) × (0,∞) and weak solutions in
BR × (0,∞).

Section 2 will be concerned with the stationary solution u* mentioned in (0.3) (and already use the result
of Section 1). At the end of this section,we give a precise formulation of the conditions on u0 that the theorems
require (and that involve the stationary solution).

We will construct the solutions between a super- and a subsolution. As a supersolution we will use u*,
�nding the subsolution will be the goal of Section 3. To this aim, we will �nd a solution v to a (formal) lin-
earization of (0.5) (see Lemma 8) and then ensure that u* − v is a subsolution (Lemma 10). (This is also the
source of the restriction on R in the theorems.)

The actual construction of solutions takes place in Section 4. We �rst restrict the spatial domain to Ωε :=
BR \ Bε, for the choice of the boundary value on the new boundary ∂Bε × (0,∞) already relying on u* − v
from Section 3. In Section 4.1, we take care of the solvability of this problem. (Classical existence results
become applicable after replacing the nonlinearity u3r by f (ur), see Lemma 18, and until Lemma 26, we will
have derived su�cient estimates allowing for removal of f , though still ε-dependent.) Section 4.2 will then be
concerned with ε-independent estimates in preparation of a compactness argument leading to the existence
of solutions. The key to this partwill lie in a comparisonprinciple applied to highpowers of ur (see Lemma27).
This is a modi�cation of a classical technique which involves |∇u|2 and originated in [23]. Section 4.3 will
contain the passage to the limit ε ↘ 0 (Lemma 32) and deal with (0.5) and (0.7).

In Section 5, �nally, we give the proofs of the theorems. By this time, they will only consist in collecting
the right lemmata previously proven, and will be accordingly short.

1 Relation between classical and weak solutions
Of course, every classical solution of (0.5) is also a weak solution of (0.5) – in (BR \ {0}) × (0,∞), which
means that the singularity appears on the boundary of the domain. In order to interpret classical solutions
in (BR \ {0}) × (0,∞) as weak solutions in BR × (0,∞), we merely require suitable integrability properties of
the derivative near 0:

Lemma 4. Let n ≥ 1 and R > 0. Assume that a radially symmetric function

u ∈ C(BR × [0,∞)) ∩ C2,1((BR \ {0}) × (0,∞))

satis�es (0.8), (0.5), and for every T > 0 we have that

lim
ε→0

1
ε

T∫
0

ε∫
0

rn−1|ur(r, t)|drdt = 0. (1.12)

Then (0.9) holds for every φ ∈ C∞c (BR × (0,∞)).
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Proof. For every ψ ∈ C∞c ((BR \ {0}) × (0,∞)) we obtain

−
∞∫
0

∫
BR

ψtu = −
∞∫
0

∫
BR

∇u ·∇ψ +
∞∫
0

∫
BR

uu3r ψ,

as u solves the equation classically in (BR \ {0}) × (0,∞).
We introduce a non-decreasing cut-o� function χ ∈ C∞(R) with 0 ≤ χ′ ≤ 2 and χ(0) = 0, χ ≡ 1 on [1,∞)

and let χε(x) := χ( |x|ε ).
We let φ ∈ C∞c (BR × (0,∞)) and note that for every positive ε, ψ := χεφ belongs to C∞c ((BR \{0}) × (0,∞)).

−
∞∫
0

∫
BR

φtu = −
∞∫
0

∫
BR

ψtu −
∞∫
0

∫
BR

φt(1 − χε)u

= −
∞∫
0

∫
BR

∇u ·∇ψ +
∞∫
0

∫
BR

uu3r ψ −
∞∫
0

∫
BR

φt(1 − χε)u

= −
∞∫
0

∫
BR

χε∇u ·∇φ −
∞∫
0

∫
BR

φ∇u ·∇χε

+
∞∫
0

∫
BR

uu3r φχε −
∞∫
0

∫
BR

φt(1 − χε)u

for every ε > 0. As χε → 1 a.e. in suppφ and by (0.8) and boundedness of u each of the functions ∇u ·∇φ,
uu3r φ, φtu belongs to L1(suppφ),

−
∞∫
0

∫
BR

χε∇u ·∇φ +
∞∫
0

∫
BR

uu3r φχε −
∞∫
0

∫
BR

φt(1 − χε)u

→ −
∞∫
0

∫
BR

∇u ·∇φ +
∞∫
0

∫
BR

uu3r φ as ε → 0

by Lebesgue’s dominated convergence theorem.
Moreover, |∇χε(x)| = |χεr(r)| = 1

ε χ
′( rε ) ≤

2
ε if r = |x| < ε and |∇χε(x)| = 0 if |x| > ε. With T > 0 such that

suppφ ⊂ BR × (0, T), we have∣∣∣∣∣∣∣
∞∫
0

∫
BR

φ∇u ·∇χε

∣∣∣∣∣∣∣ ≤ ‖φ‖∞
T∫

0

∫
BR

|∇u||∇χε| ≤
2
ε ‖φ‖∞

T∫
0

ε∫
0

rn−1|ur(r, t)|drdt,

which vanishes as ε → 0 according to (1.12), and (0.9) follows.

2 The stationary solution and conditions on the initial data
In (0.3), we have introduced a stationary solution u* to (0.2). In this section we �rst prove that the function
from (0.3) actually has this property (see Lemma 5 for the classical, Lemma 6 for theweak sense) and then for-
mulate the conditions on the initial data, which involve relationswith u* andwhose formulationwe therefore
had postponed.

Lemma 5. Let n ≥ 2. Then the function u* from (0.3) solves

∆u* + u*(u*r )3 = 0 in Rn \ {0} .
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Proof. We use radial symmetry and the explicit form of u* to write

∆u* + u*(u*r )3 = r1−n
(
rn−1

(
−α3 r

− 2
3
))

r
+ αr

1
3
(α
3 r
− 2
3
)3

= α
27 r

− 5
3
(
15 − 9n + α3

)
= 0.

Lemma 6. Let n ≥ 2. Then for any R > 0 the function u* de�ned in (0.3) is a weak solution of (0.7).

Proof. In order to apply Lemma 4, we only have to check integrability of u*(r)(u*r )3(r) = α4
27 r

1
3−2 and u*r (r) =

α
3 r
− 2
3 , which is satis�ed, and

lim
ε→0

1
ε

ε∫
0

rn−1|u*r (r)|dr = lim
ε→0

α
3n − 2 ε

n− 5
3 = 0.

Now and in the following, given any n ∈ N we let

ν := ν(n) := 1
6
√
36n2 − 96n + 61. (2.13)

Having introduced u* and ν, we are now in a position to give the conditions on initial data that Theorems
1, 2 and 3 have posed.

u0 ∈ C2(BR \ {0}), (2.14a)
u0 is radially symmetric, (2.14b)
u* ≥ u0, (2.14c)

lim sup
r↘0

|r
3
2−n−ν(u*(r) − u0(r))| < ∞, (2.14d)

u0(R) = u*(R), (2.14e)

there is C > 0 such that 0 ≥ u0r(r) ≥ −Cr−
2
3 for every r ∈ (0, R). (2.14f)

Remark 7. The shape of the solution from Theorem 1 near the singularity of its gradient can be described
more precisely than in (0.6) by saying that (2.14d) continues to hold for t > 0 in the sense that

lim sup
r↘0

|r
3
2−n−ν(u*(r) − u(r, t))| < ∞ for all t > 0.

We will include a proof in the proof of Theorem 1 in Section 5.

3 Finding a subsolution
In order to construct a subsolution of (0.5) near u*, we �rst �nd a solution of the (formal) linearization of (0.5)
around u*.

Lemma 8. Let n ≥ 2, C > 0, ν as in (2.13), λ > 0. Then the function

v(r, t) := Ce−λ
2 trn−

3
2 Jν(λr), r > 0, t > 0, (3.15)

where Jν denotes the Bessel function of the �rst kind of order ν, solves

vt = ∆v + 3u*u*2r vr + u*3r v in (Rn \ {0}) × (0,∞)

with u* taken from (0.3).
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Proof. Let us recall that the function de�ned by χ(r) := Jν(λr), r > 0, satis�es

r2χ′′(r) + rχ′(r) +
(
λ2r2 − ν2

)
χ = 0 for every r > 0. (3.16)

We abbreviate A := 4 − 2n and B := 3n−5
9 and δ := n − 3

2 and note that

2δ + A = 1 (3.17)

and
δ(δ − 1) + Aδ − B = −n2 + 8n

3 − 61
36 = −ν2, (3.18)

so that (3.16), (3.17) and (3.18) for ψ(r) := rδχ(r), r > 0, entail

r2ψ′′(r) + Arψ′(r) + λ2r2ψ(r) − Bψ(r) = r2(rδχ)′′ + Ar(rδχ)′ − Brδχ

= r2δ(δ − 1)rδ−2χ + 2r2δrδ−1χ′ + r2rδχ′′ + Aδrδχ + Arδ+1χ′ − Brδχ

= rδ
(
r2χ′′ + (2δ + A)rχ′ + (δ(δ − 1) + Aδ − B)χ

)
= rδ

(
r2χ′′ + rχ′ − ν2χ

)
= −rδr2λ2χ = −r2λ2ψ for r > 0,

and
v(r, t) = Ce−λ

2 trn−
3
2 Jν(λr) = Ce−λ

2 tψ(r), r > 0, t > 0,

solves

vt = Ce−λ
2 t(−λ2ψ) = Ce−λ

2 t
(
ψ′′ + Ar ψ

′ − Br2ψ
)

= vrr +
4 − 2n
r vr +

5 − 3n
9r2 v = vrr +

n − 1
r vr −

α3
3r vr −

α3
27r2 v

= ∆v + 3u*u*2r vr + u*3r v in (Rn \ {0}) × (0,∞),

where we have used that α = 3√9n − 15 and u*(r) = −αr 13 .

De�nition 9. With ν from (2.13), we let x0 > 0 and x1 ∈ (0, x0) be the �rst positive roots of the Bessel function
Jν of the �rst kind and its derivative J′ν, respectively. (As ν > 0, Jν and J′ν are positive on (0, x0) and (0, x1),
respectively.)

Lemma 10. Let n ≥ 2, C > 0, λ > 0 and, with x1 from De�nition 9,

0 < R < min
{
x1
λ ,
√

3
8(3n − 5)(2n − 3)

3

}
. (3.19)

With v from (3.15), the function
u := u* − v

then satis�es
ut ≤ ∆u + uu3r in (BR \ {0}) × (0,∞). (3.20)

Proof. For u = u* − v, we have

−uu3r = −(u* − v)(u* − v)3r = −u*(u* − v)3r + v(u* − v)3r
= −u*(u*r )3 + 3u*(u*r )2vr − 3u*u*rv2r + u*v3r
+ (u*r )3v − 3(u*r )2vvr + 3u*rvv2r − vv3r in (BR \ {0}) × (0,∞).

As u* is a stationary solution according to Lemma 5 and by Lemma 8 v solves the linearized equation, we
conclude

u*t − ∆u* − u*(u*r )3 = 0 in (BR \ {0}) × (0,∞)
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and
−vt + ∆v + 3u*(u*r )2vr + (u*r )3v = 0 in (BR \ {0}) × (0,∞).

Accordingly, in (BR \ {0}) × (0,∞) we obtain

ut − ∆u − uu3r = u*t − vt − ∆u* + ∆v − u*(u*r )3 + 3u*(u*r )2vr − 3u*u*rv2r + u*v3r
+ (u*r )3v − 3(u*r )2vvr + 3u*rvv2r − vv3r

= −3u*u*rv2r − 3(u*r )2vvr + u*v3r + 3u*rvv2r − vv3r

= −α2C2r−
1
3 e−2λ

2 t(ψ′(r))2 + αC2r−
2
3 e−2λ

2 tψ(r)ψ′(r)

− αC3r
1
3 e−3λ

2 t(ψ′(r))3 − αC3r−
2
3 e−3λ

2 tψ(r)(ψ′(r))2

− C4e−4λ
2 tψ(r)(ψ′(r))3.

Due to rλ ≤ Rλ ≤ x1 = min {x0, x1}, we have that

ψ′(r) =
(
n − 3

2

)
rn−

5
2 Jν(λr) + λrn−

3
2 J′ν(λr) ≥ 0 for all r ∈ (0, R), (3.21)

hence

ut − ∆u − uu3r ≤ −α2C2r−
1
3 e−2λ

2 t(ψ′(r))2 + αC2r−
2
3 e−2λ

2 tψ(r)ψ′(r)

= αC2e−2λ
2 tψ′(r)r−

2
3
(
−αr

1
3ψ′(r) + ψ(r)

)
in (0, R). (3.22)

From (3.21) and λR < x1 = min {x0, x1}, we can also infer

ψ′(r)
ψ(r) = r−1

[
(n − 3

2) +
rλJ′ν(rλ)
Jν(rλ)

]
≥
(
n − 3

2

)
r−1 for all r ∈ (0, R),

so that
−αr

1
3ψ′(r) + ψ(r) ≤

(
−αr−

2
3

(
n − 3

2

)
+ 1
)
ψ(r) ≤

(
−αR−

2
3

(
n − 3

2

)
+ 1
)
ψ(r) ≤ 0

for every r ∈ (0, R), because R− 2
3 ≥
(3
8 (3n − 5)(2n − 3)

3)− 1
3 =

(
α
(
n − 3

2
))−1, hence (3.22) turns into (3.20).

4 Existence

4.1 An approximate problem

Construction of the solution to (0.2) will be based on an appropriately modi�ed problem on (BR \Bε) × (0,∞).
In preparation of suitable initial data, we �rst turn our attention to u0.

Lemma 11. Let n ≥ 2, 0 < R <
√

3
8 (3n − 5)(2n − 3)3. Assume that u0 satis�es (2.14). Let λ > 0 be such that

λR < x1. There is C > 0 so that v from (3.15) satis�es

u0 ≥ u* − v(·, 0) in BR . (4.23)

Proof. Since λR < x0, known asymptotics of the Bessel function [24, p. 360, (9.1.7)] yields the existence of
c1 = c1(λ) > 0 such that c1rν ≤ Jν(λr) for every r ∈ [0, R]. Therefore, (2.14d) implies that for some c2 > 0 we
obtain

|u0(r) − u*(r)|
rn− 3

2 Jν(λr)
≤ c2 for every r ∈ (0, R).

If we let C ≥ c2, this coincides with (4.23).
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De�nition 12. Now and in all of the following, we let n, C, R, λ, v be as in Lemma 10 and Lemma 11.

De�nition 13. Let ε > 0 and u0 satisfy (2.14). We denote Ωε := BR \Bε. Moreover, let u0ε ∈ C2(Ωε) be radially
symmetric and such that

u0ε(ε) = u*(ε) − v(ε, 0), (4.24a)
u0r ≤ u0εr ≤ 0, (4.24b)
u* ≥ u0ε ≥ u* − v(·, 0), (4.24c)

u0ε = u0 on the set
{
r ∈ (ε, R] | u0(r) < u*(ε) − v(ε, 0) − ε

}
. (4.24d)

Remark 14. For (4.24c), we rely on Lemma 11; that the other conditions can be ful�lled is more immediate
from (2.14).

Remark 15. As u*(ε) − v(ε, 0) − ε → 0 as ε → 0, (4.24d) ensures that for every δ > 0 there is ε0 > 0 such that
for all ε ∈ (0, ε0) we have u0ε = u0 on BR \ Bδ.

De�nition 16. Let ε > 0. First let us note that

cv := −eλ
2 tv(ε, t)

is positive and constant with respect to t according to (3.15).
We choose c*ε > 1 large enough so as to satisfy

c*ε > sup
[ε,R]
|u*r |, (4.25a)

c*ε > sup
[ε,R]
|(u* − v(·, 0))r|, (4.25b)

c*ε > sup
[ε,R]
|u0εr|, (4.25c)

cv +
n − 1
ε c*ε + u*(ε)(c*ε)3 ≤ 0. (4.25d)

De�nition 17. We let fε ∈ C∞c (R) be such that fε(s) = s3 for every s ∈ [−c*ε , c*ε] (with c*ε from De�nition 16)
and fε ≤ 0 on (−∞, 0).

With u0ε and fε as in De�nitions 13 and 17, we now consider
uεt = ∆uε + uε fε(uεr) in Ωε × (0,∞),
uε(·, t)|∂Bε =

(
u* − v(·, t)

)
|∂Bε for all t > 0,

uε(·, t)|∂BR = u0(R) = u*(R) for all t > 0,
uε(·, 0) = u0ε in Ωε .

(4.26)

By classical theory for parabolic PDEs, this problem has a solution.

Lemma 18. Let ε > 0. Then (4.26) has a unique solution

uε ∈ Cβ,
β
2 (Ωε × [0,∞)) ∩ C2+β,1+

β
2 (Ωε × (0,∞)) with ∇uε ∈ L∞loc(Ωε × [0,∞))

for some β ∈ (0, 1). This solution is radially symmetric.

Proof. Boundedness of fε and the regularity requirements on u0ε ensure applicability of [1, Thm.V.6.2], which
yields existence and uniqueness of the solution. Radial symmetry of u0ε together with the uniqueness asser-
tion implies radial symmetry of the solution.
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Later (in Lemmata 25 and 27) we want to invoke comparison principles for the derivative. In order to make
them applicable, we need slightly more regularity than provided by Lemma 18.

Lemma 19. Let ε > 0. Then there is β ∈ (0, 1) such that

uε ∈ C3+β,
3+β
2 (Ωε × (0,∞)) and ∇uε ∈ Cβ,

β
2 (Ωε × [0,∞)).

Proof. Letting η ∈ C∞c (Ωε × (0,∞)) we observe that ηu solves (ηu)t = ∆(ηu) + g, where g = −ηtu − 2∇η ·∇u −
u∆η + ηufε(ur) and that, thanks to u ∈ C2+β,1+

β
2 (supp η) by Lemma 18, g ∈ C1+β,

1+β
2 (Ωε × (0,∞)). [1, Thm.

IV.5.2] therefore implies ηu ∈ C3+β,
3+β
2 (Ωε × [0,∞)). Hölder continuity of ∇uε up to t = 0 and to the spatial

boundary follows from [25, Thm. 4.6].

As a �rst estimate of uε, the following lemma not only a�rms boundedness of uε, but also forms the founda-
tion of estimate (4.30) for u.

Lemma 20. Let ε > 0. Then
u* ≥ uε ≥ u* − v in Ωε × (0,∞). (4.27)

Proof. Due to (4.25a) and (4.25b), each of the functionsw ∈
{
u*, uε , u* − v

}
satis�es fε(wr) = w3

r inΩε×(0,∞)
and hence for w ∈

{
u*, uε

}
we have

wt = ∆w + fε(wr)w,

whereas wt ≤ ∆w + fε(wr)w for w = u* − v (cf. Lemma 10). By construction, u*(R) = uε(R, t) ≥ u*(R) − v(R, t)
and u*(ε) ≥ uε(ε, t) = u*(ε) − v(ε, t) for all t > 0, and u* ≥ u0ε ≥ u* − v(·, 0), so that the comparison principle
([4, Prop. 52.6]) implies (4.27).

We prepare for an estimate of uεr by comparison, �rst providing some information on its value on the spatial
boundary, beginning with the outer part ∂BR × (0,∞).

Lemma 21. For every ε > 0 and t > 0 we have

u*r (R) ≤ uεr(R, t) ≤ 0.

Proof. Since u*(R) = uε(R, t) for all t > 0, (4.27) shows that u*r (R) ≤ uεr(R, t) for all t > 0. Moreover, u(r, t) :=
u*(R), (r, t) ∈ [ε, R] × [0,∞), satis�es ut ≤ ∆u + f (ur)u in (ε, R) × (0,∞) and u(R, t) ≤ uε(R, t), u(ε, t) ≤ uε(ε, t)
for all t > 0 and u(r, 0) ≤ uε(r, 0) for all r ∈ (ε, R). By the comparison principle [4, Prop. 52.6] therefore
uε(r, t) ≥ u*(R) = uε(R, t) for every (r, t) ∈ (0, R) × (0,∞) so that uεr(R, t) ≤ 0 for every t > 0.

On the inner boundary, we �rst establish the sign of uεr.

Lemma 22. For every ε > 0 and t > 0 it holds that

uεr(ε, t) ≤ 0.

Proof. WithM[ϕ] := ϕt − ∆ϕ − uεu2εrϕr and u(x, t) := u*(ε) − v(ε, t) for (x, t) ∈ Ωε × [0,∞), we have

M[uε] = 0, M[u] = ut = −vt(ε, t) ≥ 0 in Ωε × (0,∞),

which together with uε(ε, t) = u(ε, t), uε(R, t) = u*(R) ≤ u(R, t) for all t > 0 and the consequence u0ε(r) ≤
u0ε(ε) = u(r, 0) of (4.24b) and (4.24a) enables us to invoke [4, Prop. 52.6] once more to conclude uε(r, t) ≤
u(r, t) = uε(ε, t) for all r ∈ (ε, R) and t > 0, which implies uεr(ε, t) ≤ 0 for all t > 0.

The upper estimates in Lemma 21 and Lemma 22 determine the sign of uεr throughout Ωε × [0,∞).

Lemma 23. Let ε > 0. Then
uεr ≤ 0 in Ωε × [0,∞).
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Proof. As w := uεr belongs to C(Ωε × (0,∞)) ∩ C([0,∞); L2(Ωε)) with wt ,∇w, D2w ∈ L2loc(Ωε × (0,∞)) by
Lemma 19, solves wt = ∆w + fε(uεr)w + uε f ′ε(uεr)wr in Ωε × (0,∞), f (uεr) is bounded in Ωε × (0,∞) due
to boundedness of fε, and so is uε f ′ε(uεr) because of Lemma 20, we can apply [4, Prop. 52.8] to conclude
nonpositivity of w from nonpositivity of w on Ωε × {0} (see (4.24b)) and on ∂Ωε × (0,∞) as guaranteed by
Lemmata 21 and 22.

We now turn our attention to the counterpart of Lemma 22.

Lemma 24. For every ε > 0 we obtain
uεr(ε, t) ≥ −c*ε

for every t ∈ (0,∞), where c*ε is as in De�nition 16.

Proof. We de�ne u(r, t) := (u* − v)(ε, t) + c*ε(ε − r). Then u(ε, t) = uε(ε, t) for all t > 0 due to the boundary
condition in (4.26); by (4.24a) and (4.25c),

u(r, 0) = u0ε(ε) − c*ε(r − ε) ≤ u0ε(ε) −
r∫
ε

sup |u0εr| ≤ u0ε(r),

for every r ∈ (ε, R), and similarly by (4.25a),

u(R, t) = u*(ε) − v(ε, t) − c*ε(R − ε) ≤ u*(ε) − c*ε(R − ε) ≤ u*(R) = uε(R, t)

for every t > 0. Due to De�nition 17, fε(c*ε) = (c*ε)3 and hence, by Lemma 20 and (4.25d),

ut − ∆u − uε fε(ur) = −vt(ε, t) +
n − 1
r c*ε + (c*ε)3uε ≤ e−λ

2 tcv +
n − 1
ε c*ε + u*(ε)(c*ε)3 ≤ 0.

Therefore, comparison ([4, Prop. 52.6]) implies

uε(r, t) ≥ u(r, t) for all t > 0, r ∈ (ε, R),

and as uε(ε, t) = u(ε, t) for every t > 0, this shows that uεr(ε, t) ≥ ur(ε, t) = −c*ε for every t > 0.

The previous lemmata and a �rst Bernstein-type comparison of u2εr con�rm that including fε in (4.26) – al-
though necessary for application of the classical existence theorems – has not altered the equation.

Lemma 25. For every ε > 0 we have
sup

Ωε×(0,∞)
|∇uε| ≤ c*ε .

Proof. We letM[ϕ] := ϕt − ∆ϕ − f ′ε(uεr)uεϕr. ThenM[c*ε] = 0 and

M[|∇uε|2] = 2∇uε ·∇∆uε + 2|∇uε|2fε(uεr) + 2uε f ′ε(uεr)∇uε ·∇uεr
−∇ · (2D2uε∇uε) − 2f ′ε(uεr)uε∇uε ·∇uεr

= 2|∇uε|2fε(uεr) − 2|D2uε|2 in Ωε × (0,∞).

In view of Lemma 23, M[|∇uε|2] ≤ 0. Lemma 21 and (4.25a) together with Lemmata 22 and 24 show that
(c*ε)2 ≥ |∇uε|2 on ∂Ωε × (0,∞), and (4.25c) ensures the same on Ωε × {0}. Therefore, comparison (in the form
of [4, Prop. 52.10], if one allows f to also depend on t there – the necessary adaptations in the corresponding
proof are minor) proves supΩε×(0,∞) |∇uε|2 ≤ (c*ε)2 and thus the lemma.

Lemma 26. The function uε solves
uεt = ∆uε + uεu3εr in Ωε × (0,∞),
uε|∂Bε (·, t) = u* − v(·, t)|∂Bε for all t > 0,
uε|∂BR (·, t) = u0(R) = u*(R) for all t > 0,
uε(·, 0) = u0ε in Ωε .

(4.28)
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Proof. Lemma 25 guarantees that |uεr| = |∇uε| ≤ c*ε in Ωε × (0,∞), therefore f (uεr) = u3εr by De�nition 17, and
Lemma 26 becomes a corollary of Lemma 18.

4.2 A priori estimates

Inspired by the reasoning in [2, Sec. 2], which goes back to [23], we will now obtain an ε-independent bound
for uεr from a comparison principle applied to, essentially, a large, even power of uεr. Lack of ε-independent
control over uεr on the inner boundary (for which we refer to Lemma 24 and which is natural if seen in light
of the unbounded derivative of u* near r = 0) makes inclusion of a cuto� function necessary.

Lemma 27. Let p ≥ 4 be an even integer. There is c > 0 such that

(r − δ)p+3+ upεr(r, t) ≤ c(1 + sup
r>δ

(r − δ)p+3+ up0εr + t) (4.29)

for every δ > 0, ε ∈ (0, δ) and t > 0, r ∈ (0, R).

Proof. We de�ne c := max
{
1, Rp+3|u*r (R)|p , (3(p + 3))p+3|u*(R)|p+3 +

(
R p(p+3)

2

p−1

) p+3
3
}

and �x δ > 0 and ε ∈

(0, δ). Letting w(r, t) := (r − δ)p+3+ upεr(r, t) for (r, t) ∈ (δ, R) × (0,∞), in (δ, R) × (0,∞) we compute

wr = (p + 3)(r − δ)p+2+ upεr + p(r − δ)p+3+ up−1εr uεrr

and

wrr =(p + 2)(p + 3)(r − δ)p+1+ upεr + 2p(p + 3)(r − δ)p+2+ up−1εr uεrr
+ p(p − 1)(r − δ)p+3+ up−2εr u2εrr + p(r − δ)p+3+ up−1εr uεrrr

as well as
uεrt = uεrrr +

n − 1
r uεrr −

n − 1
r2 uεr + u4εr + 3uεu2εruεrr .

ForM[ϕ] := ϕt − ∆ϕ − 3uεu2εrϕr we thus obtain from (4.28)

M[w] = p(r − δ)p+3+ up−1εr uεrt − wrr −
n − 1
r wr − 3uεu2εrwr

= p(r − δ)p+3+ up−1εr uεrrr + p
n − 1
r (r − δ)p+3+ up−1εr uεrr

− p n − 1r2 (r − δ)p+3+ upεr + p(r − δ)p+3+ up+3εr + 3p(r − δ)p+3+ uεup+1εr uεrr

− (p + 2)(p + 3)(r − δ)p+1+ upεr − 2p(p + 3)(r − δ)p+2+ up−1εr uεrr
− p(p − 1)(r − δ)p+3+ up−2εr u2εrr − p(r − δ)p+3+ up−1εr uεrrr

− (p + 3)n − 1r (r − δ)p+2+ upεr − p
n − 1
r (r − δ)p+3+ up−1εr uεrr

− 3(p + 3)(r − δ)p+2+ uεup+2εr − 3p(r − δ)p+3+ uεup+1εr uεrr

= −p n − 1r2 (r − δ)p+3+ upεr + p(r − δ)p+3+ up+3εr

− (p + 3)(p + 2)(r − δ)p+1+ upεr − 2p(p + 3)(r − δ)p+2+ up−1εr uεrr
− p(p − 1)(r − δ)p+3+ up−2εr u2εrr

− (p + 3)n − 1r (r − δ)p+2+ upεr − 3(p + 3)(r − δ)p+2+ uεup+2εr

≤ p(r − δ)p+3+ up+3εr − 2p(p + 3)(r − δ)p+2+ up−1εr uεrr − p(p − 1)(r − δ)p+3+ up−2εr u2εrr
− 3(p + 3)(r − δ)p+2+ uεup+2εr in (BR \ Bδ) × (0,∞).
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Here, by Young’s inequality

−2p(p + 3)(r − δ)p+2+ up−1εr uεrr

≤ p(p − 1)(r − δ)p+3+ up−2εr u2εrr +
p(p + 3)2
p − 1 (r − δ)p+1upεr

≤ p(p − 1)(r − δ)p+3+ up−2εr u2εrr + (r − δ)p+3+ |uεr|p+3 +
(
(r − δ)+

p(p + 3)2
p − 1

) p+3
3

and

−3(p + 3)(r − δ)p+2+ uεup+2εr ≤ (r − δ)p+3+ |uεr|p+3 + (3(p + 3))p+3|uε|p+3

in (BR \ Bδ) × (0,∞). Recalling the sign of uεr from Lemma 23 and setting c1 := (3(p + 3))p+3|u*(R)|p+3 +(
R p(p+3)

2

p−1

) p+3
3 we hence obtain

M[w] ≤ c1 in (BR \ Bδ) × (0,∞).

Furthermore,
w(R, t) ≤ Rp+3upεr(R, t) ≤ Rp+3(u*r (R))p =: c2 for all t > 0

by Lemma 21. With c = max {c1, c2, 1} and w := c(1 + supr>δ(r − δ)
p+3
+ up0εr + t) we not only haveM[w] = c ≥

M[w] in (BR \Bδ)×(0,∞), but alsow(R, t) ≥ c2 ≥ w(R, t) for all t > 0 andw(r, 0) ≥ supr>δ(r−δ)
p+3
+ up0εr ≥ w(r, 0)

for all r ∈ (0, R) as well as w(δ, t) ≥ 0 = w(δ, t) for all t > 0. Comparison (again by means of an adaptation of
[4, Prop. 52.10]) allows us to conclude (r−δ)p+3+ upεr = w ≤ w = c(1+supr>δ(r−δ)

p+3
+ up0εr+ t) in (BR \Bδ)×(0,∞).

Additionally, for r ∈ (0, δ), the left-hand side of this inequality is zero, and (4.29) holds.

Next we bring Lemma 27 in a more directly applicable form.

Lemma 28. Let p ≥ 4 be an even integer. For every T > 0 there is c > 0 such that

|uεr(r, t)| ≤ cr−
p+3
p

for every ε > 0, t ∈ [0, T], r ∈ (2ε, R).

Proof. Conditions (2.14f) and (4.24b) ensure the existence of c1 > 0 such that

|u0εr| ≤ c1r−
2
3 on BR \ Bε

for every ε > 0, and hence
(r − δ)p+3+ up0εr ≤ c1(r − δ)

p+3
+ r−

2p
3

for every r ∈ (δ, R) and ε < δ. Noting that r 7→ (r − δ)p+3+ r−
2p
3 is increasing on (δ, R) due to p + 3 > 2p

3 , we
conclude that

(r − δ)p+3+ up0εr ≤ c1R
p− 2p

3 = c1R
p
3

for every r ∈ (δ, R) and ε ∈ (0, δ). Lemma 27 hence implies that there is c2 > 0 such that

(r − δ)p+3+ upεr(r, t) ≤ c2(1 + t)

for every δ > 0, ε ∈ (0, δ) and t > 0, r ∈ (0, R). If we insert r = 2δ, we obtain

|uεr(2δ, t)| ≤ c3(2δ)−
p+3
p (1 + t)

for every δ > 0, ε ∈ (0, δ), t > 0, where c3 := 2
p+3
p c2. We conclude by letting c := c3(1 + T).

As preparation of the compactness argument that will �nally establish existence of a solution of (0.5) in (BR \
{0}) × (0,∞), we use classical regularity theory for parabolic PDEs and rely on Lemma 28 as a starting point.
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Lemma 29. Let β ∈ (0, 1). Let K be a compact subset of (BR \ {0}) × (0,∞). Then there are ε0 > 0 and c > 0
such that for every ε ∈ (0, ε0)

‖uε‖
C1+β,

1+β
2 (K)

≤ c.

Proof. Let us choose δ > 0 so small that (Bδ × (0,∞)) ∩ K = ∅. Let η ∈ C∞c ((BR \ Bδ) × (0,∞)) be such that
η ≡ 1 on K. Then for each ε ∈ (0, ε0), ε0 := δ

2 , ηuε is well-de�ned on (BR \ Bδ) × (0,∞) and (ηuε)(δ, t) = 0,
(ηuε)(R, t) = 0 for every t > 0, (ηuε)(r, 0) = 0 for every r ∈ (δ, R) and

(ηuε)t = ∆(ηuε) + gε in (BR \ Bδ) × (0,∞),

where gε := −uε∆η − 2∇uε ·∇η + ηuεu3εr − ηtuε. Lemma 28 enables us to �nd c1 > 0 satisfying

‖gε‖L∞((BR\Bδ)×(0,∞)) = ‖gε‖L∞(supp η) ≤ c1

for every ε ∈ (0, ε0). Consequently, [26, Thm. 7.4, p. 191] shows that with some c2 > 0,

‖ηuε‖
C1+β,

1+β
2 ((BR\Bδ)×(0,∞))

≤ c2 for every ε ∈ (0, ε0).

Leveraging Lemma 29, we can achieve higher regularity analogously.

Lemma 30. Let β ∈ (0, 1). Let K be a compact subset of (BR \ {0}) × (0,∞). Then there are ε0 > 0 and c > 0
such that

‖uε‖
C2+β,1+

β
2 (K)

≤ c for every ε ∈ (0, ε0).

Proof. Again, we choose δ > 0 so small that (Bδ × (0,∞)) ∩ K = ∅, η ∈ C∞c ((BR \ Bδ) × (0,∞)) such that
η ≡ 1 on K and ε0 := δ and consider the Dirichlet problem of (ηuε)t = ∆(ηuε) + gε in (BR \ Bδ) × (0,∞), with
gε := −uε∆η − 2∇uε ·∇η + ηuεu3εr − ηtuε. Thanks to Lemma 29, applied to the compact set supp η, there is
c1 > 0 ful�lling

‖gε‖
Cβ,

β
2 ((BR\Bδ)×(0,∞))

= ‖gε‖
Cβ,

β
2 (supp η)

≤ c1 for every ε ∈ (0, ε0).

We can therefore rely on [26, Thm. 3.6, p. 65] so as to conclude the existence of c2 > 0 such that

‖ηuε‖
C2+β,1+

β
2 ((BR\Bδ)×(0,∞))

≤ c2 for every ε ∈ (0, ε0).

In the next step we aim for lower Hölder regularity, but strive to include the boundaries at r = R and t = 0.

Lemma 31. There is β ∈ (0, 1) such that for every compact subset K of (BR \ {0}) × [0,∞) there are ε0 > 0 and
c > 0 satisfying

‖uε‖
Cβ,

β
2 (K)

≤ c for every ε ∈ (0, ε0).

Proof. We choose δ > 0 so small that (Bδ × (0,∞))∩ K = ∅ and let ε0 ∈ (0, δ2 ) be such that u0ε = u0 on BR \ Bδ
for every ε ∈ (0, ε0) (cf. Remark 15). With η ∈ C∞c ((BR \ Bδ) × (0,∞)) such that η ≡ 1 on K and relying on
Lemma 28, we can conclude from [1, Thm. III.10.1] that with some c > 0,

‖ηuε‖
Cβ,

β
2 (K)

≤ c for every ε ∈ (0, ε0),

where β can be determined independently of δ, K and η.

4.3 Solving the limit problem

With these estimates at hand, we are ready to carry out the existence proof.
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Lemma 32. There is a function u ∈ C(BR × [0,∞)) ∩ C2,1((BR \ {0}) × (0,∞)) solving (0.5). This function is
radially symmetric, satis�es

u*(r) ≥ u(r, t) ≥ u*(r) − v(r, t) for all (r, t) ∈ [0, R] × [0,∞) (4.30)

and, in particular, with some c > 0 we have

0 ≥ u ≥ −cr
1
3 in BR × [0,∞), (4.31)

as well as
ur ≤ 0 in (BR \ {0}) × (0,∞), (4.32)

and for every T > 0 there is some c = c(T) > 0 such that

ur > −cr−
31
28 in (BR \ {0}) × (0, T). (4.33)

Proof. If we apply Lemmata 30 and 31 to sequences of compact sets exhausting (BR \ {0}) × (0,∞) and
(BR \ {0}) × [0,∞), respectively, use the Arzelà-Ascoli theorem and a diagonalization procedure, we obtain a
sequence (εj)j∈N ↘ 0 and a function u ∈ C((BR \ {0}) × [0,∞)) ∩ C2,1((BR \ {0}) × (0,∞)) such that

uεj → u locally uniformly in (BR \ {0}) × [0,∞) (4.34)
and with respect to the topology of C2,1((BR \ {0}) × (0,∞)). (4.35)

The latter convergence statement (4.35) togetherwith Lemma23 already entails (4.32),whereas (4.33) similarly
results from Lemma 28 upon the choice of p = 28.

Additionally, we de�ne u(0, t) := 0. Then u is continuous in BR × [0,∞). In light of (4.34), only continuity
at (0, t) for t ≥ 0 remains to be proven. Let η > 0. Choose δ > 0 such that u*(δ) − v(δ, 0) > −η. Then for every
ε ∈ (0, δ), every r ∈ (0, δ) and every t ≥ 0 we have 0 ≥ uε(r, t) ≥ uε(δ, t) ≥ u*(δ) − v(δ, t) ≥ u*(δ) − v(δ, 0) > −η
and, by (4.34), hence 0 ≥ u(r, t) ≥ −η for every r ∈ (0, δ) and t ≥ 0.

Finally, (4.30) and hence (4.31) are obvious for r = 0 and easily obtained from Lemma 20 for r > 0.

Theorem 1 also includes a uniqueness statement. The following lemma takes care of it.

Lemma 33. Let u, ũ be functions satisfying

u, ũ ∈ C2,1((BR \ {0}) × (0,∞)) ∩ C(BR × [0,∞)),
sup ur < ∞, sup ũr < ∞

that solve (0.5). (The suprema are supposed to be taken over (BR \ {0}) × (0,∞).) Then u = ũ.

Proof. The di�erence w := u− ũ solves wt = ∆w+bwr + cw in (BR \{0}) × (0,∞)), where b := ũ(u2r +ur ũr + ũ2r )
and c := u3r has a �nite supremum. Moreover, w = 0 on (BR × {0})∪ (∂(BR \ {0}) × (0,∞)), and [4, Prop. 52.4]
shows w ≤ 0.

The �nal piece of the proof of Theorem 2 is the combination of Lemma 32 with Lemma 4.

Lemma 34. Let n ≥ 3. Then the function u obtained in Lemma 32 is a weak solution of (0.7).

Proof. We observe that according to (4.33) there is c1 = c1(T) such that

1
ε

T∫
0

ε∫
0

rn−1|ur(r, t)|drdt ≤
c1T
ε

ε∫
0

rn−1r−
31
28 dr = c1T

n − 31
28
εn−

59
28 → 0

as ε → 0. By (4.33) and (4.31)

|uu3r | ≤ cr
1
3 r3·(−

31
28 ) = cr

28−9·31
84 = cr−

251
84 in BR × (0,∞),

and because −25184 = −3 + 1
84 ≥ −n, hence uu

3
r ∈ L1loc(BR × (0,∞)). Finally, |ur| ≤ cr−

31
28 ∈ L1loc and Lemma 4

becomes applicable.
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5 Proofs of the theorems
Proof of Theorem 1 and Remark 7. Solvability is ensured by Lemma 32, which bymeans of (4.30) also ensures
that for every t > 0 there are c1 = c1(t) > 0 and c2 = c2(t) > 0 such that

0 ≥ u*(r) − u(r, t) ≥ −v(r, t) ≥ −c1rn−
3
2 Jν(λr) ≥ −c2rn−

3
2+ν for every r ∈ [0, R].

(The last estimate therein used λR < x0 and [24, p. 360, (9.1.7)].) This proves Remark 7 and implies (0.6).
Uniqueness of solutions, on the other hand, has been asserted in Lemma 33.

Proof of Theorem 2. This is the outcome of Lemma 34.

Proof of Theorem 3. The construction of u during the proof of Theorem 1 had ensured that u*(r) ≥ u(r, t) ≥
u*(r) − v(r, t) for all (r, t) ∈ [0, R] × [0,∞) (cf. (4.30)), and Theorem 3 can be seen from the explicit de�nition
(3.15) of v.
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