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Abstract: In this paper, the problem of periodic solutions is studied for second order di�erential equations
with inde�nite singularities

x′′(t) + f (x(t))x′(t) + φ(t)xm(t) − α(t)
xµ(t) + β(t)

xγ(t) = 0,

where f ∈ C((0, +∞),R) may have a singularity at the origin, the signs of φ and α are allowed to change, m
is a non-negative constant, µ and γ are positive constants. The approach is based on a continuation theorem
of Manásevich and Mawhin with techniques of a priori estimates.

Keywords: Second order di�erential equation; Continuation theorem; Periodic solution; Inde�nite singular-
ity
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1 Introduction
In the past years, the problem of existence of periodic solutions to second order di�erential equations with
de�nite singularities, either attractive type or repulsive type, was extensively studied by many researchers
[1]-[14]. In [15], Hakl and Torres investigated the problem of periodic solutions to the equation

x′′(t) = g(t)
xµ(t) −

h(t)
xγ(t) + r(t), (1.1)

where g, h, r are T−periodic functions with g, h, r ∈ L([0, T],R). Chu and et. al in [16] studied the problem
of twist periodic solutions to (1.1) for the case of r(t) ≡ 0. We notice that in [15] and [16], the functions of g(t)
and h(t) are required to be g(t) ≥ 0 and h(t) ≥ 0 a.e. t ∈ [0, T]. Recently, the periodic problem for second
order di�erential equations with inde�nite singularities has attract much attention from researchers (see [12]
and [17]-[20]). For example, in [18], the authors considered the existence of positive periodic solutions to the
equation like

x′′(t) = α(t)
xµ , (1.2)

where the sign of weight function α(t) can change on [0, T], and µ ≥ 1. The equations like (1.2) with inde�nite
singularities can be used to model some important problems appearing in many physical contexts (see [21]
and the references therein).
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In this paper, we consider the problem of periodic solutions to the equation

x′′(t) + f (x(t))x′(t) + φ(t)xm(t) − α(t)
xµ(t) + β(t)

xγ(t) = 0, (1.3)

where f ∈ C((0, +∞),R), φ, α and β are T−periodic and in L([0, T],R), m, µ and γ are constants with m ≥ 0
and µ ≥ γ > 0. Byusinga continuation theoremofManásevichandMawhin, somenewresults on the existence
of periodic solutions to (1.3) are obtained. In (1.3), the signs of α(t), β(t) and φ(t) are all allowed to change.
This means that the singularity associated to restoring force − α(t)

xµ + β(t)
xγ at x = 0 is inde�nite type(see [18, 19]).

The periodic problem for equation (1.3) has been investigated in recent paper [20]. However, in [20], β(t) ≡ 0,
and the functions of α(t) and φ(t) are required to be either α(t) ≥ 0 a.e. t ∈ [0, T], ᾱ > 0 and φ̄ > 0, or
φ(t) ≥ 0 a.e. t ∈ [0, T], ᾱ > 0 and φ̄ > 0. The signi�cance of present paper relies in the following aspects.
Firstly, the coe�cient function f (x) associated to friction term f (x)x′ mayhave a singularity at x = 0. Secondly,
compared with the case where the signs of functions φ(t), α(t) and β(t) are in de�nite, the work of obtaining
the estimates of periodic solutions to (1.3) is more di�cult. In order to overcome this di�culty, we propose
a function F(x) =

∫ x
1 f (s)ds. By analyzing some properties of F(x) at x = 0 and x = +∞, we investigate the

mechanism under which how the singularity associated to f (x) at x = 0 in�uences the priori estimates of
periodic solutions. Moreover, the constant µ in (1.3) is allowed to be in (0, 1). For this case, even if α(t) and
β(t) are constant functions, the singular restoring force − α(t)

xµ + β(t)
xγ has a weak singularity at x = 0. Finally, by

using a theorem in present paper, a new result on the existence of periodic solutions is obtained for Rayleigh-
Plesset equation

ρ
(
RR′′ + 3

2 (R′)2
)

= [Pv − P∞(t)] + Pg0

(R0
R

)3k
− 2S
R − 4νR′

R (1.4)

in the case of k ∈ ( 1
3 , +∞). Equation (1.4) is used in physics of �uids to model the oscillations of the radius

R(t) of a spherical bubble immersed in a �uid under the in�uence of a periodic acoustic �eld P∞(see [21]-[25]),
and P∞ ∈ L([0, T],R). The physical meaning of the rest of the parameters in (1.4) can also be seen in Section
3 of [5]. By using the methods of upper and lower solutions, the authors in [5] obtained the following result:

Theorem 1.1. Suppose that Pv > P∞ and

5
2ρ (Pv − P∞(t)) ≤

(6k − 2
5

)[ ( 2
5 ) 2

5 (5S) 6k
5

( 6k
5 ) 6k

5
(5Pg0R

3k
0

2ρ
) 6k−2

5

] 5
6k−2 , for t ∈ [0, T]. (1.5)

Then there exists at least one positive T−periodic solution to the Rayleigh-Plesset equation (1.4) in the case of
k ∈ ( 1

3 , +∞).

2 Preliminaries
Throughout this paper, let CT = {x ∈ C(R,R) : x(t + T) = x(t) for all t ∈ R} with the norm de�ned by
|x|∞ = maxt∈[0,T] |x(t)|, and C1

T = {x ∈ C1(R,R) : x(t + T) = x(t) for all t ∈ R} with the norm de�ned by
||x||C1

T
= max{|x|∞, |x′|∞}. For any T−periodic function y(t) with y ∈ L([0, T],R), y+(t) and y−(t) is denoted

by max{y(t), 0} and −min{y(t), 0}, respectively, and ȳ = 1
T
∫ T

0 y(s)ds. Clearly, y(t) = y+(t)− y−(t) for all t ∈ R,
and ȳ = y+ − y−.

Lemma 2.1 ([20, 26]). Assume that there exist positive constants M0,M1 and M2 with 0 < M0 < M1, such that
the following conditions hold.
1.For any λ ∈ (0, 1], each possible positive T−periodic solution x to the equation

u′′(t) + λf (u(t))u′(t) + λφ(t)um(t) − λα(t)
xµ(t) + λβ(t)

xγ(t) = 0
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satis�es the inequalities M0 < x(t) < M1 and |x′(t)| < M2, for all t ∈ [0, T].
2.Each possible solution c to the equation

ᾱ
cµ −

β̄
cγ − φc

m = 0

satis�es the inequality M0 < c < M1.
3.The inequality ( ᾱ

Mµ
0
− β̄
Mγ

0
− φMm

0

)( ᾱ
Mµ

1
− β̄
Mγ

1
− φMm

1

)
< 0

holds.
Then, equation (1.3) has at least one T−periodic solution u such that M0 < u(t) < M1 for all t ∈ [0, T].

Remark 2.1 If φ̄ > 0 and ᾱ > 0, then we have from the condition of m ≥ 0 and µ > γ > 0 that there are two
constants D1 and D2 with 0 < D1 < D2 such that

ᾱ
xµ −

β̄
xγ − φ̄x

m > 0, for all x ∈ (0, D1)

and
ᾱ
xµ −

β̄
xγ − φ̄x

m < 0, for all x ∈ (D2, ∞).

Lemma 2.2 ([5]). Let u ∈ [0, ω] → R be an arbitrary absolutely continuous function with u(0) = u(ω).Then
the inequality

( max
t∈[0,ω]

u(t) − min
t∈[0,ω]

u(t))2 ≤ ω4

ω∫
4

|u′(s)|2ds

holds.

Now, we embed equation (1.3) into the following equations family with a parameter λ ∈ (0, 1]

x′′ + λf (x)x′ + λφ(t)xm − λα(t)
xµ = 0, λ ∈ (0, 1]. (2.1)

Let

D =
{
x ∈ C1

T :x′′ + λf (x)x′ + λφ(t)xm − λα(t)
xµ + λβ(t)

uγ(t) = 0,

λ ∈ (0, 1]; x(t) > 0, ∀t ∈ [0, T]
}
,

(2.2)

F(x) =
x∫

1

f (s)ds (2.3)

and

G(x) =
x∫

1

sµ f (s)ds. (2.4)

Lemma 2.3. Assume ᾱ > 0 and φ̄ > 0, then for each u ∈ D, there are constants τ1, τ2 ∈ [0, T] such that

u(τ1) ≤ max
{

1,
(α+ + β−

φ̄
) 1
m+γ
}

:= A0 (2.5)

and
u(τ2) ≥ A1, (2.6)

where

A1 =

 min
{( ᾱ

2φ+

) 1
µ+m ,

( ᾱ
2β+

) 1
µ−γ
}
, β+ > 0( ᾱ

φ+

) 1
µ+m , β+ = 0,

(2.7)

m, µ and γ are determined in equation (1.3)
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Proof. Let u ∈ D, then

u′′(t) + λf (u(t))u′(t) + λφ(t)um(t) − λα(t)
uµ(t) + λβ(t)

uγ(t) = 0, (2.8)

which together with the fact of u(t) > 0 for all t ∈ [0, T] gives

u′′
um + λf (u)u′

um + λφ(t) − λα(t)
um+µ + λβ(t)

uγ+m(t) = 0.

Integrating the above equality over the interval [0, T], we obtain

T∫
0

u′′
um dt + λ

T∫
0

φ(t)dt = λ
T∫

0

α(t)
um+µ dt − λ

T∫
0

β(t)
uγ+m(t)dt,

i.e.,
T∫

0

u′′
um dt + λTφ = λ

T∫
0

α(t)
um+µ dt − λ

T∫
0

β(t)
uγ+m(t)dt. (2.9)

Since
T∫

0

u′′
um dt ≥ 0, (2.10)

it follows from (2.9) that

Tφ ≤
T∫

0

α(t)
um+µ dt −

T∫
0

β(t)
uγ+m(t)dt ≤

T∫
0

α+(t)
um+µ(t)dt +

T∫
0

β−(t)
uγ+m(t)dt. (2.11)

From (2.11), we can conclude that there is a point ξ ∈ [0, T] such that

u(ξ ) ≤ max
{

1,
(α+ + β−

φ̄
) 1
m+γ
}
. (2.12)

If (2.12) does not hold, then

u(t) > max
{

1,
(α+ + β−

φ̄
) 1
m+γ
}

for all t ∈ [0, T],

which implies that
u(t) > 1 for all t ∈ [0, T] (2.13)

and
u(t) >

(α+ + β−
φ̄

) 1
m+γ for all t ∈ [0, T]. (2.14)

From (2.11), (2.13) and µ > γ, and by using mean value theorem of integrals, we have that there exists a point
η ∈ [0, T] such that

Tφ ≤ Tα+ + Tβ−
um+γ(η) ,

i.e.,

u(η) ≤
(α+ + β−

φ̄

) 1
m+γ , (2.15)

which contradicts to (2.14). This contradiction veri�es (2.12), and so (2.5) holds. Meanwhile, we can assert
that (2.6) is true. In fact, multiplying two sides of (2.8) with uµ(t) and integrating it over the interval [0, T],
we obtain that

−
T∫

0

uµ(t)u′′(t)dt − λ
T∫

0

φ(s)uµ+mds − λ
T∫

0

β(t)uµ−γ(t)dt + λTᾱ = 0,
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which together with

−
T∫

0

uµ(t)u′′(t)dt =
T∫

0

uµ−1(s)|u′(s)|2dt ≥ 0

yields

Tᾱ ≤
T∫

0

φ(s)uµ+mds +
T∫

0

β(t)uµ−γ(t)dt ≤
T∫

0

φ+(s)uµ+m(s)ds +
T∫

0

β+(t)uµ−γ(t)dt.

Thus, there is a point η ∈ [0, T] such that
u(η) ≥ A1,

where A1 is de�ned by (2.7). This implies that (2.6) holds.

Lemma 2.4. Assume ᾱ > 0 and φ̄ > 0, and suppose that the following assumptions

C0 := sup
x∈[A1 ,+∞)

[
F(x) + Tφ−xm

]
< +∞, (2.16)

and
lim
s→0+

(
F(s) − Tα−sµ − Tβ+

sγ
)
> C0 (2.17)

hold, where F(x) is de�ned by (2.3).

Then there exists a constant γ0 > 0, such that

min
t∈[0,T]

u(t) ≥ γ0, uniformly for u ∈ D.

Proof. For each u ∈ D, we have

u′′(t) + λf (u(t))u′(t) + λφ(t)um(t) − λα(t)
uµ(t) + λβ(t)

uγ(t) = 0, λ ∈ (0, 1]. (2.18)

Since u(t) is a T−periodic function, there are two points t1, t2 ∈ R such that 0 < t2 − t1 ≤ T with u(t1) =
maxt∈[0,T] u(t) and u(t2) = mint∈[0,T] u(t). Assumptions of ᾱ > 0 and φ̄ > 0 implies that (2.6) in Lemma 2.3
holds. This gives

A1 ≤ u(t1) < +∞,

to which by applying assumption (2.16) yields

F(u(t1)) + Tφ−um(t1) ≤ sup
A1≤s<+∞

[
F(s) + Tφ−sm

]
:= C0 < +∞. (2.19)

By integrating (2.18) over the interval [t1, t2], we get
t2∫
t1

f (u(t))u′(t)dt

=
t2∫
t1

α(t)
uµ(t)dt −

t2∫
t1

β(t)
uγ(t)dt −

t2∫
t1

φ(t)um(t)dt.

(2.20)

It follows from (2.19), (2.20) and the condition φ̄ > 0 that

F(u(t2)) = F(u(t1)) −
t2∫
t1

φ(t)um(t)dt +
t2∫
t1

α(t)
uµ(t)dt −

t2∫
t1

β(t)
uγ(t)dt

≤ F(u(t1)) +
T∫

0

φ−(t)um(t)dt +
T∫

0

α+(t)
uµ(t)dt +

T∫
0

β−(t)
uγ(t)dt.

(2.21)
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On the other hand, by integrating (2.18) on [0, T], we get

T∫
0

α(t)
uµ(t)dt =

T∫
0

β(t)
uγ(t)dt +

T∫
0

φ(t)um(t)dt,

i.e.,

T∫
0

α+(t)
uµ(t)dt +

T∫
0

β−(t)
uγ(t)dt +

T∫
0

φ−(t)um(t)dt

=
T∫

0

α−(t)
uµ(t)dt +

T∫
0

β+(t)
uγ(t)dt +

T∫
0

φ+(t)um(t)dt.

Substituting it into (2.21), we have from (2.19) that

F(u(t2))

≤F(u(t1)) +
T∫

0

α−(t)
uµ(t)dt +

T∫
0

β+(t)
uγ(t)dt +

T∫
0

φ+(t)um(t)dt

≤F(u(t1)) + Tφ+um(t1) + Tα−
uµ(t2) + Tβ+

uγ(t2)

≤C0 + Tα−
uµ(t2) + Tβ+

uγ(t2) ,

and so
F(u(t2)) − Tα−

uµ(t2) −
Tβ+
uγ(t2) ≤ C0. (2.22)

Assumption (2.17) ensures that there exists a constant γ0 > 0 such that

F(s) − Tα−sµ − Tβ+
sγ > C0, for all s ∈ (0, γ0). (2.23)

Combining (2.23) with (2.22), we can get

min
t∈[0,T]

u(t) = u(t2) ≥ γ0. (2.24)

Lemma 2.5. Assume ᾱ > 0 and φ̄ > 0. Suppose further that the following assumptions

B0 := inf
x∈[A1 ,+∞)

[
F(x) − Tφ+xm

]
> −∞ (2.25)

and
lim
s→0+

(
F(s) + Tα−

sµ + Tβ+
sγ
)
< B0 (2.26)

hold. Then there exists a constant γ1 > 0, such that

min
t∈[0,T]

u(t) ≥ γ1, uniformly for u ∈ D.

Proof. Suppose that u ∈ D, then u satis�es (2.18). Let t1 and t2 be de�ned as same as the ones in the proof of
Lemma 2.4. From (2.6) in Lemma 2.3, we see that

A1 ≤ u(t1) < +∞,
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which together with assumption (2.25), yields that

F(u(t1)) − Tφ+um(t1) ≥ inf
A1≤s<+∞

[
F(s) − Tφ+sm

]
:= B0. (2.27)

By integrating (2.18) over the interval [t1, t2], we get

F(u(t2))

= F(u(t1)) +
t2∫
t1

α(t)
uµ(t)dt −

t2∫
t1

β(t)
uγ(t)dt −

t2∫
t1

φ(t)um(t)dt

≥ F(u(t1)) −
T∫

0

α−(t)
uµ(t)dt −

T∫
0

β+(t)
uγ(t)dt −

T∫
0

φ+(t)um(t)dt

≥ F(u(t1)) − Tα−
uµ(t2) −

Tβ+
uγ(t2) − Tφ+um(t1),

i.e.,

F(u(t2)) + Tα−
uµ(t2) −

Tβ+
uγ(t2) ≥ F(u(t1)) − Tφ+um(t1).

From (2.27), we obtain

F(u(t2)) + Tα−
uµ(t2) + Tβ+

uγ(t2) ≥ B0. (2.28)

Assumption (2.26) implies that there exists a constant γ1 > 0 such that

F(s) + Tα−
sµ + Tβ+

sγ < B0, for all s ∈ (0, γ1),

which together with (2.28) gives
min
t∈[0,T]

u(t) = u(t2) ≥ γ1.

3 Main Results
Theorem 3.1. Assume φ̄ > 0 and ᾱ > 0. Suppose further

lim
s→0+

(
F(s) − Tα+

sµ − Tβ−sγ
)

= +∞ (3.1)

and
lim
x→+∞

(
F(x) + Tφ+xm

)
= −∞. (3.2)

Then equation(1.3) has at least one positive T−periodic solution.

Proof. Firstly, we will prove that there exist two constants γ2 > 0 and γ3 > 0 with γ3 > γ2, such that

min
t∈[0,T]

u(t) ≥ γ2, uniformly for u ∈ D (3.3)

and
max
t∈[0,T]

u(t) ≤ γ3, uniformly for u ∈ D. (3.4)

For each u ∈ D, u satis�es (2.18). Let t1 and t2 be de�ned as same as the ones in the proof of Lemma 2.4, that is
0 < t2 − t1 ≤ T, u(t1) = maxt∈[0,T] u(t) and u(t2) = mint∈[0,T] u(t). Take t3 = t1 + T, then u(t3) = maxt∈[0,T] u(t)
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and 0 ≤ t3 − t2 < T. It is easy to see that (2.16) can be deduced from (3.2), and (3.1) veri�es (2.17). By using
Lemma 2.4, as well as (2.5) in Lemma 2.3, we know that

A0 ≥ min
t∈[0,T]

u(t) = u(t2) ≥ γ0. (3.5)

Integrating (2.18) over the interval [t2, t3], we have

F(u(t3))

=F(u(t2)) +
t3∫
t2

α(t)
uµ(t)dt −

t3∫
t2

β(t)
uγ(t)dt −

t3∫
t2

φ(t)um(t)dt

≥F(u(t2)) −
T∫

0

α−(t)
uµ(t)dt −

T∫
0

β+(t)
uγ(t)dt −

T∫
0

φ+(t)um(t)dt

≥F(u(t2)) − Tα−
uµ(t2) −

Tβ+
uγ(t2) − Tφ+um(t3),

i.e.,

F(u(t3)) + Tφ+um(t3) ≥ F(u(t2)) − Tα−
uµ(t2) −

Tβ+
uγ(t2) ,

which together with (3.5) gives

F(u(t3)) + Tφ+um(t3) ≥ inf
x∈[γ0 ,A0]

[
F(x) − Tα−xµ − Tβ+

xγ
]

:= ρ0 > −∞.

It follows from (3.2) that there is a constant γ3 > 0 such that

max
t∈[0,T]

u(t) = u(t3) ≤ γ3. (3.6)

From (3.5) and (3.6), we see that the conclusions of (3.3) and (3.4) hold. Next, we will show that there exists a
positive constant ρ1 such that

max
t∈[0,T]

|u′(t)| ≤ ρ, uniformly for u ∈ D. (3.7)

In fact, if u ∈ D, then

u′′(t) + λf (u(t))u′(t) + λφ(t)um(t) − λα(t)
uµ(t) + λβ(t)

uγ(t) = 0, λ ∈ (0, 1]. (3.8)

Let u attain its maximum over [0, T] at t1 ∈ [0, T], then u′(t1) = 0 and we deduce from (3.8) that

u′(t) = λ
t∫

t1

[−f (u(s))u′(s) − φ(s)um(s) + α(s)
uµ(s) −

β(s)
uγ(s) ]ds

for all t ∈ [t1, t1 + T]. Thus,

|u′(t)| ≤λ|F(u(t)) − F(u(t1))| + λ
t1+T∫
t1

∣∣∣ α(s)
uµ(s)

∣∣∣ds + λ
t1+T∫
t1

∣∣∣ β(s)
uγ(s)

∣∣∣ds
+

t1+T∫
t1

|φ(s)|um(s)ds

≤2 max
γ2≤u≤γ3

|F(u)| +
T∫

0

∣∣∣ α(t)
uµ(t)

∣∣∣dt +
T∫

0

∣∣∣ β(t)
uγ(t)

∣∣∣dt +
T∫

0

|φ(s)|um(s)ds.
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It follows from (3.4) and (3.3) that

|u′(t)| ≤2 max
γ0≤u≤γ3

|F(u)| + T|α|
γµ1

+ T|β|
γγ1

+ Tγm3 |φ|

:=ρ, for all t ∈ [0, T],

and so
max
t∈[0,T]

|u′(t)| ≤ ρ, uniformly for u ∈ D,

which implies that (3.7) holds. Letm0 = min{D1, γ2} andm1 = max{γ3, D2} be two constants, where D1 and
D2 are constants determined in Remark 2.1, then from (3.4), (3.3) and (3.7), we see that each possible positive
T−periodic solution u to equation(2.1) satis�es

m0 < u(t) < m1, |u′(t)| < ρ1 for all t ∈ [0, T]

This implies that condition 1 of Lemma 2.1 is satis�ed. Also, we can deduce from Remark 2.1 that

ᾱ
xµ −

β̄
xγ − φ̄x

m > 0, for x ∈ (0,m0]

and
ᾱ
xµ −

β̄
xγ − φ̄x

m < 0, for x ∈ [m1, +∞),

which gives that condition 2 of Lemma 2.1 holds. Furthermore, we have(
ᾱ
mµ

0
− β̄
mγ

0
− φ̄mm

0

)(
ᾱ
mµ

1
− β̄
mγ

1
− φ̄mm

1

)
< 0.

So condition 3 of Lemma 2.1 holds, too. By using Lemma 2.1, we see that equation(1.3) has at least one positive
T−periodic solution.

Theorem 3.2. Assume φ̄ > 0 and ᾱ > 0. Suppose further

lim
s→0+

(
F(s) + Tα+

sµ + Tβ−
sγ
)

= −∞ (3.9)

and
lim
x→+∞

(
F(x) − Tφ+xm

)
= +∞. (3.10)

Then equation(1.3) has at leat one positive T−periodic solution.

Proof. From the proof of Theorem 3.1, we see that it su�ces for us to verify (3.4) and (3.3). In order to do it,
let u ∈ D, u satis�es (2.18). Let t2 and t3 be de�ned as same as the ones in the proof of Theorem 3.1, that is
0 ≤ t3 − t2 < T, u(t3) = maxt∈[0,T] u(t) and u(t2) = mint∈[0,T] u(t). It is easy to see that (2.25) can be deduced
from (3.10), and (3.9) veri�es (2.26). By using Lemma 2.5 and (2.5) in Lemma 2.4, we know that

A0 ≥ min
t∈[0,T]

u(t) = u(t2) ≥ γ1. (3.11)

Integrating (2.18) over the interval [t2, t3], we have

F(u(t3))

=F(u(t2)) +
t3∫
t2

α(t)
uµ(t)dt −

t3∫
t2

β(t)
uγ(t)dt −

t3∫
t2

φ(t)um(t)dt

≤F(u(t2)) +
T∫

0

α+(t)
uµ(t)dt +

T∫
0

β−(t)
uγ(t)dt +

T∫
0

φ−(t)um(t)dt

≤F(u(t2)) + Tα+
uµ(t2) + Tβ−

uγ(t2) + Tφ−um(t3),
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i.e.,

F(u(t3)) − Tφ−um(t3) ≤ F(u(t2)) + Tα+
uµ(t2) + Tβ−

uγ(t2) , (3.12)

which together with (3.11) and gives

F(u(t3)) − Tφ−um(t3) ≤ sup
x∈[γ0 ,A0]

[
F(x) + Tα+

xµ + Tβ−
xγ
]

:= C0 < +∞.

It follows from (3.10) and the condition φ̄ > 0 that there is a constant ρ2 > 0 such that

max
t∈[0,T]

u(t) = u(t3) ≤ ρ2. (3.13)

From (3.11) and (3.13), we see that the conclusions of (3.3) and (3.4) hold.

Theorem 3.3. Assume φ̄ > 0, ᾱ > 0 and

lim
x→+∞

[
G(x) − Tβ+xµ−γ − Tφ+xµ+m] = +∞. (3.14)

If
lim
x→0+

G(x) < C0 − Tα−, (3.15)

then equation(1.3) has at least one positive T−periodic solution, where G(x) is de�ned by (2.4) and

C0 := inf
x∈[A1 ,+∞)

[
G(x) − Tβ+xµ−γ − Tφ+xµ+m]. (3.16)

.

Remark 3.1. Assumption (3.14) implies that C0 ∈ (−∞, +∞) is a constant.

Proof. Similar to the proof of Theorem 3.2, we need only prove the estimates of (3.4) and (3.3). Let u ∈ D, then
u satis�es (2.18). Let t1 and t2 be as same as the ones in the proof of Lemma 2.4. Multiplying (2.18) with uµ(t)
and integrating it on [t4, t2], we get

t2∫
t1

u′′(t)uµ(t)dt + λ
t2∫
t1

uµ(t)f (u(t))u′(t)dt

= λ
t2∫
t4

α(t)dt − λ
t2∫
t4

φ(t)um+µ(t)dt − λ
t2∫
t4

β(t)uµ−γ(t)dt.

(3.17)

Since
∫ t2
t1 u

′′(t)uµ(t)dt ≤ 0, it follows from (3.17) and (3.16) that

G(u(t2)) ≥ G(u(t1)) +
t2∫
t1

α(t)dt −
t2∫
t1

φ+(t)um+µ(t)dt −
t2∫
t1

β+(t)uµ−γ(t)dt

≥ G(u(t1)) − Tα− − Tφ+um+µ(t1) − Tβ+uµ−γ(t1).

(3.18)

By using (2.6) and (3.16), we get

G(u(t2)) ≥ inf
x∈[A1 ,+∞)

[
G(x) − Tφ+xm+µ − Tβ+xµ−γ

]
− Tα−

= C0 − Tα−,

which together with (3.15) veri�es (3.4). Thus, according to (2.5), we arrive at

γ2 ≤ u(t2) ≤ A0. (3.19)
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On the other hand, by (3.18) again, we obtain from (3.19) that

G(u(t1)) − Tφ+um+µ(t1) − Tβ+uµ−γ(t1)
≤ G(u(t2)) + Tα−
≤ max
γ2≤x≤A0

G(x) + Tα−.
(3.20)

By assumption (3.14), we see that there is a constant γ3 > γ2 such that

G(s) − Tφ+sm+µ − Tβ+sµ−γ

> max
γ2≤x≤A0

G(x) + Tα−, for all s ∈ (γ3, +∞). (3.21)

Therefore, (3.20) and (3.21) imply
max
t∈[0,T]

u(t) = u(t4) ≤ γ3. (3.22)

From (3.19) and (3.22), we see that the (3.4) and (3.3) hold.

Theorem 3.4. Assume φ̄ > 0, ᾱ > 0 and

lim
x→+∞

[
G(x) + Tβ+xµ−γ + Tφ+xµ+m] = −∞. (3.23)

If
lim
x→0+

G(x) > C1 + Tα−, (3.24)

then equation(1.3) has at least one positive T−periodic solution, where

C1 := sup
x∈[A1 ,+∞)

[
G(x) + Tβ+xµ−γ + Tφ+xµ+m]. (3.25)

Remark 3.2. From assumption (3.23), one can �nd that C1 ∈ (−∞, +∞) is a constant.

Proof. Let u ∈ D. If set t4 = t2 − T, then 0 < t1 − t4 ≤ T and u(t4) = mint∈[0,T] u(t). Multiplying (2.18) with
uµ(t) and integrating it on [t4, t1], we get

t1∫
t4

u′′(t)uµ(t)dt + λ
t1∫
t4

uµ(t)f (u(t))u′(t)dt

= λ
t1∫
t4

α(t)dt − λ
t1∫
t4

φ(t)um+µ(t)dt − λ
t1∫
t4

β(t)uµ−γ(t)dt.

(3.26)

By using
∫ t1
t4 u

′′(t)uµ(t)dt ≤ 0, it follows from (3.26) that

G(u(t1)) ≥ G(u(t4)) +
t1∫
t4

α(t)dt −
t1∫
t4

φ+(t)um+µ(t)dt −
t1∫
t4

β+(t)uµ−γ(t)dt

≥ G(u(t4)) − Tα− − Tφ+um+µ(t1) − Tβ+uµ−γ(t1),

(3.27)

which together with (3.25) gives

G(u(t4))
≤G(u(t1)) + Tφ+um+µ(t1) + Tβ+uµ−γ(t1) + Tα−
≤ sup
x∈[A1 ,+∞)

[
G(x) + Tβ+xµ−γ + Tφ+xµ+m] + Tα−

≤C1 + Tα−.
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In view of (3.24), we get that there is a constant γ4 > 0 such that

min
t∈[0,T]

u(t) > γ4.

This together with (2.5) yields
γ4 ≤ u(t4) ≤ A0.

It follows from (3.27) that

G(u(t1)) + Tφ+um+µ(t1) + Tβ+uµ−γ(t1) + Tα−
≥G(u(t4)) − Tα−
≥ min
γ4≤x≤A0

G(x) − Tα−,

to which by applying (3.23), we get that there is a constant γ5 > γ4 such that

max
t∈[0,T]

u(t) = u(t1) < γ5.

Example 3.1: Consider the following equation

x′′(t) − (xm + 1
x2 )x′(t) + (1 + 2 sin t)xm(t) − 1 − 2 cos t

x 2
3 (t)

+ sin t
x 1

2 (t)
= 0, (3.28)

where m ∈ [0, +∞) is a constant.

Corresponding to (1.3), we have f (x) = −xm − 1
x2 , µ = 2

3 , γ = 1
2 , φ(t) = 1 + 2 sin t, α(t) = 1 − 2 cos t,

β(t) = sin t and T = 2π. Clearly, ᾱ = 1 > 0 and φ̄ = 1 > 0. Since A1 =
(
α
φ̄

) 1
m+µ = 1 and

F(x) =
x∫

1

f (s)ds = − x
m+1

m + 1 + 1
x −

m
m + 1 ,

we have
lim
x→+∞

(
F(x) + Tφ+xm

)
= −∞. (3.29)

Furthermore, from α+ = 5π
3 − 2 and µ = 2

3 < 1, we have

lim
s→0+

(
F(s) − Tα+

sµ − Tβ−sγ
)

= +∞, (3.30)

Thus, by using Theorem 3.1, we have that equation(3.28) has at least one positive 2π−periodic solution.

Now, we study the existence of periodic solutions to equation (1.4). By using the change of variable R =
x

2
5 , from [5], we see that equation (1.4) changes to

x′′ + 4ν
x 4

5
x′ + 5[P∞(t) − Pv]

2ρ x
1
5 + 5S

x 1
5
−
(5Pg0R3k

0
2ρ

) 1
x 6k−1

5
= 0, (3.31)

where the parameters of S, ρ, ν, Pg0 and R0 are positive constants, k ∈ ( 1
3 , +∞). Corresponding to (1.3), we

have f (x) = 4ν
x

4
5
, φ(t) = 5[P∞(t)−Pv ]

2ρ , α(t) ≡ 5Pg0R
3k
0

2ρ , β(t) ≡ 5S, µ = 6k−1
5 and γ = m = 1

5 . Thus,

G(x) =
x∫

1

sµ f (s)ds = 4ν
x∫

1

s
6k−1

5 − 4
5 ds = 10ν

3k x
6k
5 − 10ν

3k ,
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and from (2.7), we see

A1 = min
{( ᾱ

2φ+

) 1
µ+m ,

( ᾱ
2β+

) 1
µ−γ
}

= min
{( Pg0R3k

0
2[P∞(t) − Pv]+

) 1
µ+m ,

(Pg0R3k
0

2S

) 1
µ−γ
}
.

(3.32)

If 10ν
3k > 5T

2ρ [P∞(t) − Pv]+, then

G(x) − Tβ+xµ−γ − Tφ+xµ+m =
(10ν

3k −
5T
2ρ [P∞(t) − Pv]+

)
x

6k
5 − 5TSx

6k−2
5 − 10ν

3k ,

and so assumption (3.14) holds. Let

H(x) =
(10ν

3k −
5T
2ρ [P∞(t) − Pv]+

)
x

6k
5 − 5TSx

6k−2
5 .

Clearly, if A1 >
(5TS
σ1

) 5
2 , then

C0 := inf
x∈[A1 ,+∞)

[
G(x) − 2Tβ+xµ−γ − 2Tφ+xµ+m]

= inf
x∈[A1 ,+∞)

H(x) − 10ν
3k

=H(A1) − 10ν
3k

> − 10ν
3k ,

(3.33)

where
σ1 = 10ν

3k −
5T
2ρ [P∞(t) − Pv]+. (3.34)

Furthermore,
lim
x→0+

G(x) = −10ν
3k ,

which together with (3.33) yields
lim
x→0+

G(x) < C0 − Tα−.

This implies that assumption (3.15) holds. Thus, By using Theorem 3.3, we obtain the following result.

Theorem 3.5. Assume k ∈ ( 1
3 , +∞), P∞ > Pv. If 10ν

3k > 5T
2ρ [P∞(t) − Pv]+, and

A1 >
(5TS
σ1

) 5
2 ,

then (3.31) has at least one positive T−periodic solution, where σ1 and A1 is de�ned by (3.34) and (3.32), respec-
tively.

Remark 3.2: Since the condition P∞ > Pv in Theorem 3.5 is essentially di�erent from the corresponding one
of P∞ < Pv in Theorem 1.1, Theorem 1.4 can be regarded as a new result on the existence of periodic solutions
to Rayleigh-Plesset equation (1.4).
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