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Abstract: This paper is concerned with the periodic traveling fronts for partially degenerate reaction-diffusion
systems with bistable and time-periodic nonlinearity. We first determine the signs of wave speeds for two
monostable periodic traveling fronts of the system. Then, we prove the existence of periodic traveling fronts
connecting two stable periodic solutions. An estimate of the wave speed is also obtained. Further, we prove the
monotonicity, uniqueness (up to a translation), Liapunov stability and exponentially asymptotical stability
of the smooth bistable periodic traveling fronts.
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1 Introduction

This paper is concerned with the periodic traveling wave solutions of the following n-dimensional time-
periodic reaction-diffusion system:

us =DAu+f(u,t), xeR, t>0, (1.1)

wheren € Nwithn = 2,u = (uy, -+ , un)' and D = diag(d,, - -+ , dn) withd; = 0, i = 1, - - - n. The nonlinearity
fG,) = (f1Gy )y ee s fuls, NT € CELHR™L, R") is T-periodic in t for some period T > 0, i.e. f(+, t + T) = f(-, t)
forall t € R. It is clear that (1.1) is a time-periodic generalization of the following reaction-diffusion system:

us =DAu +f(u), xeR, t>0. 1.2)

In the past decades, the issue on the traveling wave solutions of system (1.2) with monostable or bistable
nonlinearity have been well addressed, see [1-4] for monotone systems; [5] for non-monotone systems; also
the references cited therein.

In recent years, stimulating by a great deal of examples of biological and physical systems with time-
periodic parameters, periodic traveling wave solutions have also been widely investigated in time-periodic
reaction-diffusion systems, see e.g. [6—17]. More precisely, Alikakos et al. [6] studied the existence, unique-
ness and stability of bistable periodic traveling waves of (1.1) with n = 1. More recently, Fang and Zhao [7]
developed the theory of bistable traveling fronts for monotone evolution systems with some compact condi-
tions. As an application, their theory has been used to establish the existence of bistable traveling waves for
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the time periodic reaction-diffusion system (1.1) when d; > Oforalli = 1, - - - , n (i.e. the non-degenerate case).
In addition, Bao and Wang [8] applied Fang and Zhao’s theory to study the existence of bistable periodic trav-
eling fronts for a time-periodic Lotka-Volterra competition system with positive diffusion coefficients. Zhao
and Ruan [16, 17] studied the existence, uniqueness and stability of periodic traveling waves for monostable
time-periodic reaction-diffusion systems. We also refer to Bao et al. [9], Wang [13], and Wang and Wu [14],
Sheng et al. [18] for periodic traveling curved fronts of time-periodic diffusion systems.

On the other hand, in population biology and epidemiology, evolution is quite often described by
reaction-diffusion systems with some but not all diffusion coefficients are zeros. Such systems are called par-
tially degenerate systems. Two typical and important examples are the following periodic epidemic system
[10]:

{ Ue = duxx — aju(x, t) + a;pvix, t),

Vi = —022V(X, t) +g(u(X; t), t)’ (13)

whered > 0, g(+, t + T) = g(-, t) for some T > 0, and the periodic reaction-diffusion population model with a
quiescent state [19]:

{ ue = dyuxx + f(u(x, ), t) = y1 (Oulx, t) + y2(O)v(x, t),

ve = y1(Oulx, t) - y2(Ov(x, 1),

where d; > 0, y;(t+ T) = y;(t), i = 1,2 and f(-, t + T) = f(-, t) for some T > 0. For more details on models
(1.3) and (1.4), we refer to [10, 19] and the references cited therein. Motivated by the models (1.3) and (1.4),
the purpose of this article is to study the bistable periodic traveling wave solutions of the general partially
degenerate system (1.1).

(1.4)

Throughout this paper, we always use the usual notations for the standard ordering in R", and impose
the following basic assumptions:
(C1) [Partially degenerate system] There exists iy € {1,---,n}suchthatd; > Ofori=1,---,ipandd; =0
fori=ig+1,---,n.
(C2) [Bistability] The Poincaré map P(a) := v(T; «), where v(t; a) is the solution to

V() =flv,t), teR, v(0;a)=acR", (1.5)

has exactly three fixed points w™, w and w™* satisfying w™ < w < w™,
r* := r(DP(w*)) < 1 and 7 := r(DP(w)) > 1.
Here, r(L) denotes the spectral radius of an operator L.
Let’s set w*(t) = v(t; w*), w(t) = v(t; W), and Q. by the domain of attraction of w*(t), respectively. According
to (C2), we may assume that w*(t) + 2691 € Q., where 1 := (1,---,1) € R" and §y > O is small enough.
Moreover, we can assume that

w({®)=0:=(0,---,0)and w(t) = 1. (1.6)

u; - wi(t)

— 12 _i=1,.--,n.From (1.1), z; satisfies
wi(t) - w;(t) (1.1), 2

In fact, letz = (zq, -+ , zn)" with z; :=

(z))t = diAz; + gi(z, 1),
where w(t) := diag(wj(t) - wi(t), - - - , wy(t) — wx(t)) and

_ fiw@®z+w(6), ) - fiw (8), O) - [fi(w* (1), ©) - i(w™ (1), Olz; .
ile: 0= THORTAD :

=1’...’n'

It is clear that g(-,t + T) = g(-, t), g(0,t) = g(1,t) = 0. In this situation, w™(¢t) and w*(t) reduce to 0 and
1. Therefore, without loss of generality, we always assume (1.6) in the rest of this paper. Moreover, we have
0 < w(t) <« 1fort > 0 (c.f. the non-autonomous version of [20, Theorem 4.1.1]) provided that the function
f(-, -) satisfies the following monotone and irreducible conditions:

(C3) [Monotonicity] w >0forallu € Iy :=[-6p1,1+68p1],t>0and 1 <i#j<n.
j
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(C4) [Irreducibility] Df (u, t) is irreducible for all u € Iy and ¢ > 0.
Before to state the main results, we first introduce the definition of periodic traveling wave solution of (1.1)
(see e.g.[6, 7, 10, 16]).

Definition 1.1. (1) A solution u(x, t) of (1.1) is called a periodic traveling wave solution connecting 0 and 1 if
there exist a function U(-, -) : R?> — R" and a constant c € R such that
(@) ulx,t)=U(&,1),&=x+ct,and U(&,t)is periodicint,ie. U(-, t+T) = U(-, t),Vt € R.

(i) U(-oo,t) := lim U(&,t) =0and U(+oo, t) := lim U(¢, t) = 1 uniformlyint € [0, T].
&——o0 &—+oo0

Moreover, if U(&, ) is non-decreasing in & € R, then we call it a periodic traveling front.

(2) A periodic traveling wave connecting 0 and 1 is smooth if U(x, t) € C>*(R?, R"), Ux(-, -) and Uxx(-, )
are bounded.

In this article, we first determine the signs of the wave speeds of the monostable periodic traveling fronts of
(1.1) connecting 0 and w(t), and w(t) and 1 (see Lemma 3.1). Then, based on these results, we use a generalized
comparison principle for weak sub- and supersolutions (which may not be continuous) and the “vanishing
viscosity" method (c.f. [1, 12]) to prove the existence of the bistable periodic traveling front of (1.1) connecting 0
and 1. More precisely, for any € € (0, 1], we construct an auxiliary non-degenerate and time-periodic reaction-
diffusion system with diffusion coefficients D¢ = diag(dy, - - , d), where d§ = d; > Ofori = 1,.--,ip and
df = efori=1ip,--- , n(see(4.1)). Following the results in [7, Theorem10], for any € € (0O, 1], the auxiliary non-
degenerate system admits a bistable periodic traveling front U¢(x + cet, t) connecting 0 and 1. The existence
of the bistable periodic traveling front of (1.1) connecting 0 and 1 is then obtained by letting € — 0. To
find a convergent subsequence of {U(x + cet, t)}.c(0,1]» We need to prove the boundedness of {c€}¢c(o 1
and the compactness of {U¢(x,t) : € € (0, 1]}. The former part can be proved by constructing a pair of
explicit sub- and supersolutions (see Lemma 4.2). The major difficulty is the verification of compactness of
{U¢(x,t) : € € (0, 1]}. Since df = € € (0, 1]when d; = 0, U5(x, t) and U(x, t) may not be uniformly bounded
for all € € (0, 1]. To overcome this difficulty, we shall show that {U(x, t) : € € (0, 1]} is pre-compact in
L{ (R%, R™) (see Lemma 4.4).
The existence result of bistable periodic traveling fronts is stated as follow.

Theorem 1.2. [Existence] Assume (C1)-(C4). Then (1.1) admits a periodic traveling front U(x+ct, t) connecting
0 and 1 with speed |c| < Co, where Co = Co(d1, - - - , d;,, f) is a constant given by (4.9).

It should be pointed out that the existence part in Theorem 1.2 can also be established by applying the theory
developed by Fang and Zhao [7] for the monotone semiflow with weak compactness. The reasons why we use
the vanishing viscosity method are stated in the sequel.

(1) Some preliminary lemmas have their own interests. For example, Lemma 3.1 provided some informa-
tion on the signs of the wave speeds of the monostable periodic traveling fronts connecting 0 and w(t), and
w(t) and 1, respectively.

(2) As a by-product, we can obtain an estimate for the wave speed of the bistable periodic traveling front
although its sign cannot be determined.

(3) Our result demonstrates a way of applying the vanishing viscosity method to study the time-periodic
reaction-diffusion systems which are partially degenerate.

In addition to the existence of the bistable periodic traveling front of (1.1), it is natural to ask whether such
traveling fronts can determine the long term behavior of the corresponding Cauchy type problem of (1.1). From
[3, 6], we know that that the bistable traveling fronts of the reaction-diffusion system (1.1) are stable when
f(u, t) = f(u) or n = 1, which naturally determine the long time dynamical behavior of the corresponding
initial value problem. This motivates us to consider the stability of the bistable periodic traveling fronts of
system (1.1).
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In this work, we shall generalize the squeezing technique to prove the asymptotic stability of the smooth
bistable periodic traveling fronts for system (1.1). This technique was introduced in Chen [21] to prove the
global asymptotic stability of bistable traveling fronts for nonlocal evolution equations and has been used to
study the asymptotic stability of traveling fronts for various evolution systems, see e.g. [3, 22-26]. Since our
problem is a general time-periodic system, this generalization is nontrivial and needs some new techniques.
For example, the constructions of the sub- and supersolutions are different to those in [3, 21, 22] (see Lemma
6.1). In fact, the sub- and supersolutions contain a non-monotone (w.r.t. x) and time periodic function p(x, t)
(see (5.5)). To overcome this difficulty, the shift parameters &; and &, in two component parts of the sub- and
supersolution might be different. Moreover, we need to establish a strong comparison principle (see Lemma
2.5) under the following strongly irreducible assumption:

(C4)" [Strong irreducibility] The matrix (miny,c(_s,1.1+25,1),20 9;fi (U, 8)) is irreducible.
We now state the result on the monotonicity and stability of the periodic traveling fronts.

Theorem 1.3. [Monotonicity] Assume (C1)-(C3) and (C4)'. Let U(x+ct, t) be a smooth periodic traveling wave
of (1.1) connecting 0 and 1. Then, Ux(-,+) > O.

Theorem 1.4. Assume (C1)-(C3) and (C4)'. Let U(x + ct, t) be a smooth periodic traveling wave of (1.1) con-
necting 0 and 1. Then the following statements hold:
(i) [Uniform stability] For any € > 0, there exists 6 > O such that for any ¢ € L= (R) with ||¢p(-)-U(:, 0)|| p~(r) <
8, there holds
luC-, t; @) — U+ ct, t)|| ~) < € forall t >0,

where u(x, t; ¢) is the unique solution of (1.1) with u(-, 0; ¢) = ¢p(-).
(ii) [Asymptotic stability] For any ¢ € L=(R) with ¢(-) € [-601,1 + p1] and

liminf ¢p(x) > w and lim sup ¢(x) < w, @7
X—rtoeo X—r—00
where w = w(0), there exists & € R such that

lu-, t; @) = U(- + ct + &, )| 1~®) — O exponentially as t — oo.
As a direct result of part (ii) of Theorem 1.4, we obtain the uniqueness of the smooth periodic traveling waves.

Theorem 1.5. [Uniqueness] Assume (C1)-(C3) and (C4)'. Let UD(x+ct, )i = 1, 2) be two periodic traveling
waves of (1.1) connecting 0 and 1 with one of them being smooth. Then, c1 = ¢, and there exists {* € R such
that UD(&, ) = UD(& + &, 1), Vé, t € R.

Remark1.6. (1) Ifd; > 0,i = 1,---,n, according to the result in [7, Theorem 10], system (1.1) admits a
periodic traveling front V(x + ct, t) connecting 0 and 1. Moreover, V(x, t) is continuous in x. By the parabolic
theory, it is easy to see that V(x + ct, t) is a smooth periodic traveling front. Therefore, Theorems 1.3-1.5 imply
that such a periodic traveling front is strictly monotone, uniqueness and stable. However, when system (1.1)
is partially degenerate, even in the time independent case, it may admit non-smooth traveling waves (see
e.g. [1]). Whether a non-smooth traveling wave is monotone, uniqueness and asymptotically stable remains
open. We will study these problems somewhere else.

(2) We also mention that our results can be used to study some biological and epidemiological models de-
scribed by partially degenerate reaction-diffusion systems with periodic coefficients, such as models (1.3) and
(1.4). Furthermore, the techniques in this paper can be extended to the following mixed dispersal evolution
system with bistable nonlinearity (c.f. [22, 27]):

u; = DAu +B/](x—y) [u(y) -u()]dy +f(u,t), xR, t>0, (1.8)
R

wheren € N,u = (ul"" ,un)T’D =diag(dl,“' ’dn), and B =diag(bly“' ,bn)Withdi, bi 20’i= 1’.“ 1
and (dy + by, -+ ,dn+bn) #0.
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The rest of this paper is organized as follows. In Section 2, we establish the well-posedness of Cauchy problem
for (1.1) and some key comparison principles for later use. Section 3 is devoted to the study of signs of wave
speeds for two monostable periodic traveling fronts connecting 0 and w(t), and w(t) and 1, respectively. In
Section 4, we prove the existence of the bistable periodic traveling fronts. An estimate of the wave speed
is also established. Section 5 focus on the monotonicity of the smooth periodic traveling waves. Finally, we
prove the stability and uniqueness of the smooth periodic traveling fronts in Section 6.

2 Well-posedness and comparison principles

In this section, we give the well-posedness to the Cauchy problem of (1.1) and establish some key comparison
principles, especially a strong comparison principle under the assumption (C4)'. First, given any 7 > 0, we
consider the initial value problem of (1.1):

{ us=DAu+f(u,t), xeR, t>rT, 21)

u(x, 7) = p(x) € L=(R).
Let’s set

0
y = max sup |5, /i O and Q)(x, O == flulx, B), ) + yu(x, 1),
1<isn ye[-§01,1+801], 20 OUi

and define a family of mappings T;(t) : L=(R) — L*°(R) by T;(0) = I and

-yt # 7% ( — )d , ifi 1’“". ’
T;(0)[pl(x) = ¢ _Z mé’ P(x-y)dy, ifie{ io}
e‘)’f(l)(X), ifi e {i0+ 1,--- ,n},

vt > 0, x € Rand ¢(-) € L=(R). Furthermore, we denote T(t) := diag(T(t), - -+ , Tn(t)). It is clear that (2.1)
can be transformed to the following integral form:
t

ulx, t; T, d) = T(t - 1[Pl(x) + / T(t-s)[Q)(-, $)l(x)ds, x e R, t > 7. (2.2)

A solution of (2.2) is called a mild solution of (2.1). We have the following well-posedness result.

Lemma 2.1. Assume (C1)-(C4). For any ¢(-) € L=(R) with ¢(-) € [-801, 1+801], (2.1) admits a unique mild so-
lution u(x, t; T, ) € C1([, o0), L=(R)). Moreover, if ¢(-) is continuous, then u(x, t; T, ¢) is a classical solution

of (2.1).
Proof. The proofis similar to [28, Theorem 2.2] by using the Banach’s fixed point theorem. We omit it here. [J
Next, we introduce the definitions of (weak) supersolution and subsolution of (1.1).

Definition 2.2. (1) A function u : R x [1,00) — [-801,1 + 8g1] is called a weak supersolution (or a weak
subsolution) of (1.1) on [t, o) if
t

u(x, ) = (or <) T(t - D[u(-, D] + / T(t - N[Q@)(-, N]C)dr

foranyx e R, T <t < oo,

(@) Letw = (Wq, -+, Wm) : Rx [T, 00) = [-801, 1 + 801] be a continuous function such that w;(x, t) is C!
intfori=1,--+,nand C>inxfori=1,---,io. If w(x, t) satisfies

we 2 (or <)DAw + f(w, t), VX ER, t> T,

then it is called a supersolution (or subsolution) of (1.1) on [T, +o0).
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According to Definition 2.2, it is clear that a supersolution (or subsolution) is a weak supersolution (or subso-
lution). Furthermore, the weak super- and subsolutions are not necessarily continuous. The following gener-
alized comparison principle for weak sub- and supersolutions will play a crucial role in proving the existence
of the bistable periodic traveling fronts.

Lemma 2.3. Assume (C1)-(C4). Let u*(x, t) be a pair of weak super- and subsolution of (1.1) on [1, +o0). If
u (x,7)sut(x, 1), vx e R, thenu (x,t) s u™(x, t),Vx e R, t > 1.

Proof. This lemma is a non-autonomous version of [1, Lemma 2.1] and can be proved by using a similar argu-
ment as in [1, Lemma 2.1]. Here, we omit its proof. O

In addition, the following result follows from Lemma 2.3 and Definition 2.2 directly.

Lemma 2.4. Assume (C1)-(C4). Let u*(x, t) be a pair of super- and sub-solution of (1.1) on [T, +o0) with
u (x, ) su(x,7),vx € R.Thenu (x,t) cu*(x,t),¥x e R, t > T.

To prove the asymptotic stability of the periodic traveling waves by applying the squeezing technique, we
further establish the following strong comparison principle for the periodic system (1.1) under the assumption
(C4)'.

Lemma2.5. [Strong comparison principle] Assume (C1)-(C3) and (C4). Let u*(x,t) =
Wi(x, t), -+ ,up(x, t)) be a pair of super- and subsolution of (1.1) on [t, +e0) with u™(x,7) < u*(x, 1),
Vx € R.

(i) There exists a positive and non-increasing function O(-) defined on [0, +oo) such that

n 1

uj O T+ 1) —up(x, T+ 1) 2 O(x|) Z /[u]-*(y, ) - u; (y, 1)ldy, (2.3)
j=17%

foranyle {1, --- ,n}and x € R.
() Ifu (¢, 1) #u*(, 1), thenu (x,t) < u*(x, t),vx e R, t > 1.

Proof. (i) Let wi(x, t) := uf(x,t) - u;(x,t) fori = 1,---,n, x € Rand t > 7. By Lemma 2.4, we see that
0<wilx,t)<1+28gfori=1,---,n,x € Rand t > 7. Moreover, by (C4)’ and Definition 2.2, we have

(Wi =d;(Wxx + f;(u" (x, £), t) - fi(u"(x, ), ©)
=d;(Wi)xx - Mw; + [M + W]Wi + Z ij

— 6u]-
1<j#i<n

of; ,0,t

Edi(Wi)xx - MWi + Z %Wj (2.4)
1<j#isn J

>d;(Wj)xx - Mw;, VxeR, t>T1,i=1,---,n, (2.5)

where n(x, t) :== u*(x, t) + (1 - Du~(x, t) with 9 € (0, 1) and

M := 1+ max sup |ofi(u, t)/ou|.

1sisn yc[-6,1,1+2601], t>1
Recall that d; > Ofori = 1,---,ipand d; = Ofori = ig + 1,---,n. Let dy := max{ds,---,d; } and
dm :=min{d,, -+, d;,}. By (2.5), foranyi e {1,--- ,ip}, we have

+oo _ eyp?
—M(t-7) e 44D

— wiy,1)d
J \/lmdl-(t—T)W(y ndy

wi(x, t) 2e
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(x| +1)? 1 1

" 4d; (1)
d wily, T)dy = I([x], ¢ - T)e M) / wily, )dy, 2.6)

Vand;(t - 1) J J

Ee—M(t—r)

for x € R, t > 7, where I'(|x], s) := exp{- (lx‘”) Y/ 4ndys, s > 0. On the other hand, for any i € {ip +
1,---,n}, it follows from (2.5) that

wilx, ) 2 e MEDy (x, 1), VX € R, £ > T. .7

Now, we consider the following two cases.

Casel.le {1,---,ip}. In this case, it follows from (2.6) that
1
wilx, t) 2 I'(|x|, t - T)e"M(t_T) /wl(y, T)dy, VX € R, t > T. (2.8)
0

Givenanyj € {1, ---, n}\{l}. Since the matrix (m; ;) := (min,c[_s,1,1+25,1],20 Okfi(U, t)) is irreducible, there
exists a distinct sequence iy, i, -+ , ir with i; = land iy = jsuch that m;; ,, >0,Vs=1,---,r - 1. We first
prove the following claim.

Claim: There exist positive functions 6;, ; (-,-) s = 1, - - - , r such that each 6;, ; (x, -) is non-increasing in
x € [0, o0) and

1
wi, (x, 8) 2 0;, ;. (x|, t - T)/W,'S(Z, T)dz, s=1,---,r. (2.9)

It is clear that (2.9) holds for s = 1 with 6;, ; (|x],s) = I'(|x], s)e™Ms_ We now prove that (2.9) holds for
s = 2. Using (2.4), (2.6) and (2.7), we have

wi, (x, )
e e s (tzr) oMt ‘r) [t ‘zm (t 7 o-M(t-1)
Vand, (t-1) y’T)dy+m‘1’2// 4ridy, (t - Wiz(y’ r)dydr
Lre - (k(r D o-M(t-1)
My / / N ——————W;,(y, Ndydr (2.10)
t +oo ey

1
4d« (t-r)
e M(t- T)m,llz// i d F(|y|,r—r)/w,~2(z, T)dzdydr, ifi € {1,---,ip}
51
0

¢

e MED . /
182

(x-y)?
t

4d ([ )
-M(t-1)
e mg, /

A /lmdl1 (t-r)

v

+

8

sz(y,T)d}/dl’, ifize{i0+1’-.. ’n}

O~ 3\

1
I"(\x|,t—r)I"(\y|,r—T)dydr/ wi,(z,T)dz, ifi, € {1,---,io}
0

v

t 1
e ™MD, /F(\x|,t—r)dr/wi2(z, 1)dz, ifiy € {ig+1,--+,n}
T 0

1
20;, 5, (x|, t-1) / w;, (2, T)dz, (2.11)
0



930 —— Shi-Liang Wu and Cheng-Hsiung Hsu, Periodic traveling waves for bistable time-periodic systems DE GRUYTER

forx e R, t > T, where

S

s 1
0i,.,(x|, s) = e"Msm,-li2 min { //F(|x|, s -1 (ly|, r)dydr, /F(|x|, s- r)dr}.
0 0

0

Next, we prove (2.9) for s = 3 by considering the following two subcases.
Subcase 1.1, € {1,---,ip}. Since m;,;, > 0, by the same method as above, we can show that there is a
positive function 6;, ;, (-, ) such that 6;, ;, (x, -) is non-increasing in x € [0, o) and
1
wi, (x, t) 2 9i2,,-3(|x|, t-1) / wi(y, )dy, Vx e R, t > 7. (2.12)
0

It then follows from (2.10) and (2.12) that

wi, (x, t) 2miliz//l"(|x|,t—r)e"‘/m"’)wiz(y, r)dydr

1

1

/F(|x|, t—r)e Mt f)elz Lyl r- ‘r)dydr/w,-3 (z, )dz
0 0

-T

\N

zm,-m

~ =

1

1
/F(|x| t—1—r)e Mt ”0,2 i (v, r)dydr/wb(z 17)dz
0 0

=mj,i,

o\

—60, (), t - ) / w;, (z, 1)dz. 2.13)

Subcase 2.i, € {ip +1,--- ,n}. From (2.4), we obtain

t
wi, (x, ) = my,;, /e‘M("S)wis(x,s)ds. (2.14)

T
Ifiz € {1,---, 1o}, by (2.6), we get

t 1

1
Wil 02 e Omy, [ 1xls=ds [ w00y o= 81, (1, = 7) [ w071y
0

T 0

Hence,

w;, (x, ) =2my,;, / / (x|, t—r)e"M(t_’)wl-z(y, r)dydr

1 1
/F(|x|, t- r)e’M(t’r)éiz,i3(|y|, r— T)dydr/ wi,(z, T)dz
0 0

zmil,-z

1 1
/F(|x|, t-1- r)e’M(t’T”)éiz,i3(|y|, r)dydr/w,~3 (z, 7)dz
0 0

O\I —l\ﬁ ~
o

= 6(2) (x|, t - T)/W,3(Z 7)dz, X €R, t > T. (2.15)
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Ifiz € {ip +1,---, n}, using (2.10), (2.14) and (2.7), we have

wy, (x, ) =my,;, //I"(\x|, t- r)e"M(["')wiz(y, rydydr

r

¢ 1
Emilizmi213//1" x|, t - e Mt r)/ e M0~ s)w13(y, s)dsdydr
0

T T

>m,l,zm,z,3//1"(|x| t—r)/ ~M(t-s) o-M(s- T)WIB()/, T)dsdydr

t-1 1
g,y i, e MED / "T(X], t - 7 - r)dr / Wi, (v, )dy
0 0
=69, (I, t-1) / wi, (v, T)dy. 216)

Let 6;, ;,(|x],s) := m1n{9(1) J(x],s), 0 6. (1x], s), 9(3) ,([x], s)}, one can see that (2.9) holds for s = 3. The cases

l 13
for (2.9) with s = 4, , T can be proved 51m11ar1y. Hence the claim follows.

By the claim, we obtain

11,1

wi, (x, t) 2 05, ;, (x|, t - T)/w,-r(z, T)dz, Vx € R, t>T.
Thus, combining with (2.8), we deduce that foranyj=1,---,n,
wi(x, t) = 0,(|x|, t - 7) / wj(z,T)dz, VX € R, t>T.

Therefore, we conclude that

1
n
wi(x, t) z(% _lnllin 01,;(x], t - T)) /wj(z, T)dz
jil=1,,n ‘
j=1 79

n 1

=:@(1)(|x|, t-1) Z / wj(z,T)dz, VX € R, t>T. (2.17)
j=1 7

It is clear that is ©V(x, -) non-increasing in x € [0, so).

Case2.1 € {ip+1,--+,n}.Since iy = 1, we see that | # 1. Using the irreducibility of the matrix (m; ;) =
(minye(_g,1,1+26,1],20 Okfi(U, £)) again, there exists a distinct sequence iy, iz, -+, ir with iy = land i, = 1
such that m; ; , >0,Vs =1,---,r - 1. Noting that

Is+1
wy(x, t) 2 6(1)(|x| t- T)Z/W](Z T7)dz, Vx €R, t> T, (2.18)
j=1 0o
we can easily obtain that there exists a positive function 0@(., ) such that @ (x, -) is non-increasing in
x € [0, o) and

1
n

wi(x, t) 2@(2)(|x|,t 7) /W] z,T)dz, VX €R, t>T. (2.19)
=179
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Combining the above two cases, the assertion (i) holds by setting
0(|x|) := min{OW (x|, 1), 6P(|x|, 1)}.

(ii) Clearly, the assertion follows from (2.17) and (2.19). This completes the proof. O

3 Wave speeds of monostable periodic traveling fronts

In this section, we shall determine the signs of wave speeds for two monostable periodic traveling fronts
connecting 0 and w(t), and w(t) and 1, respectively. In fact, we have the following result.

Lemma 3.1. Assume (C1)-(C4). Then, the following statements hold.

(1) IfU(x + ct, t) is a non-decreasing periodic traveling wave of (1.1) with U(-co, t) = w(t) and U(+oo, t) = 1,
then c > 0.

(2) If U(x + ct, t) is a non-decreasing periodic traveling wave of (1.1) with U(-oo, t) = 0 and U(+oo, t) = w(t),
thenc < 0.

The proof of Lemma 3.1 is based on the results of spreading speeds (see [10]) for monostable systems. To
consider the general monostable case, we make the following assumption:

(C2)’ [Monostability] The Poincaré map P(a) := v(T; a) of (1.5) has exactly two fixed points 0 and 1 satisfy-

ing rg := r(DP(0)) > 1.

From the assumption (C2)’, system (1.5) has two periodic solutions v(t; 0) and v(t; 1). As mentioned in the
introduction, we can assume that 0 = v(t; 0) and 1 = v(t; 1), Vt € R. Applying the theory of spreading speed
for monotone periodic semiflow developed by Liang et al. [10], one can show that (1.1) has a spreading speed
under the assumptions (C1), (C2)’, (C3) and (C4). The proof is similar to that of [10, Section 3]. For the sake
of reader’s convenience, we sketch it in the sequel.

Let C be the space of all bounded and continuous functions from R to R™. For any ¢!, ¢? € @, we write
Pl < P? (P! < P2 if Ppl(x) < P*(X) (P (x) < P*(x)), Vx € Rand ¢! < ¢p? if ¢ < ¢p? and P # P> We
further equip € with the compact open topology, that is, a sequence ¢, converges to ¢ in C if and only if ¢pn(x)
converges to ¢(x) in R" uniformly for x in any bounded subset of R. The following norm on € can induce such
topology:

[

maXy s, jvj<t | 000
Iplle =Y —<=5 L Vp ee.
=1

Clearly, the topology generated by || - || ¢ and the compact open topology on € are equivalent on any uniformly
bounded subset of €. We also denote C; := {¢p € €: 0 < ¢(-) <1}.

Recall that a family of operators {Q;}+0 is said to be a T-periodic semiflow on a metric space (X, d) pro-
vided that the following properties hold:
(@) Qolpl = o,V € X5 (ii) Q¢[Qrlel] = Qs rlel, VE 2 0and Vo € X;
(iii) Q(t, @) := Q¢[¢] is continuous in (¢, ¢) on [0, oo) x X.
The map Q7 is called the Poincaré map associated with this periodic semiflow. Let {Q;} 0 be the semiflow
on C; associated with system (1.1), i.e.

Qilpl(x) = ulx, t; ), Vo € €1, x e R.

Note that for any (tg, ¢o) € R+ x C1, we have

1Qelp] = Qg l@ollle < 11Q¢ele] - Qelpollle + 1Qel@ol = Qg l@olle.

By a similar argument as in [29, Theorem 8.5.2], Q¢[¢] is continuous at (ty, o) with respect to the compact
open topology. Moreover, by [30, Corallary 5], we have the following result.



DE GRUYTER Shi-Liang Wu and Cheng-Hsiung Hsu, Periodic traveling waves for bistable time-periodic systems = 933

Lemma 3.2. Assume (C1), (C2), (C3) and (C4). Then {Q;} o is a monotone periodic semiflow on €.

Let R[p](x) := @(-x) be the reflection operator. Given h € R, we define the translation operator T[] by
Trlel(x) = Tplel(x - h). In order to apply [10, Theorem 2.1], we need verify that the map Q := Q7 : C; — €
satisfies the following assumptions:

(A1)Q[R[u]] = R[Q[u]l, Th[Ql[ull = Q[Tx[ull for h € R;

(A2)Q : €y — @4 is continuous with respect to the compact open topology;

(A3){Q[u](x) : u € €4, x € R} is a bounded subset of R";

(A4)Q : €1 — C; is monotone in the sense that Q[¢] = Q[)] whenever ¢ = 1 in Cp;

(A5)Q : [0,1] — [0, 1] admits exactly two fixed points 0 and 1, and for any € > 0, there is a a € [0, 1] with

|la|| < € such that Q[a] > a.

Lemma 3.3. Assume (C1), (C2)’, (C3) and (C4). Then, the Poincaré map Q = Qr satisfies (A1)-(A5), and Q;
satisfies (A1) for any t > 0.

Proof. 1t is easy to see that Q = Qr satisfies (A1)-(A4), and Q; satisfies (A1) for any t > 0. Let Q; be the
restriction of Q; to [0, 1]. Then, Q; is the periodic semiflow on [0, 1] generated by the periodic cooperative and
irreducible system (1.5). By the nonautonomous version of [20, Theorem 4.1.1], it follows that at is strongly
monotone on [0, 1] for all ¢t > 0. Thus, the Dancer-Hess connecting orbit lemma (see e.g. [31]) yields that the
map aT admits a strongly monotone full orbit connecting 0 to 1. Therefore, (A5) holds for Q. This completes
the proof. O

By [10, Theorem A], it then follows that the Poincaré map Qr has an asymptotic speed of spread (spreading
speed for short) ¢+ > 0. Moreover, [10, Theorem 2.1] implies that c«/T is the spreading speed for solutions of
(1.1), that is, the following result holds.

Theorem 3.4. Assume (C1), (C2), (C3) and (C4). Let c« be the spreading speed of Q. Then the following state-

ments hold true:

(1) Forany ¢ > c+/T,if o € Gy with0 < ¢ < 1, and ¢(x) = O for x outside a bounded interval, then
lim  u(x, t; ) =0.

t—roo,|x|2ct
(2) Foranyc < c«/T and o € [0, 1] with 0 >> 0, there exists an integer rs > O such that if ¢ € Gy with p(x) > 0

for x on an interval of length 2r, then lil‘n| lu(x, t; @) — 1| = 0.
t—roo,|x|=ct

Next, we investigate the lower bound of ¢« by considering the linearized system of (1.1) at the zero solution:
u¢ = DAu + Df(0, t)u. (3.1
Let’s write u(x, t) = e v(t) for some u > 0. It is obvious that v(t) satisfies the system
V/(t) = [Du? + Df(0, B)]v. (3.2)
Let A(u) be the principal Floquet multiplier of the linear periodic cooperative and irreducible system (3.2) and
@(u) := [In A(u)]/u. Then, the following result holds.
Lemma 3.5. Assume (C1), (C2)', (C3) and (C4). Then, ¢« = € = infy5o @(u) > 0.

Proof. By (C2)’, we know that A(0) = ro > 1, which implies that @(0+) = +co. Using the same argument as in
[10, Section 3], one can easily show that @(+c0) = +oo. It then follows from [32, Lemma 3.8] that @(p) attains
its minimum at some finite value and inf;;o o(u) > 0.

Take L := max,c[o 1) tcfo,],i=1,-,n |19ifi(2, t)| and any € € (0, 1). From the proof of [35, Lemma 4.1], for
any t € [0, T, there exists n(t) > 0 such that

f(z,t) = (1 - €)Df(0, t)z — €Lz, Vz € [0, n(t)].
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In view of the continuity of f(:, t) and Df(0, t) with respect to t € [0, T], we can choose r(t) appropriately
such that it is continuous on [0, T]. Take 1 = min,¢[o 1 7(t) > 0. Then,

f(z,t) = (1 - e)Df(0, t)z— €Lz, Vvt € [0, T], z € [0, n].
Due to the periodicity of f(-, t) with respect to t, we have
flz,) 2 (1 - €)Df(0, t)z — €Lz =: f(z, 1), Vt=0, z<[0,n].

By the continuous dependence of solutions on initial conditions, there is a sufficient small § > 0 in R" such
that the solution z(t; 6) of (1.5) with z(0; §) = & satisfies z(t; §) < n for any t € [0, T]. It follows from the
comparison principle that

Q¢lpl(x) = u(x, t; p) < z(t; §) < nforany ¢ € C5, x e Rand ¢ € [0, T].
Let M;[-] be the solution map associated with the linear periodic system
ve=DAv + f€(v, t). (3.3)

Then Q¢[¢] > M{[¢] for any ¢p € Cs and t € [0, T]. Note that 0;f{ (-, -) = (1 - €)0;fi(-, ), Vj # i. Let ®(u) =
[In A¢()]/u, where A°(p) be the principal Floquet multiplier of the linear periodic cooperative and irreducible
system

n
wi = dip’wi+ (1 - E)Z 0ifi(0, hwj —eLw;, i=1,--- ,n. (34)

j=1
It then follows from [10, Theorem B(2)] that ¢+ > infy,o @“(u). Letting € — 0, we conclude that cx > ¢ =
infy50 @(u). This completes the proof. O

According to Theorem 3.4 and Lemma 3.5, we are ready to give the proof of Lemma 3.1.

Proof of Lemma 3.1.

We only prove the assertion (1), since the assertion (2) can be discussed similarly. Let’s denote v =
(vi, -+, vp) with v; = (u; — w;(8))/(1 - w;(t)) fori = 1, - - - , n. From (1.1), v; satisfies

(Vi)t = DAVi + gi(V’ t)’ (3-5)
where w(t) := diag(1 - w1(t),--- , 1 - wn(t)) and

gz, 0) = filw(t)z + w(t), t) —fi(W(t),_l‘) - [fi(1, ) - fi(w(?), t)]Zi’ i-
1-w;(t)

It is clear that g(-, t + T) = g(-, t) and g(0, t) = g(1, t) = 0, Vt € R. Since

1,... , n.

0;8i(z, ) = (1~ wi(0) ' 0;f; (W(t)z + W(8), t) (1 — W;(8)), Vi # J,

it’s easy to verify that (C2)’, (C3) and (C4) hold for system (3.5). Then it follows from Theorem 3.4 and Lemma
3.5 that system (3.5) admits a spreading speed c%/T which has a positive lower bound ¢¢/T > 0. Moreover,
the function U(x + ct, t) = (U1 (x + ct, £), -+ - , Un(x + ct, t)) with

U,'(X + Ct, t) - V_V,'(t) i=

yi=1,---
1-w;(t)

=

Ui(x +ct, t) =

is a non-decreasing periodic traveling wave of (3.5) satisfying U(=oo, t) = 0 and U(+oo, t) = 1.

We claim that ¢ > ¢¢/T. In fact, if the claim is false, then we can choose ¢; € (c, ¢g/T). In view of Ux, t)
is a non-decreasing in x and U(+eo, t) = 1, we can choose ¢ € @y with ¢(-) < U(-,0) and ¢(+o0) = %1.
Thus, by Theorem 3.4, we have lim;_, . ||u(-c1t, t; ) — 1|| = 0. On the other hand, from Lemma 2.3, we have
u(x, t; ) < U(x + ct, t) which implies that

lim u(-c1t, t; ¢) < liminf U((c - c1)t, ) = 0.
t—o0 t—oo

This contradiction shows that ¢ > ¢¢/T > 0. This completes the proof.
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4 Existence of periodic traveling fronts

Based on the result of Lemma 3.1, we are ready to prove the existence of bistable periodic traveling front by us-
ing the vanishing viscosity method. Moreover, an estimate of the wave speed is also established. Throughout
this section, we always assume the conditions (C1)-(C4).

For any € < (0, 1], we consider the following non-degenerate reaction-diffusion system
ur=DAu+f(u,t), xeR, t>0, (4.0)

where D¢ = diag(ds, - - - , dy;) with
d = { d;, ifd;>0,

4.2
€, lfdl =0. ( )

Following [7, Theorem 10], we have the following existence result.
Lemma 4.1. For any € > 0, system (4.1) admits a periodic traveling front U¢(x + cct, t) connecting 0 and 1.

To find a convergent subsequence of {U*(x + cet, )} (o,1]» We need to study the boundedness of {c} .. 1
and the compactness of {U¢(x, t) : € € (0, 1]} in L} .(R?, R").

First, we construct a pair of sub- and supersolutions to show the boundedness of {c}.c( q]- Let p* :=
% Inr* < 0, where r~ and r* are the spectral radius of DP(0) and DP(1), respectively. From [33, Lemma 2.1],
there exist positive and T-periodic functions s:(t) = ((s+)1(t), « -+ , (S+)n(t)) with s.(-) < 1 such that v*(t) =
eH'ts.(t) are solutions of the T-periodic linear system:

v'(£) = Df(wW*(8), hv(D)
with the initial value v*(0) > 0, where w™(t) = 0 and w*(¢) = 1. It is clear that s.(t) satisfies
s.(t) = DF(W*(t), t)s+(6) - p*s.(0). (4.3)
Let 6o be the constant defined in Section 1, and

C(s) 1= %(1 +tanh 5), s € R. (44)

Obviously, 0 < {(-) < 1, {'(s) = {(s)(1 - {(s)) and {"(s) = ¢(s)(1 - {(s))(1 - 2{(s)). Hence, {'(-) > 0 and
[¢” ()] £ 1. The sub- and supersolutions of (4.1) are constructed as follows.

Lemma 4.2. There exist ko € (0, 69), 09 > 0 and Cq > 0, which are independent of € € (0, 1], such that for any
K € [ko/2, x0l, 0 € [00/2, 00] and C = Cy, the functions

U (x - Ct, t; 0, k) :=(1 + ks—(t) — ks+())¢{(a(x - Ct)) - ks—(t),
ut(x + Ct, t; 0, k) :=(1 + ks.(t) — ks=(£))¢(o(x + Ct)) + xs—(t)

are sub- and supersolutions of (4.1) on [0, o), respectively.
Proof. Since 0 < s:(-) < 1and {(-) € [0, 1], we see that for any x € (0, 6¢), 0 >0and C > O,
8ol <u*(x+Ct,t;0,K)<1+601, VxR, t=0.

We only prove u™(x — Ct, t; g, k) is a subsolution of (4.1), since the proof for the supersolution is similar. For
convenience, we denote u~(x — Ct, t; g, k) by u”(x — Ct, t). As mentioned in the introduction, we may assume
that w™(t) = 0 and w*(t) = 1 are two periodic solutions of (1.5). It follows that f(0, t) = f(1,t) = 0, Vt > 0.
Since y~ < 0 and

f(=xs-(t), t) = =Df(0, t)xs_(t) — o(x)s-(t) as k — O,
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there exists x; > 0 such that for any x € (0, k4],
F(=ks-(D), £) = - DF(0, H)xs_(£) + "Tcs,(t) = —xs.(b) - %xs,(t), Vt 2 0.
Thus, for any x € (0, k1], we have

Fexs—(6), ) + ks’ () = ~Exs_(6) =~k min s_() >0, Vt=0. (4.5)
2 2 telo,T]

Similarly, there exists k, > 0 such that for any x € (0, x,],

+ +
F(1-xs:(b), ) + ks () = —H—KS+(1') > ~% % min s+(t) >0, Vt=0. (4.6)
2 2 telo,T]

Choose ko € (0, min{k1, k2, 6o }) such that 1 + xs_(t) — ks+(t) > 0 for any k € (0, ko] and ¢ > 0. Note that
s:(t) and s.(t) are bounded on [0, o). By (4.5) and (4.6), there exist 9y € (0, 1) and 0o > 0 such that for any
K € [ko/2, k0], 0 € [009/2, 0] and 9 € [0, 9o], there holds

F(@+xs-(t) - ks ()9 - ks-(1), t) + xsL(£) - k(s (t) - s4.(£))9
>DY1 + ks_(¢) - ks+ (1) a2, @.7)
and
F(A+xs-(t) - ks+ ()1 - 9) — ks-(0), t) + ks_(t) — k(s_(¢) - s1(O)(1 - 9)
>DY(1 + ks_(t) - xs+(1))a?, (4.8)

where D! := diag(dq, - ,d; , 1, -+, 1). Let’s set

io»

[flmax := max AlfiGw, 3,

UE[-601,1+601],t20,i=1,--,

my:= min "(s), Smip:= min s2);(6) = (s4):()},
¢ ((5)6[30,1*301(( ) min tzO,izl,---,n{( )1() ( +)1( )}

Co :={Iflmax + dm05 [1 + Ko (max{|ls-(O)] + [ls+(O)]})]

Ko

P Smin)m(] >0, (4.9)

0
+ 20 max [ (6] + Ko max |5, (0]} /[ 22 (1 +

where dy; = max{di,---,d;,,1}. Note that 1 + xSy, > O forall x € (0, ko). Clearly, for any C > Cp, 0 €
[00/2, 00l and k € [ko/2, ko], there holds

Co(1+ Ksmin)m( 2|f|max + aMU(Z) [1 + KO(ntlz%X{HS—(t)” + ||S+(t)‘|})]

+2Kntle(1)x|\s’,(t)|\ +K1rtla(1)x||s’+(t)\|. (4.10)

To prove u™(x - Ct, t) is a subsolution of (4.1), it suffices to show that
up (€, 6) - Cup(§, ) - D°ug(€, ) - Fu (£, 0, ) < 0,
where ¢ := x — Ct. Moreover, direct computations show that
u; (€, 0) - Cup (€, ) - D°uge(§, ) - fu (€, 0, 0

=x(s"(t) - s4.(0){ (&) - ks’ () = 0C(A + s—(1) - x5+ ()¢ (§)-
DE0?(1 + xs_(t) — ks+ ()" (£) - f((@+xs-(t) - ks+())¢(08) - ks-(8), t). (4.11)

In the sequel, we consider the following two cases:

(i) ¢(04) € [0, §o] U [1 - 8o, 1] and (ii) {(a4) € [Jo, 1 - Jo].
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For case (i), it follows from (4.7), (4.8) and (4.11) that

u (&, 6) - Cug(§, ) - Dug (8, 6) - f(u (&, 0), 1)
<k(s_(t) - s.(1))¢(0&) - ks'(t) + D a* (1 + ks—(t) - ks+(t))-
f((+xs-(t) - ks+(1)){(0€) — xs-(t), t) < 0. (4.12)

For case (ii), it follows from (4.10) and (4.11) that

Wi)e(&, 6) = Cup)g (€, 6) - D (up)ee (&, 6) - fiu (&, 0), 1)
=k[(s2)i(0) = (s)i(O1{(08) - k(s-)i(t) = oCI1 + k(s-);(£) — k(s+); (DI (£)-
dfa? (1 + x(s2)i(8) - k()i ()¢ (&) = fi((1 + xs=(8) - xks+()){(0E) - ks-(8), )

<2xmax IsZ(O)]| + K max S5O = Co(1 + KSmin)m+

duoj[1+ K(rrtlza})x{Hs_(t)H +[s+O1})] + flmax < 0, Vi=1,--+ ,n. (4.13)

Combining the above two cases, we conclude that u™(x, t) is a subsolution of (4.1) on [0, o). This completes
the proof. O

Based on the above lemma, we can show that c€ is bounded for any € € (0, 1].

Lemma 4.3. |c¢| < Co for any € € (0, 1], where Cy = Co(d1, - -+ , di,, f) is given by (4.9), which is independent
of €.

Proof. From Lemma 4.2, we see that there exist xo > 0, 0¢ > 0 and Cq > 0 with
1
(1 + x05-(0) — kps+(0)){(0) — kos-(0) = 5((0)1 >0, (4.14)

which are independent of € € (0, 1], such that u™(x - Cot, t; 0¢, ko) and u*(x + Cot, t; 09, ko) are sub- and
supersolutions of system (4.1) on [0, o). Note that

U (~o0, 0; 09, Ko) = —ko5-(0) < 0 = U¢(~00, 0)
and
u(x,0; 00, Kg) €1 -Kk05+(0) € 1= U¢(+00,0), Vx € R.
Then, for any € € (0, 1], there exists e € R such that U¢(- + ¢, 0) = u™(:, 0; 09, Ko). By Lemma 2.4, we obtain
U(x + cét+ne, t) 2 u(x - Cot, t; 09, Ko), VX € R, t 2 0,

which implies that
US(x + (€ + Co)t + ne, £) = u™(x, t; 00, Ko), VX € R, t=0. (4.15)

Letting x = 0and t = nT, n € N, in (4.15), we obtain
US((c® + Co)nT + ne, nT) 2u™(0, nT; 09, ko) = (1 + kos-(nT) - x05+(nT)){(0) - kos-(nT).
By (4.14) and the periodicity of U¢(-, t) and s.(t), it follows that
US((c® + CoInT + e, 0) = (1 + K5-(0) - Kos+ (0)){(0) - kos-(0) = 3 {(O)1.
If ¢ + Cy < 0, letting n — oo in above inequality, we get
U¢(~00,0) = 0 > %((0)1 > 0.

This contradiction implies that c¢ > —-Co for any € € (0, 1]. Similarly, we can prove that c® < Cq for any
€ € (0, 1]. This completes the proof. O
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Next, we study the compactness of {U¢(x, t) : € € (0, 1]} in L} .(R?, R").

Lemma 4.4. {U¢(x, ) : € € (0, 1]} is pre-compact in L}, .(R?, R").

Proof. The idea of the proof follows from [34, Lemma 5] and [12, Lemma 2.5]. Clearly, it suffices to prove that
{U¢(x, t) : € € (0, 1]} is pre-compact in L} .(R?,R),Vi=1,--- , n.

Givenanyi € {1,---,n}. Since 0 < Uf(:, ) < 1 and U§(x, t) is monotone in x, we know that {U (-, t) :
€ € (0,1],t € R} is pre-compact in Llloc(]R, R). Thus, for any r > 0, there exists a function z,(-) which is
continuous, and non-decreasing, such that z,(0) = 0 and

/ |Uf (x + Ax, t) = Ui (x, t)|dx < z/(|Ax]), Ve € (0,1] and t € R. (4.16)

\xl|sr
We may assume that z,, () < zr,(-) for ry < r,. Now we prove the following claim.

Claim: For any r > O, there exists a function z,(-) which is continuous and non-decreasing, such that z,(0) =
0 and
/ |US (x, t + At) - Uf (x, t)|dx < Z(|At]), Ve € (0,1] and t € R. (4.17)

|x|<r
Given r > 0. For any h € (0, r), we define

sign(Us (x, t + At) - Ui (x, t)), if|x|<r-h,

ﬁ(x):={ o, if x| > r - h,

+o0
1 —
P00 = 00 5= [ 65BNy, x € R,
where §(-) is an infinitely differentiable function on R with
+o00
6(-) 20, 6(s) =0for|s|=1and /S(S)ds =1.

Clearly, suppp C {x € R||x| < r}, |p()| < 1, |p’()| < C1/h, and |p” ()| < C1/h?, where C; > O is a constant
independent of € and h. Note that U¢(x, t) satisfies

(Ule)t + Ce(Uie)X = dze(Ule)XX +fi(U€y t)’ i= 13 e, N

For any h € (0, min{1, r/2}], we have

t+ At

/ pOIUS(x, € + Ab) - USCx, B)]dx = / / pGI(US)(x, dtdx
x|<r |x|sr

t+ A\t

- / / POOL-cE(UE)s + dE(UE)ux + Fi(US, D]dtdx

|x|sr
t+/\t
/ / [cfp’ () UF + dip" () U + f;(U€, t)p(x)] dxdt
t|x|sr

t+ At

|/ /[Co\p’(x)|+dM|p"(x)|+Lf|p(x)|]dxdt|

t |x|sr

s Co| At max [1p"CA| + |p" ()] + [p()|]

IN
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< G| [7 . % +1] <|At

C2(2C1 + 1)
h? ’

where dy := max{1,dq, -, d;},
Lf = maxue[o’l]’te[o’T]’izl’...,n |fi(u’ t)| and CZ = maX{CO’ aM’ Lf}

According to [12, Lemma 2.1] (see also [34]), for any h € (0, min{1, r/2}], we obtain

/|U,~€(x,t+At)—U,~€(x,t)\dxs / |Uf (x, t + At) = Ui (x, t)|dx + C3h

|x|<r |x|<r-h

) / pOOLUE(x, ¢+ AB) = US(x, Ddx + Cazyn(h) + Csh

|x|sr-h

< / pOUS (x, t + At) - Ui (x, t)ldx + C4zr(h) + C3h
|x|<r
|AL

SC5[ h2

+z;(h) + h]
where C3 and C, are constants independent of h, €, t and |At|, and Cs := max{C,(2C; + 1), C3, C4}. Then it
follows that
At
b 20 + h] = 2, 08)).

/ |Uf (x, t + At) - Ui (x, t)|dx < Cs min [|h2

he(0,min{1,%}

|x|sr
This proves the claim. By (4.16) and (4.17), we conclude that {Uf(x,t) : € € (0, 1]} is pre-compact in
L{ (R?, R). This completes the proof. O

We now give the proof of Theorem 1.2.

Proof of Theorem 1.2.

By the boundedness of {c}. (o 1], there exists a subsequence {c®};.; such that ¢; — 0 and c® converges
to some cg € R. For convenience, we denote ¢ and D¢ = diag(di’, cee,d)bydand DV = diag(dj IEET d’;l),
respectively. Let U’(:,-) be the corresponding wave profile with wave speed c/. Since U’i(—oo, 0) = 0,
U’ (+00,0) = 1and 0 < w1 (0) < 1, we can choose ¢/ and r such that

UJ (é’} 0) Wl(o) and U} (nl 0) %1(0)
Define VI(-, £) = UI(- + &, ¢) and WI(-, £) = UI(- + 1/, t). Then,
Vi(0,0) = w12(0) and W/ (0, 0) = %1(0)_ w18)

By Lemma 4.4, there exist a function V(-,-) = (V1(-,), =+~ , Va(:, )T € Llloc(]Rz, R™) and a subsequence of
{Vj(-, -)}, still denoted by {Vj(-, -)}, such that

Vi(x,t) = V(x, t) fora.e. (x, t) € R%.
Thus, there is a set Do C R with m(R \ Dg) = 0 such that for any t € D,
Vix, t) — Vix, t) fora.e. x € R. (4.19)

By the monotonicity of V/(x, t) in x and Helly’s theorem (see [36, P165]), we may assume that O € D, and for
each t € R\ Dy, there is {j;} C {j} such that

Vix, t) — V(x, t) fora.e. x € R. (4.20)
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In view of the boundedness of V/(., -), we may assume that V7!(0, 0) — V(0, 0) and hence V1(0, 0) = w1(0)/2.
Moreover, we may assume that V(x, t) is non-decreasing in x. Let v/(x, t) := VI(x + cot, t) and V(x, t) = V(x +
Cot, t). One can verify that

W+ (- coltl = Dy + FU(x, 1), 8). (4.21)
By (4.19) and (4.20), for given O < t < oo, there exists {j;} C {j} such that for any s € (Do N [0, t]) U {0, t},
Wi(x,s) — V(x,s)fora.e. x € R. (4.22)

Recallthatd; > Ofori=1,:--,igandd; = Ofori =ig+1,--- ,n.Fori=1,---, iy, we define two families
of mappings T}(t), T;(t) : L(R) — L=(R) by T%(0) = T;(0) = I, and

. i —(d = co)t - y)?
Ti(O[Px) := J:lef / exp{ - ¥=(€ . dclf;)t D3 by,

1 n C(x-y)?
TOPI00) - 4ﬂdit_/ exp{ - - Jeway,

forany ¢ € L*(R), t >0, x € R.Ifi € {1, -, io}, by (4.21), we have
wix, t) = T{:’(t)[u’l:’(-,O)](X)+/T{-"(t—S)[ﬂ(u’,:’(-,S),S)](X)ds,
which implies that 0
Vilx, t) = T;(O[V;(-, 0)](x) + / T;(t - 9)[f;(V;(-, s), 8)](x)ds, fora.e.x € R. (4.23)
0

Ifi e {ip+1, -, n}, by the dominated convergence theorem and Fubini theorem for Lebesgue integrals,
for any s(-) € C*>(R) with compact support, we have

/V,-(x, t)s(x)dx=llim /u’l:’(x, t)s(x)dx
R

R

=11Lrgo/{u§’(x,0)s(x)dx+

R

t
/ [- (- co)(u{:l)x(x, s) + d’l:’(ué’)xx(x, s) + i (x, 5), 8)]ds } s(x)dx
0
t

=11Lrgo/u§’(x,0)s(x)dx+llirile//ﬁ(uj’(x,s),s)s(x)dxds+

R 0 R

t
llim //[(cj’ - co)u’l:’(x, s)s’(x) + d’l:’u{:l(x, s)s” (x)]dxds
— o0

o R

t

=/Vl-(x, O)s(x)dx+//fi(f/(x, s), s)s(x)dxds
R

R 0

t
= [ Vi(x,0)s(x)dx + fi(V(x, s), s)s(x)dxds.
foacomse | |

R R
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Hence, fori € {ic +1,--- ,n},
t
Vilx, t) = Vi(x, 0) + /f,-(f/'(x, s), s)ds, fora.e.x € R. (4.24)
0

Note that (4.23)-(4.24) just hold for a.e. x € R. Let's define V (x,t) := lim_o V(x +
h, t)=1limy_,o- V(x + cot + h, t) =: p(x + cot, t) for all x € R, then it follows from (4.23)-(4.24) and the
monotonicity of V(x, t) in x that

t

Vi, t) = Ti(t)[Vi_(',O)](XH/Ti(t—S)[ﬂ(Vi_(',S),S)](X)dS, vie{l,--,io}, (4.25)
0
t
Vit B = Vi(x,0) + /fi(V’(x, 5),8)ds, Vi € {ig +1,-++ ,n}, (4.26)
0

foranyx e R, t > 0.

Similarly, there exist a function W(-,-) = (W1(:,+), -+, Wa(-, )T € Llloc(Rz, R™) and a subsequence of
{WI(., )}, still denoted by {W/(-, -)}, such that

Wi(x, t) — W(x, t) for a.e. (x, t) € R,
Define W(x, t) = W(x + cot, t) and

W*(x, t) = lim W(x + h, t)= lim W(x + cot + h, t) =: P(x + cot, t).
h—0* h—0*

Using the similar argument as above, we can obtain

t
Wi (x, t) = Ti(t)[W?(',O)](X)+/Ti(t—S)[fi(W?(',S),S)](X)dS, vie{l,---,lo},
0

t
Wi (x, ) = Wi (x, 0) + / fi(W*(x, 8), 8)ds, Vi € {io +1,--- ,n},
(0]

forany x € R, t > 0. Itis clear that V= (-, t + T) = V" (-, t)and W*(-, t + T) = W*(-, t).

We now consider the boundary behaviors of ¢(:, t) and (-, t) at too. Clearly, ¢(too, t) both exists and
are periodic solutions of the system:

t

u(t) = u(0) + /.f(u(s), s)ds,

(0]

and hence they satisfy (1.5). Since V(x, t) is non-decreasing in x, it follows that

¢1(0,0) = V7(0,0) = hliﬁrgi V1(h,0) < V1(0,0) = V1(0, 0) = w,(0)/2.

By our assumptions, system (1.5) has exactly three periodic solutions 0, w(t) and 1 with 0 < w(t) < 1,
vt € R. Thus, ¢p(-oc, t) = 0 and ¢p(+oo, t) = W(t) or 1. Similarly, we obtain p(+oo, t) = 1 and Y(—oo, t) = 0 or
w(t). By Lemma 3.1, we see that ¢p(+oo, t) = w(t) and y(-oo, t) = W(t) cannot hold simultaneously because
V (x,t) = p(x + cot, t) and W*(x, t) = Y(x + cot, t) are non-decreasing periodic traveling waves of (1.1) with
the same wave speed cq. That s, either V™ (x, t) = ¢(x + cot, t) or W*(x, t) = Y(x + cot, t) isa periodic traveling
front of (1.1) connecting 0 and 1 with speed cy. Since |ce| < Cy for any € € (0, 1], we conclude that |co| < Co.
This completes the proof of Theorem 1.2.
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5 Monotonicity of periodic traveling fronts

This section is devoted to the monotonicity of the periodic traveling waves. Throughout this section, we as-
sume that (C1)-(C3) and (C4)' hold and U(x + ct, t) is a smooth periodic traveling wave of (1.1) connecting 0
and 1.

We first consider the following linear initial value problem:

{ vi+cvx = DAV + Df(U, t)v, x e R, t > 0,

v(x,0) = p(x) € L=(R). (5.)

Three important lemmas are established in the sequel.

Lemma 5.1. Let v(x, t; @) be a solution of system (5.1) with v(-, 0; @) = @(-). If p(-) > 0, then v(x, t; @) > 0,
VxeR,t>0.

Proof. The proof is similar to that of Lemma 2.5. We omit it here. O

Lemma5.2. Givenany L > 0and c € R. Let it(x, t), u(x,t) : R x[1, 00) — [-601, 1 + 8¢1] be two continuous
functions which satisfy

(i)t + ciix = DAG + f(@, t) and u, + cu, < DAu + f(u, t), vx e R\ [-L, L], t > O;
(ii) @t(x, 0) = u(x, 0), Vx € Rand u(x, t) = u(x, t), Vx € [-L, L], t = 0.

Thenu(x, t) > u(x, t) forallx € R, t > 0.

Proof. Letv(x,t) = (vi(x,t), -+ ,valx,t)) := u(x, t) — u(x, t), vx € R, t > 0. Then v(x,0) > 0, -1 - 2601 <
vix,t)<1+26p1forx e R, t >0, and

(Vi)l’ + C(Vi)x - di(vi)XX 2fi(ﬂ, t) _fi(gy t), i= 1; cee L, N (5-2)
Choosing K > 0 large enough such that %K - |c| - %Lf -max{dy, -+ ,d;,} >0, where
Ly := max sup |ofi(u, t)/ou;|.

1<isn y c[-§01,1+601], 20

Suppose the assertion is false, then there existi € {1,--- ,n}, @ > 0 and ¢, > 0 such that

vilx, ) > —me* X forx e R, t € [0, ty), infycp vi(x, to) = —~me?Xlo

and vj(x, t) = 0 for x € R, t € [0, tol, j # i. Thus, there exists a bounded set S C R with positive Lebesgue
measure such that v;(x, to) < —12me?  for x € S.

Let {,(x) be a smooth function satisfying

minyeg {o(x) = 1, {o(x) = 1 forall x € S, sup,cp {o(x) = {o(¢o0) = 3,
166() < 1and |¢5'()] <1

For any a € [0, 1], we define the function
2(x, t; ) = —w(% +alo(0))eXt, x e R, t € [0, tol.

It is clear that %z(x, t;a)<0,Vae[0,1],x e R, t € [0, tol,

z(x, t; %) = —w(% + %(o(x))ezm < -—we* X <vi(x, ) forx e R, t € [0, to];

z(x, to; 5. —w(% + %(o(x))ezm" = —%wemO > v(x, to) for x € S.

8
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Thus,
a :=inf {a € (%, %]\vi(x, t) 2 z(x, t;a) forx € R, t € [0, to] }.

is well defined. Obviously, v;(x, t) > z(x, t; ax) for x € R, t € [0, to].
Since v;(x, 0) 2 0 > z(x, 0; ax) for x € R;
Z(too, t; ax) < —%wem <vilx,t)forx e R, t € [0, tol;
vilx, t) > z(x, t; ax) for x € [-L, L], t € [0, to],

we deduce that the function w(x, t) := v;(x, t) - z(x, t; ax) attains its infimum 0 at (x1, t1) € R\[-L, L] x(0, to].
Therefore, w(xq, t1) = 0, wi(xq1, t1) < 0, wx(x1, t1) = 0 and wxx(x1, t1) = 0. From (5.2) and the fact that
vj(x,t) 2 0forx e R, t € [0, tol, j # i, we have

0 2we(xq, t1) + cwx(xq, t1) — diwxx(x1, t1)
>fi(i(x, t1), t1) = filu(xq, t1), t1) = [z¢ + czx = dizxxl|(x, 1)
n
3
=Y 0ifilnlrs, t1), V01, 1) + WRK(G + @ {o(0))e*™ + can{p(x)e* ™ - dja (g (0)e*™']

j=1

7
20,fi(n(x1, t1), t1)vi(xq, t1) + [ZK ~|c| - d;]we**

3 7
== 0ifi(n(xy, t1), t1)w(z + axo(x1))e M + [ZK - lc| - di}wezml

7 3 2Kt;
z[ZK—|C|—§Lf—max{d1,--- , di, Yjwe™" >0,
where n(xq, t1) = 0ii(xq, t1) + (1 - O)u(xy, t1) with 8 € (0, 1). This contradiction implies that @(x, t) = u(x, t)
forallx e Rand t = 0. O

Recall that p* = %ln r* < 0and s:(t) = ((s)1(t), -+, (s)n(t)) are positive and T-periodic functions with
s:(-) < 1 such that v*(¢) = e !s.(¢) are solutions of the T-periodic linear system:

V() = Df(wW*(8), V(D).
Let
0<py < 3min{-ps, 4}, pimmin{_ min (50}, min {0} 53)
and {;(x) € C%(R, R+) be a function satisfying
) =0forx<-2,{(x)=1forx=2, 0<{1(x) < 1and |{{(x)] < 1 forx € R. (5.4)
Then, for € > 0, we define
p(x, £) := G (x)s+(6) + (1 = {1(0))s- () and ue(x, £) := U(x, £) + p(x, ee Pt (5.5)
Lemma 5.3. There exist é&« > 1 and e« > 0 such that for all O < € < &,
(ue)t + c(ue)x =2 DAue + f(ue, t), Vx € R\[-é, &, t = 0.
Proof. For simplicity, we denote
Lluel(x, 8) == (ue)e + c(ue)x — DAue - f(ue, t).

Note that p(x, t) = s+(t) for x = 2 and p(x, t) = s_(t) for x < —2. Direct computation shows that, for any |x| = 2
andt =0,

e P Llug](x, t) =£’1eﬁ1t[Ut +cUy - DAU - f(U + pee”P1t, t)] + pt — B1p + cpx — Dpxx
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=£'1eﬁ1t[f(U, t) - f(U + pee Pt t)] +pe - P1p. (5.6)

Since lim U(x, t) = 1 uniformly in ¢, it follows from (4.3) that
X—r+o0

e P [F(U, O) - (U + pee?t, 0] + pe
1

= —/Df(U +p98e’ﬁ”, t)dOp + pr — -Df(1, O)s.(t) + s,(£) = —u*s.(8), (5.7)
0

as X — +oo and € — O uniformly in ¢ = 0. Therefore, there exist &; > 2 and £; > O such that forall0 < € < &1,
+
e lefrt fU, ) -fU+ ce Pt O] +p; > —H—s+(t), vx > &1, t> 0.
p D¢ 5 1

By the above inequality and (5.6), for all 0 < € < &1, we have
+
e leP  olug](x, ) = [—% —B1ls+(t) >0, vx > &, t> 0.

Similarly, one can show that there exist £, > 2 and &, > 0 such that forall 0 < € < &5,

e P Llugl(x, t) = [—’% - B1ls-(t) > 0, ¥x < =&, t > 0.
Letting &« := min{&y, £, } and & := max{¢&1, &}, then assertion of the lemma follows. O
Now, we are ready to give the proof of Theorem 1.3.

Proof of Theorem 1.3.

Note that lim U(x, t) =1and lim U(x, t) = 0 uniformly in t. Form Lemma 5.3, we can choose ¢ large
X—>+oo X—>—00
enough such that

Ulx,t)21- %&[31, vx 2 &, te Rand U(x, t) < %&[yl, Vx < &, teR.

Then, there exists z« > 0 such that

Ux, t), ifx e [-&, &], teR,
Ux-2z,t) < _ . 5.8
=210 { U(x,t) + e«p1, ifx € R\[-&, &), t € R, (5.8)
for all z = z«, where éx and e« are given in Lemma 5.3. We first prove that
Ulx-2z,0)<U(x,0)forallx € R, z > zs. (5.9)

Notice that w(x, t) = U(x, t) satisfies the following system
We+ cwy = DAw + f(w, t), x c R, t € R.
By (5.8), for any z > z+, we obtain

ue.(x, 0) =U(x, 0) + [{1(x)s5+(0) + (1 - {1(x))s-(0)]ex

>{ U(x,0)+pe12U(x -z,0), VxeR\[-&,E&],
U(x,0) = Ulx -z, 0), VX € [=&x, &,

which implies that u.. (x, 0) = U(x - z, 0) for all x € R. Moreover,
Ue. (X, ) 2 U(x, t) 2 U(x - z, t), Vx € [-&, &], t=20.

By Lemmas 5.3 and 5.2, we deduce that U(x-z, t) < ue.(x, t), Vx € R, t > 0, z > z+. In particular, U(x-z, nT) <
us.(x, nT), Vx € R, n € N, z > z«. Using the periodicity of U(-, t) and s.(t), we have forany n € Nand z > z,

Ulx-2,0) < U(x,0) + [(1(x)s+(0) + (1 - (1(x))s_(0)]e*e’ﬁ1"T, vx € R.
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Letting n — oo in the above inequality, we conclude that (5.9) holds.

Next, we show that (5.9) actually holds for any z > 0. To this end, we denote
zo:=inf{z20:U(x-2,0) < U(x,0), Vz=z, x € R}.

Clearly, U(x - zg, 0) < U(x, 0) for x € R. We claim that U(x — zg, 0) = U(x, 0) for x € R. Suppose the claim is
false, by part (ii) of Lemma 2.5, we have

Ulx-2zg,t) € Ulx,t)forx e Rand t € R.

Then, there exists € > 0 such that

Ulx, t), if x € [-&, &),

Vz > 2o - €.
U, £) + eapl, ifxeR\[-&, &, - 0" €

U(x—z,t)s{

Similarly, one can show that (5.9) holds for any z > z; — €, which contradicts the choice of zo. Hence U(x -

29, 0) = U(x, 0) for x € R. Since lim U(x,0)=1and lim U(x,0) = 0, we conclude that zy = 0. Therefore,
X—>+0o0 X—r—00

(5.9) holds for any z > 0.

By (5.9), we see that Ux(x, 0) = 0 for x € R. Since Ux(-, 0) % 0 and v(x, t) := Ux(x, t) satisfies the following
linear system:

ve+cvy = DAv+Df(U, v, x e R, t € R. (5.10)

Therefore, it follows from Lemma 5.1 that Ux(x, t) > O forall x € R and t € R. This completes the proof of
Theorem 1.3.

6 Stability of periodic traveling fronts
In this section, we prove the uniform and asymptotic stability of the smooth periodic traveling waves under
the assumptions (C1)-(C3) and (C4)’.

Let U(x + ct, t) be a smooth periodic traveling wave of (1.1) connecting 0 and 1. By Lemma 1.3, we know
that Ux(-, -) > 0. Given any 7 = 0. Let 81, p, {1(x) and p(x, t) be the terms defined in (5.3)-(5.5), respectively.
We first construct some pairs of sub- and supersolutions.

Lemma 6.1. There exist 61 > 0 and o, > O such that for any 6 € (0, 61), &1, & ¢ Rwithé&, € [-2+&;, 2+ &1],
the functions

u'(x,t) =U(x+ct+é& +0,6(1 - e Pty t)x6p(x+ct+& 01601 - e Pty t) e Fit=D)
are super- and subsolutions of (1.1) on [T, +o0).

Proof. For convenience, we denote
&0 = x+ct+&+0,801-ePED) 11,2,

Clearly, &;(x, t) = &(x, t) + &1 — &,. By direct calculations, we have

H[u"1(x, t) :=uf - DAu* - f(u", t)
=(c + 0181 PN ULE(x, 1), £) + U(&1(x, £), ) - DUx(&1(x, ), -
F(UE (X, 0, )+ 8p(&(x, 0), e P 6) + [p&(x, B, 8) + (¢ + 01881 ET)
px(&(x, 8), 0]8e P — Bip(&(x, 1), e P — Dp (& (x, ), Hse P
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=f(U(&1(x, O, O - FUEL(x, O, O + 8p(&(x, B, e P, p+
8e P D (6181 Ux(€1(x, £), £) + pel(&2(x, 1), ) - B1p(&x(x, ), O+
(c+018B1e P pu(&(x, O, ) - Dpxx(&(x, 8), 0)]

=6e P (0181 Un(&1(x, O, D) + K1 (& (x, D, B) - Bip(&a(x, 0), O+
(c+018B1e P pu(&(x, O, ) - Dpx(&:(x, 8), 8)], (6.1)

where

1
Ki(&0x, 1), 8) = - / Df (U(&(x, ) + &1 - &, ) + 80p(&(x, O, e P, 1) dop (& (x, 0), ©)

0
+pt(§2(X’ t)’ t)-

Note that p(x, t) = s+(t) for x = 2 and p(x, t) = s_(t) for x < -2. Since |&; - & < 2, Xl_i)rp U(x,t) = 1 and
Xglp U(x, t) = 0 uniformly in ¢, by (4.3), we have

Ky(¢,t) = -Df(1, t)s+(t) + s, (t) = —p+s+(t) as & — +oo and § — O uniformly in ¢;
K1(&,t) — -Df(0, t)s-(t) + s"(t) = —u-s—(t) as & — —oo and § — O uniformly in .

Then, there exist 6o > 0 and M = 2 such that forall 0 < § < 8o,

Ke0>{ T Ve 2
By Theorem 1.3, we have Ux(:, -) > 0. Thus, we can take
a= (&g, ,an) := (IX‘Srﬁjg’tN(Ul)x(x, t), - ’\x|sIAl;Il+i-£l,t21(Un)X(X, ) >0
and choose o, > 0 large enough such that
%olﬁla > (Lg +B1+2|c| +2max{dy, - ,dj,} + n}ﬁ)X{HS/—(f)H + |40}, (6.3)

where Ly := sup, c[_s,1,1+8,1],t=7 |IDf (U, t)]|. Let’s set

1 min{dl,--- ,an}}

61 := m1n{60,5o,a, 7

Given any 6 € (0, 61), we consider the following two cases.

Case (i): |&>(x, t)| = M. We only consider the case &> (x, t) = M, the proof for the case &, (x, t) < M is similar.
Since M = 2, p(&(x, t), t) = s+(t), we have px(&(x, t), t) = pxx(&2(x, t), t) = 0. Then, forallx € R, ¢ > T, it
follows from (6.1) and (6.2) that

571 IH Wk, ) 2K (Galx, 1), 6 - Brp(Eale, 0, 0 2 [-BE - Bals.(0) 2 0. (6.4)
Case (ii): |&2(x, t)| < M. For x € Rand t = 0, it’s obvious that

&0 0 < M+ & - &< M+ 2, P, t) = Gi(X)s+ () + (1 - (1(x))s-(8) < 1,
px(, ) = (1(0)s+(0) - (100s-(8) <2, pax(x, ) = {7 (s () - 7' (0)s-(8) < 2,
pe(x, t) = (1 ()s4 (O + (1 - H00)sE(E) < Irtlg)x{llsi(t)ll + s ()] }1.

Then, from (6.1), we deduce that

6 1P I [ut(x, O
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201B1a - (Lp + n}za%)x{us’_(t)u +1s4(O)1})1 - B11 - 2(|c| + 018B1 + max{dy, - ,d;,})1

1 _
2501[310( - (Lp+B1+2|cP1 - (2max{dy, -+ ,d;, } + nt1>%x{||s’_(t)\| +|sL@0)}1)1
>0, Vx € R, t> 1. (6.5)

Therefore, we conclude that u*(x, t) is a super-solutions of (1.1) on [7, +o0). Using a similar argument, we can
show that u™(x, t) is a sub-solutions of (1.1) on [7, +o0). m

Lemma 6.2. Let a: € [-2601, 1 + 28p1] be any given vectors in R" with a- < a. and {(-) be the function
defined in (4.4). Define

VE(x, 8) s=v(t; a:)S(x + h+ Ct) + v(t; a5) (1 - {(x + h + Ct)), (6.6)
wi(x, t) :=v(t; a5 ){(x + h - Ct) + v(t; a:) (1 - {(x + h - Ct)), 6.7)

where v(t; @) is the solution of (1.5) with initial condition v(0; @) = a. Then, forany C > 1 and h € R, v*(x, t)
and w*(x, t) are two pairs of sub- and supersolutions of (1.1) on [0, +o0).

Proof. We only prove that v*(x, t) is a supersolution. The other cases can be proved similarly. From Lemma
2.5, we see that P(a) = v(T;a) : [0,1] — [0, 1] is strongly monotone. By the Dancer-Hess connecting orbit
lemma (c.f. [31]), one can see that

tlim v(t; a) = 0 for any a € [0, w) and tlim v(t; a) = 1 forany a € (w, 1],
—>00 —>o0

where w = w(0). Note that -2601 € Q- and 1 + 2691 € Q., where Q- and Q. are the domains of attraction
of 0 and 1, respectively. Therefore, for any a. € [-2601, 1 + 26¢1] with a- < a., v(t; a.) are defined for all
[0, +o0) and satisfy v(t; a-) < v(t; a.) for t € [0, +o0).

Let n(x,t) = x + h + Ct. Since 0 < {(-) < 1, {'(s) = {(s)(1 — {(s)) and {"(s) = {(s)(1 - ¢(s))(1 — 2{(s)), by
using the Taylor’s expansion, we obtain
vt as), 6) + (1 - Ofi(v(t; a-), t) - fi(Qv(t; as) + (1 = Ov(t; a-), B)
=(lfi(v(t; &), £) = f;({v(t; ) + (1 = Ov(t; a-), O]+
1 - Olfilv(t; a-), t) - fi(Qv(t; as) + (1 = Ov(t; a-), B)]

2
_¢@a- ()ZZ (1- ()afl ((x, ), (a fiG(x, t), t)]

ox;x; 0X;X
j=1 I=1
x [vj(t; ar) = vi(t; a)][vi(t; a+) - vi(t; a-)]
"2
400 55 O IGO0 - vt M6 ) - vt ), 69
j=1 I=1

where y(x, t), y(x, t) € (v(t; a-), v(t; a+)) and y(x, t) is a function satisfying

O’ fily(x, 0, 8) _ ()6 2fiGx, 0,0 |, O*fix, 0, 8)

0X;X| 0X;X| 0XjX;
Let
0%fi(z, t)  lvj(t; ) = vi(t; a)][vi(t; ax) — vi(t; a-)]
C:=max{dy,-, sup{ZZ\ gxil J v](t,a+) vl(t,a_) ! ,

j=1 I=1
i=1,---,n,z€ (v(t;a),v(t;as)), t = 0}.

From (6.8), direct computation shows that

Hilv'10x, £) :=(v{)e - di(vi)xx = fi(v", ©)
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=¢(nCx, Ofi(v(t; @), t) + (1 = Cln(x, ONf; (v(t; a-), t)-

fi(C(x, O)W(t; ar) + (1 = Snlx, ONv(t; a-), t)+

{(nGx, )@ = {(lx, ONIC ~ di(1 - 2¢(n0x, ONILvi(t; a+) - vi(t; a-)]
2[vi(t; a+) - vi(t; @)l (n(x, D)1 - {((x, 1){C - d;+

1 Z Z O fi(y(x, 1), 1) vi(ts av) — vi(&s a)]lvi(ts a) - vi(t; @) 120, ©69)
2 i 0XjX; vi(t; as) —vi(t; a-)
for x € R, t > 0. Therefore, v*(x, t) is a super-solution of (1.1) on [0, +oo). O
Lemma 6.3. Let ¢ € L™(R, [-6o1, 1 + 8o1]) be such that
1)1(13 H.lof ¢(x) > wand hxni silop d(x) < w. (6.10)
Then for any § € (0, 8,), there are H > 0 and T > 0 such that
Ux-H+cT,T)-61<ulx,T;¢)<Ux+H+cT,T)+ 61, (6.11)
where u(x, t; @) is the solution of (1.1) with u(-, 0; ¢) = ¢(-).
Proof. For any given sufficiently small x > 0, by (6.10), there exists M; > O such that
¢(x) > w+ k1 for x > M1 and ¢p(x) < w — x1 for x < -M;. (6.12)

By Lemma 6.2, for any h € R and sufficiently large C,

VX, ) =v(t; 1+ 2801)¢(x + h + Ct) + v(t; w - k1) (1 - {(x + h + Ct)),
v (x, ) =v(t; W + k1){(x — h = Ct) + v(t; -2801) (1 - {(x - h - C1)),

are super- and subsolutions of (1.1) on [0, +o0), respectively. From (6.12), we can choose h > 0 large enough
such that v™(x, 0) < ¢p(x) < v*(x, 0), ¥x € R. Hence, by Lemma 2.4,

vix, ) <ulx, t; ) < vi(x,t), ¥x €R, t> 0. (6.13)
Moreover, from the proof of Lemma 6.2, we see that
lim v(t;1+2601) = lim v(¢; w + k1) = 1 and lim v(¢; w — k1) = lim v(t;-28¢1) = 0.
t—roo t—oo t—oo t—oo

Hence, for any 6 > 0, there exists T = 0 such that

1- 21 <v(T;a) <1+ gl and - gl <v(T;a-) <« gl, (6.14)
where a+ = 1+ 2601 (oray = W+ x1) and a- = w — k1 (or a- = -28p1). Since lim U(x,t) = 1 and
X—r+o0

lim U(x, t) = 0, it follows from (6.13)-(6.14) that there exists large H > 0 such that
X—y—00

Ux-H+cT,T)-61<v (x,D<ulx,T;¢)<v'(x,T) < Ux+H+cT, T)+61

for all x € R. This completes the proof. O

In the sequel, let 81, p and p(x, t) be the terms defined in (5.3) and (5.5), respectively; o, and §; be the con-
stants defined in Lemma 6.1; and 8, be the term defined in Section 1.

Lemma 6.4. There exists e+ € (0, min{%l, 2—(171}) such that if u(x, t) is a solution of (1.1) with the property: for

some T € [0, +00), £ € R, h >0 and 6 € (0, pmin{-L, o11),

2%

Ux+ct+&,1)-61<ulx, 1) s Ux+ct+&+h,7)+61, VX €R, (6.15)
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then, forevery t =t + 1,
Ul +ct+ &), t) - 601 <ulx, t) < Ulx + ct + &(t) + h(t), t) + 6(t)1, Vx € R, (6.16)
where &(t) € [§ - 016/p, &+ h+d16/p),
8(t) < e PV [5/p + exmin{1, h}] and h(t) < h - 01ex min{1, h} + 2018/p.

Proof. Take & = 6/p.Then & € (0, min{ L, 811). From the definitions of p(x, t) and p, we deduce that p(x, t) =
plforany x € R, t > 0. Thus, by (6.15), we have

U+ct+&,1)-8p(x+ct+&, 1) <ul, 1) s Ulx+ct+&+h, 7) +6p(x+cT+ &+ h, 7)
for x € R. It then follows from Lemmas 2.4 and 6.1 that

U(&-(x, 0), t) - Bp(&-(x, D), t) e PED
su(x, ) < U(&(x, )+ h, t) +8p(&.(x, ) + h, t) e PED, 617)

forx e Rand t > 7, where &.(x, ) = x + ct + & + 016(1 - e P1t=1)) Let's set
h =min{h, 1} and & = %min{(Ul)x(x, £):|x|<3,te[r, T+ T},

where U, is the first component of U. Fix any number xq € [-cT - &, —-cT - ¢ + 1], we have
1
/[Ul(y +xo+CcT+&+h,T)-Uy(y +xo + cT + &, 7)]dy = 2€h. (6.18)
0

Hence, one of the following inequalities holds

1
/[ul(y+x0,r)— Ui(y + xo + cT + &, 7)]dy = €h, (6.19)
0
or
1
/[Ul(y +Xo+cT+&+h,T) - uy(y + X0, T)]dy = Eh. (6.20)
0

We prove the lemma for the case that (6.19) holds. The other case can be treated similarly.

By interpolation and the boundedness of Uxx(x, t), we deduce that lim Ux(x,t) = 0 uniformly in ¢.

x| o0
Then, there exists M > 0 such that
201||Ux(x, 8)|| < p forany x € R with x| > M —|c| -3 and t > 7. (6.21)
Let’s define _
€x 1= mln{ﬁ i mln L}
’ 27 201 |x|<t+|c|+3,¢e0,1] 201 || Ux(x, 8)[| 7

where 6 = O(M) is given in lemma 2.5. Then, for any x € R with |x| < M,
|E-(x + X0, T+ 1) + 2€x01h| = X + X0+ cT + ¢+ & — 018(1 - eP) + 2ex01h| < M+ |c| + 3,
which implies that
U(&-(x+x0,T+1),T+1) - U(&(x + X0, T+ 1) + 2ex01h, T + 1) 2 -Beh1. (6.22)

Comparing the functions
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v(x, t) := u(x + xo, t) and u-(x, t) := U(&-(x + X0, 1), t) - Sp(éi(x +Xo, 1), t) e Prlt=D)

and using Lemma 2.5, we have

ux+x0, 7+ 1) = [U(&-(x + X0, T+ 1), T+ 1) = bp(&-(x + X0, T+ 1), T + 1)e’ﬁ1]

1
>0(M) / {ur(y + x0, 7) = [U1 (§-(y + X0, 7), T) = 6p (é-(y, 7), 7)1 }dy1
0

1
zé/[ul(y+xo,r) - Uy (y+ct+x0+&,7)]dyl = Beh1,
0

for any x € R with |x| < M. The above inequality and (6.22) yield that
u(x +x0, T+1) 2 U(&-(x + X0, T+ 1) + 2e«01h, T + 1) - Se’ﬁlp({_(x +X0,T+1),T+1), (6.23)
for any x € R with |x| < M. For x € R with |x| > M, we have
|E.(x + X0, T+ 1) + 2€x01h| 2 |X| = |xo + cT + c + & = 018(1 — e PV) + 2ex01h| 2 M - |c| - 3.
It then follows from (6.21) that for any x € R with |x| = M,

U((x+x0, T+1),T+1) -U(&(x+x0, T+1)+ 2ex01h, T + 1)
=-201Ux(&-(x + X0, T + 1) + 29€x01h, T + 1)€xh 2 —pexhl 2 —exhp (§-(x + xo, T+ 1), T + 1),

where 9 € (0, 1). On the other hand, from (6.17), we have
u(x +xo, T+1) 2U(&-(x + X0, T+ 1), T+1) - (_Se"ﬁlp(é’_(x +X0, T+1),T+1). (6.24)
Thus, for x € R with |x| = M,

u(x +xo, 7+ 1) 2U(E(x + x0, T+ 1) + 2€x01h, T+ 1) -

(exh +<_$e’ﬂ1)p(.{_(x+xo,‘r+ 1),7+1). (6.25)
Clearly, 6 := e<h + 6e P € (0, ;). Combining (6.23) and (6.25), we conclude that
u(x, 7+ 1) 2U(é-(x, T+ 1)+ 2e«01h, T+ 1) - 5‘p(§_(x, T+1),T+1)
=Ux+c(t+1)+&,7+1) - Sp(x +e(t+1)+&,7+1), VX eR, (6.26)
where
{1 = f— 0'18(1 - e‘ﬁl) + 2€*0’1FI and é‘z = f— 018(1 - e"ﬁl) S [51 - 2, 51]
Note that p(-, -) < 1 by the definition of p(-, -). It then follows from (6.26), Lemma 6.1 and Lemma 2.4 that
u(x, ) 2U(x +ct + & - 018(1 - e Prlt=r-1)y t)-
5p (x+ct+& - 018(1 - e PtT-0)y, t) e PiltT-1)
2U(x+ct+& - 018,t) -8 P V1= U(x+ct+ £(0), t) - 8(D1 (6.27)
forallx e Rand t > 7 + 1, where
&) =&~ 018+ 01€+h, and 8() = §ePETY = (enh + GePr)e PrltT-D),

Let h(t) = h + 2016 — 01€xh, by (6.17), we obtain the first inequality in (6.16). This completes the proof. O
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Proof of Theorem 1.4.

Based on lemmas 6.1-6.4, the proof is similar to those of [21, Theorem 3.1] and [24, Theorem 5.1]. For com-
pleteness, we present it in the sequel.

(1) Let 81, 01 and B; be as in Lemma 6.1. Given any € > 0. By the uniformly boundedness of Ux(x, t) and
the periodicity of U(x, -), there exists vo € (0, 1) such that for any v € (0, vy,

lUX +v,t) - Ulx, t)|| < %forallxeR, t=0. (6.28)

Choose § € (0, pmin{§, &, o> }). Forany ¢ € L=(R) with [|¢(-) - U(, 0)|| ;=) < 8, we have
U(x, 0) - 6p(x, 0) < U(x, 0) - 61 < ¢(x) < U(x, 0) + 61 < U(x, 0) + 6p(x, 0), Vx € R,
where § = 6/p € (0, min{$, %, ;—2 1). Then it follows from Lemmas 6.1 and 2.4 that
U(x+ct-018(1-eP), ) - 8p(x+ct- 0181 -eP), t)e P!

su(x, t; ) < U(x + ct+016(1 - e Pity, t) +8p(x+ct+016(1- e Frt), t) e Pt

for x € R, t > 0, which implies that
U(x+ct-016,t) - 61 <u(x, t; p) < U(x +ct + 016, t) + 61. (6.29)

Combining (6.28) and (6.29), we deduce that |[u(-, t; ¢) — U(- + ct, t)|| =) < € forall £ > 0.

(2) Let e« be as in Lemma 6.4, §" = min{%, %,60, P} and k" = 01€" - 20187/p. Clearly, 1 > k" >
01€"/2 > 0. Fix a number ¢ > 2 such that

e"ﬁl(t*_l)[% + %] <1-x.

By Lemma 6.3, there exist &, € R, To > 0 and hy > 1 such that (6.15) holds for (1, &, h, 8) = (T, &, ho, 67),
that is,

U(x +cTo + &, To) = 8 1 < u(x, To; @) < Ulx + cTo + &o + ho, To) + 61, Vx € R. (6.30)

We first prove the following two claims.

Claim 1. There exist T > Ty, %’ € R such that (6.15) holds for (1, ¢, h, §) = (T, .%, 1,89, i.e.
Ukx+cT+ E’, N-61<ulx,T; ¢) < Ulx + cT+ff+ 1,T)+61, vx e R. (6.31)
Let N € Z, such that 0 < hy - Nx” < 1. With (6.30), by Lemma 6.4, we conclude that
Ulx +cTy + &(T1), T1) - 8(T1)1 < u(x, T1; @) < Ux + cTy + &(Tq) + h(T1), T1) + 6(T1)1,
vx € R, where T; := Ty + t«, and

& = &(T) €léo - 016" /p, & + ho + 0167 /p],
81 := 6(T1) <e P V[6"/p + exmin{1, ho}] = 6 e P& V[1/p + €./67] < &,
hy == h(T;) <ho - 01€x min{1, ho} + 2018 /p=ho-x .

Hence, we have
Ux+cTy + &, T1) - 811 <u(x, Ti; ) < Ux + Ty + & + hy, T1) + 611, vx € R.
Repeating the same process, we can show that

Ux +cTy + &y, Tn) - 6n1 < ulx, Ty; ) < Ulx + cTy + &y + hy, Ty) + 6x1, (6.32)
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where x € R, Ty := To + Nt«, and
&y elén1-01851/P, &1 +hy 1+ 018y 1/Pl, 6y <8, hy <ho- Nk < 1.

Let T = Ty = Ty + Nt~ and é’ = g’ v, then the Claim 1 follows from (6.32) and the monotonicity of U(x, t) with
respect to x € R.

Claim 2. Let T, = T + kt«, 8}, = (1 - x)*8", hi = (1 - k)X, k € N. There exits a sequence {&;}3>, C R with
& = & be such that &, - &] < hi(1 +2016"/p), and

Ux + cTy + &, Ty) - 811 < u(x, Trs @) < Ulx + cTy + & + by, Tp) + 6,1, VX € R, k> 0. (6.33)

In fact, by Claim 1, we see that (6.33) holds for k = 0. By using the mathematical induction and Lemma 6.4,
one can easily show that the Claim 2 holds.

Then, for each k = 0, (6.33) implies
U(x + cTy + &, Tp) = 6pp(x + c Ty + &, Tp) < u(x, Tr; §)
<U(x + cTy + & + by, Ty) + 63p(x + c Ty + &, Tp), Vx € R, (6.34)

where 8}, = 6;/p = (1 - x")*6"/p < &,. Note that h}, € [0, 1], Yk € N. By (6.34) and Lemmas 6.1 and 2.4, we
have

Uk + ct+ & — 018,(1 - e PETI), 1) = Brp(x + ct + & — 01831 — e P1ETW), peFilt-T)
<u(x, t; @)
<U(x+ct+& +hy +0,6,(1 - e PETYY p)
+ 8 p(x+ ct+ &+ 841 - e PETI) e P T yy c R, ¢ T
Using the fact p(-, -) < 1 and the monotonicity of U(x, t) with respect to x, we obtain
U(x + ct + & — 0185, ) = 8 < u(x, t; §) < U(x + ct + & + hy + 0165, t) + 6 (6.35)
forallx e R, t > T,:. Moreover, for any t = T, letk = [%T] be the largest integer not greater than (¢ — T)/ tx,

8(t) := 8}, &(6) = & - 016} and h(t) := h + 2016}

It then follows from (6.35) that
Ulx +ct + &(t), t) - 6(t) < ulx, t; ) < Ulx + ct + &(t) + h(t), t) + 6(¢). (6.36)

Take pg := tl In(1 - x*), one can easily show that

8(b) < %e"""(t"T_t*), h(D) < (1 + 20,8 /p)e Holt-T-t), &(oo) := tlim &(t) exists
—>o00

and 1 "
£ - §(e0)| < [ (1 +2018"/p) + 2018" [ p]e 0.

Hence the assertion of Theorem 1.4 follows.

As a direct consequence of the asymptotic stability, we can prove the uniqueness of the smooth periodic
traveling waves.

Proof of Theorem 1.5.

Without loss of generality, we assume that U @(x, t) is smooth. By Theorem 1.3, we know that U,((z)(-, 9>
0. Since U (+o0, t) = 1 and U?(~oo, t) = 0 uniformly in t, we see that 0 <« U9, ) <« 1. By Theorem 1.4
(ii), there exists ¢&* € R such that

sup HU(l)(x +cit, t) - U(Z)(x+ cot + ‘;'*, t)|| —» O0ast — oo.
xeR
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Hence,

sup ||U(1)(x +(c1 - )t - ‘;”*, t) - U(z)(x, t)] —» Oast — oo.
XER

In particular,

sup ||U(1)(x +(c1 - c)nT - f*, nT) - U(Z)(x, nT)|| — 0asn — oo.
xeR

By the periodicity of the traveling waves, we obtain

sup HU(D(X +(cq1 - c))nT - 5*, 0) - U(Z)(x, 0)]| -+ Oasn — oo. (6.37)
xXER

Then, fix any x; € R, it follows from (6.37) that
100 + (c1 - c2)nT =&, 0) - U2 (x1,0)| — 0asn — oo.

Since UV (+00, 0) = 1, UV (~00, 0) = 0 and 0 < U?(x1, 0) < 1, we deduce that ¢ := ¢; = ¢,. Thus, it follows
from (6.37) that UV(-, 0) = UP(- + &, 0). Therefore, UV (x + ct, t) = UP(x + ct + &, t), Vx, t € R. This
completes the proof of Theorem 1.5.

7 Applications

In this section, we will apply our main results developed in Sections 2-3 to some epidemic and population
models.

7.1 An epidemic model

For simplicity, we consider the following dimensionless epidemic system as (1.3), i.e.,

(7.1)

U = duxx —ulx, t) + av(x, t),
ve = —pv(x, ) + g(ulx, 1), 1),

where a := a,,/a?, and B := a»,/ai1. Let us denote f(w, t) := (~w; + aw,, —Bfw; + g(w1, t)) and assume that
11

(Ml) d’ (X,B >0, g(" ') € Cl([_l, oo) X [O, °°))’ g(o, ') =0, gu(u, t) = % >0, V(u, t) S [_1, °°) X [O, °°),
and g(-,t+ T) = g(-, t) for some T > 0.
(M2) The Poincaré map P(a) := w(T; a), where w(t; a) is the solution to the ODE:

w () = f(w(t), t), w(0) = a € R?, (7.2)

has exactly three fixed points w™, w and w* satisfying w~ < w < w*, r(DP(w*)) < 1 and r(DP(w)) > 1.

It is easy to verify that
-1 o
Df(w,t) = .
/ (%MM)%)

Thus, by the assumptions (M1) and (M2), we see that the assumptions (C1)-(C4) and (C4)’ hold for (7.1) hold.
Therefore, the conclusions of Theorems 1.2-1.5 are valid for system (7.1).

7.2 A population model

Let us consider the population model (1.4) by taking y;(t) = y1, y2(t) = y2, and f(u) = y()h(u) with h(u) =
u(l-w)(u-3),ie,

{ Ut = dyuxx + y(Oh(u) - y1ulx, t) + yvix, t), 73)

ve =yiulx, t) - y,v(x, t),
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where dq, y1,y2 > 0, y(- + T) = y(-) > O for some T > 0.
For convenience, we denote F(w, t) = (F1(w, t), F2(w, t)), where w = (w1, w»),
Fi(w, 8) :== y(Oh(w1) - y1w1 +yowz and Fo(w, t) := y1w1 = yaws.
Then the reaction system of (7.3) can be rewritten by
w(6) = F(w(b), ©). (74)

Itis clear that (0, 0), (1/2, y1/(2y2)) and (1, y1 /y,) are T-periodic solutions of (7.4). Let P(a) := w(T; a), where
w(t; @) is the solution of system (7.4) with initial value w(0; &) = a. We can obtain the following result.

Theorem 7.1. Assume d; > O, y(- + T) = y(-) > O for some T > 0. Then the conclusions of Theorems 1.2-1.5
are valid for system (7.3), that is, (7.3) admits a unique (up to translation) and globally stable (with phase shift)
bistable time-periodic traveling front connecting (0, 0) and (1, y1/y-).

Proof. By direct computations, we have h'(wq) = 3wy — BW% - % and
/ p—
DF(W, t)= < y(t)h (Wl) J/l ,V2 > .
Y1 -2
Then, it is easy to see that (C1), (C3), (C4) and (C4)’ hold for system (7.3).

Next, we verify the bistable assumption (C2) for (7.3). We first prove that system (7.4) has exactly three
T-periodic solutions: (0, 0), (1/2, y1/(2y,)) and (1, y1/y>). Suppose that w«(t) = (u«(t), v«(t)) is a T-periodic
solution of system (7.4). It is clear that

{ uk(t) = y(Ohu«() - y1us(t) + y2vs(t),
Vi(t) = )/1Ll*(t) - y2V*(t),

which implies that u.(¢) + vi(t) = y(t)h(ux(t)). Hence, we obtain

T
/ Y(Ohu(B)dt = 0. (75)
0

Then we have the following
Claim: 0 < us(t) < 1 forall t € R.
We only prove that u«(t) < 1 for all t € R, since the other assertion can be treated similarly. Suppose that
there exists t; € R such that ux(¢1) > 1. Take w(t) = (u(t), v(¢)), where
fl(t) = M and V(t) = Myl/yz, VvVt € R.

We can choose M > 1 sufficiently large such that w(t) > wx(t), Vt € R. Moreover, it is clear that w(t) is an
upper constant solution of (7.4). Let w(t; w(0)) = (u(t; w(0)), v(t; w(0))) be the solution of (7.4) with initial
value w(0; w(0)) = w(0). Since (7.4) is a monotone system, w(0) = (1, y1/y>) and (1, y1/y-) is a solution of
(7.4), it follows that

w(t; w(0)) = w+(t) and w(t; w(0)) = (1, y1/y2), Vt € R.

Let us define a sequence of functions {w;(t)}xcn as follows:
wi () = (ug(t), vi (1) := w(t + kT; w(0)), vt € R.
Since w(t) is an upper constant solution of (7.4), we have w(T; w(0)) < w(T). Then, for k € N,

Wi () = w(t + (k + 1)T; w(0)) = w(t + kT; w(T; w(0)))
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< w(t+kT; w(T)) = w(t + kT; w(0)) = wy(t), vt € R.

By this monotonicity, we can define w(t) = (&i(t), ¥(t)) := klim wy(t), vt € R. Itis easy to see that wy(t) satisfies
—>o00

{ i (H) = YO (D) - y1ug(t) + y2vi(©),
V;((t) = y1u(t) = yavi(8),

which yields that

t
(D) = 1, (0) + / VS)hui(s)) - y1ue(s) + y2vi(s)lds,
0

t
Vi) = v, (0) + / Y1(s) - yovi(s)lds.
0

Taking k — oo, we obtain

t
u(t) = u(0) + /[)/(S)h(ﬁ(S)) - y1i(s) + y2¥(s)lds,
0

t
7(6) = 7(0) + / 1ii(s) - y2#s))ds.
0

This deduces that w(t) is a solution of (7.4). Moreover,
W(T) = lim wi(T) = lim w((k + 1)T; w(0)) = lim w(k'T; w(0)) = w(0).
k—oo k—so0 k! oo
Hence w(t) is a T-periodic solutions of (7.4) which satisfies
w(t) = w«(t) and w(t) = (1, y1/y2), vVt € R.
Since fOT y(Oh@(®)dt = 0, y(-) > 0and h(u) = u(1 - w)(u - %), we conclude that w(t) = (1, y1/y>), and hence
u«(t) < ii(t) < 1 for all t € R, which contradicts to ux(t;) > 1. Therefore, the claim holds.

Next, we prove that w«(t) = (0, 0), or (1/2, y1/(2y2)) or (1, y1/y2). By (7.5), we see that if h(ux(t)) does not
change sign on [0, T], then h(u«(t)) = 0. Further, there exists ty € [0, T] such that u«(to) = 0 or 1/2 or 1. We
consider the following three cases.

Case 1: u(tp) = 1/2.If v«(to) > y1/(2y2), then w«(t) = (1/2, y1/(2y,)) which yields that 1/2 < u«(t) < 1 for
all t € R. It then follows from (7.5) that u=(t) = 1/2, and hence w+(t) = (1/2, y1/(2y2)). If v«(to) < y1/(2y2),
then w«(t) < (1/2,y1/(2y2)), and hence 0 < u«(t) < 1/2. Using (7.5) again, we obtain u«(t) = 1/2. Thus,
w(t) = (1/2, y1/(2y2)).

Case 2: ux(tg) = 0. If there exists t; € R such that u«(¢;) = 1/2, then follows from Case 1 that w«(t) =
(1/2, y1/(2y5)). Otherwise, 0 < ux(t) < 1/2 for all t € R. Hence, (7.5) implies that w+(t) = (0, 0).

Case 3: u(to) = 1. Similar to Case 2, we can show that w«(t) = (1/2, y1/(2y2)) or (1, y1/y2).

From above discussions, we conclude that w«(t) = (0, 0), or (1/2, y1/(2y>)) or (1, y1/y>), that is, system (7.4)
has exactly three T-periodic solutions: (0, 0), (1/2, y1/(2y,)) and (1, y1/y>).

In the sequel, we set w™ := (0,0), @ := (1/2, y1/(2y2)), w* := (1, y1/y>). Note that h’(0) = h'(1) = -1/2.
Then, r(DP(w™) = r(DP(w™)) is the principal eigenvalue of the strongly positive matrix S(T), where S(t) is the
fundamental matrix solution of the following linear system with S(0) = I:

{ u = _(%y(t) +y1)u +)av, (7.6)

/
V. =Yyiu-)ypv.
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Let u; := % Inr(DP(w™)). Form [33, Lemma 2.1], there exists a positive, T—-periodic function Ww(t) =
(W1 (), W2 (1)) such that e#1“W(¢) is a solution of system (7.6). Thus, we have

M (0 + WL (O = ~(G V(0 + Y1) (0 + 72 (0,
H1Wa () + W5(8) = y1 W (6) - yawa(8),

which yields that
1 (0) + W (0) + W4(0) + W5(0) = =2 y(Oin (0.
We deduce that
T T
" / (2 (6) + Wa()dt =~ / V(W1 (Dt < 0.
0 0

Hence, p; = %ln r(DP(w™)) < 0 and therefore r(DP(w™) = r(DP(w*)) < 1. Similarly, we can show that
r(DP(@)) > 1. This verifies (C2) for system (7.3). The proof is completed. O
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