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1 Introduction
This paper is concerned with the periodic traveling wave solutions of the following n-dimensional time-
periodic reaction-di�usion system:

ut = D∆u + f (u, t), x ∈ R, t > 0, (1.1)

where n ∈ Nwith n ≥ 2, u = (u1, · · · , un)T andD = diag(d1, · · · , dn)with di ≥ 0, i = 1, · · · n. Thenonlinearity
f (·, ·) = (f1(·, ·), · · · , fn(·, ·))T ∈ C2,1(Rn+1,Rn) is T-periodic in t for some period T > 0, i.e. f (·, t + T) = f (·, t)
for all t ∈ R. It is clear that (1.1) is a time-periodic generalization of the following reaction-di�usion system:

ut = D∆u + f (u), x ∈ R, t > 0. (1.2)

In the past decades, the issue on the traveling wave solutions of system (1.2) with monostable or bistable
nonlinearity have been well addressed, see [1–4] for monotone systems; [5] for non-monotone systems; also
the references cited therein.

In recent years, stimulating by a great deal of examples of biological and physical systems with time-
periodic parameters, periodic traveling wave solutions have also been widely investigated in time-periodic
reaction-di�usion systems, see e.g. [6–17]. More precisely, Alikakos et al. [6] studied the existence, unique-
ness and stability of bistable periodic traveling waves of (1.1) with n = 1. More recently, Fang and Zhao [7]
developed the theory of bistable traveling fronts for monotone evolution systems with some compact condi-
tions. As an application, their theory has been used to establish the existence of bistable traveling waves for
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the timeperiodic reaction-di�usion system (1.1)when di > 0 for all i = 1, · · · , n (i.e. the non-degenerate case).
In addition, Bao andWang [8] applied Fang and Zhao’s theory to study the existence of bistable periodic trav-
eling fronts for a time-periodic Lotka-Volterra competition system with positive di�usion coe�cients. Zhao
and Ruan [16, 17] studied the existence, uniqueness and stability of periodic traveling waves for monostable
time-periodic reaction-di�usion systems. We also refer to Bao et al. [9], Wang [13], and Wang and Wu [14],
Sheng et al. [18] for periodic traveling curved fronts of time-periodic di�usion systems.

On the other hand, in population biology and epidemiology, evolution is quite often described by
reaction-di�usion systems with some but not all di�usion coe�cients are zeros. Such systems are called par-
tially degenerate systems. Two typical and important examples are the following periodic epidemic system
[10]: { ut = duxx − a11u(x, t) + a12v(x, t),

vt = −a22v(x, t) + g(u(x, t), t),
(1.3)

where d > 0, g(·, t + T) = g(·, t) for some T > 0, and the periodic reaction-di�usion population model with a
quiescent state [19]: { ut = d1uxx + f (u(x, t), t) − γ1(t)u(x, t) + γ2(t)v(x, t),

vt = γ1(t)u(x, t) − γ2(t)v(x, t),
(1.4)

where d1 > 0, γi(t + T) = γi(t), i = 1, 2 and f (·, t + T) = f (·, t) for some T > 0. For more details on models
(1.3) and (1.4), we refer to [10, 19] and the references cited therein. Motivated by the models (1.3) and (1.4),
the purpose of this article is to study the bistable periodic traveling wave solutions of the general partially
degenerate system (1.1).

Throughout this paper, we always use the usual notations for the standard ordering in Rn, and impose
the following basic assumptions:
(C1) [Partially degenerate system] There exists i0 ∈ {1, · · · , n} such that di > 0 for i = 1, · · · , i0 and di = 0

for i = i0 + 1, · · · , n.
(C2) [Bistability] The Poincaré map P(α) := v(T; α), where v(t; α) is the solution to

v′(t) = f (v, t), t ∈ R, v(0; α) = α ∈ Rn , (1.5)

has exactly three �xed points w−, w̄ and w+ satisfying w− < w̄ < w+,
r± := r(DP(w±)) < 1 and r̄ := r(DP(w̄)) > 1.

Here, r(L) denotes the spectral radius of an operator L.
Let’s set w±(t) = v(t;w±), w̄(t) = v(t; w̄), and Ω± by the domain of attraction of w±(t), respectively. According
to (C2), we may assume that w±(t) ± 2δ01 ∈ Ω±, where 1 := (1, · · · , 1) ∈ Rn and δ0 > 0 is small enough.
Moreover, we can assume that

w−(t) = 0 := (0, · · · , 0) and w+(t) = 1. (1.6)

In fact, let z = (z1, · · · , zn)T with zi := ui − w−i (t)
w+
i (t) − w−i (t) , i = 1, · · · , n. From (1.1), zi satis�es

(zi)t = di∆zi + gi(z, t),

where w(t) := diag(w+
1(t) − w−1(t), · · · , w+

n(t) − w−n(t)) and

gi(z, t) := fi(w(t)z + w−(t), t) − fi(w−(t), t) − [fi(w+(t), t) − fi(w−(t), t)]zi
w+
i (t) − w−i (t) , i = 1, · · · , n.

It is clear that g(·, t + T) = g(·, t), g(0, t) = g(1, t) = 0. In this situation, w−(t) and w+(t) reduce to 0 and
1. Therefore, without loss of generality, we always assume (1.6) in the rest of this paper. Moreover, we have
0 � w̄(t) � 1 for t > 0 (c.f. the non-autonomous version of [20, Theorem 4.1.1]) provided that the function
f (·, ·) satis�es the following monotone and irreducible conditions:
(C3) [Monotonicity] ∂fi(u, t)∂uj

≥ 0 for all u ∈ I0 := [−δ01, 1 + δ01], t ≥ 0 and 1 ≤ i ≠ j ≤ n.
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(C4) [Irreducibility] Df (u, t) is irreducible for all u ∈ I0 and t ≥ 0.
Before to state the main results, we �rst introduce the de�nition of periodic traveling wave solution of (1.1)
(see e.g. [6, 7, 10, 16]).

De�nition 1.1. (1) A solution u(x, t) of (1.1) is called a periodic traveling wave solution connecting 0 and 1 if
there exist a function U(·, ·) : R2 → Rn and a constant c ∈ R such that
(i) u(x, t) = U(ξ , t), ξ = x + ct, and U(ξ , t) is periodic in t, i.e. U(·, t + T) = U(·, t), ∀t ∈ R.

(ii) U(−∞, t) := lim
ξ→−∞

U(ξ , t) = 0 and U(+∞, t) := lim
ξ→+∞

U(ξ , t) = 1 uniformly in t ∈ [0, T].

Moreover, if U(ξ , ·) is non-decreasing in ξ ∈ R, then we call it a periodic traveling front.

(2) A periodic traveling wave connecting 0 and 1 is smooth if U(x, t) ∈ C2,1(R2,Rn), Ux(·, ·) and Uxx(·, ·)
are bounded.

In this article, we �rst determine the signs of the wave speeds of the monostable periodic traveling fronts of
(1.1) connecting0 and w̄(t), and w̄(t) and1 (see Lemma3.1). Then, based on these results,weuse a generalized
comparison principle for weak sub- and supersolutions (which may not be continuous) and the “vanishing
viscosity"method (c.f. [1, 12]) to prove the existence of the bistable periodic traveling front of (1.1) connecting0
and1.Moreprecisely, for any ϵ ∈ (0, 1],we construct anauxiliarynon-degenerate and time-periodic reaction-
di�usion system with di�usion coe�cients Dϵ = diag(dϵ1, · · · , dϵn), where dϵi = di > 0 for i = 1, · · · , i0 and
dϵi = ϵ for i = i0, · · · , n (see (4.1)). Following the results in [7, Theorem10], for any ϵ ∈ (0, 1], the auxiliary non-
degenerate system admits a bistable periodic traveling front Uϵ(x + cϵ t, t) connecting 0 and 1. The existence
of the bistable periodic traveling front of (1.1) connecting 0 and 1 is then obtained by letting ϵ → 0. To
�nd a convergent subsequence of {Uϵ(x + cϵ t, t)}ϵ∈(0,1], we need to prove the boundedness of {cϵ}ϵ∈(0,1]
and the compactness of {Uϵ(x, t) : ϵ ∈ (0, 1]}. The former part can be proved by constructing a pair of
explicit sub- and supersolutions (see Lemma 4.2). The major di�culty is the veri�cation of compactness of
{Uϵ(x, t) : ϵ ∈ (0, 1]}. Since dϵi = ϵ ∈ (0, 1] when di = 0,Uϵx(x, t) andUϵxx(x, t) may not be uniformly bounded
for all ϵ ∈ (0, 1]. To overcome this di�culty, we shall show that {Uϵ(x, t) : ϵ ∈ (0, 1]} is pre-compact in
L1

loc(R2,Rn) (see Lemma 4.4).
The existence result of bistable periodic traveling fronts is stated as follow.

Theorem 1.2. [Existence]Assume (C1)-(C4). Then (1.1)admits a periodic traveling front U(x+ct, t) connecting
0 and 1 with speed |c| ≤ C0, where C0 = C0(d1, · · · , di0 , f ) is a constant given by (4.9).

It should be pointed out that the existence part in Theorem 1.2 can also be established by applying the theory
developed by Fang and Zhao [7] for themonotone semi�owwith weak compactness. The reasons why we use
the vanishing viscosity method are stated in the sequel.

(1) Some preliminary lemmas have their own interests. For example, Lemma 3.1 provided some informa-
tion on the signs of the wave speeds of the monostable periodic traveling fronts connecting 0 and w̄(t), and
w̄(t) and 1, respectively.

(2) As a by-product, we can obtain an estimate for the wave speed of the bistable periodic traveling front
although its sign cannot be determined.

(3) Our result demonstrates a way of applying the vanishing viscosity method to study the time-periodic
reaction-di�usion systems which are partially degenerate.

In addition to the existence of the bistable periodic traveling front of (1.1), it is natural to askwhether such
traveling fronts candetermine the long termbehavior of the correspondingCauchy type problemof (1.1). From
[3, 6], we know that that the bistable traveling fronts of the reaction-di�usion system (1.1) are stable when
f (u, t) = f (u) or n = 1, which naturally determine the long time dynamical behavior of the corresponding
initial value problem. This motivates us to consider the stability of the bistable periodic traveling fronts of
system (1.1).
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In this work, we shall generalize the squeezing technique to prove the asymptotic stability of the smooth
bistable periodic traveling fronts for system (1.1). This technique was introduced in Chen [21] to prove the
global asymptotic stability of bistable traveling fronts for nonlocal evolution equations and has been used to
study the asymptotic stability of traveling fronts for various evolution systems, see e.g. [3, 22–26]. Since our
problem is a general time-periodic system, this generalization is nontrivial and needs some new techniques.
For example, the constructions of the sub- and supersolutions are di�erent to those in [3, 21, 22] (see Lemma
6.1). In fact, the sub- and supersolutions contain a non-monotone (w.r.t. x) and time periodic function p(x, t)
(see (5.5)). To overcome this di�culty, the shift parameters ξ1 and ξ2 in two component parts of the sub- and
supersolution might be di�erent. Moreover, we need to establish a strong comparison principle (see Lemma
2.5) under the following strongly irreducible assumption:
(C4)′ [Strong irreducibility] The matrix

(
minu∈[−δ01,1+2δ01],t≥0 ∂j fi(u, t)

)
is irreducible.

We now state the result on the monotonicity and stability of the periodic traveling fronts.

Theorem 1.3. [Monotonicity]Assume (C1)-(C3) and (C4)′. Let U(x+ct, t) be a smooth periodic travelingwave
of (1.1) connecting 0 and 1. Then, Ux(·, ·)� 0.

Theorem 1.4. Assume (C1)-(C3) and (C4)′. Let U(x + ct, t) be a smooth periodic traveling wave of (1.1) con-
necting 0 and 1. Then the following statements hold:
(i) [Uniformstability] For any ϵ > 0, there exists δ > 0 such that for any ϕ ∈ L∞(R) with ‖ϕ(·)−U(·, 0)‖L∞(R) <

δ, there holds
‖u(·, t;ϕ) − U(· + ct, t)‖L∞(R) < ϵ for all t > 0,

where u(x, t;ϕ) is the unique solution of (1.1) with u(·, 0;ϕ) = ϕ(·).
(ii) [Asymptotic stability] For any ϕ ∈ L∞(R) with ϕ(·) ∈ [−δ01, 1 + δ01] and

lim inf
x→+∞

ϕ(x)� w̄ and lim sup
x→−∞

ϕ(x)� w̄, (1.7)

where w̄ = w̄(0), there exists ξ* ∈ R such that

‖u(·, t;ϕ) − U(· + ct + ξ*, t)‖L∞(R) → 0 exponentially as t →∞.

As a direct result of part (ii) of Theorem 1.4, we obtain the uniqueness of the smooth periodic traveling waves.

Theorem 1.5. [Uniqueness] Assume (C1)-(C3) and (C4)′. Let U(i)(x + ct, t)(i = 1, 2) be two periodic traveling
waves of (1.1) connecting 0 and 1 with one of them being smooth. Then, c1 = c2 and there exists ξ * ∈ R such
that U(1)(ξ , t) = U(2)(ξ + ξ *, t), ∀ξ , t ∈ R.

Remark 1.6. (1) If di > 0, i = 1, · · · , n, according to the result in [7, Theorem 10], system (1.1) admits a
periodic traveling front V(x + ct, t) connecting 0 and 1. Moreover, V(x, t) is continuous in x. By the parabolic
theory, it is easy to see that V(x + ct, t) is a smooth periodic traveling front. Therefore, Theorems 1.3-1.5 imply
that such a periodic traveling front is strictly monotone, uniqueness and stable. However, when system (1.1)
is partially degenerate, even in the time independent case, it may admit non-smooth traveling waves (see
e.g. [1]). Whether a non-smooth traveling wave is monotone, uniqueness and asymptotically stable remains
open. We will study these problems somewhere else.

(2)We alsomention that our results can be used to study some biological and epidemiologicalmodels de-
scribed by partially degenerate reaction-di�usion systemswith periodic coe�cients, such asmodels (1.3) and
(1.4). Furthermore, the techniques in this paper can be extended to the following mixed dispersal evolution
system with bistable nonlinearity (c.f. [22, 27]):

ut = D∆u + B
∫
R

J(x − y)
[
u(y) − u(x)

]
dy + f (u, t), x ∈ R, t > 0, (1.8)

where n ∈ N, u = (u1, · · · , un)T, D = diag(d1, · · · , dn), and B = diag(b1, · · · , bn) with di , bi ≥ 0, i = 1, · · · , n
and (d1 + b1, · · · , dn + bn) ≠ 0.
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The rest of this paper is organized as follows. In Section 2, we establish thewell-posedness of Cauchy problem
for (1.1) and some key comparison principles for later use. Section 3 is devoted to the study of signs of wave
speeds for two monostable periodic traveling fronts connecting 0 and w̄(t), and w̄(t) and 1, respectively. In
Section 4, we prove the existence of the bistable periodic traveling fronts. An estimate of the wave speed
is also established. Section 5 focus on the monotonicity of the smooth periodic traveling waves. Finally, we
prove the stability and uniqueness of the smooth periodic traveling fronts in Section 6.

2 Well-posedness and comparison principles
In this section, we give the well-posedness to the Cauchy problem of (1.1) and establish some key comparison
principles, especially a strong comparison principle under the assumption (C4)′. First, given any τ ≥ 0, we
consider the initial value problem of (1.1):{ ut = D∆u + f (u, t), x ∈ R, t > τ,

u(x, τ) = ϕ(x) ∈ L∞(R).
(2.1)

Let’s set
γ := max

1≤i≤n
sup

u∈[−δ01,1+δ01], t≥0

∣∣ ∂
∂ui

fi(u, t)
∣∣ and Q(u)(x, t) := f (u(x, t), t) + γu(x, t),

and de�ne a family of mappings Ti(t) : L∞(R)→ L∞(R) by Ti(0) = I and

Ti(t)[ϕ](x) =


e−γt

+∞∫
−∞

1√
4πdi t

e−
y2

4di t ϕ(x − y)dy, if i ∈ {1, · · · , i0},

e−γtϕ(x), if i ∈ {i0 + 1, · · · , n},

∀t > 0, x ∈ R and ϕ(·) ∈ L∞(R). Furthermore, we denote T(t) := diag(T1(t), · · · , Tn(t)). It is clear that (2.1)
can be transformed to the following integral form:

u(x, t; τ, ϕ) = T(t − τ)[ϕ](x) +
t∫
τ

T(t − s)[Q(u)(·, s)](x)ds, x ∈ R, t > τ. (2.2)

A solution of (2.2) is called a mild solution of (2.1). We have the following well-posedness result.

Lemma 2.1. Assume (C1)-(C4). For any ϕ(·) ∈ L∞(R) with ϕ(·) ∈ [−δ01, 1+δ01], (2.1) admits a uniquemild so-
lution u(x, t; τ, ϕ) ∈ C1([τ, ∞), L∞(R)). Moreover, if ϕ(·) is continuous, then u(x, t; τ, ϕ) is a classical solution
of (2.1).

Proof. Theproof is similar to [28, Theorem2.2] by using theBanach’s �xedpoint theorem.Weomit it here.

Next, we introduce the de�nitions of (weak) supersolution and subsolution of (1.1).

De�nition 2.2. (1) A function u : R × [τ, ∞) → [−δ01, 1 + δ01] is called a weak supersolution (or a weak
subsolution) of (1.1) on [τ, ∞) if

u(x, t) ≥ (or ≤) T(t − τ)[u(·, τ)](x) +
t∫
τ

T(t − r)[Q(u)(·, r)](x)dr

for any x ∈ R, τ ≤ t < ∞.

(2) Let w = (w1, · · · , wm) : R × [τ, ∞) → [−δ01, 1 + δ01] be a continuous function such that wi(x, t) is C1

in t for i = 1, · · · , n and C2 in x for i = 1, · · · , i0. If w(x, t) satis�es

wt ≥ (or ≤)D∆w + f (w, t), ∀x ∈ R, t > τ,

then it is called a supersolution (or subsolution) of (1.1) on [τ, +∞).
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According to De�nition 2.2, it is clear that a supersolution (or subsolution) is a weak supersolution (or subso-
lution). Furthermore, the weak super- and subsolutions are not necessarily continuous. The following gener-
alized comparison principle for weak sub- and supersolutions will play a crucial role in proving the existence
of the bistable periodic traveling fronts.

Lemma 2.3. Assume (C1)-(C4). Let u±(x, t) be a pair of weak super- and subsolution of (1.1) on [τ, +∞). If
u−(x, τ) ≤ u+(x, τ), ∀x ∈ R, then u−(x, t) ≤ u+(x, t), ∀x ∈ R, t > τ.

Proof. This lemma is a non-autonomous version of [1, Lemma 2.1] and can be proved by using a similar argu-
ment as in [1, Lemma 2.1]. Here, we omit its proof.

In addition, the following result follows from Lemma 2.3 and De�nition 2.2 directly.

Lemma 2.4. Assume (C1)-(C4). Let u±(x, t) be a pair of super- and sub-solution of (1.1) on [τ, +∞) with
u−(x, τ) ≤ u+(x, τ), ∀x ∈ R. Then u−(x, t) ≤ u+(x, t), ∀x ∈ R, t > τ.

To prove the asymptotic stability of the periodic traveling waves by applying the squeezing technique, we
further establish the following strong comparisonprinciple for the periodic system (1.1) under the assumption
(C4)′.

Lemma 2.5. [Strong comparison principle] Assume (C1)-(C3) and (C4)′. Let u±(x, t) =
(u±1(x, t), · · · , u±n(x, t)) be a pair of super- and subsolution of (1.1) on [τ, +∞) with u−(x, τ) ≤ u+(x, τ),
∀x ∈ R.
(i) There exists a positive and non-increasing function Θ(·) de�ned on [0, +∞) such that

u+
l (x, τ + 1) − u−l (x, τ + 1) ≥ Θ(|x|)

n∑
j=1

1∫
0

[u+
j (y, τ) − u−j (y, τ)]dy, (2.3)

for any l ∈ {1, · · · , n} and x ∈ R.
(ii) If u−(·, τ) ≠ u+(·, τ), then u−(x, t)� u+(x, t), ∀x ∈ R, t > τ.

Proof. (i) Let wi(x, t) := u+
i (x, t) − u−i (x, t) for i = 1, · · · , n, x ∈ R and t ≥ τ. By Lemma 2.4, we see that

0 ≤ wi(x, t) ≤ 1 + 2δ0 for i = 1, · · · , n, x ∈ R and t ≥ τ. Moreover, by (C4)′ and De�nition 2.2, we have

(wi)t =di(wi)xx + fi(u+(x, t), t) − fi(u−(x, t), t)

=di(wi)xx −Mwi + [M + ∂fi(η(x, t), t)
∂ui

]wi +
∑

1≤j≠i≤n

∂fi(η(x, t), t)
∂uj

wj

≥di(wi)xx −Mwi +
∑

1≤j≠i≤n

∂fi(η(x, t), t)
∂uj

wj (2.4)

≥di(wi)xx −Mwi , ∀x ∈ R, t > τ, i = 1, · · · , n, (2.5)

where η(x, t) := ϑu+(x, t) + (1 − ϑ)u−(x, t) with ϑ ∈ (0, 1) and

M := 1 + max
1≤i≤n

sup
u∈[−δ01,1+2δ01], t≥τ

∣∣∂fi(u, t)/∂ui∣∣.
Recall that di > 0 for i = 1, · · · , i0 and di = 0 for i = i0 + 1, · · · , n. Let dM := max{d1, · · · , di0} and
dm := min{d1, · · · , di0}. By (2.5), for any i ∈ {1, · · · , i0}, we have

wi(x, t) ≥e−M(t−τ)
+∞∫
−∞

e−
(x−y)2

4di (t−τ)√
4πdi(t − τ)

wi(y, τ)dy
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≥e−M(t−τ) e−
(|x|+1)2
4di (t−τ)√

4πdi(t − τ)

1∫
0

wi(y, τ)dy ≥ Γ(|x|, t − τ)e−M(t−τ)
1∫

0

wi(y, τ)dy, (2.6)

for x ∈ R, t > τ, where Γ(|x|, s) := exp{− (|x|+1)2

4dms }/
√

4πdMs, s > 0. On the other hand, for any i ∈ {i0 +
1, · · · , n}, it follows from (2.5) that

wi(x, t) ≥ e−M(t−τ)wi(x, τ), ∀x ∈ R, t > τ. (2.7)

Now, we consider the following two cases.

Case 1. l ∈ {1, · · · , i0}. In this case, it follows from (2.6) that

wl(x, t) ≥ Γ(|x|, t − τ)e−M(t−τ)
1∫

0

wl(y, τ)dy, ∀x ∈ R, t > τ. (2.8)

Given any j ∈ {1, · · · , n}\{l}. Since thematrix (mi,k) :=
(

minu∈[−δ01,1+2δ01],t≥0 ∂k fi(u, t)
)
is irreducible, there

exists a distinct sequence i1, i2, · · · , ir with i1 = l and ir = j such that mis is+1 > 0, ∀s = 1, · · · , r − 1. We �rst
prove the following claim.

Claim: There exist positive functions θi1 ,is (·, ·) s = 1, · · · , r such that each θi1 ,is (x, ·) is non-increasing in
x ∈ [0,∞) and

wi1 (x, t) ≥ θi1 ,is (|x|, t − τ)
1∫

0

wis (z, τ)dz, s = 1, · · · , r. (2.9)

It is clear that (2.9) holds for s = 1 with θi1 ,i1 (|x|, s) = Γ(|x|, s)e−Ms . We now prove that (2.9) holds for
s = 2. Using (2.4), (2.6) and (2.7), we have

wi1 (x, t)

≥
+∞∫
−∞

e
− (x−y)2

4di1 (t−τ) e−M(t−τ)√
4πdi1 (t − τ)

wi1 (y, τ)dy + mi1 i2

t∫
τ

+∞∫
−∞

e
− (x−y)2

4di1 (t−r) e−M(t−r)√
4πdi1 (t − r)

wi2 (y, r)dydr

≥mi1 i2

t∫
τ

+∞∫
−∞

e
− (x−y)2

4di1 (t−r) e−M(t−r)√
4πdi1 (t − r)

wi2 (y, r)dydr (2.10)

≥



e−M(t−τ)mi1 i2

t∫
τ

+∞∫
−∞

e
− (x−y)2

4di1 (t−r)√
4πdi1 (t − r)

Γ(|y|, r − τ)
1∫

0

wi2 (z, τ)dzdydr, if i2 ∈ {1, · · · , i0}

e−M(t−τ)mi1 i2

t∫
τ

+∞∫
−∞

e
− (x−y)2

4di1 (t−r)√
4πdi1 (t − r)

wi2 (y, τ)dydr, if i2 ∈ {i0 + 1, · · · , n}

≥



e−M(t−τ)mi1 i2

t∫
τ

1∫
0

Γ(|x|, t − r)Γ(|y|, r − τ)dydr
1∫

0

wi2 (z, τ)dz, if i2 ∈ {1, · · · , i0}

e−M(t−τ)mi1 i2

t∫
τ

Γ(|x|, t − r)dr
1∫

0

wi2 (z, τ)dz, if i2 ∈ {i0 + 1, · · · , n}

≥θi1 ,i2 (|x|, t − τ)
1∫

0

wi2 (z, τ)dz, (2.11)
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for x ∈ R, t > τ, where

θi1 ,i2 (|x|, s) = e−Msmi1 i2 min
{ s∫

0

1∫
0

Γ(|x|, s − r)Γ(|y|, r)dydr,
s∫

0

Γ(|x|, s − r)dr
}
.

Next, we prove (2.9) for s = 3 by considering the following two subcases.
Subcase 1. i2 ∈ {1, · · · , i0}. Since mi2 i3 > 0, by the same method as above, we can show that there is a

positive function θ̂i2 ,i3 (·, ·) such that θ̂i2 ,i3 (x, ·) is non-increasing in x ∈ [0,∞) and

wi2 (x, t) ≥ θ̂i2 ,i3 (|x|, t − τ)
1∫

0

wi3 (y, τ)dy, ∀x ∈ R, t > τ. (2.12)

It then follows from (2.10) and (2.12) that

wi1 (x, t) ≥mi1 i2

t∫
τ

1∫
0

Γ(|x|, t − r)e−M(t−r)wi2 (y, r)dydr

≥mi1 i2

t∫
τ

1∫
0

Γ(|x|, t − r)e−M(t−r) θ̂i2 ,i3 (|y|, r − τ)dydr
1∫

0

wi3 (z, τ)dz

=mi1 i2

t−τ∫
0

1∫
0

Γ(|x|, t − τ − r)e−M(t−τ−r) θ̂i2 ,i3 (|y|, r)dydr
1∫

0

wi3 (z, τ)dz

=:θ(1)
i1 ,i3 (|x|, t − τ)

1∫
0

wi3 (z, τ)dz. (2.13)

Subcase 2. i2 ∈ {i0 + 1, · · · , n}. From (2.4), we obtain

wi2 (x, t) ≥ mi2 i3

t∫
τ

e−M(t−s)wi3 (x, s)ds. (2.14)

If i3 ∈ {1, · · · , i0}, by (2.6), we get

wi2 (x, t) ≥ e−M(t−τ)mi2 i3

t∫
τ

Γ(|x|, s − τ)ds
1∫

0

wi3 (y, τ)dy := θ̌i2 ,i3 (|x|, t − τ)
1∫

0

wi3 (y, τ)dy.

Hence,

wi1 (x, t) ≥mi1 i2

t∫
τ

1∫
0

Γ(|x|, t − r)e−M(t−r)wi2 (y, r)dydr

≥mi1 i2

t∫
τ

1∫
0

Γ(|x|, t − r)e−M(t−r) θ̌i2 ,i3 (|y|, r − τ)dydr
1∫

0

wi3 (z, τ)dz

=mi1 i2

t−τ∫
0

1∫
0

Γ(|x|, t − τ − r)e−M(t−τ−r) θ̌i2 ,i3 (|y|, r)dydr
1∫

0

wi3 (z, τ)dz

=:θ(2)
i1 ,i3 (|x|, t − τ)

1∫
0

wi3 (z, τ)dz, x ∈ R, t > τ. (2.15)
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If i3 ∈ {i0 + 1, · · · , n}, using (2.10), (2.14) and (2.7), we have

wi1 (x, t) ≥mi1 i2

t∫
τ

1∫
0

Γ(|x|, t − r)e−M(t−r)wi2 (y, r)dydr

≥mi1 i2mi2 i3

t∫
τ

1∫
0

Γ(|x|, t − r)e−M(t−r)
r∫
τ

e−M(r−s)wi3 (y, s)dsdydr

≥mi1 i2mi2 i3

t∫
τ

1∫
0

Γ(|x|, t − r)
r∫
τ

e−M(t−s)e−M(s−τ)wi3 (y, τ)dsdydr

=mi1 i2mi2 i3e
−M(t−τ)

t−τ∫
0

rΓ(|x|, t − τ − r)dr
1∫

0

wi3 (y, τ)dy

=:θ(3)
i1 ,i3 (|x|, t − τ)

1∫
0

wi3 (y, τ)dy. (2.16)

Let θi1 ,i3 (|x|, s) := min{θ(1)
i1 ,i3 (|x|, s), θ(2)

i1 ,i3 (|x|, s), θ(3)
i1 ,i3 (|x|, s)}, one can see that (2.9) holds for s = 3. The cases

for (2.9) with s = 4, · · · , r can be proved similarly. Hence the claim follows.

By the claim, we obtain

wi1 (x, t) ≥ θi1 ,ir (|x|, t − τ)
1∫

0

wir (z, τ)dz, ∀x ∈ R, t > τ.

Thus, combining with (2.8), we deduce that for any j = 1, · · · , n,

wl(x, t) ≥ θl,j(|x|, t − τ)
1∫

0

wj(z, τ)dz, ∀x ∈ R, t > τ.

Therefore, we conclude that

wl(x, t) ≥
(1
n min
j,l=1,··· ,n

θl,j(|x|, t − τ)
) n∑
j=1

1∫
0

wj(z, τ)dz

=:Θ(1)(|x|, t − τ)
n∑
j=1

1∫
0

wj(z, τ)dz, ∀x ∈ R, t > τ. (2.17)

It is clear that is Θ(1)(x, ·) non-increasing in x ∈ [0,∞).

Case 2. l ∈ {i0 + 1, · · · , n}. Since i0 ≥ 1, we see that l ≠ 1. Using the irreducibility of the matrix (mi,k) =(
minu∈[−δ01,1+2δ01],t≥0 ∂k fi(u, t)

)
again, there exists a distinct sequence i1, i2, · · · , ir with i1 = l and ir = 1

such that mis is+1 > 0, ∀s = 1, · · · , r − 1. Noting that

w1(x, t) ≥ Θ(1)(|x|, t − τ)
n∑
j=1

1∫
0

wj(z, τ)dz, ∀x ∈ R, t > τ, (2.18)

we can easily obtain that there exists a positive function Θ(2)(·, ·) such that Θ(2)(x, ·) is non-increasing in
x ∈ [0,∞) and

wl(x, t) ≥Θ(2)(|x|, t − τ)
n∑
j=1

1∫
0

wj(z, τ)dz, ∀x ∈ R, t > τ. (2.19)
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Combining the above two cases, the assertion (i) holds by setting

Θ(|x|) := min{Θ(1)(|x|, 1), Θ(2)(|x|, 1)}.

(ii) Clearly, the assertion follows from (2.17) and (2.19). This completes the proof.

3 Wave speeds of monostable periodic traveling fronts
In this section, we shall determine the signs of wave speeds for two monostable periodic traveling fronts
connecting 0 and w̄(t), and w̄(t) and 1, respectively. In fact, we have the following result.

Lemma 3.1. Assume (C1)-(C4). Then, the following statements hold.
(1) If U(x + ct, t) is a non-decreasing periodic traveling wave of (1.1) with U(−∞, t) = w̄(t) and U(+∞, t) = 1,

then c > 0.
(2) If U(x + ct, t) is a non-decreasing periodic traveling wave of (1.1) with U(−∞, t) = 0 and U(+∞, t) = w̄(t),

then c < 0.

The proof of Lemma 3.1 is based on the results of spreading speeds (see [10]) for monostable systems. To
consider the general monostable case, we make the following assumption:
(C2)′ [Monostability] The Poincarémap P(α) := v(T; α) of (1.5) has exactly two �xed points 0 and 1 satisfy-

ing r0 := r(DP(0)) > 1.
From the assumption (C2)′, system (1.5) has two periodic solutions v(t;0) and v(t;1). As mentioned in the
introduction, we can assume that 0 = v(t;0) and 1 = v(t;1), ∀t ∈ R. Applying the theory of spreading speed
for monotone periodic semi�ow developed by Liang et al. [10], one can show that (1.1) has a spreading speed
under the assumptions (C1), (C2)′, (C3) and (C4). The proof is similar to that of [10, Section 3]. For the sake
of reader’s convenience, we sketch it in the sequel.

Let C be the space of all bounded and continuous functions from R to Rn. For any ϕ1, ϕ2 ∈ C, we write
ϕ1 ≤ ϕ2 (ϕ1 � ϕ2) if ϕ1(x) ≤ ϕ2(x) (ϕ1(x) � ϕ2(x)), ∀x ∈ R and ϕ1 < ϕ2 if ϕ1 ≤ ϕ2 and ϕ1 ≠ ϕ2. We
further equipCwith the compact open topology, that is, a sequence ϕn converges to ϕ inC if and only if ϕn(x)
converges to ϕ(x) inRn uniformly for x in any bounded subset ofR. The following norm on C can induce such
topology:

‖φ‖C :=
∞∑
l=1

maxx∈R,|x|≤l ‖φ(x)‖
2l

, ∀φ ∈ C.

Clearly, the topology generated by ‖ ·‖C and the compact open topology on C are equivalent on any uniformly
bounded subset of C. We also denote C1 :=

{
ϕ ∈ C : 0 ≤ ϕ(·) ≤ 1

}
.

Recall that a family of operators {Qt}t≥0 is said to be a T-periodic semi�ow on a metric space (X, d̄) pro-
vided that the following properties hold:

(i) Q0[φ] = φ, ∀φ ∈ X; (ii) Qt[QT [φ]] = Qt+T [φ], ∀t ≥ 0 and ∀φ ∈ X;
(iii) Q(t, φ) := Qt[φ] is continuous in (t, φ) on [0,∞) × X.

The map QT is called the Poincaré map associated with this periodic semi�ow. Let {Qt}t≥0 be the semi�ow
on C1 associated with system (1.1), i.e.

Qt[φ](x) = u(x, t;φ), ∀φ ∈ C1, x ∈ R.

Note that for any (t0, φ0) ∈ R+ × C1, we have

‖Qt[φ] − Qt0 [φ0]‖C ≤ ‖Qt[φ] − Qt[φ0]‖C + ‖Qt[φ0] − Qt0 [φ0]‖C.

By a similar argument as in [29, Theorem 8.5.2], Qt[φ] is continuous at (t0, φ0) with respect to the compact
open topology. Moreover, by [30, Corallary 5], we have the following result.
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Lemma 3.2. Assume (C1), (C2)′, (C3) and (C4). Then {Qt}t≥0 is a monotone periodic semi�ow on C1.

Let R[φ](x) := φ(−x) be the re�ection operator. Given h ∈ R, we de�ne the translation operator Th[·] by
Th[φ](x) = Th[φ](x − h). In order to apply [10, Theorem 2.1], we need verify that the map Q := QT : C1 → C1
satis�es the following assumptions:
(A1)Q[R[u]] = R[Q[u]], Th[Q[u]] = Q[Th[u]] for h ∈ R;
(A2)Q : C1 → C1 is continuous with respect to the compact open topology;
(A3){Q[u](x) : u ∈ C1, x ∈ R} is a bounded subset of Rn;
(A4)Q : C1 → C1 is monotone in the sense that Q[φ] ≥ Q[ψ] whenever φ ≥ ψ in C1;
(A5)Q : [0, 1] → [0, 1] admits exactly two �xed points 0 and 1, and for any ϵ > 0, there is a α ∈ [0, 1] with
‖α‖ < ϵ such that Q[α]� α.

Lemma 3.3. Assume (C1), (C2)′, (C3) and (C4). Then, the Poincaré map Q = QT satis�es (A1)–(A5), and Qt
satis�es (A1) for any t > 0.

Proof. It is easy to see that Q = QT satis�es (A1)–(A4), and Qt satis�es (A1) for any t > 0. Let Q̂t be the
restriction ofQt to [0, 1]. Then, Q̂t is the periodic semi�owon [0, 1] generated by the periodic cooperative and
irreducible system (1.5). By the nonautonomous version of [20, Theorem 4.1.1], it follows that Q̂t is strongly
monotone on [0, 1] for all t > 0. Thus, the Dancer-Hess connecting orbit lemma (see e.g. [31]) yields that the
map Q̂T admits a stronglymonotone full orbit connecting 0 to 1. Therefore, (A5) holds for QT . This completes
the proof.

By [10, Theorem A], it then follows that the Poincaré map QT has an asymptotic speed of spread (spreading
speed for short) c* > 0. Moreover, [10, Theorem 2.1] implies that c*/T is the spreading speed for solutions of
(1.1), that is, the following result holds.

Theorem 3.4. Assume (C1), (C2)′, (C3) and (C4). Let c* be the spreading speed of QT . Then the following state-
ments hold true:
(1) For any c > c*/T, if φ ∈ C1 with 0 ≤ φ � 1, and φ(x) = 0 for x outside a bounded interval, then

lim
t→∞,|x|≥ct

u(x, t;φ) = 0.

(2) For any c < c*/T and σ ∈ [0, 1] with σ � 0, there exists an integer rσ > 0 such that if φ ∈ C1 with φ(x)� σ
for x on an interval of length 2rσ, then lim

t→∞,|x|≤ct
‖u(x, t;φ) − 1‖ = 0.

Next, we investigate the lower bound of c* by considering the linearized system of (1.1) at the zero solution:

ut = D∆u + Df (0, t)u. (3.1)

Let’s write u(x, t) = e−µxv(t) for some µ > 0. It is obvious that v(t) satis�es the system

v′(t) = [Dµ2 + Df (0, t)]v. (3.2)

Let λ(µ) be the principal Floquet multiplier of the linear periodic cooperative and irreducible system (3.2) and
Φ(µ) := [ln λ(µ)]/µ. Then, the following result holds.

Lemma 3.5. Assume (C1), (C2)′, (C3) and (C4). Then, c* ≥ c̄ = infµ>0 Φ(µ) > 0.

Proof. By (C2)′, we know that λ(0) = r0 > 1, which implies that Φ(0+) = +∞. Using the same argument as in
[10, Section 3], one can easily show that Φ(+∞) = +∞. It then follows from [32, Lemma 3.8] that Φ(µ) attains
its minimum at some �nite value and infµ>0 Φ(µ) > 0.

Take L := maxz∈[0,1],t∈[0,T],i=1,··· ,n |∂i fi(z, t)| and any ϵ ∈ (0, 1). From the proof of [35, Lemma 4.1], for
any t ∈ [0, T], there exists η(t)� 0 such that

f (z, t) ≥ (1 − ϵ)Df (0, t)z − ϵLz, ∀z ∈ [0, η(t)].
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In view of the continuity of f (·, t) and Df (0, t) with respect to t ∈ [0, T], we can choose η(t) appropriately
such that it is continuous on [0, T]. Take η = mint∈[0,T] η(t)� 0. Then,

f (z, t) ≥ (1 − ϵ)Df (0, t)z − ϵLz, ∀t ∈ [0, T], z ∈ [0, η].

Due to the periodicity of f (·, t) with respect to t, we have

f (z, t) ≥ (1 − ϵ)Df (0, t)z − ϵLz =: f ϵ(z, t), ∀t ≥ 0, z ∈ [0, η].

By the continuous dependence of solutions on initial conditions, there is a su�cient small δ � 0 inRn such
that the solution z(t; δ) of (1.5) with z(0; δ) = δ satis�es z(t; δ) ≤ η for any t ∈ [0, T]. It follows from the
comparison principle that

Qt[ϕ](x) = u(x, t;ϕ) ≤ z(t; δ) ≤ η for any ϕ ∈ Cδ, x ∈ R and t ∈ [0, T].

Let Mϵ
t [·] be the solution map associated with the linear periodic system

vt = D∆v + f ϵ(v, t). (3.3)

Then Qt[ϕ] ≥ Mϵ
t [ϕ] for any ϕ ∈ Cδ and t ∈ [0, T]. Note that ∂j f ϵi (·, ·) = (1 − ϵ)∂j fi(·, ·), ∀j ≠ i. Let Φϵ(µ) =

[ln λϵ(µ)]/µ, where λϵ(µ) be the principal Floquetmultiplier of the linear periodic cooperative and irreducible
system

w′i = diµ2wi + (1 − ϵ)
n∑
j=1

∂j fi(0, t)wj − ϵLwi , i = 1, · · · , n. (3.4)

It then follows from [10, Theorem B(2)] that c* ≥ infµ>0 Φϵ(µ). Letting ϵ → 0, we conclude that c* ≥ c̄ =
infµ>0 Φ(µ). This completes the proof.

According to Theorem 3.4 and Lemma 3.5, we are ready to give the proof of Lemma 3.1.

Proof of Lemma 3.1.

We only prove the assertion (1), since the assertion (2) can be discussed similarly. Let’s denote v =
(v1, · · · , vn) with vi = (ui − w̄i(t))/(1 − w̄i(t)) for i = 1, · · · , n. From (1.1), vi satis�es

(vi)t = D∆vi + gi(v, t), (3.5)

where w(t) := diag(1 − w̄1(t), · · · , 1 − w̄n(t)) and

gi(z, t) := fi(w(t)z + w̄(t), t) − fi(w̄(t), t) − [fi(1, t) − fi(w̄(t), t)]zi
1 − w̄i(t)

, i = 1, · · · , n.

It is clear that g(·, t + T) = g(·, t) and g(0, t) = g(1, t) = 0, ∀t ∈ R. Since

∂jgi(z, t) = (1 − w̄i(t))−1∂j fi
(
w(t)z + w̄(t), t

)
(1 − w̄j(t)), ∀i ≠ j,

it’s easy to verify that (C2)′, (C3) and (C4) hold for system (3.5). Then it follows from Theorem 3.4 and Lemma
3.5 that system (3.5) admits a spreading speed cg* /T which has a positive lower bound c̄g/T > 0. Moreover,
the function Û(x + ct, t) = (Û1(x + ct, t), · · · , Ûn(x + ct, t)) with

Ûi(x + ct, t) = Ui(x + ct, t) − w̄i(t)
1 − w̄i(t)

, i = 1, · · · , n

is a non-decreasing periodic traveling wave of (3.5) satisfying Û(−∞, t) = 0 and Û(+∞, t) = 1.

We claim that c ≥ c̄g/T. In fact, if the claim is false, then we can choose c1 ∈ (c, c̄g/T). In view of Û(x, t)
is a non-decreasing in x and Û(+∞, t) = 1, we can choose ϕ ∈ C1 with ϕ(·) ≤ Û(·, 0) and ϕ(+∞) = 1

21.
Thus, by Theorem 3.4, we have limt→∞ ‖u(−c1t, t;ϕ) − 1‖ = 0. On the other hand, from Lemma 2.3, we have
u(x, t;ϕ) ≤ Û(x + ct, t) which implies that

lim
t→∞

u(−c1t, t;ϕ) ≤ lim inf
t→∞

Û((c − c1)t, t) = 0.

This contradiction shows that c ≥ c̄g/T > 0. This completes the proof.
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4 Existence of periodic traveling fronts
Based on the result of Lemma 3.1, we are ready to prove the existence of bistable periodic traveling front by us-
ing the vanishing viscosity method. Moreover, an estimate of the wave speed is also established. Throughout
this section, we always assume the conditions (C1)-(C4).

For any ϵ ∈ (0, 1], we consider the following non-degenerate reaction-di�usion system

ut = Dϵ∆u + f (u, t), x ∈ R, t > 0, (4.1)

where Dϵ = diag(dϵ1, · · · , dϵn) with

dϵi :=
{ di , if di > 0,
ϵ, if di = 0.

(4.2)

Following [7, Theorem 10], we have the following existence result.

Lemma 4.1. For any ϵ > 0, system (4.1) admits a periodic traveling front Uϵ(x + cϵ t, t) connecting 0 and 1.

To �nd a convergent subsequence of {Uϵ(x + cϵ t, t)}ϵ∈(0,1], we need to study the boundedness of {cϵ}ϵ∈(0,1]
and the compactness of {Uϵ(x, t) : ϵ ∈ (0, 1]} in L1

loc(R2,Rn).

First, we construct a pair of sub- and supersolutions to show the boundedness of {cϵ}ϵ∈(0,1]. Let µ± :=
1
T ln r± < 0, where r− and r+ are the spectral radius of DP(0) and DP(1), respectively. From [33, Lemma 2.1],
there exist positive and T-periodic functions s±(t) = ((s±)1(t), · · · , (s±)n(t)) with s±(·) ≤ 1 such that v±(t) =
eµ

± ts±(t) are solutions of the T-periodic linear system:

v′(t) = Df (w±(t), t)v(t)

with the initial value v±(0)� 0, where w−(t) ≡ 0 and w+(t) ≡ 1. It is clear that s±(t) satis�es

s′±(t) = Df (w±(t), t)s±(t) − µ±s±(t). (4.3)

Let δ0 be the constant de�ned in Section 1, and

ζ (s) := 1
2 (1 + tanh s

2 ), s ∈ R. (4.4)

Obviously, 0 < ζ (·) < 1, ζ ′(s) = ζ (s)(1 − ζ (s)) and ζ ′′(s) = ζ (s)(1 − ζ (s))(1 − 2ζ (s)). Hence, ζ ′(·) > 0 and
|ζ ′′(·)| ≤ 1. The sub- and supersolutions of (4.1) are constructed as follows.

Lemma 4.2. There exist κ0 ∈ (0, δ0), σ0 > 0 and C0 > 0, which are independent of ϵ ∈ (0, 1], such that for any
κ ∈ [κ0/2, κ0], σ ∈ [σ0/2, σ0] and C ≥ C0, the functions

u−(x − Ct, t; σ, κ) :=(1 + κs−(t) − κs+(t))ζ (σ(x − Ct)) − κs−(t),
u+(x + Ct, t; σ, κ) :=(1 + κs+(t) − κs−(t))ζ (σ(x + Ct)) + κs−(t)

are sub- and supersolutions of (4.1) on [0,∞), respectively.

Proof. Since 0 < s±(·) ≤ 1 and ζ (·) ∈ [0, 1], we see that for any κ ∈ (0, δ0), σ > 0 and C > 0,

−δ01 ≤ u±(x ± Ct, t; σ, κ) ≤ 1 + δ01, ∀x ∈ R, t ≥ 0.

We only prove u−(x − Ct, t; σ, κ) is a subsolution of (4.1), since the proof for the supersolution is similar. For
convenience, we denote u−(x − Ct, t; σ, κ) by u−(x − Ct, t). As mentioned in the introduction, we may assume
that w−(t) = 0 and w+(t) = 1 are two periodic solutions of (1.5). It follows that f (0, t) = f (1, t) = 0, ∀t ≥ 0.
Since µ− < 0 and

f (−κs−(t), t) = −Df (0, t)κs−(t) − o(κ)s−(t) as κ → 0,
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there exists κ1 > 0 such that for any κ ∈ (0, κ1],

f (−κs−(t), t) ≥ − Df (0, t)κs−(t) + µ−
2 κs−(t) = −κs′−(t) − µ

−

2 κs−(t), ∀t ≥ 0.

Thus, for any κ ∈ (0, κ1], we have

f (−κs−(t), t) + κs′−(t) ≥ −µ
−

2 κs−(t) ≥ −µ
−

2 κ min
t∈[0,T]

s−(t)� 0, ∀t ≥ 0. (4.5)

Similarly, there exists κ2 > 0 such that for any κ ∈ (0, κ2],

f (1 − κs+(t), t) + κs′+(t) ≥ −µ
+

2 κs+(t) ≥ −µ
+

2 κ min
t∈[0,T]

s+(t)� 0, ∀t ≥ 0. (4.6)

Choose κ0 ∈ (0, min{κ1, κ2, δ0}) such that 1 + κs−(t) − κs+(t) � 0 for any κ ∈ (0, κ0] and t ≥ 0. Note that
s±(t) and s′±(t) are bounded on [0,∞). By (4.5) and (4.6), there exist ϑ0 ∈ (0, 1) and σ0 > 0 such that for any
κ ∈ [κ0/2, κ0], σ ∈ [σ0/2, σ0] and ϑ ∈ [0, ϑ0], there holds

f
(

(1 + κs−(t) − κs+(t))ϑ − κs−(t), t
)

+ κs′−(t) − κ(s′−(t) − s′+(t))ϑ
�D1(1 + κs−(t) − κs+(t))σ2, (4.7)

and
f
(

(1 + κs−(t) − κs+(t))(1 − ϑ) − κs−(t), t
)

+ κs′−(t) − κ(s′−(t) − s′+(t))(1 − ϑ)
�D1(1 + κs−(t) − κs+(t))σ2, (4.8)

where D1 := diag(d1, · · · , di0 , 1, · · · , 1). Let’s set

|f |max := max
u∈[−δ01,1+δ01],t≥0,i=1,··· ,n

{|fi(u, t)|},

mζ := min
ζ (s)∈[ϑ0 ,1−ϑ0]

ζ ′(s), smin := min
t≥0,i=1,··· ,n

{(s−)i(t) − (s+)i(t)},

C0 :=
{
|f |max + d̄Mσ2

0
[
1 + κ0

(
max
t≥0
{‖s−(t)‖ + ‖s+(t)‖}

)]
+ 2κ0 max

t≥0
‖s′−(t)‖ + κ0 max

t≥0
‖s′+(t)‖

}/
[σ0

2 (1 + κ0
2 smin)mζ ] > 0, (4.9)

where d̄M = max{d1, · · · , di0 , 1}. Note that 1 + κsmin > 0 for all κ ∈ (0, κ0]. Clearly, for any C ≥ C0, σ ∈
[σ0/2, σ0] and κ ∈ [κ0/2, κ0], there holds

Cσ(1 + κsmin)mζ ≥|f |max + d̄Mσ2
0
[
1 + κ0

(
max
t≥0
{‖s−(t)‖ + ‖s+(t)‖}

)]
+ 2κmax

t≥0
‖s′−(t)‖ + κmax

t≥0
‖s′+(t)‖. (4.10)

To prove u−(x − Ct, t) is a subsolution of (4.1), it su�ces to show that

u−t (ξ , t) − Cu−ξ (ξ , t) − Dϵu−ξξ (ξ , t) − f (u−(ξ , t), t) ≤ 0,

where ξ := x − Ct. Moreover, direct computations show that

u−t (ξ , t) − Cu−ξ (ξ , t) − Dϵu−ξξ (ξ , t) − f (u−(ξ , t), t)

=κ(s′−(t) − s′+(t))ζ (σξ ) − κs′−(t) − σC(1 + κs−(t) − κs+(t))ζ ′(ξ )−
Dϵσ2(1 + κs−(t) − κs+(t))ζ ′′(ξ ) − f

(
(1 + κs−(t) − κs+(t))ζ (σξ ) − κs−(t), t

)
. (4.11)

In the sequel, we consider the following two cases:

(i) ζ (σξ ) ∈ [0, ϑ0] ∪ [1 − ϑ0, 1] and (ii) ζ (σξ ) ∈ [ϑ0, 1 − ϑ0].
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For case (i), it follows from (4.7), (4.8) and (4.11) that

u−t (ξ , t) − Cu−ξ (ξ , t) − Dϵu−ξξ (ξ , t) − f (u−(ξ , t), t)

≤κ(s′−(t) − s′+(t))ζ (σξ ) − κs′−(t) + D1σ2(1 + κs−(t) − κs+(t))−
f
(

(1 + κs−(t) − κs+(t))ζ (σξ ) − κs−(t), t
)
≤ 0. (4.12)

For case (ii), it follows from (4.10) and (4.11) that

(u−i )t(ξ , t) − C(u−i )ξ (ξ , t) − Dϵ(u−i )ξξ (ξ , t) − fi(u−(ξ , t), t)
=κ[(s−)′i(t) − (s+)′i(t)]ζ (σξ ) − κ(s−)′i(t) − σC[1 + κ(s−)i(t) − κ(s+)i(t)]ζ ′(ξ )−
dϵi σ

2(1 + κ(s−)i(t) − κ(s+)i(t))ζ ′′(ξ ) − fi((1 + κs−(t) − κs+(t))ζ (σξ ) − κs−(t), t)
≤2κmax

t≥0
‖s′−(t)‖ + κmax

t≥0
‖s′+(t)‖ − Cσ(1 + κsmin)mζ+

d̄Mσ2
0
[
1 + κ

(
max
t≥0
{‖s−(t)‖ + ‖s+(t)‖}

)]
+ |f |max ≤ 0, ∀i = 1, · · · , n. (4.13)

Combining the above two cases, we conclude that u−(x, t) is a subsolution of (4.1) on [0,∞). This completes
the proof.

Based on the above lemma, we can show that cϵ is bounded for any ϵ ∈ (0, 1].

Lemma 4.3. |cϵ| ≤ C0 for any ϵ ∈ (0, 1], where C0 = C0(d1, · · · , di0 , f ) is given by (4.9), which is independent
of ϵ.

Proof. From Lemma 4.2, we see that there exist κ0 > 0, σ0 > 0 and C0 > 0 with

(1 + κ0s−(0) − κ0s+(0))ζ (0) − κ0s−(0) ≥ 1
2 ζ (0)1� 0, (4.14)

which are independent of ϵ ∈ (0, 1], such that u−(x − C0t, t; σ0, κ0) and u+(x + C0t, t; σ0, κ0) are sub- and
supersolutions of system (4.1) on [0,∞). Note that

and
u−(−∞, 0; σ0, κ0) = −κ0s−(0)� 0 = Uϵ(−∞, 0)

u−(x, 0; σ0, κ0) ≤ 1 − κ0s+(0)� 1 = Uϵ(+∞, 0), ∀x ∈ R.

Then, for any ϵ ∈ (0, 1], there exists ηϵ ∈ R such that Uϵ(· + ηϵ , 0) ≥ u−(·, 0; σ0, κ0). By Lemma 2.4, we obtain

Uϵ(x + cϵ t + ηϵ , t) ≥ u−(x − C0t, t; σ0, κ0), ∀x ∈ R, t ≥ 0,

which implies that
Uϵ(x + (cϵ + C0)t + ηϵ , t) ≥ u−(x, t; σ0, κ0), ∀x ∈ R, t ≥ 0. (4.15)

Letting x = 0 and t = nT, n ∈ N, in (4.15), we obtain

Uϵ((cϵ + C0)nT + ηϵ , nT) ≥u−(0, nT; σ0, κ0) = (1 + κ0s−(nT) − κ0s+(nT))ζ (0) − κ0s−(nT).

By (4.14) and the periodicity of Uϵ(·, t) and s±(t), it follows that

Uϵ((cϵ + C0)nT + ηϵ , 0) ≥ (1 + κ0s−(0) − κ0s+(0))ζ (0) − κ0s−(0) ≥ 1
2 ζ (0)1.

If cϵ + C0 < 0, letting n →∞ in above inequality, we get

Uϵ(−∞, 0) = 0 ≥ 1
2 ζ (0)1� 0.

This contradiction implies that cϵ ≥ −C0 for any ϵ ∈ (0, 1]. Similarly, we can prove that cϵ ≤ C0 for any
ϵ ∈ (0, 1]. This completes the proof.
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Next, we study the compactness of {Uϵ(x, t) : ϵ ∈ (0, 1]} in L1
loc(R2,Rn).

Lemma 4.4. {Uϵ(x, t) : ϵ ∈ (0, 1]} is pre-compact in L1
loc(R2,Rn).

Proof. The idea of the proof follows from [34, Lemma 5] and [12, Lemma 2.5]. Clearly, it su�ces to prove that
{Uϵi (x, t) : ϵ ∈ (0, 1]} is pre-compact in L1

loc(R2,R), ∀i = 1, · · · , n.

Given any i ∈ {1, · · · , n}. Since 0 ≤ Uϵi (·, ·) ≤ 1 and Uϵi (x, t) is monotone in x, we know that {Uϵi (·, t) :
ϵ ∈ (0, 1], t ∈ R} is pre-compact in L1

loc(R,R). Thus, for any r > 0, there exists a function zr(·) which is
continuous, and non-decreasing, such that zr(0) = 0 and∫

|x|≤r

|Uϵi (x +4x, t) − Uϵi (x, t)|dx ≤ zr(|4x|), ∀ϵ ∈ (0, 1] and t ∈ R. (4.16)

We may assume that zr1 (·) ≤ zr2 (·) for r1 ≤ r2. Now we prove the following claim.

Claim: For any r > 0, there exists a function z̄r(·) which is continuous and non-decreasing, such that z̄r(0) =
0 and ∫

|x|≤r

|Uϵi (x, t +4t) − Uϵi (x, t)|dx ≤ z̄r(|4t|), ∀ϵ ∈ (0, 1] and t ∈ R. (4.17)

Given r > 0. For any h ∈ (0, r), we de�ne

β(x) :=
{ sign(Uϵi (x, t +4t) − Uϵi (x, t)), if |x| ≤ r − h,

0, if |x| > r − h,

ρ(x) = βh(x) :=
+∞∫
−∞

1
h δ( x − yh )β(y)dy, x ∈ R,

where δ(·) is an in�nitely di�erentiable function on R with

δ(·) ≥ 0, δ(s) = 0 for |s| ≥ 1 and
+∞∫
−∞

δ(s)ds = 1.

Clearly, suppρ ⊆ {x ∈ R
∣∣|x| ≤ r}, |ρ(·)| ≤ 1, |ρ′(·)| ≤ C1/h, and |ρ′′(·)| ≤ C1/h2, where C1 > 0 is a constant

independent of ϵ and h. Note that Uϵ(x, t) satis�es

(Uϵi )t + cϵ(Uϵi )x = dϵi (Uϵi )xx + fi(Uϵ , t), i = 1, · · · , n.

For any h ∈ (0, min{1, r/2}], we have

∫
|x|≤r

ρ(x)[Uϵi (x, t +4t) − Uϵi (x, t)]dx =
∫
|x|≤r

t+4t∫
t

ρ(x)(Uϵi )t(x, t)dtdx

=
∫
|x|≤r

t+4t∫
t

ρ(x)[−cϵ(Uϵi )x + dϵi (Uϵi )xx + fi(Uϵ , t)]dtdx

=
t+4t∫
t

∫
|x|≤r

[
cϵρ′(x)Uϵi + dϵi ρ′′(x)Uϵi + fi(Uϵ , t)ρ(x)

]
dxdt

≤
∣∣ t+4t∫
t

∫
|x|≤r

[
C0|ρ′(x)| + dM|ρ′′(x)| + Lf |ρ(x)|

]
dxdt

∣∣
≤ C2|4t|max

|x|≤r

[
|ρ′(x)| + |ρ′′(x)| + |ρ(x)|

]
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≤ C2|4t|
[C1
h + C1

h2 + 1
]
≤ |4t|C2(2C1 + 1)

h2 ,

where d̄M := max{1, d1, · · · , di0},

Lf := maxu∈[0,1],t∈[0,T],i=1,··· ,n |fi(u, t)| and C2 := max{C0, d̄M , Lf }.

According to [12, Lemma 2.1] (see also [34]), for any h ∈ (0, min{1, r/2}], we obtain∫
|x|≤r

|Uϵi (x, t +4t) − Uϵi (x, t)|dx ≤
∫

|x|≤r−h

|Uϵi (x, t +4t) − Uϵi (x, t)|dx + C3h

≤
∫

|x|≤r−h

ρ(x)[Uϵi (x, t +4t) − Uϵi (x, t)]dx + C4zr−h(h) + C3h

≤
∫
|x|≤r

ρ(x)[Uϵi (x, t +4t) − Uϵi (x, t)]dx + C4zr(h) + C3h

≤ C5
[ |4t|
h2 + zr(h) + h

]
,

where C3 and C4 are constants independent of h, ϵ, t and |4t|, and C5 := max{C2(2C1 + 1), C3, C4}. Then it
follows that ∫

|x|≤r

|Uϵi (x, t +4t) − Uϵi (x, t)|dx ≤ C5 min
h∈(0,min{1, r2}]

[ |4t|
h2 + zr(h) + h

]
=: z̄r(|4t|).

This proves the claim. By (4.16) and (4.17), we conclude that {Uϵi (x, t) : ϵ ∈ (0, 1]} is pre-compact in
L1

loc(R2,R). This completes the proof.

We now give the proof of Theorem 1.2.

Proof of Theorem 1.2.

By the boundedness of {cϵ}ϵ∈(0,1], there exists a subsequence {cϵj}j≥1 such that ϵj → 0 and cϵj converges
to some c0 ∈ R. For convenience, we denote cϵj and Dϵj = diag(dϵj1 , · · · , d

ϵj
n ) by cj and Dj = diag(dj1, · · · , d

j
n),

respectively. Let U j(·, ·) be the corresponding wave pro�le with wave speed cj. Since U j1(−∞, 0) = 0,
U j1(+∞, 0) = 1 and 0 < w̄1(0) < 1, we can choose ξ j and ηj such that

U j1(ξ j , 0) = w̄1(0)
2 and U j1(ηj , 0) = 1 + w̄1(0)

2 .

De�ne V j(·, t) = U j(· + ξ j , t) andW j(·, t) = U j(· + ηj , t). Then,

V j1(0, 0) = w̄1(0)
2 andW j

1(0, 0) = 1 + w̄1(0)
2 . (4.18)

By Lemma 4.4, there exist a function V(·, ·) = (V1(·, ·), · · · , Vn(·, ·))T ∈ L1
loc(R2,Rn) and a subsequence of

{V j(·, ·)}, still denoted by {V j(·, ·)}, such that

V j(x, t)→ V(x, t) for a.e. (x, t) ∈ R2.

Thus, there is a set D0 ⊆ R with m(R \ D0) = 0 such that for any t ∈ D0,

V j(x, t)→ V(x, t) for a.e. x ∈ R. (4.19)

By the monotonicity of V j(x, t) in x and Helly’s theorem (see [36, P165]), we may assume that 0 ∈ D0 and for
each t ∈ R \ D0, there is {jl} ⊆ {j} such that

V jl (x, t)→ V(x, t) for a.e. x ∈ R. (4.20)
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In view of the boundedness of V j(·, ·), wemay assume that V jl (0, 0)→ V(0, 0) and hence V1(0, 0) = w̄1(0)/2.
Moreover, we may assume that V(x, t) is non-decreasing in x. Let uj(x, t) := V j(x + c0t, t) and V̄(x, t) = V(x +
c0t, t). One can verify that

ujt + (cj − c0)ujx = Djujxx + f (uj(x, t), t). (4.21)

By (4.19) and (4.20), for given 0 < t < ∞, there exists {jl} ⊆ {j} such that for any s ∈ (D0 ∩ [0, t]) ∪ {0, t},

ujl (x, s)→ V̄(x, s) for a.e. x ∈ R. (4.22)

Recall that di > 0 for i = 1, · · · , i0 and di = 0 for i = i0 +1, · · · , n. For i = 1, · · · , i0, we de�ne two families
of mappings T ji(t), Ti(t) : L∞(R)→ L∞(R) by T ji(0) = Ti(0) = I, and

T ji(t)[ϕ](x) := 1√
4πdi t

+∞∫
−∞

exp
{
− (x − (cj − c0)t − y)2

4di t
}
ϕ(y)dy,

Ti(t)[ϕ](x) := 1√
4πdi t

+∞∫
−∞

exp
{
− (x − y)2

4di t
}
ϕ(y)dy,

for any ϕ ∈ L∞(R), t > 0, x ∈ R. If i ∈ {1, · · · , i0}, by (4.21), we have

ujli (x, t) = T jli (t)[ujli (·, 0)](x) +
t∫

0

T jli (t − s)[fi(ujli (·, s), s)](x)ds,

which implies that

V̄i(x, t) = Ti(t)[V̄i(·, 0)](x) +
t∫

0

Ti(t − s)[fi(V̄i(·, s), s)](x)ds, for a.e. x ∈ R. (4.23)

If i ∈ {i0 + 1, · · · , n}, by the dominated convergence theorem and Fubini theorem for Lebesgue integrals,
for any s(·) ∈ C∞(R) with compact support, we have∫

R

V̄i(x, t)s(x)dx = lim
l→∞

∫
R

ujli (x, t)s(x)dx

= lim
l→∞

∫
R

{
ujli (x, 0)s(x)dx+

t∫
0

[
− (cjl − c0)(ujli )x(x, s) + djli (ujli )xx(x, s) + fi(ujl (x, s), s)

]
ds
}
s(x)dx

= lim
l→∞

∫
R

ujli (x, 0)s(x)dx + lim
l→∞

t∫
0

∫
R

fi(ujl (x, s), s)s(x)dxds+

lim
l→∞

t∫
0

∫
R

[(cjl − c0)ujli (x, s)s′(x) + djli u
jl
i (x, s)s′′(x)]dxds

=
∫
R

V̄i(x, 0)s(x)dx +
t∫

0

∫
R

fi(V̄(x, s), s)s(x)dxds

=
∫
R

V̄i(x, 0)s(x)dx +
∫
R

t∫
0

fi(V̄(x, s), s)s(x)dxds.
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Hence, for i ∈ {i0 + 1, · · · , n},

V̄i(x, t) = V̄i(x, 0) +
t∫

0

fi(V̄(x, s), s)ds, for a.e. x ∈ R. (4.24)

Note that (4.23)-(4.24) just hold for a.e. x ∈ R. Let’s de�ne V−(x, t) := limh→0− V̄(x +
h, t)= limh→0− V(x + c0t + h, t) =: ϕ(x + c0t, t) for all x ∈ R, then it follows from (4.23)-(4.24) and the
monotonicity of V̄(x, t) in x that

V−i (x, t) = Ti(t)[V−i (·, 0)](x) +
t∫

0

Ti(t − s)[fi(V−i (·, s), s)](x)ds, ∀i ∈ {1, · · · , i0}, (4.25)

V−i (x, t) = V−i (x, 0) +
t∫

0

fi(V−(x, s), s)ds, ∀i ∈ {i0 + 1, · · · , n}, (4.26)

for any x ∈ R, t > 0.

Similarly, there exist a function W(·, ·) = (W1(·, ·), · · · ,Wn(·, ·))T ∈ L1
loc(R2,Rn) and a subsequence of

{W j(·, ·)}, still denoted by {W j(·, ·)}, such that

W j(x, t)→ W(x, t) for a.e. (x, t) ∈ R2.

De�ne W̄(x, t) = W(x + c0t, t) and

W+(x, t) = lim
h→0+

W̄(x + h, t)= lim
h→0+

W(x + c0t + h, t) =: ψ(x + c0t, t).

Using the similar argument as above, we can obtain

W+
i (x, t) = Ti(t)[W+

i (·, 0)](x) +
t∫

0

Ti(t − s)[fi(W+
i (·, s), s)](x)ds, ∀i ∈ {1, · · · , i0},

W+
i (x, t) = W+

i (x, 0) +
t∫

0

fi(W+(x, s), s)ds, ∀i ∈ {i0 + 1, · · · , n},

for any x ∈ R, t > 0. It is clear that V−(·, t + T) = V−(·, t) andW+(·, t + T) = W+(·, t).

We now consider the boundary behaviors of ϕ(·, t) and ψ(·, t) at ±∞. Clearly, ϕ(±∞, t) both exists and
are periodic solutions of the system:

u(t) = u(0) +
t∫

0

f (u(s), s)ds,

and hence they satisfy (1.5). Since V̄(x, t) is non-decreasing in x, it follows that

ϕ1(0, 0) = V−1 (0, 0) = lim
h→0−

V̄1(h, 0) ≤ V̄1(0, 0) = V1(0, 0) = w̄1(0)/2.

By our assumptions, system (1.5) has exactly three periodic solutions 0, w̄(t) and 1 with 0 � w̄(t) � 1,
∀t ∈ R. Thus, ϕ(−∞, t) = 0 and ϕ(+∞, t) = w̄(t) or 1. Similarly, we obtain ψ(+∞, t) = 1 and ψ(−∞, t) = 0 or
w̄(t). By Lemma 3.1, we see that ϕ(+∞, t) = w̄(t) and ψ(−∞, t) = w̄(t) cannot hold simultaneously because
V−(x, t) = ϕ(x + c0t, t) and W+(x, t) = ψ(x + c0t, t) are non-decreasing periodic traveling waves of (1.1) with
the samewave speed c0. That is, eitherV−(x, t) = ϕ(x + c0t, t) orW+(x, t) = ψ(x + c0t, t) is a periodic traveling
front of (1.1) connecting 0 and 1 with speed c0. Since |cϵ| ≤ C0 for any ϵ ∈ (0, 1], we conclude that |c0| ≤ C0.
This completes the proof of Theorem 1.2.
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5 Monotonicity of periodic traveling fronts
This section is devoted to the monotonicity of the periodic traveling waves. Throughout this section, we as-
sume that (C1)-(C3) and (C4)′ hold and U(x + ct, t) is a smooth periodic traveling wave of (1.1) connecting 0
and 1.

We �rst consider the following linear initial value problem:{ vt + cvx = D∆v + Df (U, t)v, x ∈ R, t > 0,
v(x, 0) = φ(x) ∈ L∞(R).

(5.1)

Three important lemmas are established in the sequel.

Lemma 5.1. Let v(x, t;φ) be a solution of system (5.1) with v(·, 0;φ) = φ(·). If φ(·) > 0, then v(x, t;φ) � 0,
∀x ∈ R, t ≥ 0.

Proof. The proof is similar to that of Lemma 2.5. We omit it here.

Lemma 5.2. Given any L > 0 and c ∈ R. Let ū(x, t), u(x, t) : R × [τ, ∞)→ [−δ01, 1 + δ01] be two continuous
functions which satisfy

(i) ūt + cūx ≥ D∆ū + f (ū, t) and ut + cux ≤ D∆u + f (u, t), ∀x ∈ R \ [−L, L], t > 0;
(ii) ū(x, 0) ≥ u(x, 0), ∀x ∈ R and ū(x, t) ≥ u(x, t), ∀x ∈ [−L, L], t ≥ 0.

Then ū(x, t) ≥ u(x, t) for all x ∈ R, t ≥ 0.

Proof. Let v(x, t) = (v1(x, t), · · · , vn(x, t)) := ū(x, t) − u(x, t), ∀x ∈ R, t ≥ 0. Then v(x, 0) ≥ 0, −1 − 2δ01 ≤
v(x, t) ≤ 1 + 2δ01 for x ∈ R, t ≥ 0, and

(vi)t + c(vi)x − di(vi)xx ≥ fi(ū, t) − fi(u, t), i = 1, · · · , n. (5.2)

Choosing K > 0 large enough such that 7
4K − |c| −

3
2Lf − max{d1, · · · , di0} > 0, where

Lf := max
1≤i≤n

sup
u∈[−δ01,1+δ01],t≥0

|∂fi(u, t)/∂ui|.

Suppose the assertion is false, then there exist i ∈ {1, · · · , n}, ϖ > 0 and t0 > 0 such that

vi(x, t) > −ϖe2Kt for x ∈ R, t ∈ [0, t0), infx∈R vi(x, t0) = −ϖe2Kt0

and vj(x, t) ≥ 0 for x ∈ R, t ∈ [0, t0], j ≠ i. Thus, there exists a bounded set S ⊂ R with positive Lebesgue
measure such that vi(x, t0) ≤ − 15

16ϖe
2Kt0 for x ∈ S.

Let ζ0(x) be a smooth function satisfying

minx∈R ζ0(x) = 1, ζ0(x) = 1 for all x ∈ S, supx∈R ζ0(x) = ζ0(±∞) = 3,
|ζ ′0(·)| ≤ 1 and |ζ ′′0 (·)| ≤ 1

For any α ∈ [0, 1], we de�ne the function

z(x, t; α) := −ϖ( 3
4 + αζ0(x))e2Kt , x ∈ R, t ∈ [0, t0].

It is clear that ∂
∂α z(x, t; α) < 0, ∀α ∈ [0, 1], x ∈ R, t ∈ [0, t0],

z(x, t; 1
4 ) = −ϖ( 3

4 + 1
4 ζ0(x))e2Kt ≤ −ϖe2Kt ≤ vi(x, t) for x ∈ R, t ∈ [0, t0];

z(x, t0; 1
8 ) = −ϖ( 3

4 + 1
8 ζ0(x))e2Kt0 = −7

8ϖe
2Kt0 > vi(x, t0) for x ∈ S.
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Thus,
α* := inf

{
α ∈ ( 1

8 ,
1
4 ]
∣∣vi(x, t) ≥ z(x, t; α) for x ∈ R, t ∈ [0, t0]

}
.

is well de�ned. Obviously, vi(x, t) ≥ z(x, t; α*) for x ∈ R, t ∈ [0, t0].

Since vi(x, 0) ≥ 0 > z(x, 0; α*) for x ∈ R;

z(±∞, t; α*) ≤ −
9
8ϖe

2Kt < vi(x, t) for x ∈ R, t ∈ [0, t0];

vi(x, t) > z(x, t; α*) for x ∈ [−L, L], t ∈ [0, t0],

we deduce that the function w(x, t) := vi(x, t)− z(x, t; α*) attains its in�mum 0 at (x1, t1) ∈ R\ [−L, L]×(0, t0].
Therefore, w(x1, t1) = 0, wt(x1, t1) ≤ 0, wx(x1, t1) = 0 and wxx(x1, t1) ≥ 0. From (5.2) and the fact that
vj(x, t) ≥ 0 for x ∈ R, t ∈ [0, t0], j ≠ i, we have

0 ≥wt(x1, t1) + cwx(x1, t1) − diwxx(x1, t1)
≥fi(ū(x1, t1), t1) − fi(u(x1, t1), t1) − [zt + czx − dizxx]|(x1 ,t1)

=
n∑
j=1

∂j fi(η(x1, t1), t1)vj(x1, t1) + ϖ[2K( 3
4 + α*ζ0(x))e2Kt1 + cα*ζ ′0(x)e2Kt1 − diα*ζ ′′0 (x)e2Kt1 ]

≥∂i fi(η(x1, t1), t1)vi(x1, t1) +
[7

4K − |c| − di
]
ϖe2Kt1

= − ∂i fi(η(x1, t1), t1)ϖ( 3
4 + α*ζ0(x1))e2Kt1 +

[7
4K − |c| − di

]
ϖe2Kt1

≥
[7

4K − |c| −
3
2Lf − max{d1, · · · , di0}

]
ϖe2Kt1 > 0,

where η(x1, t1) = θū(x1, t1) + (1 − θ)u(x1, t1) with θ ∈ (0, 1). This contradiction implies that ū(x, t) ≥ u(x, t)
for all x ∈ R and t ≥ 0.

Recall that µ± = 1
T ln r± < 0 and s±(t) = ((s±)1(t), · · · , (s±)n(t)) are positive and T-periodic functions with

s±(·) ≤ 1 such that v±(t) = eµ
± ts±(t) are solutions of the T-periodic linear system:

v′(t) = Df (w±(t), t)v(t).

Let

0 < β1 < 1
2 min{−µ+, −µ−}, p̄ := min

{
min

i=1,··· ,n,t≥0
{(s+)i(t)}, min

i=1,··· ,n,t≥0
{(s−)i(t)}

}
(5.3)

and ζ1(x) ∈ C2(R,R+) be a function satisfying

ζ1(x) = 0 for x ≤ −2, ζ1(x) = 1 for x ≥ 2, 0 ≤ ζ ′1(x) ≤ 1 and |ζ ′′1 (x)| ≤ 1 for x ∈ R. (5.4)

Then, for ε > 0, we de�ne

p(x, t) := ζ1(x)s+(t) + (1 − ζ1(x))s−(t) and uε(x, t) := U(x, t) + p(x, t)εe−β1 t . (5.5)

Lemma 5.3. There exist ξ* � 1 and ε* > 0 such that for all 0 < ε ≤ ε*,

(uε)t + c(uε)x ≥ D∆uε + f (uε , t), ∀x ∈ R\[−ξ*, ξ*], t ≥ 0.

Proof. For simplicity, we denote

L[uε](x, t) := (uε)t + c(uε)x − D∆uε − f (uε , t).

Note that p(x, t) = s+(t) for x ≥ 2 and p(x, t) = s−(t) for x ≤ −2. Direct computation shows that, for any |x| ≥ 2
and t ≥ 0,

ε−1eβ1 tL[uε](x, t) =ε−1eβ1 t[Ut + cUx − D∆U − f (U + pεe−β1 t , t)
]

+ pt − β1p + cpx − Dpxx
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=ε−1eβ1 t[f (U, t) − f (U + pεe−β1 t , t)
]

+ pt − β1p. (5.6)

Since lim
x→+∞

U(x, t) = 1 uniformly in t, it follows from (4.3) that

ε−1eβ1 t[f (U, t) − f (U + pεe−β1 t , t)
]

+ pt

= −
1∫

0

Df (U + pθεe−β1 t , t)dθp + pt −→ −Df (1, t)s+(t) + s′+(t) = −µ+s+(t), (5.7)

as x → +∞ and ε → 0 uniformly in t ≥ 0. Therefore, there exist ξ1 > 2 and ε1 > 0 such that for all 0 < ε < ε1,

ε−1eβ1 t[f (U, t) − f (U + pεe−β1 t , t)
]

+ pt > −
µ+

2 s+(t), ∀x > ξ1, t > 0.

By the above inequality and (5.6), for all 0 < ε < ε1, we have

ε−1eβ1 tL[uε](x, t) ≥ [−µ
+

2 − β1]s+(t) > 0, ∀x > ξ1, t > 0.

Similarly, one can show that there exist ξ2 > 2 and ε2 > 0 such that for all 0 < ε < ε2,

ε−1eβ1 tL[uε](x, t) ≥ [−µ
−

2 − β1]s−(t) > 0, ∀x < −ξ2, t > 0.

Letting ε* := min{ε1, ε2} and ξ* := max{ξ1, ξ2}, then assertion of the lemma follows.

Now, we are ready to give the proof of Theorem 1.3.

Proof of Theorem 1.3.

Note that lim
x→+∞

U(x, t) = 1 and lim
x→−∞

U(x, t) = 0 uniformly in t. Form Lemma 5.3, we can choose ξ* large
enough such that

U(x, t) ≥ 1 − 1
2 ε*p̄1, ∀x ≥ ξ*, t ∈ R and U(x, t) ≤ 1

2 ε*p̄1, ∀x ≤ −ξ*, t ∈ R.

Then, there exists z* > 0 such that

U(x − z, t) ≤
{ U(x, t), if x ∈ [−ξ*, ξ*], t ∈ R,
U(x, t) + ε*p̄1, if x ∈ R\[−ξ*, ξ*], t ∈ R,

(5.8)

for all z ≥ z*, where ξ* and ε* are given in Lemma 5.3. We �rst prove that

U(x − z, 0) ≤ U(x, 0) for all x ∈ R, z ≥ z*. (5.9)

Notice that w(x, t) = U(x, t) satis�es the following system

wt + cwx = D∆w + f (w, t), x ∈ R, t ∈ R.

By (5.8), for any z ≥ z*, we obtain

uε* (x, 0) =U(x, 0) + [ζ1(x)s+(0) + (1 − ζ1(x))s−(0)]ε*

≥
{ U(x, 0) + p̄ε*1 ≥ U(x − z, 0), ∀x ∈ R\[−ξ*, ξ*],
U(x, 0) ≥ U(x − z, 0), ∀x ∈ [−ξ*, ξ*],

which implies that uε* (x, 0) ≥ U(x − z, 0) for all x ∈ R. Moreover,

uε* (x, t) ≥ U(x, t) ≥ U(x − z, t), ∀x ∈ [−ξ*, ξ*], t ≥ 0.

By Lemmas 5.3 and 5.2, we deduce thatU(x−z, t) ≤ uε* (x, t), ∀x ∈ R, t ≥ 0, z ≥ z*. In particular,U(x−z, nT) ≤
uε* (x, nT), ∀x ∈ R, n ∈ N, z ≥ z*. Using the periodicity of U(·, t) and s±(t), we have for any n ∈ N and z ≥ z*,

U(x − z, 0) ≤ U(x, 0) + [ζ1(x)s+(0) + (1 − ζ1(x))s−(0)]ε*e−β1nT , ∀x ∈ R.
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Letting n →∞ in the above inequality, we conclude that (5.9) holds.

Next, we show that (5.9) actually holds for any z ≥ 0. To this end, we denote

z0 := inf{z̄ ≥ 0 : U(x − z, 0) ≤ U(x, 0), ∀z ≥ z̄, x ∈ R}.

Clearly, U(x − z0, 0) ≤ U(x, 0) for x ∈ R. We claim that U(x − z0, 0) = U(x, 0) for x ∈ R. Suppose the claim is
false, by part (ii) of Lemma 2.5, we have

U(x − z0, t)� U(x, t) for x ∈ R and t ∈ R.

Then, there exists ϵ > 0 such that

U(x − z, t) ≤
{ U(x, t), if x ∈ [−ξ*, ξ*],
U(x, t) + ε*p̄1, if x ∈ R\[−ξ*, ξ*],

∀z ≥ z0 − ϵ.

Similarly, one can show that (5.9) holds for any z ≥ z0 − ϵ, which contradicts the choice of z0. Hence U(x −
z0, 0) = U(x, 0) for x ∈ R. Since lim

x→+∞
U(x, 0) = 1 and lim

x→−∞
U(x, 0) = 0, we conclude that z0 = 0. Therefore,

(5.9) holds for any z ≥ 0.

By (5.9), we see that Ux(x, 0) ≥ 0 for x ∈ R. Since Ux(·, 0) ≢ 0 and v(x, t) := Ux(x, t) satis�es the following
linear system:

vt + cvx = D∆v + Df (U, t)v, x ∈ R, t ∈ R. (5.10)

Therefore, it follows from Lemma 5.1 that Ux(x, t) � 0 for all x ∈ R and t ∈ R. This completes the proof of
Theorem 1.3.

6 Stability of periodic traveling fronts
In this section, we prove the uniform and asymptotic stability of the smooth periodic traveling waves under
the assumptions (C1)-(C3) and (C4)′.

Let U(x + ct, t) be a smooth periodic traveling wave of (1.1) connecting 0 and 1. By Lemma 1.3, we know
that Ux(·, ·) � 0. Given any τ ≥ 0. Let β1, p̄, ζ1(x) and p(x, t) be the terms de�ned in (5.3)-(5.5), respectively.
We �rst construct some pairs of sub- and supersolutions.

Lemma 6.1. There exist δ1 > 0 and σ1 > 0 such that for any δ ∈ (0, δ1), ξ1, ξ2 ∈ R with ξ2 ∈ [−2 + ξ1, 2 + ξ1],
the functions

u±(x, t) =U
(
x + ct + ξ1 ± σ1δ(1 − e−β1(t−τ)), t

)
± δp

(
x + ct + ξ2 ± σ1δ(1 − e−β1(t−τ)), t

)
e−β1(t−τ)

are super- and subsolutions of (1.1) on [τ, +∞).

Proof. For convenience, we denote

ξi(x, t) := x + ct + ξi + σ1δ(1 − e−β1(t−τ)), i = 1, 2.

Clearly, ξ1(x, t) = ξ2(x, t) + ξ1 − ξ2. By direct calculations, we have

H[u+](x, t) :=u+
t − D∆u+ − f (u+, t)

=(c + σ1δβ1e−β1(t−τ))Ux(ξ1(x, t), t) + Ut(ξ1(x, t), t) − DUxx(ξ1(x, t), t)−

f
(
U(ξ1(x, t), t) + δp(ξ2(x, t), t)e−β1(t−τ), t

)
+
[
pt(ξ2(x, t), t) + (c + σ1δβ1e−β1(t−τ))

px(ξ2(x, t), t)
]
δe−β1(t−τ) − β1p(ξ2(x, t), t)e−β1(t−τ) − Dpxx(ξ2(x, t), t)δe−β1(t−τ)
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=f (U(ξ1(x, t), t) − f (U(ξ1(x, t), t) + δp(ξ2(x, t), t)e−β1(t−τ), t)+

δe−β1(t−τ)[σ1β1Ux(ξ1(x, t), t) + pt(ξ2(x, t), t) − β1p(ξ2(x, t), t)+

(c + σ1δβ1e−β1(t−τ))px(ξ2(x, t), t) − Dpxx(ξ2(x, t), t)
]

=δe−β1(t−τ)[σ1β1Ux(ξ1(x, t), t) + K1(ξ2(x, t), t) − β1p(ξ2(x, t), t)+

(c + σ1δβ1e−β1(t−τ))px(ξ2(x, t), t) − Dpxx(ξ2(x, t), t)
]
, (6.1)

where

K1(ξ2(x, t), t) := −
1∫

0

Df
(
U(ξ2(x, t) + ξ1 − ξ2, t) + δθp(ξ2(x, t), t)e−β1(t−τ), t

)
dθp(ξ2(x, t), t)

+ pt(ξ2(x, t), t).

Note that p(x, t) = s+(t) for x ≥ 2 and p(x, t) = s−(t) for x ≤ −2. Since |ξ1 − ξ2| ≤ 2, lim
x→+∞

U(x, t) = 1 and
lim
x→−∞

U(x, t) = 0 uniformly in t, by (4.3), we have

K1(ξ , t)→ −Df (1, t)s+(t) + s′+(t) = −µ+s+(t) as ξ → +∞ and δ → 0 uniformly in t;
K1(ξ , t)→ −Df (0, t)s−(t) + s′−(t) = −µ−s−(t) as ξ → −∞ and δ → 0 uniformly in t.

Then, there exist δ̄0 > 0 and M ≥ 2 such that for all 0 < δ < δ̄0,

K1(ξ , t) >
{ −µ+s+(t)/2, ∀ξ ≥ M, t ≥ τ,
−µ−s−(t)/2, ∀ξ ≤ −M, t ≥ τ.

(6.2)

By Theorem 1.3, we have Ux(·, ·)� 0. Thus, we can take

ᾱ = (ᾱ1, · · · , ᾱn) :=
(

min
|x|≤M+2,t≥τ

(U1)x(x, t), · · · , min
|x|≤M+2,t≥τ

(Un)x(x, t)
)
� 0

and choose σ1 > 0 large enough such that

1
2σ1β1ᾱ >

(
Lf + β1 + 2|c| + 2 max{d1, · · · , di0} + max

t≥0
{‖s′−(t)‖ + ‖s′+(t)‖}

)
1, (6.3)

where Lf := supu∈[−δ01,1+δ01],t≥τ ‖Df (u, t)‖. Let’s set

δ1 := min
{
δ0, δ̄0,

1
σ1

, min{ᾱ1, · · · , ᾱn}
4

}
,

Given any δ ∈ (0, δ1), we consider the following two cases.

Case (i): |ξ2(x, t)| ≥ M. We only consider the case ξ2(x, t) ≥ M, the proof for the case ξ2(x, t) ≤ M is similar.
Since M ≥ 2, p(ξ2(x, t), t) = s+(t), we have px(ξ2(x, t), t) = pxx(ξ2(x, t), t) = 0. Then, for all x ∈ R, t > τ, it
follows from (6.1) and (6.2) that

δ−1eβ1(t−τ)H[u+](x, t) ≥K1(ξ2(x, t), t) − β1p(ξ2(x, t), t) ≥ [−µ+
2 − β1]s+(t) ≥ 0. (6.4)

Case (ii): |ξ2(x, t)| ≤ M. For x ∈ R and t ≥ 0, it’s obvious that

|ξ1(x, t)| ≤ M + |ξ1 − ξ2| ≤ M + 2, p(x, t) = ζ1(x)s+(t) + (1 − ζ1(x))s−(t) ≤ 1,
px(x, t) = ζ ′1(x)s+(t) − ζ ′1(x)s−(t) ≤ 2, pxx(x, t) = ζ ′′1 (x)s+(t) − ζ ′′1 (x)s−(t) ≤ 2,
pt(x, t) = ζ1(x)s′+(t) + (1 − ζ1(x))s′−(t) ≤ max

t≥0
{‖s′−(t)‖ + ‖s′+(t)‖}1.

Then, from (6.1), we deduce that

δ−1eβ1(t−τ)H[u+](x, t)
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≥σ1β1ᾱ −
(
Lf + max

t≥0
{‖s′−(t)‖ + ‖s′+(t)‖}

)
1 − β11 − 2

(
|c| + σ1δβ1 + max{d1, · · · , di0}

)
1

≥1
2σ1β1ᾱ −

(
Lf + β1 + 2|c|)1 −

(
2 max{d1, · · · , di0} + max

t≥0
{‖s′−(t)‖ + ‖s′+(t)‖}

)
1

≥0, ∀x ∈ R, t > τ. (6.5)

Therefore, we conclude that u+(x, t) is a super-solutions of (1.1) on [τ, +∞). Using a similar argument, we can
show that u−(x, t) is a sub-solutions of (1.1) on [τ, +∞).

Lemma 6.2. Let α± ∈ [−2δ01, 1 + 2δ01] be any given vectors in Rn with α− � α+ and ζ (·) be the function
de�ned in (4.4). De�ne

v±(x, t) :=v(t; α±)ζ (x + h + Ct) + v(t; α∓)
(

1 − ζ (x + h + Ct)
)
, (6.6)

w±(x, t) :=v(t; α∓)ζ (x + h − Ct) + v(t; α±)
(

1 − ζ (x + h − Ct)
)
, (6.7)

where v(t; α) is the solution of (1.5) with initial condition v(0; α) = α. Then, for any C � 1 and h ∈ R, v±(x, t)
and w±(x, t) are two pairs of sub- and supersolutions of (1.1) on [0, +∞).

Proof. We only prove that v+(x, t) is a supersolution. The other cases can be proved similarly. From Lemma
2.5, we see that P(α) = v(T; α) : [0, 1] → [0, 1] is strongly monotone. By the Dancer-Hess connecting orbit
lemma (c.f. [31]), one can see that

lim
t→∞

v(t; α) = 0 for any α ∈ [0, w̄) and lim
t→∞

v(t; α) = 1 for any α ∈ (w̄, 1],

where w̄ = w̄(0). Note that −2δ01 ∈ Ω− and 1 + 2δ01 ∈ Ω+, where Ω− and Ω+ are the domains of attraction
of 0 and 1, respectively. Therefore, for any α± ∈ [−2δ01, 1 + 2δ01] with α− � α+, v(t; α±) are de�ned for all
[0, +∞) and satisfy v(t; α−)� v(t; α+) for t ∈ [0, +∞).

Let η(x, t) = x + h + Ct. Since 0 < ζ (·) < 1, ζ ′(s) = ζ (s)(1 − ζ (s)) and ζ ′′(s) = ζ (s)(1 − ζ (s))(1 − 2ζ (s)), by
using the Taylor’s expansion, we obtain

ζfi(v(t; α+), t) + (1 − ζ )fi(v(t; α−), t) − fi(ζv(t; α+) + (1 − ζ )v(t; α−), t)
=ζ [fi(v(t; α+), t) − fi(ζv(t; α+) + (1 − ζ )v(t; α−), t)]+

(1 − ζ )[fi(v(t; α−), t) − fi(ζv(t; α+) + (1 − ζ )v(t; α−), t)]

= ζ (1 − ζ )
2

n∑
j=1

n∑
l=1

[
(1 − ζ )∂

2fi(γ̄(x, t), t)
∂xjxl

+ ζ ∂
2fi(γ̃(x, t), t)
∂xjxl

]
× [vj(t; α+) − vj(t; α−)][vl(t; α+) − vl(t; α−)]

= ζ (1 − ζ )
2

n∑
j=1

n∑
l=1

∂2fi(γ(x, t), t)
∂xjxl

[vj(t; α+) − vj(t; α−)][vl(t; α+) − vl(t; α−)], (6.8)

where γ̃(x, t), γ̄(x, t) ∈ (v(t; α−), v(t; α+)) and γ(x, t) is a function satisfying

∂2fi(γ(x, t), t)
∂xjxl

= (1 − ζ )∂
2fi(γ̄(x, t), t)
∂xjxl

+ ζ ∂
2fi(γ̃(x, t), t)
∂xjxl

.

Let

C := max{d1, · · · , di0} + 1
2 sup

{ n∑
j=1

n∑
l=1

∣∣∂2fi(z, t)
∂xjxl

∣∣ [vj(t; α+) − vj(t; α−)][vl(t; α+) − vl(t; α−)]
vi(t; α+) − vi(t; α−) ,

i = 1, · · · , n, z ∈ (v(t; α−), v(t; α+)), t ≥ 0
}
.

From (6.8), direct computation shows that

Hi[v+](x, t) :=(v+
i )t − di(v+

i )xx − fi(v+, t)
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=ζ (η(x, t))fi(v(t; α+), t) + (1 − ζ (η(x, t)))fi
(
v(t; α−), t

)
−

fi
(
ζ (η(x, t))v(t; α+) + (1 − ζ (η(x, t)))v(t; α−), t

)
+

ζ (η(x, t))(1 − ζ (η(x, t)))[C − di(1 − 2ζ (η(x, t)))][vi(t; α+) − vi(t; α−)]
≥[vi(t; α+) − vi(t; α−)]ζ (η(x, t))(1 − ζ (η(x, t)))

{
C − di+

1
2

n∑
j=1

n∑
l=1

∂2fi(γ(x, t), t)
∂xjxl

[vj(t; α+) − vj(t; α−)][vl(t; α+) − vl(t; α−)]
vi(t; α+) − vi(t; α−)

}
≥ 0, (6.9)

for x ∈ R, t > 0. Therefore, v+(x, t) is a super-solution of (1.1) on [0, +∞).

Lemma 6.3. Let ϕ ∈ L∞(R, [−δ01, 1 + δ01]) be such that

lim inf
x→+∞

ϕ(x)� w̄ and lim sup
x→−∞

ϕ(x)� w̄. (6.10)

Then for any δ ∈ (0, δ0), there are H > 0 and T̃ ≥ 0 such that

U(x − H + cT̃, T̃) − δ1 ≤ u(x, T̃;ϕ) ≤ U(x + H + cT̃, T̃) + δ1, (6.11)

where u(x, t;ϕ) is the solution of (1.1) with u(·, 0;ϕ) = ϕ(·).

Proof. For any given su�ciently small κ > 0, by (6.10), there exists M1 > 0 such that

ϕ(x)� w̄ + κ1 for x > M1 and ϕ(x)� w̄ − κ1 for x < −M1. (6.12)

By Lemma 6.2, for any h ∈ R and su�ciently large C,

v+(x, t) =v(t;1 + 2δ01)ζ (x + h + Ct) + v(t; w̄ − κ1)
(

1 − ζ (x + h + Ct)
)
,

v−(x, t) =v(t; w̄ + κ1)ζ (x − h − Ct) + v(t; −2δ01)
(

1 − ζ (x − h − Ct)
)
,

are super- and subsolutions of (1.1) on [0, +∞), respectively. From (6.12), we can choose h > 0 large enough
such that v−(x, 0) ≤ ϕ(x) ≤ v+(x, 0), ∀x ∈ R. Hence, by Lemma 2.4,

v−(x, t) ≤ u(x, t;ϕ) ≤ v+(x, t), ∀x ∈ R, t > 0. (6.13)

Moreover, from the proof of Lemma 6.2, we see that

lim
t→∞

v(t;1 + 2δ01) = lim
t→∞

v(t; w̄ + κ1) = 1 and lim
t→∞

v(t; w̄ − κ1) = lim
t→∞

v(t; −2δ01) = 0.

Hence, for any δ > 0, there exists T̃ ≥ 0 such that

1 − δ21� v(T̃; α+)� 1 + δ
21 and − δ21� v(T̃; α−)� δ

21, (6.14)

where α+ = 1 + 2δ01 (or α+ = w̄ + κ1) and α− = w̄ − κ1 (or α− = −2δ01). Since lim
x→+∞

U(x, t) = 1 and
lim
x→−∞

U(x, t) = 0, it follows from (6.13)-(6.14) that there exists large H > 0 such that

U(x − H + cT̃, T̃) − δ1 ≤ v−(x, T̃) ≤ u(x, T̃;ϕ) ≤ v+(x, T̃) ≤ U(x + H + cT̃, T̃) + δ1

for all x ∈ R. This completes the proof.

In the sequel, let β1, p̄ and p(x, t) be the terms de�ned in (5.3) and (5.5), respectively; σ1 and δ1 be the con-
stants de�ned in Lemma 6.1; and δ0 be the term de�ned in Section 1.

Lemma 6.4. There exists ϵ* ∈ (0, min{ δ1
2 , 1

2σ1
}) such that if u(x, t) is a solution of (1.1) with the property: for

some τ ∈ [0, +∞), ξ ∈ R, h > 0 and δ ∈ (0, p̄min{ 1
σ1
, δ1

2 }),

U(x + cτ + ξ , τ) − δ1 ≤ u(x, τ) ≤ U(x + cτ + ξ + h, τ) + δ1, ∀x ∈ R, (6.15)
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then, for every t ≥ τ + 1,

U(x + ct + ξ (t), t) − δ(t)1 ≤ u(x, t) ≤ U(x + ct + ξ (t) + h(t), t) + δ(t)1, ∀x ∈ R, (6.16)

where ξ (t) ∈ [ξ − σ1δ/p̄, ξ + h + σ1δ/p̄],

δ(t) ≤ e−β1(t−τ−1)[δ/p̄ + ϵ* min{1, h}] and h(t) ≤ h − σ1ϵ* min{1, h} + 2σ1δ/p̄.

Proof. Take δ̄ = δ/p̄. Then δ̄ ∈ (0, min{ 1
σ1
, δ1

2 }). From the de�nitions of p(x, t) and p̄, we deduce that p(x, t) ≥
p̄1 for any x ∈ R, t ≥ 0. Thus, by (6.15), we have

U(x + cτ + ξ , τ) − δ̄p
(
x + cτ + ξ , τ) ≤ u(x, τ) ≤ U(x + cτ + ξ + h, τ) + δ̄p

(
x + cτ + ξ + h, τ)

for x ∈ R. It then follows from Lemmas 2.4 and 6.1 that

U
(
ξ−(x, t), t

)
− δ̄p

(
ξ−(x, t), t

)
e−β1(t−τ)

≤u(x, t) ≤ U
(
ξ+(x, t) + h, t

)
+ δ̄p

(
ξ+(x, t) + h, t

)
e−β1(t−τ), (6.17)

for x ∈ R and t > τ, where ξ±(x, t) = x + ct + ξ ± σ1 δ̄(1 − e−β1(t−τ)). Let’s set

h̄ = min{h, 1} and ϵ̄ = 1
2 min{(U1)x(x, t) : |x| ≤ 3, t ∈ [τ, τ + T]},

where U1 is the �rst component of U. Fix any number x0 ∈ [−cτ − ξ , −cτ − ξ + 1], we have

1∫
0

[U1(y + x0 + cτ + ξ + h̄, τ) − U1(y + x0 + cτ + ξ , τ)]dy ≥ 2ϵ̄h̄. (6.18)

Hence, one of the following inequalities holds

1∫
0

[u1(y + x0, τ) − U1(y + x0 + cτ + ξ , τ)]dy ≥ ϵ̄h̄, (6.19)

or
1∫

0

[U1(y + x0 + cτ + ξ + h̄, τ) − u1(y + x0, τ)]dy ≥ ϵ̄h̄. (6.20)

We prove the lemma for the case that (6.19) holds. The other case can be treated similarly.

By interpolation and the boundedness of Uxx(x, t), we deduce that lim
|x|→∞

Ux(x, t) = 0 uniformly in t.

Then, there exists M̄ > 0 such that

2σ1‖Ux(x, t)‖ < p̄ for any x ∈ R with |x| ≥ M̄ − |c| − 3 and t ≥ τ. (6.21)

Let’s de�ne
ϵ* := min

{ δ1
2 , 1

2σ1
, min
|x|≤M̄+|c|+3,t∈[0,T]

θ̄ϵ̄
2σ1‖Ux(x, t)‖

}
,

where θ̄ = Θ(M̄) is given in lemma 2.5. Then, for any x ∈ R with |x| ≤ M̄,

|ξ−(x + x0, τ + 1) + 2ϵ*σ1h̄| = |x + x0 + cτ + c + ξ − σ1 δ̄(1 − e−β1 ) + 2ϵ*σ1h̄| ≤ M̄ + |c| + 3,

which implies that

U
(
ξ−(x + x0, τ + 1), τ + 1

)
− U
(
ξ−(x + x0, τ + 1) + 2ϵ*σ1h̄, τ + 1

)
≥ −θ̄ϵ̄h̄1. (6.22)

Comparing the functions
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v(x, t) := u(x + x0, t) and u−(x, t) := U
(
ξ−(x + x0, t), t

)
− δ̄p

(
ξ−(x + x0, t), t

)
e−β1(t−τ)

and using Lemma 2.5, we have

u(x + x0, τ + 1) − [U
(
ξ−(x + x0, τ + 1), τ + 1

)
− δ̄p

(
ξ−(x + x0, τ + 1), τ + 1

)
e−β1 ]

≥Θ(M̄)
1∫

0

{
u1(y + x0, τ) − [U1

(
ξ−(y + x0, τ), τ

)
− δ̄p

(
ξ−(y, τ), τ

)
]
}
dy1

≥θ̄
1∫

0

[u1(y + x0, τ) − U1
(
y + cτ + x0 + ξ , τ

)
]dy1 ≥ θ̄ϵ̄h̄1,

for any x ∈ R with |x| ≤ M̄. The above inequality and (6.22) yield that

u(x + x0, τ + 1) ≥ U
(
ξ−(x + x0, τ + 1) + 2ϵ*σ1h̄, τ + 1

)
− δ̄e−β1p

(
ξ−(x + x0, τ + 1), τ + 1

)
, (6.23)

for any x ∈ R with |x| ≤ M̄. For x ∈ R with |x| ≥ M̄, we have

|ξ−(x + x0, τ + 1) + 2ϵ*σ1h̄| ≥ |x| − |x0 + cτ + c + ξ − σ1 δ̄(1 − e−β1 ) + 2ϵ*σ1h̄| ≥ M̄ − |c| − 3.

It then follows from (6.21) that for any x ∈ R with |x| ≥ M̄,

U
(
ξ−(x + x0, τ + 1), τ + 1

)
− U
(
ξ−(x + x0, τ + 1) + 2ϵ*σ1h̄, τ + 1

)
= − 2σ1Ux

(
ξ−(x + x0, τ + 1) + 2ϑϵ*σ1h̄, τ + 1

)
ϵ*h̄ ≥ −p̄ϵ*h̄1 ≥ −ϵ*h̄p

(
ξ−(x + x0, τ + 1), τ + 1

)
,

where ϑ ∈ (0, 1). On the other hand, from (6.17), we have

u(x + x0, τ + 1) ≥U
(
ξ−(x + x0, τ + 1), τ + 1

)
− δ̄e−β1p

(
ξ−(x + x0, τ + 1), τ + 1

)
. (6.24)

Thus, for x ∈ R with |x| ≥ M̄,

u(x + x0, τ + 1) ≥U
(
ξ−(x + x0, τ + 1) + 2ϵ*σ1h̄, τ + 1

)
−

(ϵ*h̄ + δ̄e−β1 )p
(
ξ−(x + x0, τ + 1), τ + 1

)
. (6.25)

Clearly, δ̃ := ϵ*h̄ + δ̄e−β1 ∈ (0, δ1). Combining (6.23) and (6.25), we conclude that

u(x, τ + 1) ≥U
(
ξ−(x, τ + 1) + 2ϵ*σ1h̄, τ + 1

)
− δ̃p

(
ξ−(x, τ + 1), τ + 1

)
=U
(
x + c(τ + 1) + ξ1, τ + 1

)
− δ̃p

(
x + c(τ + 1) + ξ2, τ + 1

)
, ∀x ∈ R, (6.26)

where

ξ1 = ξ − σ1 δ̄(1 − e−β1 ) + 2ϵ*σ1h̄ and ξ2 = ξ − σ1 δ̄(1 − e−β1 ) ∈ [ξ1 − 2, ξ1].

Note that p(·, ·) ≤ 1 by the de�nition of p(·, ·). It then follows from (6.26), Lemma 6.1 and Lemma 2.4 that

u(x, t) ≥U
(
x + ct + ξ1 − σ1 δ̃(1 − e−β1(t−τ−1)), t

)
−

δ̃p
(
x + ct + ξ2 − σ1 δ̃(1 − e−β1(t−τ−1)), t

)
e−β1(t−τ−1)

≥U
(
x + ct + ξ1 − σ1 δ̃, t

)
− δ̃e−β1(t−τ−1)1 = U

(
x + ct + ξ (t), t

)
− δ(t)1 (6.27)

for all x ∈ R and t ≥ τ + 1, where

ξ (t) = ξ − σ1 δ̄ + σ1ϵ*h̄, and δ(t) = δ̃e−β1(t−τ−1) = (ϵ*h̄ + δ̄e−β1 )e−β1(t−τ−1).

Let h(t) = h + 2σ1 δ̄ − σ1ϵ*h̄, by (6.17), we obtain the �rst inequality in (6.16). This completes the proof.
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Proof of Theorem 1.4.

Based on lemmas 6.1-6.4, the proof is similar to those of [21, Theorem 3.1] and [24, Theorem 5.1]. For com-
pleteness, we present it in the sequel.

(1) Let δ1, σ1 and β1 be as in Lemma 6.1. Given any ϵ > 0. By the uniformly boundedness of Ux(x, t) and
the periodicity of U(x, ·), there exists ν0 ∈ (0, 1) such that for any ν ∈ (0, ν0],

‖U(x + ν, t) − U(x, t)‖ < ϵ2 for all x ∈ R, t ≥ 0. (6.28)

Choose δ ∈ (0, p̄min{ ϵ2 ,
δ1
2 , ν0

σ1
}). For any ϕ ∈ L∞(R) with ‖ϕ(·) − U(·, 0)‖L∞(R) < δ, we have

U(x, 0) − δ̄p(x, 0) ≤ U(x, 0) − δ1 ≤ ϕ(x) ≤ U(x, 0) + δ1 ≤ U(x, 0) + δ̄p(x, 0), ∀x ∈ R,

where δ̄ = δ/p̄ ∈ (0, min{ ϵ2 ,
δ1
2 , ν0

σ1
}). Then it follows from Lemmas 6.1 and 2.4 that

U
(
x + ct − σ1 δ̄(1 − e−β1 t), t

)
− δ̄p

(
x + ct − σ1 δ̄(1 − e−β1 t), t

)
e−β1 t

≤u(x, t;ϕ) ≤ U
(
x + ct + σ1 δ̄(1 − e−β1 t), t

)
+ δ̄p

(
x + ct + σ1 δ̄(1 − e−β1 ,t), t

)
e−β1 t

for x ∈ R, t > 0, which implies that

U
(
x + ct − σ1 δ̄, t

)
− δ̄1 ≤ u(x, t;ϕ) ≤ U

(
x + ct + σ1 δ̄, t

)
+ δ̄1. (6.29)

Combining (6.28) and (6.29), we deduce that ‖u(·, t;ϕ) − U(· + ct, t)‖L∞(R) < ϵ for all t > 0.

(2) Let ϵ* be as in Lemma 6.4, δ* = min{ p̄δ1
2 , p̄

σ1
,δ0, p̄ϵ*4 } and κ* = σ1ϵ* − 2σ1δ*/p̄. Clearly, 1 > κ* ≥

σ1ϵ*/2 > 0. Fix a number t* ≥ 2 such that

e−β1(t*−1)[ 1
p̄ + ϵ*

δ* ] ≤ 1 − κ*.

By Lemma 6.3, there exist ξ0 ∈ R, T0 > 0 and h0 > 1 such that (6.15) holds for (τ, ξ , h, δ) = (T0, ξ0, h0, δ*),
that is,

U(x + cT0 + ξ0, T0) − δ*1 ≤ u(x, T0;ϕ) ≤ U(x + cT0 + ξ0 + h0, T0) + δ*1, ∀x ∈ R. (6.30)

We �rst prove the following two claims.

Claim 1. There exist T̂ > T0, ξ̂ ∈ R such that (6.15) holds for (τ, ξ , h, δ) = (T̂, ξ̂ , 1, δ*), i.e.

U(x + cT̂ + ξ̂ , T̂) − δ*1 ≤ u(x, T̂;ϕ) ≤ U(x + cT̂ + ξ̂ + 1, T̂) + δ*1, ∀x ∈ R. (6.31)

Let N ∈ Z+ such that 0 < h0 − Nκ* ≤ 1. With (6.30), by Lemma 6.4, we conclude that

U(x + cT̃1 + ξ (T̃1), T̃1) − δ(T̃1)1 ≤ u(x, T̃1;ϕ) ≤ U(x + cT̃1 + ξ (T̃1) + h(T̃1), T̃1) + δ(T̃1)1,

∀x ∈ R, where T̃1 := T0 + t*, and

ξ̃1 := ξ (T̃1) ∈[ξ0 − σ1δ*/p̄, ξ0 + h0 + σ1δ*/p̄],

δ̃1 := δ(T̃1) ≤e−β1(t*−1)[δ*/p̄ + ϵ* min{1, h0}] = δ*e−β1(t*−1)[1/p̄ + ϵ*/δ*] < δ*,
h̃1 := h(T̃1) ≤h0 − σ1ϵ* min{1, h0} + 2σ1δ*/p̄ = h0 − κ*.

Hence, we have

U(x + cT̃1 + ξ̃1, T̃1) − δ̃11 ≤ u(x, T̃1;ϕ) ≤ U(x + cT̃1 + ξ̃1 + h̃1, T̃1) + δ̃11, ∀x ∈ R.

Repeating the same process, we can show that

U(x + cT̃N + ξ̃N , T̃N) − δ̃N1 ≤ u(x, T̃N ;ϕ) ≤ U(x + cT̃N + ξ̃N + h̃N , T̃N) + δ̃N1, (6.32)
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where x ∈ R, T̃N := T0 + Nt*, and

ξ̃N ∈ [ξN−1 − σ1 δ̃N−1/p̄, ξN−1 + hN−1 + σ1 δ̃N−1/p̄], δ̃N < δ*, h̃N ≤ h0 − Nκ* ≤ 1.

Let T̂ = T̃N = T0 + Nt* and ξ̂ = ξ̃N , then the Claim 1 follows from (6.32) and the monotonicity of U(x, t) with
respect to x ∈ R.

Claim 2. Let T*k = T̂ + kt*, δ*k = (1 − κ*)kδ*, h*k = (1 − κ*)k, k ∈ N. There exits a sequence {ξ *k}
∞
k=1 ⊆ R with

ξ *0 = ξ̂ be such that |ξ *k+1 − ξ *k | ≤ h*k(1 + 2σ1δ*/p̄), and

U(x + cT*k + ξ *k , T*k) − δ*k1 ≤ u(x, T*k;ϕ) ≤ U(x + cT*k + ξ *k + h*k , T*k) + δ*k1, ∀x ∈ R, k ≥ 0. (6.33)

In fact, by Claim 1, we see that (6.33) holds for k = 0. By using the mathematical induction and Lemma 6.4,
one can easily show that the Claim 2 holds.

Then, for each k ≥ 0, (6.33) implies

U(x + cT*k + ξ *k , T*k) − δ̄*kp(x + cT*k + ξ *k , T*k) ≤ u(x, T*k;ϕ)
≤U(x + cT*k + ξ *k + h*k , T*k) + δ̄*kp(x + cT*k + ξ *k , T*k), ∀x ∈ R, (6.34)

where δ̄*k = δ*k/p̄ = (1 − κ*)kδ*/p̄ < δ1. Note that h*k ∈ [0, 1], ∀k ∈ N. By (6.34) and Lemmas 6.1 and 2.4, we
have

U(x + ct + ξ *k − σ1 δ̄*k(1 − e−β1(t−T*k)), t) − δ̄*kp(x + ct + ξ *k − σ1 δ̄*k(1 − e−β1(t−T*k)), t)e−β1(t−T*k)

≤u(x, t;ϕ)

≤U(x + ct + ξ *k + h*k + σ1 δ̄*k(1 − e−β1(t−T*k)), t)

+ δ̄*kp(x + ct + ξ *k+σ1 δ̄*k(1 − e−β1(t−T*k)), t)e−β1(t−T*k), ∀x ∈ R, t ≥ T*k .

Using the fact p(·, ·) ≤ 1 and the monotonicity of U(x, t) with respect to x, we obtain

U(x + ct + ξ *k − σ1 δ̄*k , t) − δ̄*k ≤ u(x, t;ϕ) ≤ U(x + ct + ξ *k + h*k + σ1 δ̄*k , t) + δ̄*k (6.35)

for all x ∈ R, t ≥ T*k. Moreover, for any t ≥ T̂, let k = [ t−T̂t* ] be the largest integer not greater than (t − T̂)/t*,

δ(t) := δ̄*k, ξ (t) = ξ *k − σ1 δ̄*k and h(t) := h*k + 2σ1 δ̄*k.

It then follows from (6.35) that

U(x + ct + ξ (t), t) − δ(t) ≤ u(x, t;ϕ) ≤ U(x + ct + ξ (t) + h(t), t) + δ(t). (6.36)

Take µ0 := 1
t* ln(1 − κ*), one can easily show that

δ(t) ≤ δ
*

p̄ e
−µ0(t−T̂−t*), h(t) ≤ (1 + 2σ1δ*/p̄)e−µ0(t−T̂−t*), ξ (∞) := lim

t→∞
ξ (t) exists

and
|ξ (t) − ξ (∞)| ≤

[ 1
κ* (1 + 2σ1δ*/p̄) + 2σ1δ*/p̄

]
e−µ0(t−T̂−t*).

Hence the assertion of Theorem 1.4 follows.

As a direct consequence of the asymptotic stability, we can prove the uniqueness of the smooth periodic
traveling waves.

Proof of Theorem 1.5.

Without loss of generality, we assume that U(2)(x, t) is smooth. By Theorem 1.3, we know that U(2)
x (·, ·)�

0. Since U(2)(+∞, t) = 1 and U(2)(−∞, t) = 0 uniformly in t, we see that 0 � U(2)(·, ·) � 1. By Theorem 1.4
(ii), there exists ξ * ∈ R such that

sup
x∈R
‖U(1)(x + c1t, t) − U(2)(x + c2t + ξ *, t)‖ → 0 as t →∞.
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Hence,
sup
x∈R
‖U(1)(x + (c1 − c2)t − ξ *, t) − U(2)(x, t)‖ → 0 as t →∞.

In particular,

sup
x∈R
‖U(1)(x + (c1 − c2)nT − ξ *, nT) − U(2)(x, nT)‖ → 0 as n →∞.

By the periodicity of the traveling waves, we obtain

sup
x∈R
‖U(1)(x + (c1 − c2)nT − ξ *, 0) − U(2)(x, 0)‖ → 0 as n →∞. (6.37)

Then, �x any x1 ∈ R, it follows from (6.37) that

‖U(1)(x1 + (c1 − c2)nT − ξ *, 0) − U(2)(x1, 0)‖ → 0 as n →∞.

Since U(1)(+∞, 0) = 1, U(1)(−∞, 0) = 0 and 0� U(2)(x1, 0)� 1, we deduce that c := c1 = c2. Thus, it follows
from (6.37) that U(1)(·, 0) = U(2)(· + ξ *, 0). Therefore, U(1)(x + ct, t) = U(2)(x + ct + ξ *, t), ∀x, t ∈ R. This
completes the proof of Theorem 1.5.

7 Applications
In this section, we will apply our main results developed in Sections 2-3 to some epidemic and population
models.

7.1 An epidemic model

For simplicity, we consider the following dimensionless epidemic system as (1.3), i.e.,{
ut = duxx − u(x, t) + αv(x, t),
vt = −βv(x, t) + g(u(x, t), t),

(7.1)

where α := a12/a2
11 and β := a22/a11. Let us denote f (w, t) := (−w1 + αw2, −βw2 + g(w1, t)) and assume that

(M1) d, α, β > 0, g(·, ·) ∈ C1([−1,∞) × [0,∞)), g(0, ·) ≡ 0, gu(u, t) := ∂g(u, t)
∂u > 0, ∀(u, t) ∈ [−1,∞) × [0,∞),

and g(·, t + T) = g(·, t) for some T > 0.
(M2) The Poincaré map P(α) := w(T; α), where w(t; α) is the solution to the ODE:

w′(t) = f (w(t), t), w(0) = α ∈ R2, (7.2)

has exactly three �xed points w−, w̄ and w+ satisfying w− < w̄ < w+, r(DP(w±)) < 1 and r(DP(w̄)) > 1.
It is easy to verify that

Df (w, t) =
(

−1 α
gw1 (w1, t) −β

)
.

Thus, by the assumptions (M1) and (M2), we see that the assumptions (C1)–(C4) and (C4)′ hold for (7.1) hold.
Therefore, the conclusions of Theorems 1.2–1.5 are valid for system (7.1).

7.2 A population model

Let us consider the population model (1.4) by taking γ1(t) ≡ γ1, γ2(t) ≡ γ2, and f (u) = γ(t)h(u) with h(u) =
u(1 − u)(u − 1

2 ), i.e., {
ut = d1uxx + γ(t)h(u) − γ1u(x, t) + γ2v(x, t),
vt = γ1u(x, t) − γ2v(x, t),

(7.3)
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where d1, γ1, γ2 > 0, γ(· + T) = γ(·) > 0 for some T > 0.

For convenience, we denote F(w, t) = (F1(w, t), F2(w, t)), where w = (w1, w2),

F1(w, t) := γ(t)h(w1) − γ1w1 + γ2w2 and F2(w, t) := γ1w1 − γ2w2.

Then the reaction system of (7.3) can be rewritten by

w′(t) = F(w(t), t). (7.4)

It is clear that (0, 0), (1/2, γ1/(2γ2)) and (1, γ1/γ2) are T−periodic solutions of (7.4). Let P(α) := w(T; α), where
w(t; α) is the solution of system (7.4) with initial value w(0; α) = α. We can obtain the following result.

Theorem 7.1. Assume d1 > 0, γ(· + T) = γ(·) > 0 for some T > 0. Then the conclusions of Theorems 1.2–1.5
are valid for system (7.3), that is, (7.3) admits a unique (up to translation) and globally stable (with phase shift)
bistable time-periodic traveling front connecting (0, 0) and (1, γ1/γ2).

Proof. By direct computations, we have h′(w1) = 3w1 − 3w2
1 − 1

2 and

DF(w, t) =
(
γ(t)h′(w1) − γ1 γ2

γ1 −γ2

)
.

Then, it is easy to see that (C1), (C3), (C4) and (C4)′ hold for system (7.3).

Next, we verify the bistable assumption (C2) for (7.3). We �rst prove that system (7.4) has exactly three
T−periodic solutions: (0, 0), (1/2, γ1/(2γ2)) and (1, γ1/γ2). Suppose that w*(t) = (u*(t), v*(t)) is a T−periodic
solution of system (7.4). It is clear that{

u′*(t) = γ(t)h(u*(t)) − γ1u*(t) + γ2v*(t),
v′*(t) = γ1u*(t) − γ2v*(t),

which implies that u′*(t) + v′*(t) = γ(t)h(u*(t)). Hence, we obtain

T∫
0

γ(t)h(u*(t))dt = 0. (7.5)

Then we have the following
Claim: 0 ≤ u*(t) ≤ 1 for all t ∈ R.

We only prove that u*(t) ≤ 1 for all t ∈ R, since the other assertion can be treated similarly. Suppose that
there exists t1 ∈ R such that u*(t1) > 1. Take w̄(t) = (ū(t), v̄(t)), where

ū(t) ≡ M and v̄(t) ≡ Mγ1/γ2, ∀t ∈ R.

We can choose M > 1 su�ciently large such that w̄(t) � w*(t), ∀t ∈ R. Moreover, it is clear that w̄(t) is an
upper constant solution of (7.4). Let w(t; w̄(0)) = (u(t; w̄(0)), v(t; w̄(0))) be the solution of (7.4) with initial
value w(0; w̄(0)) = w̄(0). Since (7.4) is a monotone system, w̄(0) ≥ (1, γ1/γ2) and (1, γ1/γ2) is a solution of
(7.4), it follows that

w(t; w̄(0)) ≥ w*(t) and w(t; w̄(0)) ≥ (1, γ1/γ2), ∀t ∈ R.

Let us de�ne a sequence of functions {wk(t)}k∈N as follows:

wk(t) = (uk(t), vk(t)) := w(t + kT; w̄(0)), ∀t ∈ R.

Since w̄(t) is an upper constant solution of (7.4), we have w(T; w̄(0)) ≤ w̄(T). Then, for k ∈ N,

wk+1(t) = w(t + (k + 1)T; w̄(0)) = w(t + kT;w(T; w̄(0)))
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≤ w(t + kT; w̄(T)) = w(t + kT; w̄(0)) = wk(t), ∀t ∈ R.

By thismonotonicity, we can de�ne w̃(t) = (ũ(t), ṽ(t)) := lim
k→∞

wk(t), ∀t ∈ R. It is easy to see thatwk(t) satis�es{
u′k(t) = γ(t)h(uk(t)) − γ1uk(t) + γ2vk(t),
v′k(t) = γ1uk(t) − γ2vk(t),

which yields that 

uk(t) = uk(0) +
t∫

0

[γ(s)h(uk(s)) − γ1uk(s) + γ2vk(s)]ds,

vk(t) = vk(0) +
t∫

0

[γ1uk(s) − γ2vk(s)]ds.

Taking k →∞, we obtain 

ũ(t) = ũ(0) +
t∫

0

[γ(s)h(ũ(s)) − γ1ũ(s) + γ2 ṽ(s)]ds,

ṽ(t) = ṽ(0) +
t∫

0

[γ1ũ(s) − γ2 ṽ(s)]ds.

This deduces that w̃(t) is a solution of (7.4). Moreover,

w̃(T) = lim
k→∞

wk(T) = lim
k→∞

w((k + 1)T; w̄(0)) = lim
k′→∞

w(k′T; w̄(0)) = w̃(0).

Hence w̃(t) is a T−periodic solutions of (7.4) which satis�es

w̃(t) ≥ w*(t) and w̃(t) ≥ (1, γ1/γ2), ∀t ∈ R.

Since
∫ T

0 γ(t)h(ũ(t))dt = 0, γ(·) > 0 and h(u) = u(1 − u)(u − 1
2 ), we conclude that w̃(t) ≡ (1, γ1/γ2), and hence

u*(t) ≤ ũ(t) ≤ 1 for all t ∈ R, which contradicts to u*(t1) > 1. Therefore, the claim holds.

Next, we prove that w*(t) = (0, 0), or (1/2, γ1/(2γ2)) or (1, γ1/γ2). By (7.5), we see that if h(u*(t)) does not
change sign on [0, T], then h(u*(t)) ≡ 0. Further, there exists t0 ∈ [0, T] such that u*(t0) = 0 or 1/2 or 1. We
consider the following three cases.

Case 1: u*(t0) = 1/2. If v*(t0) > γ1/(2γ2), then w*(t) ≥ (1/2, γ1/(2γ2)) which yields that 1/2 ≤ u*(t) ≤ 1 for
all t ∈ R. It then follows from (7.5) that u*(t) ≡ 1/2, and hence w*(t) = (1/2, γ1/(2γ2)). If v*(t0) ≤ γ1/(2γ2),
then w*(t) ≤ (1/2, γ1/(2γ2)), and hence 0 ≤ u*(t) ≤ 1/2. Using (7.5) again, we obtain u*(t) ≡ 1/2. Thus,
w*(t) = (1/2, γ1/(2γ2)).

Case 2: u*(t0) = 0. If there exists t1 ∈ R such that u*(t1) = 1/2, then follows from Case 1 that w*(t) =
(1/2, γ1/(2γ2)). Otherwise, 0 ≤ u*(t) < 1/2 for all t ∈ R. Hence, (7.5) implies that w*(t) = (0, 0).

Case 3: u*(t0) = 1. Similar to Case 2, we can show that w*(t) = (1/2, γ1/(2γ2)) or (1, γ1/γ2).

From above discussions, we conclude that w*(t) = (0, 0), or (1/2, γ1/(2γ2)) or (1, γ1/γ2), that is, system (7.4)
has exactly three T−periodic solutions: (0, 0), (1/2, γ1/(2γ2)) and (1, γ1/γ2).

In the sequel, we set ω− := (0, 0), ω̄ := (1/2, γ1/(2γ2)), ω+ := (1, γ1/γ2). Note that h′(0) = h′(1) = −1/2.
Then, r(DP(ω−) = r(DP(ω+)) is the principal eigenvalue of the strongly positive matrix S(T), where S(t) is the
fundamental matrix solution of the following linear system with S(0) = I: u′ = −( 1

2 γ(t) + γ1)u + γ2v,

v′ = γ1u − γ2v.
(7.6)
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Let µ1 := 1
T ln r(DP(ω−)). Form [33, Lemma 2.1], there exists a positive, T−periodic function ŵ(t) =

(ŵ1(t), ŵ2(t)) such that eµ1 tŵ(t) is a solution of system (7.6). Thus, we have µ1ŵ1(t) + ŵ′1(t) = −( 1
2 γ(t) + γ1)ŵ1(t) + γ2ŵ2(t),

µ1ŵ2(t) + ŵ′2(t) = γ1ŵ1(t) − γ2ŵ2(t),

which yields that
µ1(ŵ1(t) + ŵ2(t)) + ŵ′1(t) + ŵ′2(t) = −1

2 γ(t)ŵ1(t).

We deduce that

µ1

T∫
0

(ŵ1(t) + ŵ2(t))dt = −1
2

T∫
0

γ(t)ŵ1(t)dt < 0.

Hence, µ1 = 1
T ln r(DP(ω−)) < 0 and therefore r(DP(ω−) = r(DP(ω+)) < 1. Similarly, we can show that

r(DP(ω̄)) > 1. This veri�es (C2) for system (7.3). The proof is completed.
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