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Abstract: This paper deals with the existence of entire nontrivial solutions for critical quasilinear systems (8)
in the Heisenberg group H", driven by general (p, q) elliptic operators of Marcellini types. The study of (8)
requires relevant topics of nonlinear functional analysis because of the lack of compactness. The key step
in the existence proof is the concentration—compactness principle of Lions, here proved for the first time in
the vectorial Heisenberg context. Finally, the constructed solution has both components nontrivial and the
results extend to the Heisenberg group previous theorems on quasilinear (p, g) systems.
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1 Introduction

In recent years, great attention has been focused on the study of (p, q) systems, not only for their mathe-
matical interest, but also for their relevant physical interpretation in applied sciences. It is also well known
that the Heisenberg group H", n = 1, 2, ..., appears in various areas, such as quantum theory (uncertainty
principle, commutation relations) cf. [1, 2], signal theory cf. [3], theory of theta functions cf. [1, 4], and num-
ber theory. For additional physical interpretations we mention [5], while for general motivations in setting
problems in the Heisenberg group context we refer to [6-11] and the papers cited there.

Here we prove the existence of nontrivial solutions for quasilinear elliptic systems in the Heisenberg
group H", involving (p, q) operators, which generalize the ones introduced by Marcellini in [12]. In particular,
we consider the system in H"

~divy (A(IDpulp)Dyu) + B(|u)u = AHu(u, v) + % viPlu*2u,

()
~divy (A(|IDpv|g)Dgv) + B(Jv|)v = AHy(u, v) + ;Iu\“\v\’“v,

where A is a positive real parameter, Q = 2n + 2 is the homogeneous dimension of the Heisenberg group H",
a > 1and B > 1 are two exponents such that @ + = " and " is a critical exponent associated to p, with
1< p < Q,thatis
~_ pQ
S Q-¢°
which is related to the (p, q) operator A in (8). The vector

DHu = (Xlu) e anua Ylua ) Ynu)
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denotes the horizontal gradient of u, where {X;, Y;} ]f':l is the basis of the horizontal left invariant vector fields

on H", that is
0

0

0 0
I—a—Xi+2yj&, Yj—Tw—z

forj=1,...,n.

The starting point is the paper [13], where the authors studied similar and more general systems in the
Euclidean context. The main novelty of the paper is indeed to properly set (8) in the Heisenberg context. In
fact, several theorems have to be proved in the new framework for the first time. Indeed, the key existence
argument relies on the celebrated Lemma .1 of [14] as well on the concentration—compactness principle in
the vectorial Heisenberg context, both due to Lions. Following [13], we require the structure conditions.

(A) A is a strictly positive and strictly increasing function of class C1(R*),
(B) B € C(R") is a strictly positive function and t — tB(t) is strictly increasing in R*, with tB(t) — O as t — 0.

For simplicity, we introduce the functions .A and B, which are 0 at 0 and which are obtained by integration
from
A'(t) = tA(t), B'()=tB(t) forallte RS.

Notice that (A) implies that tA(t) — Oast — 0%, and so tA(t) and tB(t) are defined to be 0 at 0. We furthermore
assume
(C1) there exist constants ag, ag, bo, by strictly positive, with ag < 1, a1, a1, b1, by nonnegative, with the property
that a; > O implies by > 0, a; > 0 and b, > 0, and there are exponents p and q, with 1 < p < q < ¢, where
1<p<Q,p=pifag=0and p=qifay >0, suchthat forallt € R}

aot? ! + 1 (a)a t9t < A'(6) < apt?P ™t + a 971,

bot?™! + 1ge(b1)b1t7! < B/(£) < bot? L + b,t971,
where 1 is the characteristic function of a Lebesgue measurable subset U of R. Assumption (C;) was intro-
duced by Figueiredo in [15]. Moreover, we assume

(C,) there exist constants 0 and 9, with p < min{0, 9} < ¢", such that
OA(t) = tA'(H), 9B(t) = tB'(t) forallt c R}

holds.

Several general systems verify all the assumptions (4), (B), (C1) and (C>), and we refer to [13] for the main
prototypes of the potentials A and B covered.

The functions Hy, and Hy in (8) are partial derivatives of a function H of class C*(R?), satisfying the con-
dition
(H)H>0inR*xR*, H,(u,0) =0 forallu € R and H,(0, v) = O for all v € R. Furthermore, there exist m, m, o
suchthat p <m <m< o', max{0, 9} < 0 < " and for every € > O there exists Ce > O for which the inequality

IVH(u, v)| < me|(u, V)™ + mCe|(u, )™ forany (u,v) € R?, (11)
where |(u, v)| = Vu? + v2, VH = (Hy, Hy), and also the inequalities
0<0H(u,v) < VH(u,v)-(u,v) forall(u,v) € R?,

hold, where 6, 9 are given in (C>).

Throughout the paper, - denotes the Euclidean inner product and | - | the corresponding Euclidean norm in
any spaceR™, m=1,2,....
Since p = p if a; = 0, while p = g if a; > 0, the natural space where finding solutions of (8) is

W = (HWl’p(]HI") N le’@(H")) x (HWl’p(]HI”) n HWLW(H”)) ,
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endowed with the norm

|, VI = llullgwrr + IV gwrr + HR*(al)(Hu”HWW + HVHHWW)

for all u € HWY?(H"), where HW™?(H") is the horizontal Sobolev space defined in Section 2. We are now
able to state the existence result for (8).

Theorem 1.1. Suppose that (A), (B), (C1), (C,) and (H) hold. Then, there exists A" > 0 such that for all A = A"
the system (8) admits at least one solution (u,, v;) in W. Moreover, (u,, v,) has each component nontrivial and

lim ||(u,1, V}()H =0. (1.2)
A—roo

Since the solution (u,, v,), constructed in Theorem 1.1, has both components non trivial, it is evident that it
solves an actual system, which does not reduce into an equation. Moreover, Theorem 1.1 extends in several
directions previous results, not only from the Euclidean to the Heisenberg setting, but also for the mild growth
conditions on the main elliptic operator of (8), cf. e.g. [16-19].

Even if assumption (C;) allows us to treat simultaneously when either a; = 0 or a; > 0, the most inter-
esting case is the latter, in which o = g and so the couple (p, q) appears in its importance. Indeed, when
a; > 0in (Cy), the main elliptic operator A has a (p, q) growth. Moreover, in this case, the solution space W
has a strong dependence on (p, g), since we consider existence of entire solutions in the Heisenberg group.
In fact, (p, q) problems are usually settled in bounded domains Q, so that the natural solution space is
W=H Wé P(Q)NH Wé’q([)) =H Wé’q(.Q). In this paper the situation is much more delicate, since the problem
is in the entire group of Heisenberg.

The importance of studying problems involving operators with non standard growth conditions, or (p, q)
operators, begins with the papers of Marcellini [12] and Zhikov [20]. Since then, the topic has been attract-
ing increasing attention on existence and qualitative properties of solutions, but the vectorial case is much
harder. Indeed, (8) has a relevant physical interpretation in applied sciences as well as a mathematical chal-
lenge in overcoming the new difficulties intrinsic to (8). Because of the lack of compactness, the main diffi-
cultyin treating (p, q) systems in our context relies on the proof of the key Lemma 4.6, dedicated on the crucial
properties of the Palais—Smale sequences at special levels. To this aim, we prove a concentration compact-
ness principle for systems in S = S©¢(H") x SL¢(H"), where SV'#(H"), 1 < p < Q, is the Folland-Stein space,
that is the completion of CZ°(H") with respect to the norm

1/p

D gt ooy = / \Dyulde

Theorem 1.2. Let {(uy, vi)}x be a sequence in S and assume that there exist (u,v) € S and two bounded
nonnegative Radon measures p and v on H", such that

(uk) Vk) - (u9 V) in Sa
(IDgwug|§ + |Dvil§)dE = pin M(HD), (1.3)
gl vifdg v in @),

where M(H") is the space of all bounded regular Borel measures on H". Then, there exist an at most countable
set ], a family of points {&;};c; C H" and two families of nonnegative numbers {;};c; and {v;};c; such that

v = |u*vPdé + Z"j&ff’ u= (|Dgulf; + [Dyv|s)dé + Zy,ﬁ;}.,
jel jel

© W Dyul|§ + ||[Dyv||§
vele s&foralljel, where J=  inf IDaullp + || Dy HK’*
g J (u,v)es plp

(u#0)A(v#0)
nront /|u|“|v|ﬁds

and 651. is the Dirac function at the point &; of H".
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To the best of our knowledge, the conclusions obtained in Theorem 1.2 are new in the Heisenberg context. The
proof of this result follows somehow the arguments of [21] and [22, 23], but there are some technical difficulties
due to the more general context, which we overcome.

Finally, the existence of solutions for problem § rely on a readaptation of Proposition 2.8 of [13] in the
Heisenberg group. Therefore, we have to prove an extension from the Euclidean to the Heisenberg context of
the celebrated Lemma 1.1 in [14] due to Lions, which is given in its general statement.

Theorem1.3. Let1 < p < coand 1 < p < Q, withp # p". Assume that (u )y, is bounded in LP (H™), (u)y is
bounded in S¥# (H") and there exists R > 0 such that

lim sup / |ugPdé = 0. (1.4)
k—oo pemm

Br(n)

Then, u, — 0 in L (H") as k — oo for all p between p and o".

The paper is organized as follows. In Section 2, we recall some fundamental definitions and properties related
to the Heisenberg group H". Section 3 is devoted to the proof of Theorem 1.2, while Section 4 deals with some
lemmas useful to the study of system (8). In particular, we prove Theorem 1.3 and finally Theorem 1.1, adapting
the strategy of [13] and extending the results there to the Heisenberg group setting.

2 Preliminaries

In this section we present the basic properties of H" as a Lie group. Analysis on the Heisenberg group is
very interesting because this space is topologically Euclidean, but analytically non—-Euclidean, and so some
basic ideas of analysis, such as dilatations, must be developed again. One of the main differences with the
Euclidean case is that the homogeneous dimension Q = 2n+2 of the Heisenberg group plays a role analogous
to the topological dimension in the Euclidean context. For a complete treatment, we refer to [24-27].

Let H" be the Heisenberg Lie group of topological dimension 2n + 1, that is the Lie group which has
as a background manifold, endowed with the non—-Abelian group law

R2n+1

Eol = <z+z’, t+t'+2) (yix —Xg/f)) 21

i=1

forall &, & € H", with
E=(z,)=(X1, ..., Xn, V1,+- s Yn, t) and & =(Z, )= (1, oo X0 Vs oo Vs E).

The inverse is given by £ * = ~&andso (§ 0 &)t = (&) Lo &L,
The vector fields forj=1,...,n

0 0 0 0 0

=07Xj+2yj&’ Y] T=f,

Xj =5y, Per ot

constitute a basis for the real Lie algebra of left—invariant vector fields on H". This basis satisfies the Heisen-
berg canonical commutation relations

[Xj, Vil = =463 T, 1Y}, Vil = [X;, Xil = [Y}, T] = [X;, T] = 0.
A left invariant vector field X, which is in the span of {Xj, Y; };‘:1, is called horizontal.

We define the horizontal gradient of a C* function u : H* — R by

Dpu =Y [(XuX; + (Yu)Y;] .
j=1



DE GRUYTER Patrizia Pucci and Letizia Temperini, Critical systems in the Heisenberg group =— 899

Clearly, Dyu is an element of the span of {X;, Y; }]’?:1. Furthermore, if f € C'(R), then
Dyf(u) = f'(u)Dyu.
In the span of {Xj, Y; }}Ll ~ R?" we consider the natural inner product given by
n . . . .
(X, Y)H = Z (x’y’ +}]§’)
j=1

for X = {(¥'X; +¥Y; HyandY = VX +y'Y; }11- The inner product (-, -) , produces the Hilbertian norm

X =1/(X,X)
for the horizontal vector field X. Moreover, the Cauchy—-Schwarz inequality
|(X,Y) | < Xl Y|m

holds for any horizontal vector fields X and Y.
For any horizontal vector field function X = X(¢), X = {¥/X; +XY; iy, of class C L(H", R?"), we define the
horizontal divergence of X by

divgX = Y [X;00) + ¥;(7)].
j=1

If furthermore u € C'(H"), then the Leibnitz formula continues to be valid, that is
diVH(llX) =Uu diVHX + (DHll, X)H

Similarly, if u € C2(H™), then the Kohn-Spencer Laplacian, or equivalently the horizontal Laplacian in H", of
u is defined as follows

n
Agu = Z(ij + Y,-z)u
j=1

n
o’ o o? 0? 2 0%u
_]=21<6X]2+ay]2+4y]ax]at—4xlay]at u+4|Z| W

According to the celebrated Theorem 1.1 due to Hérmander in [28], the operator Ay is hypoelliptic. In partic-
ular, Agu = divyDgu for each u € C*(HM).
A well known generalization of the Kohn—Spencer Laplacian is the horizontal p—Laplacian on the Heisen-
berg group, p € (1, o), defined by
A, = divy(Dy el > Dy o)

for all ¢ € CZ(H").
The Kordnyi norm is given by

r&) =r(z, t) = (z|* + Y4 forall &=(z,t) e H".
The corresponding distance, the so called Kordnyi distance, is
dg(&, &) =1 o &) forall(¢,¢) e H" xH".

This distance acts like the Euclidean distance in horizontal directions and behaves like the square root of the
Euclidean distance in the missing direction. Consequently, the Koranyi norm is homogeneous of degree 1,
with respect to the dilations 8% : (z, ) — (Rz, R’t), R > 0, since

r(6r(£)) = r(Rz, R*t) = (Rz|* + R*t)Y* = Rr(¢)
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forall ¢ = (z,t) € H".

Let BR(&) = {¢§ e H" : dg(¢, &) < R} be the Kordnyi open ball of radius R centered at &,. For simplicity
Bg denotes the ball of radius R centered at &, = O, where O = (0, 0) is the natural origin of H".

It is easy to verify that the Jacobian determinant of dilatations 8z : H" — H" is constant and equal to
R?"*2_ This is why the natural number Q = 2n + 2 is called homogeneous dimension of H".

We recall also the definition of Carnot-Carathéodory distance on H" and for further details we refer to [7,
25]. A piecewise smooth curve y : [0,1] — H" is called a horizontal curve if y(t) belongs to the span of
{Xj, Y;}}L, a.e. in [0, 1]. The horizontal length of y is defined as

1 1
La(y) = / 0, 9(0) dt = / 50 it
0 0

Now, given two arbitrary points &, n € H", by the Chow—Rashevsky theorem there is a horizontal curve be-
tween them in H", see [29, 30]. Therefore, the Carnot—Carathéodory distance of two points & and 1 of H" is
well-defined as

dcc(&,n) =inf{Ly(y) : yis ahorizontal curve joining ¢ and n in H"}.
Clearly, d¢c is a left invariant metric on H", and

dec(€,n) = decln™ 0 £,0)

for all £,n ¢ H", see [7]. Moreover, the Carnot-Carathéodory distance is homogeneous of degree 1 with
respect to dilatations &g, that is
dcc(6r(£), 6r() = Rdcc(é, 1)

forall &, n € H".

In the case of the Heisenberg group, it is easy to check that the Lebesgue measure on R?™*! is invariant
under left translations. Thus, from here on, we denote by d¢ the Haar measure on H" that coincides with the
(2n+1)-Lebesgue measure, since the Haar measures on Lie groups are unique up to constant multipliers. We
also denote by |U| the (2n + 1)-dimensional Lebesgue measure of any measurable set U c H". Furthermore,
the Haar measure on H" is Q—homogeneous with respect to dilations 6. Consequently,

6r(U)| =ROU|,  d(6g&) = RS,

In particular |Bg| = |B1|R?.
As usual, for any measurable set U ¢ H" and for any general exponent p, with 1 < p < oo, we denote by
LP(U) the canonical Banach space, endowed with the norm

1/p
Il = /Iu\”dé’ . iflsp<oo,
U

while
|ullp=) = esssupu = inf{M : |u(&)| < M fora.e. § € U}.
U

When U = H" or when there is not ambiguity about the set considered, for simplicity we denote the norm
|| |lp- All the usual properties about the Lebesgue Banach spaces continue to be valid. In particular, LP(U) is
a separable Banach space and C.(U) is dense in itif 1 < p < co. Moreover, L?(U) is a reflexive Banach space if
1<p<oo.

Let us now review some classical facts about the first—order Sobolev spaces on the Heisenberg group
H". We restrict ourselves to the special case in which 1 < p < oo and Q is an open set in H". Denote by
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HW'?(Q) the horizontal Sobolev space consisting of the functions u € LP(Q) such that Dyu exists in the
sense of distributions and |Dyu|g € LP(Q), endowed with the natural norm

1/p
p p e p
lullawso) = (1) + IDHl )+ DUy = | [ IDaulhdé
Q

It is easy to check that the distributional horizontal gradient of a function u € HW?(Q) is uniquely defined
a.e.in Q. Furthermore, if u is a smooth function, then its classical horizontal gradient is also the distributional
horizontal gradient. For this reason, if u is a non smooth function, Dgzu is meant in the distributional sense.
For later purposes, let us introduce the convolution, which is useful also for density results, see [31, 32].
Ifu e LY(H") and v € LP(H"), with 1 < p < oo, then for a.e. ¢ € H" the function
n e u€on Hvly)

is in L*(H"). Moreover, u * v, defined a.e. on H" by
(@) = [ug o o, 22)
Hﬂ
is called convolution of u and v. By the analog of the Young theorem u * v belongs to L? (H") and
lu*vilp < flull1[[v]lp. (2.3)

If p = oo, then u * v is well defined and uniformly continuous in H".

Using the convolution (2.2), the technique of regularization, originally introduced by Leray and Friedrichs
in the Euclidean context, can be extended to the Heisenberg group H". In particular, it is possible to generate
a sequence of mollifiers (o)), on H" with the usual properties, see the Appendix of [33]. Moreover, Proposi-
tion A.1.2 of [33] yield that if ¢ € CZ°(H") and u € L, .(H") then u * ¢ € C=(H") and

Xi(u* @) =u*Xjp, Yiu*p)=u*Yjp, j=1,...,n (2.4)

Lemma?2.l. Let u € LY(H"), v € LI(H"), such that Dyv exists in the sense of distributions and Dyv €
LP(H", R?™), with 1 < p, q < oo. Then Dy (u * v) exists in the sense of distributions, Dy (u*v) € LF(H", R?"), and

Xj(u*v)=u*Xv, Yiu*v)=u*Yv, j=1,...,n,
in the sense of distributions. In particular, if q = p, thenu * v € HWP(H").

Proof. Let u and v be as in the statement and divide the proof into two cases.

Casel.u € CZ(H").Fix ¢ € CZ(H") andj = 1,...,n.Since u € LYY, v € LI(H") and X;p € L“/(]HI”),
Lemma A.1.3 of [33] yields

/ (U * V)X pdt = / (% Xip)vdg, (&) = u@Y), £ ¢ H. (2.5)
Hr Hr
Likewise, since it € L*(H"), Xjv e LP(H") and ¢ € LP (HM), again Lemma A.1.3 of [33] gives
/ X;v(it * p)dé = / (u* X;V)pde. 26)
Hr Hr

Then, by the definition of distributional derivative, by the fact that & and ¢ are Cz°(H") and by (2.4),(2.5) and
(2.6) we get

Xju*v)pdé =- [(u*v)X;pds =- [ (* X;p)vds = - | X;(u* p)vd§
ey

H» H»
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_ / Xv(it* p)dé = / (u* X;V)pdé.
Hl’l

]H[Yl
In conclusion, X;(u * v) = u * X;v € LP(H") by (2.3) and similarly Y;(u *v) =u* Yjvforj=1,...,n.
Case 2.u € L*(H™). There exists a sequence (u;); in C°(H") such that u;, — u in L(H"). By the previous step
Dy (uy * v) exists in the sense of distributions, Dy (uj * v) € LP(H", R?"), and forj=1,...,n
/(uk *VXjp = - /(uk *X;v)p forany @ € CZ(H"). .7
Hr Hr
By (2.3)

lu * v =u*vlp < [lug = ul1flvllp = 0(1) ask — eo.

Similarly, forj=1,...,n,
lug * Xjv —u* Xjv|lq < [lug — ull1[|Xjv|]lq = 0(1) ask — oo.

Thus, letting k — oo in (2.7), we conclude that

/(u *V)Xjp = - /(u *X;v)p forany ¢ € CZ°(H"),
Hr Hin

which is exactly the assertion for X;. We derive the result for Y; like so. This completes the proof. O

Asin the Euclidean case, the density theorem for the horizontal Sobolev space continues to hold in the Heisen-
berg group. We present the proof for the sake of completeness and for later purposes, since this result is crucial
to prove the main Lemma 4.6.

Theorem 2.2. C°(H") is dense in HW'F (H") for every p, with 1 < p < oo.

Proof. Letu € HW'?(H"). Consider the sequence of mollifiers (o, ), on H". Thus, p; * u € C=(H") by (2.4),
and p *u — uin LP(H") as k — oo, with ||py * ullp < ||ullp for all k. Moreover, Lemma 2.1 yields that
Dy (pg * u) — Dynu in LP(H", R?") as k — oo. Now, fix a function ¢ € C2°(H") such that 0 < { < 1 and

1, ifr(¢) < 1,
{8 - {O, ifr(¢) = 2,

for any ¢ € H". Then, define the sequence of cut-off functions

G(&) = ¢(61 (&), &eH". (2.8)
The dominated convergence theorem implies that {u — u in L*(H") and {}Xju — X;u in L?(H") for all
j =1,...,n. Finally, let u; = {(o; * u), so that (u;), c Cz°(H") for all k. The constructed sequence ()

converges to u in HW ¥ (H"). Indeed,
u—u=G((px *u)—u) + Gu-u

and thus
Jug —ullp < llpx * u—ullp + [[Gu - ullp = 0(1)  ask — oo,

that is uy — u in L?(H"). Next, Lemma 2.1 gives
Xjui = (X;G) (i * w) + Gilpr * Xju)
forallj=1,...,nand k. Therefore, direct calculations show that X;{; = X;{(6,/,(£))/k, so that

1 X5ug = Xullp < [1(X;k) (i * Wl + [1ilor * Xju) = Xjullp
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C
< 2 llully + llpx* Xju = Xjullp + [[GeXju — Xjullp = 0(1)

as k — oo, where C is a positive constant depending only on ¢. Repeating the argument when Y; replaces Xj,
we get the same property, so that we conclude that Dyu; — Dyu in LP(H", R?"). Consequently, u; — u in
HWUb?(H") as k — oo, and this completes the proof. O

The basic embedding theorems for the Sobolev space HW'*(H"), first established in [34] by Folland and
Stein in this type of generality, have a form similar to those in the Euclidean case, but the exponent governing
the transition to the supercritical case is the homogeneous dimension Q = 2n + 2. In particular, if p is an
exponent, with 1 < p < Q, then the embedding

HWYP (MM — LI(H")

is continuous for any q € [p, p’].

For a complete treatment on the compactness of the embeddings HW'*(Q) — LI(Q), when Q is a well
behaved domain, we refer to [25, 35, 36] and also to [37], as well as the references therein. The next definition
is taken from [36].

An open set Q of H" is said to be a Poincaré—Sobolev domain, briefly PS domain, if there exist a bounded
opensubset U ¢ H", with Q C Q C U, acovering {B}pc5 of Q by Carnot—Carathéodory balls B and numbers
N>0,a=>1andv =1 such that

() Y peg L@ < NlginU,

(ii) there exists a (central) ball By € J such that for all B € J there is a finite chain By, By, ..., Byg), with
B; N Bj,1 # 0 and |B; N Bj,q| > max{|B;|, |By;1|}/N, i = 0,1,...,s(B) - 1 and moreover B C vB; for
i=0,1,...,s(B).

This definition is purely metric. There is a large number of PS domains in H", as explained in details in [36].
For our purposes it is important also to recall a version of the Rellich—-Kondrachov theorem in the Heisen-

berg context. The next result is a special case of Theorem 1.3.11in [7].

Theorem 2.3.
(i) Let Q be a bounded PS domain in H" and let 1 < p < Q. Then the embedding

HWHP(Q) =< LI(Q)

is compact for all q, with 1 < q < p”, where Q is the homogeneous dimension of the Heisenberg group and p" is
the Sobolev exponent related to p.

(ii) The Carnot—Carathéodory balls are PS domains.

Combining Theorem 2.3, with the fact that the Carnot-Carathéodory distance and the Koranyi distance are
equivalent on H", we get (i) when Q is any Koranyi ball Br(¢,) centered at &, € H", with radius R > 0.

3 The concentration compactness principle for critical systems
on H"

For the study of nonlinear elliptic problems, involving critical nonlinearities in the sense of the Sobolev in-
equality, the concentration compactness principle due to Lions has been being a fundamental tool for proving
existence of solutions since its appearance. We just mention [13,38-43] and the references therein.

In this section, taking inspiration from [21] and following the basic ideas of the papers [22, 23] of Lions,
we extend the vectorial concentration compactness principle to the Heisenberg group setting. This key result
is one of the main tools to prove the existence Theorem 1.1. However, it is of independent interest and so we
present it in a general setting, giving a detailed proof not included in the original work.
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Throughout the section, we assume that p is an exponent, with 1 < o < Q, and that a > 1 and > 1 are
such that @ + 8 = o", where " = pQ/(Q - ). First, by [31] we know that there exists a positive constant C ot
depending only on Q and g, such that for all u € S**(H")

lull s < Cor [ Drulle (3.0)

o |
holds. Then, the following best constant is well defined

o e Dmulg+ DI
(u,v)eS p/p”
(u#0)A(v#0)

/ v g

(3.2

where S = SH¢(H") x S*(H™). Indeed, the Hblder inequality and the Folland-Stein inequality (3.1) give

/o

alp’ B
Juewitags | furtag | | fwag) < cipmigipam 33)
]H[n n n

forall (u,v) € S, sincea, B > 1and a + 8 = ¢". Therefore, (3.3) and the Young inequality yield
[
(M/ P dg

forall (u,v) € S. Hence J > 1/C§* > 0.
Before turning to Theorem 1.2 and its proof, let us show the next result, which is an extension and gen-
eralization of Lemma 2.1 in [44] to the Heisenberg setting.

lo"
. o a
= CoIDaule D' < 5. (sl + LoDy

< C3. (IDgull§ + | DyvII)

Lemma 3.1. Let {(uy, vi)}x be a sequence in S. Assume that (uy, vi) — (u, v) in S and (uy, vi) — (u, v) a.e. in
H". Then,

lim [ (il val? = == vIPydg = [ v,
H» H»

Proof. Fix a sequence {(u, vi)}x in S, as in the statement. Put I = [0, 1] and consider the functions

Fel&, 8) = |ug - tu*(uy - i P, gr(&, 0 = |ug — ul*|vi - P2 (v - tv),
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defined for all (¢, t) € H" x I. Clearly, fyu € L'(H" x I) and g,v € L'(H" x I) by Fubini’s theorem. Then,

Tonelli’s theorem gives
p // foudédt + B // v dédt

HrxI HxI
—a// lug — tu|* 2 (uy, — tu)|vi|Pu déde
HxI
+ﬁ// lug — ul|vi - tv[F2 (v - tv)v déadt
HxI

=/\vk|ﬁd€/a|uk—tu\a"2(uk—tu)udt
H"

/\uk—u| d.{/ﬂ\vk—tv\ﬂ 2(ve - tv)vdt (34)

/\vuﬁdsf/( el ) de
o [ -t / (- v o) ae

Hn

/\uk\ vy - /\uk—u| T

Hn
Moreover, since u; — u and v; — v a.e. in H", we get as k — oo
a-1,, a-2 B . n
fi— Q-0 " “upvl’, g—0 ae inH"xI.

The Holder inequality yields

B

// |fk|a+ﬁ1d£dt<(//|uk “+ﬁd¢'dt> <//|v |“+ﬁd§dt> e,

HnxI HnrxI HrxI

since a + B = . Similarly,

B-1

B B
//|gk|a+ﬁld§dt<(/ \uk—u|“+ﬁd{dt) (/ |vk—tv|‘“ﬁd§dt) <c.

HnxI HnxI HnxI

Therefore, we get at once that

a+p
fi = @ -0 u/2uvif, g —0 weaklyinLas1(H" x I).

a// fkudé“dt—mt// (1-t)“‘l\u|“|v|ﬂd,sdt=/|u|“|v|ﬁd5 (35)

Hence,

HixI Hx] Hr
as k — oo, and
B// grvdédt — 0 (3.6)
Hrx]
as k — oo. In conclusion, (3.4), (3.5) and (3.6) yield as k — oo the assertion. O

Finally, we are ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Let {(uy, vi)}« and (u, v) be as in the statement and divide the proof into two cases.

Casel.u=v =0.Fix ¢ € CZ(H"). Then (¢uy, pv;) € S for all k Clearly,

1/p" 1/p"
lim (M/ 0l uk“vk‘*df) - (M/ ]” dv) . 37)
k—)oo

Moreover, the elementary p—norm inequality in R?" yields

|I1(Da(@ui), Du(evi))lle = | (@Duuk, Duvi) llo| < [|(Da@uy, Drevy)l|e- (3.8)

Both (), and (vy) converge to 0 in Lf’ (H") by the Rellich Theorem 2.3, so that the right hand side of (3.8)
goes to 0 as k — oo. Now, (3.2) and (3.8) give

et . 1/p
e (M/ ol° |uk|“|vk|”d‘f) s (w/ o1 (Dl + DHVk|§)d€) o

+ | (Da@uy, Dyovi) o

and then, letting k — oo in the above inequality, we get from (3.7) and (3.8)

1/p" e
© dv <g e ©|®du forall ¢ € CZ(H™).
@

Finally, applying Lemma 1.4.6 of [7], we conclude the proof in Case 1.

Case 2. Either u # 0 or v # 0. Set iy, = u — u and v = vy — v. Clearly, (i, ;) — (0, 0) in S. Moreover, from
Proposition 1.202 of [45], there exist bounded nonnegative Radon measures g and v on H", such that, up to a
subsequence, still labelled { (i1, v;)}, we have

(IDHyl + [DEvelfy) d€ = Jin M(H), 610
||| [PdE =V in M(HED).

Then, from Case 1. there exist an at most countable set J, a family of points {{j};c; ¢ H" and a family of
nonnegative numbers {v;};c; such that

V=> vbg. Ga1)

j€J

Furthermore, Lemma 3.1 implies that for all ¢ € CZ°(H")
gim { [ 101 vilfag - [ 1ol myeivas} - [ lol pviag, 12
Hr Hr Hr

since a + B = o". Thus, (1.3) and (3.12) imply v = v — |u|®|v|d¢ by Corollary 1.3.6 of [7]. Consequently, us-
ing (3.11), we obtain the representation of v, that is

v=|ulfv/fdE+> " vibe.
jel

Now, (3.2) and (3.8) give again (3.9) for all (uy, v) and all ¢ € CZ°(H"). As in Case 1. the Rellich Theorem 2.3
gives that both (uj)y, (vi)i converge to u and v in L (H"), respectively. Therefore, letting k — oo in (3.9), we

get by (3.7)
l/W* 1/p 1/@
gl/e Q/fpkfdv) < (ﬂ/VPley) + (ﬁ/DH(mg(“p i Vp)df) _ (3.13)
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Fix a test function ¢ € CZ°(H"), such that 0 < ¢ < 1, ¢(0) = 1 and supp ¢ = Bj. Take ¢ > 0 and put
@ej(&) = (p(él/g(.{o{j’l)), ¢ € H", for any fixed j € J, where {;}; is introduced in (3.11). Fix j € J. Then, (3.13),
applied to ¢, ; € CZ(H"), the Holder inequality and a change of variable yield

1/p" 1/p 1/p
g1/ /|<og,,-\“dv /|<og,j\@du + /\DHgos,,-|,8<|u|P+|v|“'>ds

= () = () = ()
1/p 1/Q

/ Peslodu |+ / Dipe 1 2dE
(&) (&)

IN

1/p"
/(|u\p+ v#)* 1o ag

(&)
1/p ol

/|<og,j\pdu ‘ep /W d&

<(&) =(&5)

IN

ol M/®
+ / v} dg ,
(&)

1/Q

where ¢y = ( [5, IDre(n)|3dn) "=, since p/p" + p/Q = 1 and

[ 1Duges©ifds = [ L Dug(ye(s o §NIGAE - [ 1DugtGan.
B.(&) B.(&) By

Heren = 8.(¢o {1-’1) is the change of variable, with dn = £"%d¢, as already noted in Section 2. Then, letting
£ — 0", we get .
jl/ijl/KJ < yjl/@’ jel,

where p; = lim,_,o+ u(Be(¢))).
It remains to show that p > (|Dguly; + [Dyvlfy)dé + > ;c; 1. Clearly,

U= Z”f&fi'
jel
On the other hand, (u, v;) — (u,v) in S and so (Dyuy, Dgvy) — (Dgu, Dyv) in LP(U, R?") for every mea-

surable subset U C H". Therefore, the lower semi-continuity of the norm of L¥(U, R2Y) gives at once for all
compact subset U ¢ H"

| (Dl + Davig)ds <timint [ (1Dl + Davily)dg
U U

slimsup/ (IDgurlf; + [Dpvilf)dé

k—oo

U
< / du
U
by Proposition 1.203 Part (ii) on page 130 of [45]. Thus,

u = (IDgulfy + |Dyv|§)dé.

Finally, since (|Dyul; +|Dpv|$;)dé is orthogonal to >_jey M6y, we get the desired conclusion. This completes
the proof. O
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4 The system (8)

The aim of this section is to prove the existence of nontrivial solutions for (8). From now on we assume that
the structural assumptions required in Theorem 1.1 hold.
The couple (u, v) is called a (weak) solution of system (8) if

/{A(lDHU|H) (Dyu, Dy @), + A(Dyv|y)(Duv, D), tdE
H"

+ /{B(\u\)ugo + B(v)viplde
Hn

=A'/{HU(u’V)(p+HV(u,V)¢}d€+§/|u|a_2u|v|ﬁ(pd$+§/|u|a|v|ﬁ_2v¢d£
Hr A J

for any (¢, ) € W.
The solutions of (8) are exactly the critical points of the Euler-Lagrange functional I = I; : W — R, given
by

I(u,V)=/[A(IDHMIH)+A(\DHV\H)}df+/[B(Iul)+3(lvl)]df

gin B
—A/H(u,v)df-i*/lu\a\v\ﬁdf’
Hn © Hr

for all (u, v) € W, where the functions A and B are the potentials, defined in the Introduction.
From the main properties summarised in Section 2 we easily get the next result.

Lemma 4.1. The embedding W — LP(H") x L? (H") is continuous for allp € [p, ¢"], and
1w, V)|lp < 2’“‘1(|\u\|p +[Vlp) < Collu, V)| forall (u,v) e W, (4.1)
where Cy, depends onp, Q, p and . Ifp € [1, ¢"), then for all R > O the embedding
W << LP(Bg) x L?(Bg)

is compact.

The next lemma shows that every nontrivial solution of (§) has both components non trivial, that is it solves
the actual system (8), which does not reduce into an equation.

Lemma 4.2. Every nontrivial solution (u, v) € W of (8) has both components nontrivial, thatisu # O and v # 0
in H".

Since the proof of Lemma 4.2 is not so much different from that of Lemma 2.3 in [13], we omit it here.
For simplicity in notation, let us introduce

~ , ifa; =0,
q-1% 1o (4.2)
min{ag, a1}, ifa; >0,
which gives a key bound from below on A.
Lemma 4.3. Under assumptions (A) and (C1) we have
a .
(A(X|mX - A(Y Y, X-Y), 2 aeilX- Y|y (4.3)

for all X and Y in the span of {X;, Y,-}}';l.
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The proof of Lemma 4.3, with obvious changes in notation, proceeds exactly as in Lemma 2.1 of [13]. We leave
it out.

The structural assumptions of Theorem 1.1 lead that the functional I possesses the geometric features of
the mountain pass theorem of Ambrosetti and Rabinowitz at special levels.

Lemma 4.4.

(i) There exists a couple (e1, e;) € CZ(H") x C°(H") such that e, > 0 and e, > 0 in H", I(eq, e;) < O,
I(e1, e2)|| 2 2 and [,le1|%le2|Pd& > O forall A > 0.

(i) For all A > O there exist numbers j = )(A) > 0 and p = p(A) € (0, 1] such that I(u, v) = j for all (u,v) € W,
with ||(u, v)|| = p.

The proof of Lemma 4.4 is standard and again very similar to the demonstration which first appears in
Lemma 2.4 of [13] and so there is no reason to produce here.
Lemma 4.4 arises the special level

¢, = inf max I(y(t)) (4.4)
yer telo,1]

of I, where I' = {y € C([0, 1], W) : y(0) = (0, 0), I((e1, e2)) < 0} and this occurs for all A > 0.

Obviously, c; > 0 for all A > 0. Moreover, for all A > O clearly ||(e1, €3)|| =2 2 > p, since p = p(A) € (0, 1]
and (eq, e;) € W does not depend on A. Then, Lemma 4.4 and the mountain pass theorem yield that there
exists a Palais—Smale sequence {(uy, vi)}x C W of I at the special level c; forall A > 0.

Now we introduce an asymptotic property of the levels ¢y as A — oo, which is crucial in the proof of the
key Lemma 4.6. This result was observed in the Euclidean vectorial case in [13], cf. Lemma 2.5, and also in the
Euclidean scalar case in [15], cf. Lemma 2.2 and Remark 2.3.

Lemma 4.5. The set of critical levels {c, }, satisfies the following asymptotics

lim c, = 0.
A—oo

The proof of Lemma 4.5 follows directly from that of Lemma 2.5 of [13] and it is not reported here. Taking
inspiration from [13], we prove a crucial result, observing first some properties obtained straight from the
structural assumptions. Indeed, (A4), (B) and (C,) imply that

A < tA'(t) < BA(L), B(t) < tB'(t) < IB(t)
for all t € R{. Moreover, for any € > 0, condition (H) gives the existence of a number C¢ > 0 such that
|H(u, v)| < &|(u, v)|™ + Ce|(u,v)|™ forall (u,v) € R? (4.5)

holds. Clearly, (3.3) yields at once that for all (u,v) € W

Juewag = i), (46)
HH

since a, f > 1 aresuch thata + = p".
For simplicity, in what follows we put

i ’ b ’ 'f = 0’
. {mln{ao 0} if aq %7)

min{aop, bo, a1, b1}, ifa; >0,

while a = max{ag, bo, a1, by} for all cases a; = 0. Clearly, O < a < a by (C>).

We are going now to prove essential properties of the Palais—Smale sequences of I at the special level
c,- In particular, the next lemma, which is relevant in the proof of the main theorem, is a special case of
Lemma 2.6 in [13], when H is independent of ¢ and the Hardy terms are not considered. In any case it is worth
to produce the proof since it relies on delicate arguments in the Heisenberg context, as Theorems 1.2 and 2.2.
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Lemma 4.6. Let {(uy, vi)}x C W be a Palais-Smale sequence of I at the level c; for all A > 0. Then,
(1) up to a subsequence, (uy, vi) — (uy, v)) in Was k — oo,
(ii) there exists A" > O such that the weak limit (u,, v,) is a solution of (8) for all A > A",

(iii) the set {(uy, v)} -1 Satisfies the asymptotic property (1.2).
Proof. Fix A > 0 and a Palais—Smale sequence {(uy, vi)}, C W of I at level c,, that is
I, vi) » ¢y and I'(ug,v) =0 inW ask — oo. (4.8)

The proof of the fact that {(uy, vi)} is bounded in W is similar to that contained in Lemma 2.6 of [13] with
obvious changes and we leave it out. Thus, since {(uy, v;)}x is bounded in the reflexive Banach space W,

there exist (u,, v)) € W, and nonnegative numbers 1; and §, such that, up to a subsequence, we have
(g, vi) = (uyp, vy in W “9)
il + Ve Bs + Lre (00 (1l Fpe + Vil Fpna) = 125

and also, by (4.6) and Lemma 4.1
/ lug = up|“|vi - valPdg — 6y. (4.10)
HH

For simplicity, in what follows we still denote by {(uy, vi)}« every subsequence extracted from the original
sequence {(uy, Vi) }x. Moreover, by Lemma 4.4 for all p € [1, ), up to a subsequence, we have that

(g, vi) — (up, vy) in LP(Bg) x L (Bg),
(g, vi) — (uy, vy) a.e.in H, (4.11)

|ug| < gr, |vi| < grae inH"

for some gp € L?(Bg) and all R > 0. Furthermore, by the Folland-Stein inequality (3.1) and the Holder
inequality, sincea > 1, >1and a + f = p*, we obtain

-1
[ |

Hn

©"(a-1) o' (" -a) ©"(a-1) o' (" -a)

i .
T A < gl 2 vl 2 < CEIDgud " [ Dgvidlp

< CZ*H(uk,vk)Hp <C,

where C > 0 is a suitable constant. Similarly,

-1
A
HYI

Consequently, again up to a subsequence, we have

o
“dE < C.

el 2ugvi? = [ua)2uplva | in L9776 D (@M, (4.12)
Vil 2vi = |up|%va P -2vy in L97€ D (H")

thanks to (4.11). In virtue of Proposition 1.202 of [45], there exist two bounded nonnegative Radon measures
u and v on H", such that, up to a subsequence, we have
a(IDyugl§ + \Dpvel§)dE = pin M), [u|*viPdE S v in M(ED). (4.13)

Therefore, Theorem 1.2 guarantees the existence of an at most countable set J, of a family of points {;};¢;
and of two families of nonnegative numbers {y;};c; and {v;};c; such that

v = uy %, Pdé + Zvj&’;]_, u = a(|[Dyuyl§ + |Dgvalf)dx + Z“i%’
jel jel (4.14)

ole* o ﬁforall'
vl s = jel,
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where § g s the Dirac function at the point &; of H", and J is defined in (3.2).
Now (4.8), (4.9) and (H) give as k — oo

e +0(1) 2 lugl By + Vil fpns + e (@) (lurllya + 1Vl fryna) }

11 ar 1B (4.15)
+(5-%) [mimdtac,
H"

= ¥_1 a>0
- \max{0,9} o ’

where by (4.7)

since max{0, 9} < o from (H).
First we assert that
lim 1, = 0. (4.16)

A—roo

Otherwise, limsup,_ .., 13 =1 > 0. Hence, there is a sequence k +— Ay 1 oo such thati, — 1as k — oo. Then,
letting k — oo, we get from (4.15) and Lemma 4.5 that

0=/1>0,

which is impossible. This contradiction proves the assertion (4.16). Moreover, from the fact that (uy, vi) —
(uyp, vy) in W, we have

ualEyprs + VAl s + Tre(@) (luall Frpe + IVallfpee) < 22
Therefore,

lim / up|*valfdé = lim |[(up, vp)[ = 0 (4.17)
A—o0 A—oo
Hn

by (4.6) and (4.16).

Fixnow a test function ¢ € CZ(H"),suchthatO < ¢ <1,¢ = 1in By, while¢ = 0in B, and || Dg@||e < 2.
Take £ > 0 and put ¢, ;(§) = ¢(6,/.(§ o {;1)), & € H", for any fixed j € J, where {{}}; is introduced in (4.14).
Fix j € J. Then @, ;j(uy, vi) € W and so (I'(uy, vi), @¢,j(ug, vi)) = 0(1) as k — oo by (4.8) and (4.9). Therefore,
ask — oo

o(1) =/{A(\DHuk\H)(UkDHUk:DH‘PS,J‘)H
Hrl

+ A(IDyvi|i) (viDuvis D e j) 1 A&

+ i {ACDH ) D+ AQDiv ) Dvil 418)
HYI
+ B(lug|)|ugl* + B(vi|vi|* }d€
- / e [ty viug + Huug, vioveldé - / Do jluilvilPdz,
Jisitg Hn

since a + § = p". Moreover, by (C;), the Hélder inequality and a change of variable

lim sup /A(\DHuk\H)(ukDHuk,DH‘Pe,j)Hd'f

k— o0

< limsup / {ao| Daug 5 |ug| - IDu@e jlu + a1 D] & uy| - Dgee jlu}dE
—>0c0
B(¢j,2¢)
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1/p
<timsup 3 ol Dl [ D (g
—o00
(&,2¢)
1/q
+li;(nsup a || D |37 /lukDprs,i('fN?{df
—ro0
(&,2¢)
1/p 1/q
< Codp /IMADprg,j(rf)I’;Id{ +craq /luADH%,j(f)\?;df
(&,2¢) (§:2¢)
1/p" 1/q°
<cpdcomo | [hurdg| e | [ar| 1,
(§,2¢) (§,2¢)

- — 1 .
where o = supyey [Druxllh ™, c1 = supgen [IDaueld ™, cp = ( [z, IDre(m)|3dn)"'®, while the change of
variable is given by n = 6, /,(¢ o &!). Consequently,

lim limsup /A(\DHuk\H)(ukDHuk,DH(pE,j)Hd§ =0.
e=0" k—>o0

n

Similarly, in the v component, and so as k — oo and £ — 0"

/{A(\DHuk\H)(ukDHuk: Dy ge)y
Hn (4.19)
+ A(IDpviclg) (ViDuVis DH®e )  }dE| = 0 (1),

Clearly, by (Cy), the properties of ¢ and (4.11), as k — oo
Joes BUuDluet + BvdIvd?}dg = [ {ooluet” + vel”) + oa (il + vil?)
Hn B(x,~,2£)

. /{bo(|uw+|m)|ﬂ)+bl(|um+|m)\">}d&

B(x;,2¢)

since 1 < p < g < ¢". Hence,

e—0*

tim Jim_ [ {BueDlusl? + Bviplvil*}df =o. (4.20)
]H[n

Similarly, by (H) and (4.11), as k — oo
/(Pg,j[Hu(uk, vidug + Hy(uy, vivildé < / (m|(uge, vIII™ + m Cq|(ue, vi)I™) dE
H" B(x;j,2¢)

- / (m|(up, va)I™ + m Cq|(up, vi))|™)d¢,

B(x;j,2¢)

sincel < p<m<m< g, and then

=0 k—oo

lim lim /(pe,j{Hu(uk, viouy + Hy(uyg, vi)vy }dé = 0. (4.21)
]HITI
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In conclusion, (C4), (4.7), (4.18)—(4.21) give for allj ¢ |

/(pg,]-dy +0(1) < /(pg,]-dv (4.22)
Fin Hr

ase — 0",
Now, by Lemma 4.5 there exists A" = 1"(Q, ) > 0 such that

Cy < (% - %) @n¥® forallA=A". (4.23)

Notice that, (4.14) and (4.22) yield a J Vj.p/ ¢ < y; < vjforallj € J. Assume by contradiction that v; > 0 for some
j € J. Then, v; = (@ 9)%¢ and so (4.15) implies

1 1 1 1
cp+o(1) 2 (E - E) /\uk\a\vk\ﬁdf 2 (5 - 5) /‘Pe,id"
i Hr

as k — oo. On the other hand, as k — oo and € — 0" we have

and this contradicts (4.23). Hence, v; = O for all j € J and for all A > A"
Consequently, there exists A" > 0such that forallA = A*

ug|“viPdE = v =up*|vafdé  in M@EH")

as k — oo, by (4.13) and (4.14). In particular, for all ¢ ¢ C°(H™)

lim [hu“ivefdg = [hu“ivyfas. (4.20)
H" H"

From now on in the proof we fix 1 = A"
Take R > Oand ¢ € CZZ(H") such that 0 < ¢ < 1in H", ¢ = 1in Bg, ¢ = 0in BS; and ||Dy |l < 2. By
Lemma 4.3 we have
a

a1 /|DHuk - Dyu,|dé

Br
< /(A(|DHuk|H)DHuk - A(IDguy|)Dyuy, Dyuy - Dyuy) ,dé
Bg (4.25)
< /(A(IDHule)DHuk - A(IDguy|g)Dyuy, Dyuy — Dyuy) odé
Hn
- JoAUD skl Die € ~ foAGDiuili) (Drst D)+ o1
Hn Hn
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as k — oo by (4.9). Similarly, we obtain (4.25) also in the v variable. Now, we can estimate the right hand side
of (4.25) as

/¢A(|DHuk|H){|DHUk|12q ~ (Dyuy, Dyuy) , dé
Hn
+ /‘PA(\DHVHH){|DHVI<|%J ~ (Dyvi, Dyvy) ; pdE
Hfl
= (I'(ug, Vi), @(uge, vid)) — (I' (u, vio), @(up, va))

- /{A(|DHUk|H)(uk - u) (D, Duep)
Hfl

(4.26)
+ A(IDvi| i) (vi = vi) (Duvi, Duo) , &
- [oBuudu - ) + Bt - v}
H"
A [pHutug, vk = ) + Holugs vOWic = vldg
HYI
aj, B_ & a-2 B, _ ﬁ a),, 1B-2 d
+ @9 gl vkl p*|uk| Ug|vil“up p*|uk| Viel™ “vieva ¢ d§.
Hfl
Clearly,
(I'(ug, vie), (up, vie)) = I' (g, vie), (uyp, vp)) = 0(1)  as k — oo.
Moreover, by (C1) and the H6lder inequality
L/A(DHukH)(uk - u))(Druy, Dyo) ,dé
1/p 1/q
<28 colDpuel | [ lu-wrdg |+ alDand? | [ - witdg| L
2R 2R
and similarly in v component. Therefore, by (4.9)
kliH:o /{A(\DHuk\H)(Uk - up) (Dguy, Do)
T (4.27)
+ A(IDyvi|)(vic = va) (D v, Due) , dé = 0.
Again by (C;) and the Holder inequality
1/p
JoBCuuntu - ude]| < {bo|uk|§1 ( [~ uAl”ds’)
n Bar
1/q
+ by flug ) d7! ﬁuk—u/thdf }
2R
which yields by (4.9), also in v component,
Jim [ (B = )+ Bvi (v - v} =o. (4.28)
Hn

Likewise, by (H), the Holder inequality, (4.5) with € = 1 and (4.11)

0c< /(p[Hu(uk, Vid(ug — up) + Hy(ug, vi)(vi — vpldé
Hn
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) /4)|(uk, vi) = (up, vl (m](ug, vi)|™ " + mCa| (ug, vi) ™) dé.
Bar

Thus, as k — oo

0< /(p[Hu(uk, Vi) — uy) + Hy(ug, vi)(vi = vy)ldé
Hrl

< C (1G> vid) = s VAl By + I Wies Vi) = (i, VO llpms,)) — O,

where
C = msup ||(uy, vi)||™ + m Cq sup ||(ug, vi)|™ ! < oo,
keN keN

sincel<p<m<m< g . Finally,a+f = p" givesas k — oo

a _ _
/ ol vt - 5 / lur|“2uglviPurdé - pﬁ / olug| v Pvevads - 0,
Hn Hn Hn

by (4.12) and (4.24). Therefore, combining (4.25)-(4.30), we have

a

W / (|DHuk _DHu/\‘jp{ + |DHVk _DHVA‘g)d'S < 0(1) as k — oo,

Br

— 915

(4.29)

(4.30)

Thus, Dyu, — Dyuy and Dyvy — Dyv, in L?(Bg, R?™) for all R > 0. Consequently, up to subsequences, still

labelled {(uy, vi)}i, we get

Dyuy — Dgyu, and Dgvy — Dyv, a.e.inH",

(4.31)

and for all R > 0 there exists a function hy € L¥(Bg) such that |[Dyu;|g < hg and |Dyvy|y < hg a.e. in Bg and

forall k € N.

Now, fix ¢ and ¥ in CZ(H") and let R > 0 so large that supp ¢ C By and suppy) C Bg. By the above

construction and (C;) we have a.e. in By
|A(IDyuy|) (Dyuk, Dug) ; + A(Devi|a) (Duvi, DaY) 4
< (a0 Dyuxl¥ " + a1|Dpug| ) Dyl
+ (ao|DviB ' + aq| Dyl Dl
< (aoh% " +a1hd ™) (IDu|u + [Dpln) = b,
where ) € L1(Bg). Then, the dominated convergence theorem yields as k — oo
/{A(lDHuk|H) (Duux, Dud) ; + A(Duvil ) (Duvi, Day) , dé
Hr

- /{A(\DHuk\H)(DHuk,Dm)H + A(Dgvl) (Dyvie Dyh) , L€
Br

— /{A(lDHuA|H) (Dyuy, Dyop) ,; + A(IDgvala) (Dyva, Dup) , bdé.
H"

Similarly, again (C,) and (4.11) give a.e. in By
|B(|ur)ur + B([viJviyp| < (bogh ' + 0185 ) (1P| + [¥]) =,

where g € L'(Bg). Then, the dominated convergence theorem gives as k — oo

/(B(\uk\)ukqb + BQvevih) d€ - /(B(|umuA¢ + B(vavap)dE.
Hn

Hnr
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Moreover, by (H)
|Hy(ug, vi)@ + Hy(ug, viow| < m|(ug, vi)|™ 1 @ + m C1 |(uy, vi)|™ 1 < &,

where & € L1(Bg), and so, again by the dominated convergence theorem, as k — oo we obtain

/[Hu(uk, vi)g + Hy(uy, Vk)'l’] a§ — /[Hu(u,\, V)¢ + Hy(uy, VA)'I’] dg.
Hn

Hn

Finally, since (I' (uy, vi), (¢, 1)) = o(1) as k — oo, we have

/{A(\DHHk\H) (Dguy, Dyop) ,; + A(Dgvila) (Davi, D), b dé
Hn

+ /{Buuknukqb + Bvived )y dé

Hr

A ﬁHu(x, i, v+ Hy 06, g, viOldE
Hn
. 5 ﬁuu“uk\vk\%d& @ﬁ /uk\“\vk\‘**zvkwd& o(1).
Hn H~r

Thus, from what we proved above, we get as k — oo

/{A(lDHUA|H) (Drup, Du) ; + A(Dyvala) (Duva, D), bdé
Hn

+ [Bﬂuwum + Bvava)w) dé

i (4.32)

2 /(Hu(uA, v + Hy(ug, v)plde
H"

R
®
Hn

a _ _
t ﬁu/da 2upvalPpde + B ﬁuA|a|VA\ﬁ “vapdé
Hﬂ

for all ¢ and  in Cz°(H").

Fix now (&, ¥) € W and put ¢, = {i(oy * &) and Y = {(py * ¥), where (p; ) is the sequence of mollifiers
introduced in Section 2 and ({}); is a sequence of cut—off functions defined as in (2.8). Then, from the proof
of Theorem 2.2, it is evident that the sequences (¢;); and ()i are in CZ(H") and have the properties that
¢br = D, Yy — in HWLP(H") 0N HWL©(H") and ¢y — &, Y — ¥, Dydy — Dy®, Dy — Dy a.e. in H"
as k — oo. Moreover, (4.32) holds along (¢;); and (1) for all k. Then, passing to the limit as k — oo under
the sign of integrals by the dominated convergence theorem, we obtain the validity of (4.32) forall (&, ¥) € W.
In conclusion,

(I'(uy, vy), (@, ¥)) =0 forall(®,w)c W, (4.33)

that is (u,, v,) is a solution of (8) for all A > A", This completes the proof of part (ii).
As already noted (iii) is a direct consequence of (4.17). O

The next result is an adaptation of Lemma .1 in [14] for the scalar case, where the space R" is replaced by the
Heisenberg group H". We present it in the generality given in its statement, that is the exponents p and p are
not related as in (Cy).

Proof of Theorem 1.3. Let (u;); be as in the statement. Thus, the Folland-Stein inequality (3.1) gives that the
sequence (uy); is bounded also in L¥ (H™"). We divide the proof into two cases.
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Case 1. (uy)y is bounded also in L= (H"). Take q such that q > min{p, ¢"}. Then, (1.4) implies

sup / lu|%dé = o(1) (4.34)
neHn
Bgr(n)

as k — oo. Indeed, if p < ", then q > p and so
sup [ fugl"dg = sup [ ugl" ¢ < Jugl &7 sup [ uel’d€ = o(1)
neH" nemn nemn
Bg(n) Bg(n) Bg(n)
as k — oo, since (uy ) is bounded in L*(H"). Similarly, if p > o" then q > " and so
sup [ fugl"dg = sup [ ugl" sl d < & sup [ il d
nemn neHn

neHn
Br(1) Bg(n) Br(1)

< gl cq sup [ ugdg = o(1)
nemr
Br(n)
as k — oo, where cg = |Bp()|? /P = R2w-¢)/P since (u))y is bounded in L=(H"). Fix now p > 1 such that

p<pandp < (p-1)p < oo, where y is the Holder conjugate of . It follows from the definition of p, that
(4.34) holds for q = pand q = (p - 1)¢/, that is

sup /|uk|i’d$=o(1), sup /\uk\(’_"l)"ld{=o(1) (4.35)
neHn neHn
Br(n) Br(n)
as k — oo. Therefore, the Holder inequality gives
sup [ fugl” | Dpue g
neHn
Br(n)
1/’ 1/p
< Sup{ / |uk|(i”1)p/d€ . /\DHuk\zdf } (4 36)
nemrn .
R (1) r(1)
1/’
< Dyl sup | [l dg | = o)
neHn

r(7)
as k — oo, since (Dyuy )y is bounded in L¥(H", R?") and (4.35) holds. Consequently, from (4.35) and (4.36),
we get the existence of a sequence (g;)y, independent of n, such that £, — 0 as k — oo and
/ P + / PlugP Y Dyuglpde < & (4.37)
Br(n) Br(n)

for all k € N. Clearly, for all € H", we have |u;|P € L(Bg(n)). Furthermore, the Holder inequality yields
IDu(|wiP)|m = PlurP~ D] € L (Br(0)

forall n € H". Consequently, [u;|? € HWY1(Bg(n)). Fixt € (1, Q/(Q - 1)). Then the embedding Theorem 2.3,
yields the existence of a constant Cg, independent of 7, such that

/ P dE < / uPdE + / BlugP Dy dé
Br(n) r(1) Br(n) (4.38)

sczzsi*( [rags [ muk\f’*HDHudea),

Bgr(n) Br(n)
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where ¢, is introduced in (4.37). Moreover, (u;); is bounded in L? (H") and in L&D (M) by the interpo-
lation theorem, since (u;); is bounded in LP(H") and in L*°(H"). Therefore, since (Dyu;); is bounded in
L(H", R?"), the Holder inequality gives

/{\uk\f’ + PlugP LDyl dE
Hn

1/’ 1/p (4.39)
s/|uk|f’d£+fa /|uk|@‘”@’ds : /|DHuk|§;d£ <c,
Hfl .fl .fl

where c is a number independent of k. Now, from Lemma 2.3 in [46], there exists a sequence (17;); C H" such
that H" = U}’:l Bg(n;) and each ¢ € H" is covered by at most 242 palls B r(n;). Hence, from (4.38) and (4.39),
we have

Jrurag=y [ uprag s @ocie | [ (iua + bl Datuwolu g
Hn jleR(n,-) n
< Cs,“{1 =0(1)

as k — 0, where C = (24)QC§C. Consequently,
u, — 0in LP*(H") (4.40)

foranyt € (1, Q/(Q-1))and any p, withp < pand p < (p - 1)’ < oo.
Fix now p between p and " and ¢ € (1, Q/(Q - 1)). In the case p < g, we can choose p sufficiently big
so that pr > o". Then, by the interpolation theorem applied to p, p, and pr, since p < p < p" < pr, we get for a
suitable T € (0, 1)
[uellp = urlpliuelpe’ = o(1) as k — oo,

since (1) is bounded in LP (H") and (4.40) holds. Similarly, in the case p > ¢", we choose p sufficiently big so
that pr > p and we apply the interpolation theorem to ¢”, p, and pr. Thus, we obtain for a suitable T € (0, 1)

1-
lullp < luxllGe luxdllpe" = o(1) as k — oo,

since (4.40) holds, " < p < p < pr and (uy); is bounded in Le (HM) by the Folland-Stein inequality (3.1). In
conclusion, in all the cases, u; — 0 in LP(H") as k — oo for all p between p and ", and this concludes the
proof of Case 1.
Case 2. General case. Fix N € N and put v, = min{|u;|, N} for all k € N. Clearly, (v;); is a bounded sequence
in L=°(H"). Then, from Case 1, it results

vy — 0in LP(H™) (4.41)

for all p between p and ". Fix now p and q; between p and ", with q; > p. By the interpolation theorem, (u;)
is bounded in L% (H"), since (uy); is bounded in LP(H") and also in L¥ (H") by the Folland—Stein inequality.
Then, by the definition of vy,

/|uk|'°ds= / g + / |uk|Pds=/|vk|Pds+ / g g dE
Hn Hn

[uy|<N [uy|=N [ui|=N

1 C
< [P+ gy [lumds s [P+ o,
Hr Hn H"

where C is a nonnegative constant independent of k. Consequently, from (4.41) we get

. C
11msup/|uk|pd§s Nap forallNeN. (4.42)
H”

k—>o0

Finally, passing to the limit as N — oo in (4.42), we conclude the proof. O



DE GRUYTER Patrizia Pucci and Letizia Temperini, Critical systems in the Heisenberg group =— 919

Theorem 1.3 holds in particular if we require that p and p are such that 1 < p < o, and that the sequence (),
is bounded in HW P (H") n HW#(H"). We shall apply Theorem 1.3 in this special case in the next Proposi-
tion 4.7, which is an alternative of Lions—type. The result we give is however a readaptation of Proposition 2.8
of [13] in the Heisenberg group setting.

Proposition 4.7. For any A > 0 let {(uy, vi)}x C W be a Palais—Smale sequence of I at level c, in (4.4) such
that (uy, vi) — (0,0) in W as k — o<. Then, either

(@) (ug, vi) — (0,0)in W, or
(i1) there exists R > 0 and a sequence (1) € H" such that
lim sup / (Jugl? + [viP)dé > 0.

k—oo
Br(ni)

Moreover, (1) is not bounded in H".

Proof. Assume that (ii) does not occur. Then, forall R > 0

lim sup / (|ugl? + [vi|P)d€ = 0.
k—o0 neHn

Br(n)

First, note that (u;); and (v;); are bounded in LP(H"), while (Dgyu;);, and (Dgvy); are bounded in
LP(H", R?"). Therefore, Theorem 1.3 implies that u; — 0 and v, — 0in LP(H") as k — oo forallp € (p, p’).
Consequently, by (H) and (1.1), with € = 1, we have

0< /(Hu(uk, Vidu + Hy(uy, vi)vy) dé < /(m|(uk, Vi)l™ + m Cq|(ug, vi)|™)dé — 0
Hr i

as k — oo,since 1 < p < p <m < m < ". Moreover, since {(u, vi)}x C W is a Palais—Smale sequence of I at
level c,, arguing as in the proof of Lemma 4.6, part (i), we know that there exists a number §, such that (4.10)
holds, that is in this casen

/\uk\“wk\”d@m
Hn
as k — oo. Therefore,
/(AuDHukm)wHukﬁf + A(Dgvel )| Davil}) dé + /(B(|uk|)\uk\2 + B(viDlvic?) d&

H» Hn

=ﬁuk\“\vk\ﬁd&om=5A+o(1)

Hn

as k — oo. Then, (C,) yieldsas k — cocand A — oo

a{ il o + Vil Eyin + L @D (1% g+ [VilS )}
< /(A(|DHuk|H)|DHuk|%1 + A(Dyvil )| Drvild) dé
Hn
+ /(B(|uk|>|uk|2 + BviD[vi2) d€ + 0x(1) = 0 (1),
Hn

where a is introduced in (4.7). Thus, ||(uy, vi)|| — 0 as k — oo, and then (i) holds.
In order to prove the last claim, assume by contradiction that (1), is bounded in H". Consequently, there
exists M > O so large that Br(n;) C By, for all k. Now, since (uy, v;) — (0,0) in W as k — oo, and since the



920 — Patrizia Pucci and Letizia Temperini, Critical systems in the Heisenberg group DE GRUYTER

embedding W < LP(Bg) x L?(Bg) is compact forall p € [1, ¢") and all R > O thanks to Lemma 4.1, we have
(ug, vi) — (0,0)in LP(Bg) x LP(Bg) forall p € [1, ¢") and all R > 0. Therefore,
0= lim /(|uk|p + |[vi[P)dé = lim sup / (lugl? + [vi[P)dé > 0,
k—o0 k—oo
Bu

Br(1)
which gives the required contradiction. Hence, (17;) is not bounded in H" as stated. O

Finally, thanks to Proposition 4.7, we are ready to prove the existence of nontrivial solutions for system (8).

Proof of Theorem 1.1. First, thanks to Lemmas 4.4 and 4.6, for any A > 0 the functional I has the geometry of
the mountain pass theorem, and then I admits a Palais—Smale sequence {(uy, i)} at level c; which, uptoa
subsequence, still denoted by {(uy, vi)}«, weakly converges to some limit (u, v;) € W. Moreover, as asserted
in Lemma 4.6, part (ii), there exists a threshold A > 0 and the weak limit (u;, v,) is a critical point of I for
all A > A%, namely a weak solution of (8). Furthermore, as stated in Lemma 4.6, part (iii), the solution has the
asymptotic property (1.2). It remains to show that the constructed solution (u,, v;) is nontrivial.

Assume by contradiction that (u,, v,) = (0, 0). Clearly {(uy, vi)}, cannot converge strongly to (0, 0) in W,
since otherwise I'(u;, v;) = 0 and O = I(u,, v;) = ¢; > 0 by Lemma 4.4. Therefore, by Proposition 4.7 there
exist R > 0 and a sequence (1), € H" such that

lim sup / (|ugl? + [vg|P)dé€ > 0. (4.43)
% beno
Now, define a new sequence {(uy, Vi) }x, where u (&) = ui(€ o ny), vi(&) = vi(€ o ny), for all & € H", where
o is the product in H" defined in (2.1). Therefore, I(uy, vi) = I(uy, vi) by the left invariance of the horizontal
gradient and of the Haar measure. Moreover, for all (¢, i) € W, with ||(¢, )| = 1, putting ¢ (&) = @(&o qﬁl)
and Y (&) = Y(£ o nih), £ € H", by the change of variable & = & o 1, we have

/{A(|DHﬂk|H) (Dutix, D)y + A(IDyVi|g) (DyVi, Dutp) ;1 dé

+ /{B(mknakq) + B(VeViap )} d -4 / {Huli, 70 + Hu(Gig, VW g
H)’l

Hn

a ~ )~ o~ ~ 9~
- % / g zuk|vk\ﬁ¢d£+§ / 1 viF2pdE
Hfl Hn

/{A(|DHuk|H) (Dyuy, Dp@i) ; + A(DgVi|a) (Duves DHlpk)H}dE

+/{B(|uk|)uk<ﬂk + B(vi vy L dE - A/{HU(ukr V@i + Hy(u, vy} d€
H" Hn

a ) - ) -
_?/|uk|a zuklvk\ﬁ¢kd§+§/\uk\a\vk\ﬁ 2virdé
Hr Hr

(I (e, vie), (@15 )| < T e, villw (@ Wil = (1T s vied [ w »
since 1 = ||(@, Y)|| = (k> Yi)|l. Then, as k — oo

1 G, Vidllwe = sup  [(I' (i, Vi), (@, )| < (1T (u, vidllw = 0(2).
(p.P)ew
(e, P)|I=1
Therefore, the sequence {(uy, Vi) } is again a Palais—Smale sequence at level ¢, in (4.4). Thus {(u, Vi) }x, up

to a subsequence, weakly converges to some (u,, v;) in W by Lemma 4.6. Furthermore, (4.43) yields

0<timsup [ (u? +vil?)dg = lim [(ie+ 9)dE = [(aP + ) dE.
k—so0 —roo
- Br(yi) Bg Bg
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Hence, (u;, v,) # (0, 0). Finally, Lemma 4.2 gives that both components of (u,, v;) are nontrivial, and this
concludes the proof. O
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