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Abstract: This paper deals with the existence of entire nontrivial solutions for critical quasilinear systems (S)
in the Heisenberg group Hn, driven by general (p, q) elliptic operators of Marcellini types. The study of (S)
requires relevant topics of nonlinear functional analysis because of the lack of compactness. The key step
in the existence proof is the concentration–compactness principle of Lions, here proved for the �rst time in
the vectorial Heisenberg context. Finally, the constructed solution has both components nontrivial and the
results extend to the Heisenberg group previous theorems on quasilinear (p, q) systems.
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1 Introduction
In recent years, great attention has been focused on the study of (p, q) systems, not only for their mathe-
matical interest, but also for their relevant physical interpretation in applied sciences. It is also well known
that the Heisenberg group Hn, n = 1, 2, . . . , appears in various areas, such as quantum theory (uncertainty
principle, commutation relations) cf. [1, 2], signal theory cf. [3], theory of theta functions cf. [1, 4], and num-
ber theory. For additional physical interpretations we mention [5], while for general motivations in setting
problems in the Heisenberg group context we refer to [6–11] and the papers cited there.

Here we prove the existence of nontrivial solutions for quasilinear elliptic systems in the Heisenberg
groupHn, involving (p, q) operators, which generalize the ones introduced byMarcellini in [12]. In particular,
we consider the system inHn

−divH
(
A(|DHu|H)DHu

)
+ B(|u|)u = λHu(u, v) + α

℘*
|v|β|u|α−2u,

−divH
(
A(|DHv|H)DHv

)
+ B(|v|)v = λHv(u, v) + β

℘*
|u|α|v|β−2v,

(S)

where λ is a positive real parameter, Q = 2n + 2 is the homogeneous dimension of the Heisenberg groupHn,
α > 1 and β > 1 are two exponents such that α + β = ℘* and ℘* is a critical exponent associated to ℘, with
1 < ℘ < Q, that is

℘* = ℘Q
Q − ℘ ,

which is related to the (p, q) operator A in (S). The vector

DHu = (X1u, · · · , Xnu, Y1u, · · · , Ynu)
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denotes the horizontal gradient of u, where {Xj , Yj}nj=1 is the basis of the horizontal left invariant vector �elds
onHn, that is

Xj = ∂
∂xj

+ 2yj
∂
∂t , Yj = ∂

∂yj
− 2xj

∂
∂t

for j = 1, . . . , n.
The starting point is the paper [13], where the authors studied similar and more general systems in the

Euclidean context. The main novelty of the paper is indeed to properly set (S) in the Heisenberg context. In
fact, several theorems have to be proved in the new framework for the �rst time. Indeed, the key existence
argument relies on the celebrated Lemma I.1 of [14] as well on the concentration–compactness principle in
the vectorial Heisenberg context, both due to Lions. Following [13], we require the structure conditions.
(A) A is a strictly positive and strictly increasing function of class C1(R+),

(B) B ∈ C(R+) is a strictly positive function and t 7→ tB(t) is strictly increasing in R+, with tB(t)→ 0 as t → 0+.

For simplicity,we introduce the functionsAandB,whichare0at 0 andwhichare obtainedby integration
from

A′(t) = tA(t), B′(t) = tB(t) for all t ∈ R+
0 .

Notice that (A) implies that tA(t)→ 0as t → 0+, and so tA(t) and tB(t) are de�ned to be 0 at 0.We furthermore
assume
(C1) there exist constants a0, a0, b0, b0 strictly positive, with a0 ≤ 1, a1, a1, b1, b1 nonnegative, with the property
that a1 > 0 implies b1 > 0, a1 > 0 and b1 > 0, and there are exponents p and q, with 1 < p < q < ℘*, where
1 < ℘ < Q, ℘ = p if a1 = 0 and ℘ = q if a1 > 0, such that for all t ∈ R+

0

a0tp−1 + 1R+ (a1)a1tq−1 ≤ A′(t) ≤ a0tp−1 + a1tq−1,
b0tp−1 + 1R+ (b1)b1tq−1 ≤ B′(t) ≤ b0tp−1 + b1tq−1,

where 1U is the characteristic function of a Lebesgue measurable subset U of R. Assumption (C1) was intro-
duced by Figueiredo in [15]. Moreover, we assume
(C2) there exist constants θ and ϑ, with ℘ ≤ min{θ, ϑ} < ℘*, such that

θA(t) ≥ tA′(t), ϑB(t) ≥ tB′(t) for all t ∈ R+
0

holds.

Several general systems verify all the assumptions (A), (B), (C1) and (C2), andwe refer to [13] for themain
prototypes of the potentialsA andB covered.

The functions Hu and Hv in (S) are partial derivatives of a function H of class C1(R2), satisfying the con-
dition
(H) H > 0 inR+ ×R+, Hu(u, 0) = 0 for all u ∈ R and Hv(0, v) = 0 for all v ∈ R. Furthermore, there existm, m, σ
such that ℘ < m < m < ℘*, max{θ, ϑ} < σ < ℘* and for every ε > 0 there exists Cε > 0 for which the inequality

|∇H(u, v)| ≤ mε|(u, v)|m−1 + mCε|(u, v)|m−1 for any (u, v) ∈ R2, (1.1)

where |(u, v)| =
√
u2 + v2,∇H = (Hu , Hv), and also the inequalities

0 ≤ σH(u, v) ≤ ∇H(u, v) · (u, v) for all (u, v) ∈ R2,

hold, where θ, ϑ are given in (C2).
Throughout the paper, · denotes the Euclidean inner product and | · | the corresponding Euclidean norm in
any space Rm, m = 1, 2, . . . .

Since ℘ = p if a1 = 0, while ℘ = q if a1 > 0, the natural space where �nding solutions of (S) is

W =
(
HW1,p(Hn) ∩ HW1,℘(Hn)

)
×
(
HW1,p(Hn) ∩ HW1,℘(Hn)

)
,
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endowed with the norm

‖(u, v)‖ = ‖u‖HW1,p + ‖v‖HW1,p + 1R+ (a1)
(
‖u‖HW1,q + ‖v‖HW1,q

)
for all u ∈ HW1,p(Hn), where HW1,p(Hn) is the horizontal Sobolev space de�ned in Section 2. We are now
able to state the existence result for (S).

Theorem 1.1. Suppose that (A), (B), (C1), (C2) and (H) hold. Then, there exists λ* > 0 such that for all λ ≥ λ*

the system (S) admits at least one solution (uλ , vλ) in W. Moreover, (uλ , vλ) has each component nontrivial and

lim
λ→∞

‖(uλ , vλ)‖ = 0. (1.2)

Since the solution (uλ , vλ), constructed in Theorem 1.1, has both components non trivial, it is evident that it
solves an actual system, which does not reduce into an equation. Moreover, Theorem 1.1 extends in several
directions previous results, not only from the Euclidean to theHeisenberg setting, but also for themild growth
conditions on the main elliptic operator of (S), cf. e.g. [16–19].

Even if assumption (C1) allows us to treat simultaneously when either a1 = 0 or a1 > 0, the most inter-
esting case is the latter, in which ℘ = q and so the couple (p, q) appears in its importance. Indeed, when
a1 > 0 in (C1), the main elliptic operator A has a (p, q) growth. Moreover, in this case, the solution space W
has a strong dependence on (p, q), since we consider existence of entire solutions in the Heisenberg group.
In fact, (p, q) problems are usually settled in bounded domains Ω, so that the natural solution space is
W = HW1,p

0 (Ω)∩HW1,q
0 (Ω) = HW1,q

0 (Ω). In this paper the situation is muchmore delicate, since the problem
is in the entire group of Heisenberg.

The importance of studying problems involving operators with non standard growth conditions, or (p, q)
operators, begins with the papers of Marcellini [12] and Zhikov [20]. Since then, the topic has been attract-
ing increasing attention on existence and qualitative properties of solutions, but the vectorial case is much
harder. Indeed, (S) has a relevant physical interpretation in applied sciences as well as a mathematical chal-
lenge in overcoming the new di�culties intrinsic to (S). Because of the lack of compactness, the main di�-
culty in treating (p, q) systems in our context relies on the proof of the key Lemma4.6, dedicated on the crucial
properties of the Palais–Smale sequences at special levels. To this aim, we prove a concentration compact-
ness principle for systems in S = S1,℘(Hn) × S1,℘(Hn), where S1,℘(Hn), 1 < ℘ < Q, is the Folland–Stein space,
that is the completion of C∞c (Hn) with respect to the norm

‖DHu‖L℘(Hn) =

∫
Hn

|DHu|℘Hdξ

1/℘

.

Theorem 1.2. Let {(uk , vk)}k be a sequence in S and assume that there exist (u, v) ∈ S and two bounded
nonnegative Radon measures µ and ν onHn, such that

(uk , vk) ⇀ (u, v) in S,(
|DHuk|℘H + |DHvk|℘H

)
dξ *

⇀ µ inM(Hn),

|uk|α|vk|βdξ
*
⇀ ν inM(Hn),

(1.3)

whereM(Hn) is the space of all bounded regular Borel measures onHn. Then, there exist an at most countable
set J, a family of points {ξj}j∈J ⊂ Hn and two families of nonnegative numbers {µj}j∈J and {νj}j∈J such that

ν = |u|α|v|βdξ +
∑
j∈J

νjδξj , µ ≥
(
|DHu|℘H + |DHv|℘H

)
dξ +

∑
j∈J

µjδξj ,

ν℘/℘
*

j ≤
µj
I

for all j ∈ J, where I = inf
(u,v)∈S

(u≠0)∧(v≠0)

‖DHu‖℘℘ + ‖DHv‖℘℘∫
Hn

|u|α|v|βdξ

℘/℘*

and δξj is the Dirac function at the point ξj ofHn.
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To the best of our knowledge, the conclusions obtained in Theorem 1.2 are new in theHeisenberg context. The
proof of this result follows somehow the arguments of [21] and [22, 23], but there are some technical di�culties
due to the more general context, which we overcome.

Finally, the existence of solutions for problem S rely on a readaptation of Proposition 2.8 of [13] in the
Heisenberg group. Therefore, we have to prove an extension from the Euclidean to the Heisenberg context of
the celebrated Lemma I.1 in [14] due to Lions, which is given in its general statement.

Theorem 1.3. Let 1 ≤ p < ∞ and 1 < ℘ < Q, with p ≠ ℘*. Assume that (uk)k is bounded in Lp(Hn), (uk)k is
bounded in S1,℘(Hn) and there exists R > 0 such that

lim
k→∞

sup
η∈Hn

∫
BR(η)

|uk|pdξ = 0. (1.4)

Then, uk → 0 in Lp(Hn) as k →∞ for all p between p and ℘*.

The paper is organized as follows. In Section 2, we recall some fundamental de�nitions and properties related
to the Heisenberg groupHn. Section 3 is devoted to the proof of Theorem 1.2, while Section 4 deals with some
lemmasuseful to the study of system (S). In particular,weprove Theorem1.3 and�nally Theorem1.1, adapting
the strategy of [13] and extending the results there to the Heisenberg group setting.

2 Preliminaries
In this section we present the basic properties of Hn as a Lie group. Analysis on the Heisenberg group is
very interesting because this space is topologically Euclidean, but analytically non–Euclidean, and so some
basic ideas of analysis, such as dilatations, must be developed again. One of the main di�erences with the
Euclidean case is that the homogeneous dimension Q = 2n+2 of theHeisenberg group plays a role analogous
to the topological dimension in the Euclidean context. For a complete treatment, we refer to [24–27].

LetHn be the Heisenberg Lie group of topological dimension 2n+1, that is the Lie groupwhich hasR2n+1

as a background manifold, endowed with the non–Abelian group law

ξ ◦ ξ ′ =
(
z + z′, t + t′ + 2

n∑
i=1

(yix′i − xiy′i)
)

(2.1)

for all ξ , ξ ′ ∈ Hn, with

ξ =(z, t)= (x1, . . . , xn , y1, . . . , yn , t) and ξ ′ =(z′, t′)= (x′1, . . . , x′n , y′1, . . . , y′n , t′).

The inverse is given by ξ−1 = −ξ and so (ξ ◦ ξ ′)−1 = (ξ ′)−1 ◦ ξ−1.
The vector �elds for j = 1, . . . , n

Xj = ∂
∂xj

+ 2yj
∂
∂t , Yj = ∂

∂yj
− 2xj

∂
∂t , T = ∂

∂t ,

constitute a basis for the real Lie algebra of left–invariant vector �elds onHn. This basis satis�es the Heisen-
berg canonical commutation relations

[Xj , Yk] = −4δjkT, [Yj , Yk] = [Xj , Xk] = [Yj , T] = [Xj , T] = 0.

A left invariant vector �eld X, which is in the span of {Xj , Yj}nj=1, is called horizontal.
We de�ne the horizontal gradient of a C1 function u : Hn → R by

DHu =
n∑
j=1

[
(Xju)Xj + (Yju)Yj

]
.
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Clearly, DHu is an element of the span of {Xj , Yj}nj=1. Furthermore, if f ∈ C1(R), then

DH f (u) = f ′(u)DHu.

In the span of {Xj , Yj}nj=1 ' R2n we consider the natural inner product given by

(
X, Y

)
H =

n∑
j=1

(
xjyj + x̃j ỹj

)
for X = {xjXj + x̃jYj}nj=1 and Y = {yjXj + ỹjYj}nj=1. The inner product

(
·, ·
)
H produces the Hilbertian norm

|X|H =
√(

X, X
)
H

for the horizontal vector �eld X. Moreover, the Cauchy–Schwarz inequality∣∣(X, Y)H∣∣ ≤ |X|H |Y|H
holds for any horizontal vector �elds X and Y.

For any horizontal vector �eld function X = X(ξ ), X = {xjXj + x̃jYj}nj=1, of class C1(Hn ,R2n), we de�ne the
horizontal divergence of X by

divHX =
n∑
j=1

[Xj(xj) + Yj(x̃j)].

If furthermore u ∈ C1(Hn), then the Leibnitz formula continues to be valid, that is

divH(uX) = u divHX +
(
DHu, X

)
H .

Similarly, if u ∈ C2(Hn), then the Kohn–Spencer Laplacian, or equivalently the horizontal Laplacian inHn, of
u is de�ned as follows

∆Hu =
n∑
j=1

(X2
j + Y2

j )u

=
n∑
j=1

(
∂2

∂x2
j

+ ∂2

∂y2
j

+ 4yj
∂2

∂xj∂t
− 4xj

∂2

∂yj∂t

)
u + 4|z|2 ∂

2u
∂t2 .

According to the celebrated Theorem 1.1 due to Hörmander in [28], the operator ∆H is hypoelliptic. In partic-
ular, ∆Hu = divHDHu for each u ∈ C2(Hn).

Awell known generalization of the Kohn–Spencer Laplacian is the horizontal p–Laplacian on theHeisen-
berg group, p ∈ (1,∞), de�ned by

∆H,pφ = divH(|DHφ|p−2
H DHφ)

for all φ ∈ C∞c (Hn).
The Korányi norm is given by

r(ξ ) = r(z, t) = (|z|4 + t2)1/4 for all ξ = (z, t) ∈ Hn .

The corresponding distance, the so called Korányi distance, is

dK(ξ , ξ ′) = r(ξ−1 ◦ ξ ′) for all (ξ , ξ ′) ∈ Hn ×Hn .

This distance acts like the Euclidean distance in horizontal directions and behaves like the square root of the
Euclidean distance in the missing direction. Consequently, the Korányi norm is homogeneous of degree 1,
with respect to the dilations δR : (z, t) 7→ (Rz, R2t), R > 0, since

r(δR(ξ )) = r(Rz, R2t) = (|Rz|4 + R4t2)1/4 = R r(ξ )
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for all ξ = (z, t) ∈ Hn.
Let BR(ξ0) = {ξ ∈ Hn : dK(ξ , ξ0) < R} be the Korányi open ball of radius R centered at ξ0. For simplicity

BR denotes the ball of radius R centered at ξ0 = O, where O = (0, 0) is the natural origin ofHn.
It is easy to verify that the Jacobian determinant of dilatations δR : Hn → Hn is constant and equal to

R2n+2. This is why the natural number Q = 2n + 2 is called homogeneous dimension ofHn.
We recall also the de�nition of Carnot–Carathéodory distance onHn and for further details we refer to [7,

25]. A piecewise smooth curve γ : [0, 1] → Hn is called a horizontal curve if γ̇(t) belongs to the span of
{Xj , Yj}nj=1 a.e. in [0, 1]. The horizontal length of γ is de�ned as

LH(γ) =
1∫

0

√(
γ̇(t), γ̇(t)

)
Hdt =

1∫
0

|γ̇(t)|Hdt.

Now, given two arbitrary points ξ , η ∈ Hn, by the Chow–Rashevsky theorem there is a horizontal curve be-
tween them in Hn, see [29, 30]. Therefore, the Carnot–Carathéodory distance of two points ξ and η of Hn is
well–de�ned as

dCC(ξ , η) = inf{LH(γ) : γ is a horizontal curve joining ξ and η inHn}.

Clearly, dCC is a left invariant metric onHn, and

dCC(ξ , η) = dCC(η−1 ◦ ξ , 0)

for all ξ , η ∈ Hn, see [7]. Moreover, the Carnot–Carathéodory distance is homogeneous of degree 1 with
respect to dilatations δR, that is

dCC(δR(ξ ), δR(η)) = R dCC(ξ , η)

for all ξ , η ∈ Hn.
In the case of the Heisenberg group, it is easy to check that the Lebesgue measure on R2n+1 is invariant

under left translations. Thus, from here on, we denote by dξ the Haar measure onHn that coincides with the
(2n+1)–Lebesguemeasure, since the Haarmeasures on Lie groups are unique up to constantmultipliers. We
also denote by |U| the (2n + 1)–dimensional Lebesgue measure of any measurable set U ⊂ Hn. Furthermore,
the Haar measure onHn is Q–homogeneous with respect to dilations δR. Consequently,

|δR(U)| = RQ|U|, d(δRξ ) = RQdξ .

In particular |BR| = |B1|RQ.
As usual, for any measurable set U ⊂ Hn and for any general exponent p, with 1 ≤ p ≤ ∞, we denote by

Lp(U) the canonical Banach space, endowed with the norm

‖u‖Lp(U) =

∫
U

|u|pdξ

1/p

, if 1 ≤ p < ∞,

while
‖u‖L∞(U) = ess sup

U
u = inf{M : |u(ξ )| ≤ M for a.e. ξ ∈ U}.

When U = Hn or when there is not ambiguity about the set considered, for simplicity we denote the norm
‖ · ‖p. All the usual properties about the Lebesgue Banach spaces continue to be valid. In particular, Lp(U) is
a separable Banach space and Cc(U) is dense in it if 1 ≤ p < ∞. Moreover, Lp(U) is a re�exive Banach space if
1 < p < ∞.

Let us now review some classical facts about the �rst–order Sobolev spaces on the Heisenberg group
Hn. We restrict ourselves to the special case in which 1 ≤ p < ∞ and Ω is an open set in Hn. Denote by
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HW1,p(Ω) the horizontal Sobolev space consisting of the functions u ∈ Lp(Ω) such that DHu exists in the
sense of distributions and |DHu|H ∈ Lp(Ω), endowed with the natural norm

‖u‖HW1,p(Ω) =
(
‖u‖pLp(Ω) + ‖DHu‖pLp(Ω)

)1/p
, ‖DHu‖Lp(Ω) =

∫
Ω

|DHu|pHdξ

1/p

.

It is easy to check that the distributional horizontal gradient of a function u ∈ HW1,p(Ω) is uniquely de�ned
a.e. inΩ. Furthermore, if u is a smooth function, then its classical horizontal gradient is also the distributional
horizontal gradient. For this reason, if u is a non smooth function, DHu is meant in the distributional sense.

For later purposes, let us introduce the convolution, which is useful also for density results, see [31, 32].
If u ∈ L1(Hn) and v ∈ Lp(Hn), with 1 ≤ p ≤ ∞, then for a.e. ξ ∈ Hn the function

η 7→ u(ξ ◦ η−1)v(η)

is in L1(Hn). Moreover, u * v, de�ned a.e. onHn by

(u * v)(ξ ) =
∫
Hn

u(ξ ◦ η−1)v(η)dη, (2.2)

is called convolution of u and v. By the analog of the Young theorem u * v belongs to Lp(Hn) and

‖u * v‖p ≤ ‖u‖1‖v‖p. (2.3)

If p = ∞, then u * v is well de�ned and uniformly continuous inHn.
Using the convolution (2.2), the technique of regularization, originally introduced by Leray and Friedrichs

in the Euclidean context, can be extended to the Heisenberg groupHn. In particular, it is possible to generate
a sequence of molli�ers (ρk)k on Hn with the usual properties, see the Appendix of [33]. Moreover, Proposi-
tion A.1.2 of [33] yield that if φ ∈ C∞c (Hn) and u ∈ L1

loc(Hn) then u * φ ∈ C∞(Hn) and

Xj(u * φ) = u * Xjφ, Yj(u * φ) = u * Yjφ, j = 1, . . . , n. (2.4)

Lemma 2.1. Let u ∈ L1(Hn), v ∈ Lq(Hn), such that DHv exists in the sense of distributions and DHv ∈
Lp(Hn ,R2n), with 1 ≤ p, q < ∞. Then DH(u * v) exists in the sense of distributions, DH(u * v) ∈ Lp(Hn ,R2n), and

Xj(u * v) = u * Xjv, Yj(u * v) = u * Yjv, j = 1, . . . , n,

in the sense of distributions. In particular, if q = p, then u * v ∈ HW1,p(Hn).

Proof. Let u and v be as in the statement and divide the proof into two cases.
Case 1. u ∈ C∞c (Hn). Fix φ ∈ C∞c (Hn) and j = 1, . . . , n. Since u ∈ L1(Hn), v ∈ Lq(Hn) and Xjφ ∈ Lq

′
(Hn),

Lemma A.1.3 of [33] yields∫
Hn

(u * v)Xjφdξ =
∫
Hn

(ǔ * Xjφ)vdξ , ǔ(ξ ) = u(ξ−1), ξ ∈ Hn . (2.5)

Likewise, since ǔ ∈ L1(Hn), Xjv ∈ Lp(Hn) and φ ∈ Lp
′
(Hn), again Lemma A.1.3 of [33] gives∫

Hn

Xjv(ǔ * φ)dξ =
∫
Hn

(u * Xjv)φdξ . (2.6)

Then, by the de�nition of distributional derivative, by the fact that ǔ and φ are C∞c (Hn) and by (2.4),(2.5) and
(2.6) we get ∫

Hn

Xj(u * v)φdξ = −
∫
Hn

(u * v)Xjφdξ = −
∫
Hn

(ǔ * Xjφ)vdξ = −
∫
Hn

Xj(ǔ * φ)vdξ
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=
∫
Hn

Xjv(ǔ * φ)dξ =
∫
Hn

(u * Xjv)φdξ .

In conclusion, Xj(u * v) = u * Xjv ∈ Lp(Hn) by (2.3) and similarly Yj(u * v) = u * Yjv for j = 1, . . . , n.
Case 2. u ∈ L1(Hn). There exists a sequence (uk)k in C∞c (Hn) such that uk → u in L1(Hn). By the previous step
DH(uk * v) exists in the sense of distributions, DH(uk * v) ∈ Lp(Hn ,R2n), and for j = 1, . . . , n∫

Hn

(uk * v)Xjφ = −
∫
Hn

(uk * Xjv)φ for any φ ∈ C∞c (Hn). (2.7)

By (2.3)
‖uk * v − u * v‖p ≤ ‖uk − u‖1‖v‖p = o(1) as k →∞.

Similarly, for j = 1, . . . , n,

‖uk * Xjv − u * Xjv‖q ≤ ‖uk − u‖1‖Xjv‖q = o(1) as k →∞.

Thus, letting k →∞ in (2.7), we conclude that∫
Hn

(u * v)Xjφ = −
∫
Hn

(u * Xjv)φ for any φ ∈ C∞c (Hn),

which is exactly the assertion for Xj. We derive the result for Yj like so. This completes the proof.

As in theEuclidean case, thedensity theorem for thehorizontal Sobolev space continues tohold in theHeisen-
berg group.Wepresent theproof for the sake of completeness and for later purposes, since this result is crucial
to prove the main Lemma 4.6.

Theorem 2.2. C∞c (Hn) is dense in HW1,p(Hn) for every p, with 1 ≤ p < ∞.

Proof. Let u ∈ HW1,p(Hn). Consider the sequence of molli�ers (ρk)k on Hn. Thus, ρk * u ∈ C∞(Hn) by (2.4),
and ρk * u → u in Lp(Hn) as k → ∞, with ‖ρk * u‖p ≤ ‖u‖p for all k. Moreover, Lemma 2.1 yields that
DHn (ρk * u)→ DHnu in Lp(Hn ,R2n) as k →∞. Now, �x a function ζ ∈ C∞c (Hn) such that 0 ≤ ζ ≤ 1 and

ζ (ξ ) =
{

1, if r(ξ ) < 1,
0, if r(ξ ) ≥ 2,

for any ξ ∈ Hn. Then, de�ne the sequence of cut–o� functions

ζk(ξ ) = ζ (δ1/k(ξ )), ξ ∈ Hn . (2.8)

The dominated convergence theorem implies that ζku → u in Lp(Hn) and ζkXju → Xju in Lp(Hn) for all
j = 1, . . . , n. Finally, let uk = ζk(ρk * u), so that (uk)k ⊂ C∞c (Hn) for all k. The constructed sequence (uk)k
converges to u in HW1,p(Hn). Indeed,

uk − u = ζk
(

(ρk * u) − u
)

+ ζku − u

and thus
‖uk − u‖p ≤ ‖ρk * u − u‖p + ‖ζku − u‖p = o(1) as k →∞,

that is uk → u in Lp(Hn). Next, Lemma 2.1 gives

Xjuk =
(
Xjζk

)
(ρk * u) + ζk(ρk * Xju)

for all j = 1, . . . , n and k. Therefore, direct calculations show that Xjζk = Xjζ (δ1/k(ξ ))
/
k, so that

‖Xjuk − Xju‖p ≤ ‖
(
Xjζk

)
(ρk * u)‖p + ‖ζk(ρk * Xju) − Xju‖p
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≤ Ck ‖u‖p + ‖ρk * Xju − Xju‖p + ‖ζkXju − Xju‖p = o(1)

as k →∞, where C is a positive constant depending only on ζ . Repeating the argument when Yj replaces Xj,
we get the same property, so that we conclude that DHuk → DHu in Lp(Hn ,R2n). Consequently, uk → u in
HW1,p(Hn) as k →∞, and this completes the proof.

The basic embedding theorems for the Sobolev space HW1,p(Hn), �rst established in [34] by Folland and
Stein in this type of generality, have a form similar to those in the Euclidean case, but the exponent governing
the transition to the supercritical case is the homogeneous dimension Q = 2n + 2. In particular, if p is an
exponent, with 1 < p < Q, then the embedding

HW1,p(Hn) ↪→ Lq(Hn)

is continuous for any q ∈ [p, p*].
For a complete treatment on the compactness of the embeddings HW1,p(Ω) ↪→ Lq(Ω), when Ω is a well

behaved domain, we refer to [25, 35, 36] and also to [37], as well as the references therein. The next de�nition
is taken from [36].

An open set Ω ofHn is said to be a Poincaré–Sobolev domain, brie�y PS domain, if there exist a bounded
open subsetU ⊂ Hn, withΩ ⊂ Ω ⊂ U, a covering {B}B∈F ofΩ by Carnot–Carathéodory balls B andnumbers
N > 0, α ≥ 1 and ν ≥ 1 such that
(i)
∑

B∈F 1(α+1)B ≤ N1Ω in U,
(ii) there exists a (central) ball B0 ∈ F such that for all B ∈ F there is a �nite chain B0, B1, . . . , Bs(B), with

Bi ∩ Bi+1 ≠ ∅ and |Bi ∩ Bi+1| ≥ max{|Bi|, |Bi+1|}
/
N, i = 0, 1, . . . , s(B) − 1 and moreover B ⊂ νBi for

i = 0, 1, . . . , s(B).
This de�nition is purely metric. There is a large number of PS domains inHn, as explained in details in [36].

For our purposes it is important also to recall a version of the Rellich–Kondrachov theorem in the Heisen-
berg context. The next result is a special case of Theorem 1.3.1 in [7].

Theorem 2.3.
(i) Let Ω be a bounded PS domain inHn and let 1 ≤ p < Q. Then the embedding

HW1,p(Ω) ↪→↪→ Lq(Ω)

is compact for all q, with 1 ≤ q < p*, where Q is the homogeneous dimension of the Heisenberg group and p* is
the Sobolev exponent related to p.
(ii) The Carnot–Carathéodory balls are PS domains.

Combining Theorem 2.3, with the fact that the Carnot–Carathéodory distance and the Korányi distance are
equivalent onHn, we get (i) when Ω is any Korányi ball BR(ξ0) centered at ξ0 ∈ Hn, with radius R > 0.

3 The concentration compactness principle for critical systems
onHn

For the study of nonlinear elliptic problems, involving critical nonlinearities in the sense of the Sobolev in-
equality, the concentration compactness principle due to Lionshas beenbeing a fundamental tool for proving
existence of solutions since its appearance. We just mention [13,38–43] and the references therein.

In this section, taking inspiration from [21] and following the basic ideas of the papers [22, 23] of Lions,
we extend the vectorial concentration compactness principle to the Heisenberg group setting. This key result
is one of the main tools to prove the existence Theorem 1.1. However, it is of independent interest and so we
present it in a general setting, giving a detailed proof not included in the original work.
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Throughout the section, we assume that ℘ is an exponent, with 1 < ℘ < Q, and that α > 1 and β > 1 are
such that α + β = ℘*, where ℘* = ℘Q/(Q − ℘). First, by [31] we know that there exists a positive constant C℘* ,
depending only on Q and ℘, such that for all u ∈ S1,℘(Hn)

‖u‖℘* ≤ C℘*‖DHu‖℘ (3.1)

holds. Then, the following best constant is well de�ned

I = inf
(u,v)∈S

(u≠0)∧(v≠0)

‖DHu‖℘℘ + ‖DHv‖℘℘∫
Hn

|u|α|v|βdξ

℘/℘*
, (3.2)

where S = S1,℘(Hn) × S1,℘(Hn). Indeed, the Hölder inequality and the Folland–Stein inequality (3.1) give

∫
Hn

|u|α|v|βdξ ≤

∫
Hn

|u|℘
*
dξ

α/℘*∫
Hn

|v|℘
*
dξ

β/℘*

≤ C℘
*

℘*
‖DHu‖α℘‖DHv‖β℘ (3.3)

for all (u, v) ∈ S, since α, β > 1 and α + β = ℘*. Therefore, (3.3) and the Young inequality yield∫
Hn

|u|α|v|βdξ

℘/℘*

≤ C℘
℘*
‖DHu‖α℘/℘

*

℘ ‖DHv‖β℘/℘
*

℘ ≤ C℘
℘*

(
α
℘*
‖DHu‖℘℘ + β

℘*
‖DHv‖℘℘

)
≤ C℘

℘*

(
‖DHu‖℘℘ + ‖DHv‖℘℘

)
for all (u, v) ∈ S. Hence I ≥ 1/C℘

℘*
> 0.

Before turning to Theorem 1.2 and its proof, let us show the next result, which is an extension and gen-
eralization of Lemma 2.1 in [44] to the Heisenberg setting.

Lemma 3.1. Let {(uk , vk)}k be a sequence in S. Assume that (uk , vk) ⇀ (u, v) in S and (uk , vk)→ (u, v) a.e. in
Hn. Then,

lim
k→∞

∫
Hn

{
|uk|α|vk|β − |uk − u|α|vk − v|β

}
dξ =

∫
Hn

|u|α|v|βdξ .

Proof. Fix a sequence {(uk , vk)}k in S, as in the statement. Put I = [0, 1] and consider the functions

fk(ξ , t) = |uk − tu|α−2(uk − tu)|vk|β , gk(ξ , t) = |uk − u|α|vk − tv|β−2(vk − tv),
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de�ned for all (ξ , t) ∈ Hn × I. Clearly, fku ∈ L1(Hn × I) and gkv ∈ L1(Hn × I) by Fubini’s theorem. Then,
Tonelli’s theorem gives

α
∫∫
Hn×I

fku dξdt + β
∫∫
Hn×I

gkv dξdt

= α
∫∫
Hn×I

|uk − tu|α−2(uk − tu)|vk|βu dξdt

+ β
∫∫
Hn×I

|uk − u|α|vk − tv|β−2(vk − tv)v dξdt

=
∫
Hn

|vk|βdξ
∫
I

α|uk − tu|α−2(uk − tu)u dt

+
∫
Hn

|uk − u|αdξ
∫
I

β|vk − tv|β−2(vk − tv)v dt

=
∫
Hn

|vk|βdξ
1∫

0

(
− ddt |uk − tu|

α
)
dt

+
∫
Hn

|uk − u|αdξ
1∫

0

(
− ddt |vk − tv|

β
)
dt

=
∫
Hn

|uk|α|vk|βdξ −
∫
Hn

|uk − u|α|vk − v|βdξ .

(3.4)

Moreover, since uk → u and vk → v a.e. inHn, we get as k →∞

fk → (1 − t)α−1|u|α−2u|v|β , gk → 0 a.e. inHn × I.

The Hölder inequality yields

∫∫
Hn×I

|fk|
α+β
α+β−1 dξdt ≤

(∫∫
Hn×I

|uk − tu|α+βdξdt
) α−1

α+β−1
(∫∫

Hn×I

|vk|α+βdξdt
) β

α+β−1

≤ C,

since α + β = ℘*. Similarly,

∫∫
Hn×I

|gk|
α+β
α+β−1 dξdt ≤

(∫∫
Hn×I

|uk − u|α+βdξdt
) α

α+β−1
(∫∫

Hn×I

|vk − tv|α+βdξdt
) β−1

α+β−1

≤ C.

Therefore, we get at once that

fk ⇀ (1 − t)α−1|u|α−2u|v|β , gk ⇀ 0 weakly in L
α+β
α+β−1 (Hn × I).

Hence,
α
∫∫
Hn×I

fku dξdt → α
∫∫
Hn×I

(1 − t)α−1|u|α|v|βdξdt =
∫
Hn

|u|α|v|βdξ (3.5)

as k →∞, and
β
∫∫
Hn×I

gkv dξdt → 0 (3.6)

as k →∞. In conclusion, (3.4), (3.5) and (3.6) yield as k →∞ the assertion.

Finally, we are ready to prove Theorem 1.2.



906 | Patrizia Pucci and Letizia Temperini, Critical systems in the Heisenberg group

Proof of Theorem 1.2. Let {(uk , vk)}k and (u, v) be as in the statement and divide the proof into two cases.
Case 1. u = v = 0. Fix φ ∈ C∞c (Hn). Then (φuk , φvk) ∈ S for all k Clearly,

lim
k→∞

∫
Hn

|φ|℘
*
|uk|α|vk|βdξ

1/℘*

=

∫
Hn

|φ|℘
*
dν

1/℘*

. (3.7)

Moreover, the elementary ℘–norm inequality in R2n yields∣∣‖(DH(φuk), DH(φvk)
)
‖℘ − ‖

(
φDHuk , φDHvk

)
‖℘
∣∣ ≤ ‖(DHφuk , DHφvk)‖℘. (3.8)

Both (uk)k and (vk)k converge to 0 in L℘loc(Hn) by the Rellich Theorem 2.3, so that the right hand side of (3.8)
goes to 0 as k →∞. Now, (3.2) and (3.8) give

I1/℘

∫
Hn

|φ|℘
*
|uk|α|vk|βdξ

1/℘*

≤

∫
Hn

|φ|℘
(
|DHuk|℘H + |DHvk|℘H

)
dξ

1/℘

+ ‖
(
DHφuk , DHφvk

)
‖℘

(3.9)

and then, letting k →∞ in the above inequality, we get from (3.7) and (3.8)∫
Hn

|φ|℘
*
dν

1/℘*

≤ I−1/℘

∫
Hn

|φ|℘dµ

1/℘

for all φ ∈ C∞c (Hn).

Finally, applying Lemma 1.4.6 of [7], we conclude the proof in Case 1.
Case 2. Either u ≠ 0 or v ≠ 0. Set ūk = uk − u and v̄k = vk − v. Clearly, (ūk , v̄k) ⇀ (0, 0) in S. Moreover, from
Proposition 1.202 of [45], there exist bounded nonnegative Radonmeasures µ̃ and ν̃ onHn, such that, up to a
subsequence, still labelled {(ūk , v̄k)}k, we have(

|DH ūk|℘H + |DH v̄k|℘H
)
dξ *

⇀ µ̃ inM(Hn),

|ūk|α|ūk|βdξ
*
⇀ ν̃ inM(Hn).

(3.10)

Then, from Case 1. there exist an at most countable set J, a family of points {ξj}j∈J ⊂ Hn and a family of
nonnegative numbers {νj}j∈J such that

ν̃ =
∑
j∈J

νjδξj . (3.11)

Furthermore, Lemma 3.1 implies that for all φ ∈ C∞c (Hn)

lim
k→∞

{∫
Hn

|φ|℘
*
|uk|α|vk|βdξ −

∫
Hn

|φ|℘
*
|ūk|α|v̄k|βdξ

}
=
∫
Hn

|φ|℘
*
|u|α|v|βdξ , (3.12)

since α + β = ℘*. Thus, (1.3) and (3.12) imply ν̃ = ν − |u|α|v|βdξ by Corollary 1.3.6 of [7]. Consequently, us-
ing (3.11), we obtain the representation of ν, that is

ν = |u|α|v|βdξ +
∑
j∈J

νjδξj .

Now, (3.2) and (3.8) give again (3.9) for all (uk , vk) and all φ ∈ C∞c (Hn). As in Case 1. the Rellich Theorem 2.3
gives that both (uk)k, (vk)k converge to u and v in L℘loc(Hn), respectively. Therefore, letting k →∞ in (3.9), we
get by (3.7)

I1/℘

∫
Hn

|φ|℘
*
dν

1/℘*

≤

∫
Hn

|φ|℘dµ

1/℘

+

∫
Hn

|DHφ|℘H
(
|u|℘ + |v|℘

)
dξ

1/℘

. (3.13)
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Fix a test function φ ∈ C∞c (Hn), such that 0 ≤ φ ≤ 1, φ(0) = 1 and supp φ = B1. Take ε > 0 and put
φε,j(ξ ) = φ(δ1/ε(ξ ◦ ξ−1

j )), ξ ∈ Hn, for any �xed j ∈ J, where {ξj}j is introduced in (3.11). Fix j ∈ J. Then, (3.13),
applied to φε,j ∈ C∞c (Hn), the Hölder inequality and a change of variable yield

I1/℘

 ∫
Bε(ξj)

|φε,j|℘
*
dν


1/℘*

≤

 ∫
Bε(ξj)

|φε,j|℘dµ


1/℘

+

 ∫
Bε(ξj)

|DHφε,j|℘H
(
|u|℘ + |v|℘

)
dξ


1/℘

=

 ∫
Bε(ξj)

|φε,j|℘dµ


1/℘

+

 ∫
Bε(ξj)

|DHφε,j|QHdξ


1/Q

·

 ∫
Bε(ξj)

(
|u|℘ + |v|℘

)℘*/℘dξ


1/℘*

≤

 ∫
Bε(ξj)

|φε,j|℘dµ


1/℘

+ cφ


 ∫
Bε(ξj)

|u|℘
*
dξ


℘/℘*

+

 ∫
Bε(ξj)

|v|℘
*
dξ


℘/℘*


1/℘

,

where cφ =
( ∫

B1
|DHφ(η)|QHdη

)1/Q, since ℘/℘* + ℘/Q = 1 and∫
Bε(ξj)

|DHφε,j(ξ )|QHdξ =
∫

Bε(ξj)

1
εQ
|DHφ(δ1/ε(ξ ◦ ξ−1

j ))|QHdξ =
∫
B1

|DHφ(η)|QHdη.

Here η = δ1/ε(ξ ◦ ξ−1
j ) is the change of variable, with dη = ε−Qdξ , as already noted in Section 2. Then, letting

ε → 0+, we get
I1/℘ν1/℘*

j ≤ µ1/℘
j , j ∈ J,

where µj = limε→0+ µ(Bε(ξj)).
It remains to show that µ ≥

(
|DHu|℘H + |DHv|℘H

)
dξ +

∑
j∈J µjδξj . Clearly,

µ ≥
∑
j∈J

µjδξj .

On the other hand, (uk , vk) ⇀ (u, v) in S and so (DHuk , DHvk) ⇀ (DHu, DHv) in L℘(U,R2n) for every mea-
surable subset U ⊂ Hn. Therefore, the lower semi–continuity of the norm of L℘(U,R2n) gives at once for all
compact subset U ⊂ Hn∫

U

(
|DHu|℘H + |DHv|℘H

)
dξ ≤ lim inf

k→∞

∫
U

(
|DHuk|℘H + |DHvk|℘H

)
dξ

≤ lim sup
k→∞

∫
U

(
|DHuk|℘H + |DHvk|℘H

)
dξ

≤
∫
U

dµ

by Proposition 1.203 Part (ii) on page 130 of [45]. Thus,

µ ≥
(
|DHu|℘H + |DHv|℘H

)
dξ .

Finally, since
(
|DHu|℘H + |DHv|℘H

)
dξ is orthogonal to

∑
j∈J µjδξj , we get the desired conclusion. This completes

the proof.
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4 The system (S)

The aim of this section is to prove the existence of nontrivial solutions for (S). From now on we assume that
the structural assumptions required in Theorem 1.1 hold.

The couple (u, v) is called a (weak) solution of system (S) if∫
Hn

{
A(|DHu|H)

(
DHu, DHφ

)
H + A(|DHv|H)

(
DHv, DHψ

)
H
}
dξ

+
∫
Hn

{
B(|u|)uφ + B(|v|)vψ

}
dξ

= λ
∫
Hn

{
Hu(u, v)φ + Hv(u, v)ψ

}
dξ + α

℘*

∫
Hn

|u|α−2u|v|βφdξ + β
℘*

∫
Hn

|u|α|v|β−2vψdξ

for any (φ, ψ) ∈ W.
The solutions of (S) are exactly the critical points of the Euler–Lagrange functional I = Iλ : W → R, given

by

I(u, v) =
∫
Hn

[
A(|DHu|H) + A(|DHv|H)

]
dξ +

∫
Hn

[
B(|u|) + B(|v|)

]
dξ

− λ
∫
Hn

H(u, v)dξ − 1
℘*

∫
Hn

|u|α|v|βdξ ,

for all (u, v) ∈ W, where the functionsA andB are the potentials, de�ned in the Introduction.
From the main properties summarised in Section 2 we easily get the next result.

Lemma 4.1. The embedding W ↪→ Lp(Hn) × Lp(Hn) is continuous for all p ∈ [p, ℘*], and

‖(u, v)‖p ≤ 2p−1(‖u‖p + ‖v‖p
)
≤ Cp‖(u, v)‖ for all (u, v) ∈ W , (4.1)

where Cp depends on p, Q, p and ℘. If p ∈ [1, ℘*), then for all R > 0 the embedding

W ↪→↪→ Lp(BR) × Lp(BR)

is compact.

The next lemma shows that every nontrivial solution of (S) has both components non trivial, that is it solves
the actual system (S), which does not reduce into an equation.

Lemma 4.2. Every nontrivial solution (u, v) ∈ W of (S) has both components nontrivial, that is u ≠ 0 and v ≠ 0
inHn.

Since the proof of Lemma 4.2 is not so much di�erent from that of Lemma 2.3 in [13], we omit it here.
For simplicity in notation, let us introduce

ã =
{
a0, if a1 = 0,
min{a0, a1}, if a1 > 0,

(4.2)

which gives a key bound from below on A.

Lemma 4.3. Under assumptions (A) and (C1) we have(
A(|X|H)X − A(|Y|H)Y , X − Y

)
H ≥

ã
4℘−1 |X − Y|

℘
H (4.3)

for all X and Y in the span of {Xj , Yj}nj=1.



Patrizia Pucci and Letizia Temperini, Critical systems in the Heisenberg group | 909

The proof of Lemma 4.3, with obvious changes in notation, proceeds exactly as in Lemma 2.1 of [13]. We leave
it out.

The structural assumptions of Theorem 1.1 lead that the functional I possesses the geometric features of
the mountain pass theorem of Ambrosetti and Rabinowitz at special levels.

Lemma 4.4.
(i) There exists a couple (e1, e2) ∈ C∞c (Hn) × C∞c (Hn) such that e1 ≥ 0 and e2 ≥ 0 in Hn, I(e1, e2) < 0,
‖(e1, e2)‖ ≥ 2 and

∫
Hn|e1|α|e2|βdξ > 0 for all λ > 0.

(ii) For all λ > 0 there exist numbers ȷ = ȷ(λ) > 0 and ρ = ρ(λ) ∈ (0, 1] such that I(u, v) ≥ ȷ for all (u, v) ∈ W,
with ‖(u, v)‖ = ρ.

The proof of Lemma 4.4 is standard and again very similar to the demonstration which �rst appears in
Lemma 2.4 of [13] and so there is no reason to produce here.

Lemma 4.4 arises the special level
cλ = inf

γ∈Γ
max
t∈[0,1]

I(γ(t)) (4.4)

of I, where Γ =
{
γ ∈ C([0, 1],W) : γ(0) = (0, 0), I((e1, e2)) < 0

}
and this occurs for all λ > 0.

Obviously, cλ > 0 for all λ > 0. Moreover, for all λ > 0 clearly ‖(e1, e2)‖ ≥ 2 > ρ, since ρ = ρ(λ) ∈ (0, 1]
and (e1, e2) ∈ W does not depend on λ. Then, Lemma 4.4 and the mountain pass theorem yield that there
exists a Palais–Smale sequence {(uk , vk)}k ⊂ W of I at the special level cλ for all λ > 0.

Now we introduce an asymptotic property of the levels cλ as λ → ∞, which is crucial in the proof of the
key Lemma 4.6. This result was observed in the Euclidean vectorial case in [13], cf. Lemma 2.5, and also in the
Euclidean scalar case in [15], cf. Lemma 2.2 and Remark 2.3.

Lemma 4.5. The set of critical levels {cλ}λ satis�es the following asymptotics

lim
λ→∞

cλ = 0.

The proof of Lemma 4.5 follows directly from that of Lemma 2.5 of [13] and it is not reported here. Taking
inspiration from [13], we prove a crucial result, observing �rst some properties obtained straight from the
structural assumptions. Indeed, (A), (B) and (C2) imply that

A(t) ≤ tA′(t) ≤ θA(t), B(t) ≤ tB′(t) ≤ ϑB(t)

for all t ∈ R+
0. Moreover, for any ε > 0, condition (H) gives the existence of a number Cε > 0 such that

|H(u, v)| ≤ ε|(u, v)|m + Cε|(u, v)|m for all (u, v) ∈ R2 (4.5)

holds. Clearly, (3.3) yields at once that for all (u, v) ∈ W∫
Hn

|u|α|v|βdξ ≤ C℘
*

℘*
‖(u, v)‖℘

*
, (4.6)

since α, β > 1 are such that α + β = ℘*.
For simplicity, in what follows we put

a =
{

min{a0, b0}, if a1 = 0,
min{a0, b0, a1, b1}, if a1 > 0,

(4.7)

while a = max{a0, b0, a1, b1} for all cases a1 ≥ 0. Clearly, 0 < a ≤ ã by (C2).
We are going now to prove essential properties of the Palais–Smale sequences of I at the special level

cλ. In particular, the next lemma, which is relevant in the proof of the main theorem, is a special case of
Lemma 2.6 in [13], when H is independent of ξ and the Hardy terms are not considered. In any case it is worth
to produce the proof since it relies on delicate arguments in the Heisenberg context, as Theorems 1.2 and 2.2.
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Lemma 4.6. Let {(uk , vk)}k ⊂ W be a Palais–Smale sequence of I at the level cλ for all λ > 0. Then,
(i) up to a subsequence, (uk , vk) ⇀ (uλ , vλ) in W as k →∞,

(ii) there exists λ* > 0 such that the weak limit (uλ , vλ) is a solution of (S) for all λ ≥ λ*,
(iii) the set {(uλ , vλ)}λ≥λ* satis�es the asymptotic property (1.2).

Proof. Fix λ > 0 and a Palais–Smale sequence {(uk , vk)}k ⊂ W of I at level cλ, that is

I(uk , vk)→ cλ and I′(uk , vk)→ 0 inW ′ as k →∞. (4.8)

The proof of the fact that {(uk , vk)}k is bounded in W is similar to that contained in Lemma 2.6 of [13] with
obvious changes and we leave it out. Thus, since {(uk , vk)}k is bounded in the re�exive Banach space W,
there exist (uλ , vλ) ∈ W, and nonnegative numbers ıλ and δλ such that, up to a subsequence, we have

(uk , vk) ⇀ (uλ , vλ) inW
‖uk‖pHW1,p + ‖vk‖pHW1,p + 1R+ (a1)

(
‖uk‖qHW1,q + ‖vk‖qHW1,q

)
→ ıλ ,

(4.9)

and also, by (4.6) and Lemma 4.1 ∫
Hn

|uk − uλ|α|vk − vλ|βdξ → δλ . (4.10)

For simplicity, in what follows we still denote by {(uk , vk)}k every subsequence extracted from the original
sequence {(uk , vk)}k. Moreover, by Lemma 4.4 for all p ∈ [1, ℘*), up to a subsequence, we have that

(uk , vk)→ (uλ , vλ) in Lp(BR) × Lp(BR),
(uk , vk)→ (uλ , vλ) a.e. inHn ,
|uk| ≤ gR , |vk| ≤ gR a.e. inHn

(4.11)

for some gR ∈ L℘(BR) and all R > 0. Furthermore, by the Folland–Stein inequality (3.1) and the Hölder
inequality, since α > 1, β > 1 and α + β = ℘*, we obtain∫

Hn

∣∣∣|uk|α−1|vk|β
∣∣∣ ℘*
℘*−1 dξ ≤ ‖uk‖

℘*(α−1)
℘*−1

℘*
‖vk‖

℘*(℘*−α)
℘*−1

℘*
≤ C℘

*

℘*
‖DHuk‖

℘*(α−1)
℘*−1

℘ ‖DHvk‖
℘*(℘*−α)

℘*−1
℘

≤ C℘
*

℘*
‖(uk , vk)‖℘

*
≤ C,

where C > 0 is a suitable constant. Similarly,∫
Hn

∣∣∣|uk|α|vk|β−1
∣∣∣ ℘*
℘*−1 dξ ≤ C.

Consequently, again up to a subsequence, we have

|uk|α−2uk|vk|β ⇀ |uλ|α−2uλ|vλ|β in L℘
*/(℘*−1)(Hn),

|uk|α|vk|β−2vk ⇀ |uλ|α|vλ|β−2vλ in L℘
*/(℘*−1)(Hn)

(4.12)

thanks to (4.11). In virtue of Proposition 1.202 of [45], there exist two bounded nonnegative Radon measures
µ and ν onHn, such that, up to a subsequence, we have

ã
(
|DHuk|℘H + |DHvk|℘H

)
dξ *

⇀ µ inM(Hn), |uk|α|vk|βdξ
*
⇀ ν inM(Hn). (4.13)

Therefore, Theorem 1.2 guarantees the existence of an at most countable set J, of a family of points {ξj}j∈J
and of two families of nonnegative numbers {µj}j∈J and {νj}j∈J such that

ν = |uλ|α|vλ|βdξ +
∑
j∈J

νjδξj , µ ≥ ã
(
|DHuλ|℘H + |DHvλ|℘H

)
dx +

∑
j∈J

µjδξj ,

ν℘/℘*j ≤
µj
ã I

for all j ∈ J,
(4.14)
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where δξj is the Dirac function at the point ξj ofHn, and I is de�ned in (3.2).
Now (4.8), (4.9) and (H) give as k →∞

cλ + o(1) ≥ `
{
‖uk‖pHW1,p + ‖vk‖pHW1,p + 1R+ (a1)

(
‖uk‖qHW1,q + ‖vk‖qHW1,q

)}
+
(

1
σ −

1
℘*

)∫
Hn

|uk|α|vk|βdξ ,
(4.15)

where by (4.7)

` =
(

1
max{θ, ϑ} −

1
σ

)
a > 0,

since max{θ, ϑ} < σ from (H).
First we assert that

lim
λ→∞

ıλ = 0. (4.16)

Otherwise, lim supλ→∞ ıλ = ı > 0. Hence, there is a sequence k 7→ λk ↑ ∞ such that ıλk → ı as k → ∞. Then,
letting k →∞, we get from (4.15) and Lemma 4.5 that

0 ≥ ` ı > 0,

which is impossible. This contradiction proves the assertion (4.16). Moreover, from the fact that (uk , vk) ⇀
(uλ , vλ) inW, we have

‖uλ‖pHW1,p + ‖vλ‖pHW1,p + 1R+ (a1)
(
‖uλ‖qHW1,q + ‖vλ‖qHW1,q

)
≤ ıλ .

Therefore,
lim
λ→∞

∫
Hn

|uλ|α|vλ|βdξ = lim
λ→∞

‖(uλ , vλ)‖ = 0 (4.17)

by (4.6) and (4.16).
Fixnowa test functionφ ∈ C∞c (Hn), such that 0 ≤ φ ≤ 1,φ ≡ 1 inB1,whileφ ≡ 0 inBc2, and ‖DHφ‖∞ ≤ 2.

Take ε > 0 and put φε,j(ξ ) = φ(δ1/ε(ξ ◦ ξ−1
j )), ξ ∈ Hn, for any �xed j ∈ J, where {ξj}j is introduced in (4.14).

Fix j ∈ J. Then φε,j(uk , vk) ∈ W and so 〈I′(uk , vk), φε,j(uk , vk)〉 = o(1) as k →∞by (4.8) and (4.9). Therefore,
as k →∞

o(1) =
∫
Hn

{
A(|DHuk|H)

(
ukDHuk , DHφε,j

)
H

+ A(|DHvk|H)
(
vkDHvk , DHφε,j

)
H
}
dξ

+
∫
Hn

φε,j
{
A(|DHuk|H)|DHuk|2H + A(|DHvk|H)|DHvk|2H

+ B(|uk|)|uk|2 + B(|vk|)|vk|2
}
dξ

− λ
∫
Hn

φε,j[Hu(uk , vk)uk + Hv(uk , vk)vk]dξ −
∫
Hn

φε,j|uk|α|vk|βdξ ,

(4.18)

since α + β = ℘*. Moreover, by (C2), the Hölder inequality and a change of variable

lim sup
k→∞

∣∣∣∣∣∣
∫
Hn

A(|DHuk|H)
(
ukDHuk , DHφε,j

)
Hdξ

∣∣∣∣∣∣
≤ lim sup

k→∞


∫

B(ξj ,2ε)

{a0|DHuk|p−1
H |uk| · |DHφε,j|H + a1|DHuk|q−1

H |uk| · |DHφε,j|H}dξ


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≤ lim sup
k→∞

a0‖DHuk‖p−1
p

 ∫
B(ξj ,2ε)

|ukDHφε,j(ξ )|pHdξ


1/p


+ lim sup
k→∞

a1‖DHuk‖q−1
q

 ∫
B(ξj ,2ε)

|ukDHφε,j(ξ )|qHdξ


1/q


≤ c0a0

 ∫
B(ξj ,2ε)

|uλDHφε,j(ξ )|pHdξ


1/p

+ c1a1

 ∫
B(ξj ,2ε)

|uλDHφε,j(ξ )|qHdξ


1/q

≤ cφ

c0a0

 ∫
B(ξj ,2ε)

|uλ|p
*
dξ


1/p*

+ c1a1

 ∫
B(ξj ,2ε)

|uλ|q
*
dξ


1/q*
 ,

where c0 = supk∈N ‖DHuk‖
p−1
p , c1 = supk∈N ‖DHuk‖

q−1
q , cφ =

( ∫
B2
|DHφ(η)|QHdη

)1/Q, while the change of
variable is given by η = δ1/ε(ξ ◦ ξ−1

j ). Consequently,

lim
ε→0+

lim sup
k→∞

∣∣∣∣∣∣
∫
Hn

A(|DHuk|H)
(
ukDHuk , DHφε,j

)
Hdξ

∣∣∣∣∣∣ = 0.

Similarly, in the v component, and so as k →∞ and ε → 0+∣∣∣∣∣
∫
Hn

{
A(|DHuk|H)

(
ukDHuk , DHφε,j

)
H

+ A(|DHvk|H)
(
vkDHvk , DHφε,j

)
H
}
dξ

∣∣∣∣∣ = ok,ε(1).

(4.19)

Clearly, by (C1), the properties of φ and (4.11), as k →∞∫
Hn

φε,j
{
B(|uk|)|uk|2 + B(|vk|)|vk|2

}
dξ ≤

∫
B(xj ,2ε)

{
b0
(
|uk|p + |vk|p

)
+ b1

(
|uk|q + |vk|q

)}
dξ

→
∫

B(xj ,2ε)

{
b0
(
|uλ|p + |vλ)|p

)
+ b1

(
|uλ|q + |vλ)|q

)}
dξ ,

since 1 < p < q < ℘*. Hence,

lim
ε→0+

lim
k→∞

∫
Hn

φε,j
{
B(|uk|)|uk|2 + B(|vk|)|vk|2

}
dξ = 0. (4.20)

Similarly, by (H) and (4.11), as k →∞∫
Hn

φε,j[Hu(uk , vk)uk + Hv(uk , vk)vk]dξ ≤
∫

B(xj ,2ε)

(
m|(uk , vk)|m + m C1|(uk , vk)|m

)
dξ

→
∫

B(xj ,2ε)

(
m|(uλ , vλ))|m + m C1|(uλ , vλ))|m

)
dξ ,

since 1 < ℘ < m < m < ℘*, and then

lim
ε→0+

lim
k→∞

∫
Hn

φε,j
{
Hu(uk , vk)uk + Hv(uk , vk)vk

}
dξ = 0. (4.21)
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In conclusion, (C1), (4.7), (4.18)–(4.21) give for all j ∈ J∫
Hn

φε,jdµ + o(1) ≤
∫
Hn

φε,jdν (4.22)

as ε → 0+.
Now, by Lemma 4.5 there exists λ* = λ*(Q, ℘) > 0 such that

cλ <
(

1
σ −

1
℘*

)
(ã I)Q/℘ for all λ ≥ λ*. (4.23)

Notice that, (4.14) and (4.22) yield ã I ν℘/℘
*

j ≤ µj ≤ νj for all j ∈ J. Assume by contradiction that νj > 0 for some
j ∈ J. Then, νj ≥ (ã I)Q/℘ and so (4.15) implies

cλ + o(1) ≥
(

1
σ −

1
℘*

)∫
Hn

|uk|α|vk|βdξ ≥
(

1
σ −

1
℘*

)∫
Hn

φε,jdν

as k →∞. On the other hand, as k →∞ and ε → 0+ we have

cλ ≥
(

1
σ −

1
℘*

)
νj ≥

(
1
σ −

1
℘*

)
(ã I)Q/℘ > 0,

and this contradicts (4.23). Hence, νj = 0 for all j ∈ J and for all λ ≥ λ*.
Consequently, there exists λ* > 0 such that for all λ ≥ λ*

|uk|α|vk|βdξ
*
⇀ ν = |uλ|α|vλ|βdξ inM(Hn)

as k →∞, by (4.13) and (4.14). In particular, for all ϕ ∈ C∞c (Hn)

lim
k→∞

∫
Hn

ϕ|uk|α|vk|βdξ =
∫
Hn

ϕ|uλ|α|vλ|βdξ . (4.24)

From now on in the proof we �x λ ≥ λ*.
Take R > 0 and φ ∈ C∞c (Hn) such that 0 ≤ φ ≤ 1 in Hn, φ ≡ 1 in BR, φ ≡ 0 in Bc2R and ‖DHφ‖∞ ≤ 2. By

Lemma 4.3 we have

ã
4℘−1

∫
BR

|DHuk − DHuλ|℘Hdξ

≤
∫
BR

(
A(|DHuk|H)DHuk − A(|DHuλ|)DHuλ , DHuk − DHuλ

)
Hdξ

≤
∫
Hn

(
A(|DHuk|H)DHuk − A(|DHuλ|H)DHuλ , DHuk − DHuλ

)
Hφdξ

=
∫
Hn

φA(|DHuk|H)|DHuk|2Hdξ −
∫
Hn

φA(|DHuk|H)
(
DHuk , DHuλ

)
Hdξ + o(1)

(4.25)
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as k →∞by (4.9). Similarly, we obtain (4.25) also in the v variable. Now, we can estimate the right hand side
of (4.25) as ∫

Hn

φA(|DHuk|H)
{
|DHuk|2H −

(
DHuk , DHuλ

)
H
}
dξ

+
∫
Hn

φA(|DHvk|H)
{
|DHvk|2H −

(
DHvk , DHvλ

)
H
}
dξ

= 〈I′(uk , vk), φ(uk , vk)〉 − 〈I′(uk , vk), φ(uλ , vλ)〉

−
∫
Hn

{
A(|DHuk|H)(uk − uλ)

(
DHuk , DHφ

)
H

+ A(|DHvk|H)(vk − vλ)
(
DHvk , DHφ

)
H
}
dξ

−
∫
Hn

φ{B(|uk|)uk(uk − uλ) + B(|vk|)vk(vk − vλ)}dξ

+ λ
∫
Hn

φ[Hu(uk , vk)(uk − uλ) + Hv(uk , vk)(vk − vλ)]dξ

+
∫
Hn

φ
{
|uk|α|vk|β −

α
℘*
|uk|α−2uk|vk|βuλ −

β
℘*
|uk|α|vk|β−2vkvλ

}
dξ .

(4.26)

Clearly,
〈I′(uk , vk), φ(uk , vk)〉 − 〈I′(uk , vk), φ(uλ , vλ)〉 = o(1) as k →∞.

Moreover, by (C1) and the Hölder inequality∣∣∣∣∣∣
∫
Hn

A(|DHuk|H)(uk − uλ)
(
DHuk , DHφ

)
Hdξ

∣∣∣∣∣∣
≤ 2

a0‖DHuk‖p−1
p

∫
B2R

|uk − uλ|pdξ


1/p

+ a1‖DHuk‖q−1
q

∫
B2R

|uk − uλ|qdξ


1/q
 ,

and similarly in v component. Therefore, by (4.9)

lim
k→∞

∫
Hn

{
A(|DHuk|H)(uk − uλ)

(
DHuk , DHφ

)
H

+ A(|DHvk|H)(vk − vλ)
(
DHvk , DHφ

)
H
}
dξ = 0.

(4.27)

Again by (C1) and the Hölder inequality∣∣∣∣∣∣
∫
Hn

φB(|uk|)uk(uk − uλ)dξ

∣∣∣∣∣∣ ≤
{
b0‖uk‖p−1

p

( ∫
B2R

|uk − uλ|pdξ
)1/p

+ b1‖uk‖q−1
q

∫
B2R

|uk − uλ|qdξ


1/q}

,

which yields by (4.9), also in v component,

lim
k→∞

∫
Hn

φ{B(|uk|)uk(uk − uλ) + B(|vk|)vk(vk − vλ)}dξ = 0. (4.28)

Likewise, by (H), the Hölder inequality, (4.5) with ε = 1 and (4.11)

0 ≤
∫
Hn

φ[Hu(uk , vk)(uk − uλ) + Hv(uk , vk)(vk − vλ)]dξ
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≤
∫
B2R

φ|(uk , vk) − (uλ , vλ)|
(
m|(uk , vk)|m−1 + mC1|(uk , vk)|m−1)dξ .

Thus, as k →∞

0 ≤
∫
Hn

φ[Hu(uk , vk)(uk − uλ) + Hv(uk , vk)(vk − vλ)]dξ

≤ C
(
‖(uk , vk) − (uλ , vλ)‖Lm(B2R) + ‖(uk , vk) − (uλ , vλ)‖Lm(B2R)

)
→ 0,

(4.29)

where
C = m sup

k∈N
‖(uk , vk)‖m−1 + m C1 sup

k∈N
‖(uk , vk)‖m−1 < ∞,

since 1 < ℘ < m < m < ℘*. Finally, α + β = ℘* gives as k →∞∫
Hn

φ|uk|α|vk|βdξ −
α
℘*

∫
Hn

φ|uk|α−2uk|vk|βuλdξ −
β
℘*

∫
Hn

φ|uk|α|vk|β−2vkvλdξ → 0, (4.30)

by (4.12) and (4.24). Therefore, combining (4.25)–(4.30), we have

ã
4℘−1

∫
BR

(
|DHuk − DHuλ|℘H + |DHvk − DHvλ|℘H

)
dξ ≤ o(1) as k →∞.

Thus, DHuk → DHuλ and DHvk → DHvλ in L℘(BR ,R2n) for all R > 0. Consequently, up to subsequences, still
labelled {(uk , vk)}k, we get

DHuk → DHuλ and DHvk → DHvλ a.e. inHn , (4.31)

and for all R > 0 there exists a function hR ∈ L℘(BR) such that |DHuk|H ≤ hR and |DHvk|H ≤ hR a.e. in BR and
for all k ∈ N.

Now, �x ϕ and ψ in C∞c (Hn) and let R > 0 so large that suppϕ ⊂ BR and suppψ ⊂ BR. By the above
construction and (C1) we have a.e. in BR∣∣A(|DHuk|H)

(
DHuk , DHϕ

)
H + A(|DHvk|H)

(
DHvk , DHψ

)
H
∣∣

≤
(
a0|DHuk|p−1

H + a1|DHuk|q−1
H
)
|DHϕ|H

+
(
a0|DHvk|p−1

H + a1|DHvk|q−1
H
)
|DHψ|H

≤
(
a0hp−1

R + a1hq−1
R
)(
|DHϕ|H + |DHψ|H

)
= h,

where h ∈ L1(BR). Then, the dominated convergence theorem yields as k →∞∫
Hn

{
A(|DHuk|H)

(
DHuk , DHϕ

)
H + A(|DHvk|H)

(
DHvk , DHψ

)
H
}
dξ

=
∫
BR

{
A(|DHuk|H)

(
DHuk , DHϕ

)
H + A(|DHvk|H)

(
DHvk , DHψ

)
H
}
dξ

→
∫
Hn

{
A(|DHuλ|H)

(
DHuλ , DHϕ

)
H + A(|DHvλ|H)

(
DHvλ , DHψ

)
H
}
dξ .

Similarly, again (C1) and (4.11) give a.e. in BR∣∣B(|uk|)ukϕ + B(|vk|)vkψ
∣∣ ≤ (b0gp−1

R + b1gq−1
R
)(
|ϕ| + |ψ|

)
= g,

where g ∈ L1(BR). Then, the dominated convergence theorem gives as k →∞∫
Hn

(
B(|uk|)ukϕ + B(|vk|)vkψ

)
dξ →

∫
Hn

(
B(|uλ|)uλϕ + B(|vλ|)vλψ

)
dξ .



916 | Patrizia Pucci and Letizia Temperini, Critical systems in the Heisenberg group

Moreover, by (H)

|Hu(uk , vk)ϕ + Hv(uk , vk)ψ| ≤ m|(uk , vk)|m−1ϕ + m C1|(uk , vk)|m−1ψ ≤ G,

whereG ∈ L1(BR), and so, again by the dominated convergence theorem, as k →∞we obtain∫
Hn

[
Hu(uk , vk)ϕ + Hv(uk , vk)ψ

]
dξ →

∫
Hn

[
Hu(uλ , vλ)ϕ + Hv(uλ , vλ)ψ

]
dξ .

Finally, since 〈I′(uk , vk), (ϕ, ψ)〉 = o(1) as k →∞, we have∫
Hn

{
A(|DHuk|H)

(
DHuk , DHϕ

)
H + A(|DHvk|H)

(
DHvk , DHψ

)
H
}
dξ

+
∫
Hn

{
B(|uk|)ukϕ + B(|vk|)vkψ

}
dξ

= λ
∫
Hn

[Hu(x, uk , vk)ϕ+Hv(x, uk , vk)ψ]dξ

+ α
℘*

∫
Hn

|uk|α−2uk|vk|βϕdξ + β
℘*

∫
Hn

|uk|α|vk|β−2vkψdξ + o(1).

Thus, from what we proved above, we get as k →∞∫
Hn

{
A(|DHuλ|H)

(
DHuλ , DHϕ

)
H + A(|DHvλ|H)

(
DHvλ , DHψ

)
H
}
dξ

+
∫
Hn

(
B(|uλ|)uλϕ + B(|vλ|)vλ)ψ

)
dξ

= λ
∫
Hn

[Hu(uλ , vλ)ϕ + Hv(uλ , vλ)ψ]dξ

+ α
℘*

∫
Hn

|uλ|α−2uλ|vλ|βϕdξ + β
℘*

∫
Hn

|uλ|α|vλ|β−2vλψdξ

(4.32)

for all ϕ and ψ in C∞c (Hn).
Fix now (Φ, Ψ ) ∈ W and put ϕk = ζk(ρk *Φ) and ψk = ζk(ρk *Ψ ), where (ρk)k is the sequence of molli�ers

introduced in Section 2 and (ζk)k is a sequence of cut–o� functions de�ned as in (2.8). Then, from the proof
of Theorem 2.2, it is evident that the sequences (ϕk)k and (ψk)k are in C∞c (Hn) and have the properties that
ϕk → Φ, ψk → Ψ in HW1,p(Hn)∩ HW1,℘(Hn) and ϕk → Φ, ψk → Ψ , DHϕk → DHΦ, DHψk → DHΨ a.e. inHn

as k → ∞. Moreover, (4.32) holds along (ϕk)k and (ψk)k for all k. Then, passing to the limit as k → ∞ under
the sign of integrals by the dominated convergence theorem,we obtain the validity of (4.32) for all (Φ, Ψ ) ∈ W.
In conclusion,

〈I′(uλ , vλ), (Φ, Ψ )〉 = 0 for all (Φ, Ψ ) ∈ W , (4.33)

that is (uλ , vλ) is a solution of (S) for all λ ≥ λ*. This completes the proof of part (ii).
As already noted (iii) is a direct consequence of (4.17).

The next result is an adaptation of Lemma I.1 in [14] for the scalar case, where the spaceRn is replaced by the
Heisenberg groupHn. We present it in the generality given in its statement, that is the exponents p and ℘ are
not related as in (C1).

Proof of Theorem 1.3. Let (uk)k be as in the statement. Thus, the Folland–Stein inequality (3.1) gives that the
sequence (uk)k is bounded also in L℘

*
(Hn). We divide the proof into two cases.
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Case 1. (uk)k is bounded also in L∞(Hn). Take q such that q > min{p, ℘*}. Then, (1.4) implies

sup
η∈Hn

∫
BR(η)

|uk|qdξ = o(1) (4.34)

as k →∞. Indeed, if p < ℘*, then q > p and so

sup
η∈Hn

∫
BR(η)

|uk|qdξ = sup
η∈Hn

∫
BR(η)

|uk|q−p|uk|pdξ ≤ ‖uk‖q−p∞ sup
η∈Hn

∫
BR(η)

|uk|pdξ = o(1)

as k →∞, since (uk)k is bounded in L∞(Hn). Similarly, if p > ℘* then q > ℘* and so

sup
η∈Hn

∫
BR(η)

|uk|qdξ = sup
η∈Hn

∫
BR(η)

|uk|q−℘
*
|uk|℘

*
dξ ≤ ‖uk‖q−℘

*

∞ sup
η∈Hn

∫
BR(η)

|uk|℘
*
dξ

≤ ‖uk‖q−℘
*

∞ cR sup
η∈Hn

∫
BR(η)

|uk|pdξ = o(1)

as k →∞, where cR = |BR(η)|(p−℘
*)/p = RQ(p−℘*)/p, since (uk)k is bounded in L∞(Hn). Fix now p̄ > 1 such that

p < p̄ and p < (p̄ − 1)℘′ < ∞, where ℘′ is the Hölder conjugate of ℘. It follows from the de�nition of p̄, that
(4.34) holds for q = p̄ and q = (p̄ − 1)℘′, that is

sup
η∈Hn

∫
BR(η)

|uk|p̄dξ = o(1), sup
η∈Hn

∫
BR(η)

|uk|(p̄−1)℘′
dξ = o(1) (4.35)

as k →∞. Therefore, the Hölder inequality gives

sup
η∈Hn

∫
BR(η)

|uk|p̄−1|DHuk|Hdξ

≤ sup
η∈Hn

{ ∫
BR(η)

|uk|(p̄−1)℘′
dξ


1/℘′

·

 ∫
BR(η)

|DHuk|℘Hdξ


1/℘}

≤ ‖DHuk‖℘ · sup
η∈Hn

 ∫
BR(η)

|uk|(p̄−1)℘′
dξ


1/℘′

= o(1)

(4.36)

as k → ∞, since (DHuk)k is bounded in L℘(Hn ,R2n) and (4.35) holds. Consequently, from (4.35) and (4.36),
we get the existence of a sequence (εk)k, independent of η, such that εk → 0 as k →∞ and∫

BR(η)

|uk|p̄dξ +
∫

BR(η)

p̄|uk|p̄−1|DHuk|Hdξ ≤ εk (4.37)

for all k ∈ N. Clearly, for all η ∈ Hn, we have |uk|p̄ ∈ L1(BR(η)). Furthermore, the Hölder inequality yields

|DH(|uk|p̄)|H = p̄|uk|p̄−1|DHuk|H ∈ L1(BR(η))

for all η ∈ Hn. Consequently, |uk|p̄ ∈ HW1,1(BR(η)). Fix r ∈ (1, Q/(Q −1)). Then the embedding Theorem 2.3,
yields the existence of a constant CR, independent of η, such that

∫
BR(η)

|uk|p̄rdξ ≤ CrR

 ∫
BR(η)

|uk|p̄dξ +
∫

BR(η)

p̄|uk|p̄−1|DHuk|Hdξ


r

≤ CrRεr−1
k

( ∫
BR(η)

|uk|p̄dξ +
∫

BR(η)

p̄|uk|p̄−1|DHuk|Hdξ
)
,

(4.38)
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where εk is introduced in (4.37). Moreover, (uk)k is bounded in Lp̄(Hn) and in L(p̄−1)℘′
(Hn) by the interpo-

lation theorem, since (uk)k is bounded in Lp(Hn) and in L∞(Hn). Therefore, since (DHuk)k is bounded in
L℘(Hn ,R2n), the Hölder inequality gives∫

Hn

{
|uk|p̄ + p̄|uk|p̄−1|DHuk|H

}
dξ

≤
∫
Hn

|uk|p̄dξ + p̄

∫
Hn

|uk|(p̄−1)℘′
dξ

1/℘′

·

∫
Hn

|DHuk|℘Hdξ

1/℘

≤ c,

(4.39)

where c is a number independent of k. Now, from Lemma 2.3 in [46], there exists a sequence (ηj)j ⊂ Hn such
thatHn =

⋃∞
j=1 BR(ηj) and each ξ ∈ Hn is covered by at most 24Q balls BR(ηj). Hence, from (4.38) and (4.39),

we have ∫
Hn

|uk|p̄rdξ ≤
∞∑
j=1

∫
BR(ηj)

|uk|p̄rdξ ≤ (24)QCrRεr−1
k

∫
Hn

{
|uk|p̄ + p̄|uk|p̄−1|DH(uk)|H

}
dξ


≤ Cεr−1

k = o(1)

as k → 0, where C = (24)QCrRc. Consequently,

uk → 0 in Lp̄r(Hn) (4.40)

for any r ∈ (1, Q/(Q − 1)) and any p̄, with p < p̄ and p < (p̄ − 1)℘′ < ∞.
Fix now p between p and ℘* and r ∈ (1, Q/(Q − 1)). In the case p < ℘*, we can choose p̄ su�ciently big

so that p̄r > ℘*. Then, by the interpolation theorem applied to p, p, and p̄r, since p < p < ℘* < p̄r, we get for a
suitable τ ∈ (0, 1)

‖uk‖p ≤ ‖uk‖τp‖uk‖1−τ
p̄r = o(1) as k →∞,

since (uk)k is bounded in Lp(Hn) and (4.40) holds. Similarly, in the case p > ℘*, we choose p̄ su�ciently big so
that p̄r > p and we apply the interpolation theorem to ℘*, p, and p̄r. Thus, we obtain for a suitable τ ∈ (0, 1)

‖uk‖p ≤ ‖uk‖τ℘*‖uk‖
1−τ
p̄r = o(1) as k →∞,

since (4.40) holds, ℘* < p < p < p̄r and (uk)k is bounded in L℘
*
(Hn) by the Folland–Stein inequality (3.1). In

conclusion, in all the cases, uk → 0 in Lp(Hn) as k → ∞ for all p between p and ℘*, and this concludes the
proof of Case 1.
Case 2. General case. Fix N ∈ N and put vk = min{|uk|, N} for all k ∈ N. Clearly, (vk)k is a bounded sequence
in L∞(Hn). Then, from Case 1, it results

vk → 0 in Lp(Hn) (4.41)

for all p between p and℘*. Fix now p and q1 between p and℘*, with q1 > p. By the interpolation theorem, (uk)k
is bounded in Lq1 (Hn), since (uk)k is bounded in Lp(Hn) and also in L℘

*
(Hn) by the Folland–Stein inequality.

Then, by the de�nition of vk,∫
Hn

|uk|pdξ =
∫

|uk|≤N

|uk|pdξ +
∫

|uk|≥N

|uk|pdξ =
∫
Hn

|vk|pdξ +
∫

|uk|≥N

|uk|p−q1 |uk|q1dξ

≤
∫
Hn

|vk|pdξ + 1
Nq1−p

∫
Hn

|uk|q1dξ ≤
∫
Hn

|vk|pdξ + C
Nq1−p ,

where C is a nonnegative constant independent of k. Consequently, from (4.41) we get

lim sup
k→∞

∫
Hn

|uk|pdξ ≤
C

Nq1−p for all N ∈ N. (4.42)

Finally, passing to the limit as N →∞ in (4.42), we conclude the proof.
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Theorem 1.3 holds in particular if we require that p and℘ are such that 1 < p < ℘*, and that the sequence (uk)k
is bounded in HW1,p(Hn) ∩ HW1,℘(Hn). We shall apply Theorem 1.3 in this special case in the next Proposi-
tion 4.7, which is an alternative of Lions–type. The result we give is however a readaptation of Proposition 2.8
of [13] in the Heisenberg group setting.

Proposition 4.7. For any λ > 0 let {(uk , vk)}k ⊂ W be a Palais–Smale sequence of I at level cλ in (4.4) such
that (uk , vk) ⇀ (0, 0) in W as k →∞. Then, either
(i) (uk , vk)→ (0, 0) in W, or

(ii) there exists R > 0 and a sequence (ηk)k ∈ Hn such that

lim sup
k→∞

∫
BR(ηk)

(
|uk|p + |vk|p

)
dξ > 0.

Moreover, (ηk)k is not bounded inHn.

Proof. Assume that (ii) does not occur. Then, for all R > 0

lim
k→∞

sup
η∈Hn

∫
BR(η)

(
|uk|p + |vk|p

)
dξ = 0.

First, note that (uk)k and (vk)k are bounded in Lp(Hn), while (DHuk)k and (DHvk)k are bounded in
L℘(Hn ,R2n). Therefore, Theorem 1.3 implies that uk → 0 and vk → 0 in Lp(Hn) as k → ∞ for all p ∈ (p, ℘*).
Consequently, by (H) and (1.1), with ε = 1, we have

0 ≤
∫
Hn

(
Hu(uk , vk)uk + Hv(uk , vk)vk

)
dξ ≤

∫
Hn

(
m|(uk , vk)|m + m C1|(uk , vk)|m

)
dξ → 0

as k → ∞, since 1 < p ≤ ℘ < m < m < ℘*. Moreover, since {(uk , vk)}k ⊂ W is a Palais–Smale sequence of I at
level cλ, arguing as in the proof of Lemma 4.6, part (i), we know that there exists a number δλ such that (4.10)
holds, that is in this casen ∫

Hn

|uk|α|vk|βdξ → δλ

as k →∞. Therefore,∫
Hn

(
A(|DHuk|H)|DHuk|2H + A(|DHvk|H)|DHvk|2H

)
dξ +

∫
Hn

(
B(|uk|)|uk|2 + B(|vk|)|vk|2

)
dξ

=
∫
Hn

|uk|α|vk|βdξ + o(1) = δλ + o(1)

as k →∞. Then, (C2) yields as k →∞ and λ →∞

a
{
‖uk‖pHW1,p + ‖vk‖pHW1,p + 1R+ (a1)

(
‖uk‖qHW1,q + ‖vk‖qHW1,q

)}
≤
∫
Hn

(
A(|DHuk|H)|DHuk|2H + A(|DHvk|H)|DHvk|2H

)
dξ

+
∫
Hn

(
B(|uk|)|uk|2 + B(|vk|)|vk|2

)
dξ + ok(1) = ok,λ(1),

where a is introduced in (4.7). Thus, ‖(uk , vk)‖ → 0 as k →∞, and then (i) holds.
In order to prove the last claim, assume by contradiction that (ηk)k is bounded inHn. Consequently, there

exists M > 0 so large that BR(ηk) ⊂ BM for all k. Now, since (uk , vk) ⇀ (0, 0) in W as k → ∞, and since the
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embeddingW ↪→↪→ Lp(BR) × Lp(BR) is compact for all p ∈ [1, ℘*) and all R > 0 thanks to Lemma 4.1, we have
(uk , vk)→ (0, 0) in Lp(BR) × Lp(BR) for all p ∈ [1, ℘*) and all R > 0. Therefore,

0 = lim
k→∞

∫
BM

(
|uk|p + |vk|p

)
dξ ≥ lim sup

k→∞

∫
BR(ηk)

(
|uk|p + |vk|p

)
dξ > 0,

which gives the required contradiction. Hence, (ηk)k is not bounded inHn as stated.

Finally, thanks to Proposition 4.7, we are ready to prove the existence of nontrivial solutions for system (S).

Proof of Theorem 1.1. First, thanks to Lemmas 4.4 and 4.6, for any λ > 0 the functional I has the geometry of
the mountain pass theorem, and then I admits a Palais–Smale sequence {(uk , vk)}k at level cλ which, up to a
subsequence, still denoted by {(uk , vk)}k, weakly converges to some limit (uλ , vλ) ∈ W. Moreover, as asserted
in Lemma 4.6, part (ii), there exists a threshold λ* > 0 and the weak limit (uλ , vλ) is a critical point of I for
all λ ≥ λ*, namely a weak solution of (S). Furthermore, as stated in Lemma 4.6, part (iii), the solution has the
asymptotic property (1.2). It remains to show that the constructed solution (uλ , vλ) is nontrivial.

Assume by contradiction that (uλ , vλ) = (0, 0). Clearly {(uk , vk)}k cannot converge strongly to (0, 0) inW,
since otherwise I′(uλ , vλ) = 0 and 0 = I(uλ , vλ) = cλ > 0 by Lemma 4.4. Therefore, by Proposition 4.7 there
exist R > 0 and a sequence (ηk)k ∈ Hn such that

lim sup
k→∞

∫
BR(ηk)

(
|uk|p + |vk|p

)
dξ > 0. (4.43)

Now, de�ne a new sequence {(ũk , ṽk)}k, where ũk(ξ ) = uk(ξ ◦ ηk), ṽk(ξ ) = vk(ξ ◦ ηk), for all ξ ∈ Hn, where
◦ is the product in Hn de�ned in (2.1). Therefore, I(ũk , ṽk) = I(uk , vk) by the left invariance of the horizontal
gradient and of the Haar measure. Moreover, for all (φ, ψ) ∈ W, with ‖(φ, ψ)‖ = 1, putting φk(ξ ) = φ(ξ ◦η−1

k )
and ψk(ξ ) = ψ(ξ ◦ η−1

k ), ξ ∈ Hn, by the change of variable ξ̃ = ξ ◦ ηk we have∣∣∣∣∣∣
∫
Hn

{
A(|DH ũk|H)

(
DH ũk , DHφ

)
H + A(|DH ṽk|H)

(
DH ṽk , DHψ

)
H
}
dξ

+
∫
Hn

{
B(|ũk|)ũkφ + B(|ṽk|)ṽkψ

}
dξ − λ

∫
Hn

{
Hu(ũk , ṽk)φ + Hv(ũk , ṽk)ψ

}
dξ

− α
℘*

∫
Hn

|ũk|α−2ũk|ṽk|βφdξ + β
℘*

∫
Hn

|ũk|α|vk|β−2 ṽkψdξ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Hn

{
A(|DHuk|H)

(
DHuk , DHφk

)
H + A(|DHvk|H)

(
DHvk , DHψk

)
H
}
dξ̃

+
∫
Hn

{
B(|uk|)ukφk + B(|vk|)vkψk

}
dξ̃ − λ

∫
Hn

{
Hu(uk , vk)φk + Hv(uk , vk)ψk

}
dξ̃

− α
℘*

∫
Hn

|uk|α−2uk|vk|βφkdξ̃ + β
℘*

∫
Hn

|uk|α|vk|β−2vkψkdξ̃

∣∣∣∣∣∣
=
∣∣〈I′(uk , vk), (φk , ψk)

∣∣ ≤ ‖I′(uk , vk)‖W′‖(φk , ψk)‖ = ‖I′(uk , vk)‖W′ ,

since 1 = ‖(φ, ψ)‖ = ‖(φk , ψk)‖. Then, as k →∞

‖I′(ũk , ṽk)‖W′ = sup
(φ,ψ)∈W
‖(φ,ψ)‖=1

∣∣〈I′(ũk , ṽk), (φ, ψ)
∣∣ ≤ ‖I′(uk , vk)‖W′ = o(1).

Therefore, the sequence {(ũk , ṽk)}k is again a Palais–Smale sequence at level cλ in (4.4). Thus {(ũk , ṽk)}k, up
to a subsequence, weakly converges to some (ũλ , ṽλ) inW by Lemma 4.6. Furthermore, (4.43) yields

0 < lim sup
k→∞

∫
BR(yk)

(
|uk|p + |vk|p

)
dξ = lim

k→∞

∫
BR

(
|ũk|p + |ṽk|p

)
dξ̃ =

∫
BR

(
|ũλ|p + |ṽλ|p

)
dξ̃ .
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Hence, (ũλ , ṽλ) ≠ (0, 0). Finally, Lemma 4.2 gives that both components of (ũλ , ṽλ) are nontrivial, and this
concludes the proof.
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