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Abstract: In this paper we investigate the existence, multiplicity and asymptotic behavior of positive solution
for the nonlocal nonlinear Schrédinger equations. We exploiting the relationship between the Nehari mani-
fold and eigenvalue problems to discuss how the Nehari manifold changes as parameters y, A changes and
show how existence, multiplicity and asymptotic results for positive solutions of the equation are linked to
properties of the manifold.
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1 Introduction

In this paper we are concerned with the existence and multiplicity of positive solutions of the nonlocal non-
linear Schrodinger equation
~Au+ Vyp(Qu+ (I * uP) uP2u=fx)|u*?uinR", . )
ueH! (]RN ) , A
where N > 3, 22 < p < & and I, is the Riesz potential of order 0 < a < min {N, 2"} (2" = %) on the
Euclidean space RV, defined for each point x € R¥\{0} by
r (%59
(5) w72 2e
with I' being the Euler gamma function. Throughout this paper, we assume that the parameters y, A > 0 and
the functions V), ; := ug - Aa and f satisfy the following conditions:
(V1)g is a nonnegative continuous function on RY;
(V,)there exists ¢ > 0 such that the set {g < c} := {x eRN|gx) < c} is nonempty and has finite measure;

Ia (X) = 1"

(V3)Q = int {x eRN | gx) = O} is nonempty bounded domain and has a smooth boundary with Q =
[xerV g -0};

(Va)a e L¥2 (R¥) n 1= (RV) and |{x € @: a(x) > 0}| > 0;

(F))f e L™ (]RN> and [{x € Q: f(x)>0}|>0.

Remark 1.1. By condition (V) , the set {x € Q:ax) > 0} has positive Lebesgue measure, we can assume that
Ay (ag) denote the positive principal eigenvalue of the problem

-Au(x) = Aag(x)u(x) for x € Q; u(x) = 0 for x € 00, (1.1)
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where dg, is a restriction of a on Q Clearly, A1 (dg) has a corresponding positive principal eigenfunction ¢ .

In recent years, nonlinear Schrodinger type equation has been widely studied under variant assumptions on
potential g and weight function f. Most of the literature has focused on the equation for g being a positive
potential and f being a positive weight function with satisfies the some assumptions of infinite limits. More-
over, the conditions (V1) - (V3) imply that ug represents a potential well whose depth is controlled by p. ug
is called a steep potential well if u is sufficiently large and one expects to find solutions which localize near
its bottom Q. This problem has found much interest after being first introduced by Bartch and Wang [11] in
the study of the existence of positive solutions for nonlinear Schrédinger equations and has been attracting
much attention, see [3, 9, 10, 38, 43] and the references therein. Later, the steep potential well is introduced
to the study of some other types of nonlinear differential equations by some researchers, such as nonlocal
nonlinear elliptic equations [18, 24, 33, 34, 45, 46)].

When N = 3 and the nonlocal nonlinear term (Io * u) [u’~? u = (I'*u®) ufor a = p = 2. Then Eq. (P, ;)
is the one type of the following nonlocal nonlinear Schrodinger equation:

“Au+V)u+o*u)u=fo)|u??uinRk3, (1.2)

where 1 < p < 3 and the parameter ¢ > 0. It is easy to know that u is a solution of Eq. (1.2) if and only if (u, ¢)
is a solution of the following equation:

{ ~Au+V(X)u +odu = fO) |2 u, inR?, 1.3)

-A¢ =u?,inR>.

It is well known that Eq. (1.3) is called the Schriodinger—Poisson system, which was first introduced in [7] as a
physical model describing a charged wave interacting with its own electrostatic field. Eq. (1.3) also appears in
the electromagnetic field, semiconductor theory, nonlinear optics and plasma physics. Due to the important
applications in physics, Eq. (1.3) has been widely studied via modern variational methods under various
hypotheses on the potential function and the nonlinearity; see [2, 4, 16, 23, 30, 31, 35-37] and the references
therein. More precisely, Ruiz [30] obtained the existence, nonexistence and multiplicity of radial positive
solutions for Eq. (1.3) with V = f = 1. It turn out that p = % is a critical value for the existence of nontrivial
solutions. Ruiz’s approach is based on minimizing the energy functional I associated with Eq. (1.3) on a
certain manifold that is the Nehari—Pohozaev manifold:

Ny = {u € H}®R*)\{0} : Q(u) = 0},

where H}(R?) consists of radially symmetric functions in H*(R?) and Q(u) = 0 is derived by subtracting the
Pohozaev identity of equations (1.3) from the equation 2(I(u), u) = 0. They proved that when 1 < p < 3/2
and for o is sufficiently small, Eq. (1.3) has two positive radial solutions v1, v, with

0<I(vq)<I(vy)= inf I(u)<O.
ueH!(R3)

In recent years, many authors have been studying such topics (existence of two positive solutions which one
of the negative energy), for example, Chen [14], Huang et al. [21, 22] and Shen and Han [32], consider the
following Schrédinger—Poisson system

{ —Au+(1-Ah())u+1(x)pu=fx) |u*’ % u,inR>, (14)

-A¢ =1(x)u?,inR3,

where 2 < p < 3,1 € L> (R?), f € C(R?) changes sign in R? and lim,|_,. f () = fo < 0. They proved that
system (1.4) has two positive solutions which one of the negative energy for A > A; (h), where A; (h) is the
first eigenvalue of -A + id in H' (R®) with nonnegative weight function h € L>/2 (R?).
Very recently, it has proven in [36] that the problem (1.3) admits a positive solution when V =1,1 < p <
2, and o belongs to a certain interval. To this end, the authors introduced the filtration of the Nehari manifold
N, that is
N()={ueN:Iu<c},
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and showed that this set N(c) under the given assumptions is the union of two disjoint nonempty sets, namely,
N(c) = ND uND,

which are both C! sub-manifolds of N(c) and natural constraints of I. Moreover, NV is bounded such that I is
coercive and bounded below on it, whereas I is unbounded below on N@ ., Moreover, they use the argument of
concentration compactness principle to obtain a minimizer of I on NV, which is a critical point of I. Actually
the authors also established N may not contain any non-zero critical point of I for % <p<2.

Motivated by the above works [14, 21, 22, 30, 32, 36], in the present article we mainly study the exis-
tence and multiplicity of positive solutions for Eq. (Py, 1) can not require conditions f changes sign in R> and
lim|y 0o f (X) = foo < 0. Furthermore, the existence of least energy positive solutions with negative energy
and asymptotic behavior of positive solutions are also discussed. The main method of this paper is to consider
minimization on two distinct components of the Nehari manifold corresponding to Eq. (Py, ,1). The approach
to Eq. (Py, 1) has been inspired by the papers of [12, 13, 44]. They used the Nehari manifold and fibrering maps
to study the bifurcation phenomena for a nonlinear elliptic problem on bounded domains or R¥. Since Eq.
(P},, ,1) is on RY, its variational setting is characterized by lack of compactness. To overcome this difficulty
we apply a simplified version of the steep well method of [11] and concentration compactness principle of
[27]. Furthermore, the first eigenvalue of problem —Au + ug (x) u = Aa (x) u in R¥ is less than A (@p) , which
indicates that the original method at [12, 13, 21] cannot be directly applied, thus we provide an approximation
estimate of eigenvalue to prove that the existence of positive solution for Eq. (Pu, ,1) when 0 < A< Ay (ag).

The first result is to establish the existence of least energy positive solutions and the asymptotic behavior
of the solutions for Eq. (P, ;) with 0 < A < A; (ap).

Theorem 1.1. For any 0 < A < A1 (dp) there exists pio (A) > O with lim)_, y-g,) Ho (A) = oo such that for every
M > Jo (A), Eq. (P, ) has a least energy positive solution uy, ;.

Next, we now consider what happens as A — Aj (ag) or u — oo. Let

B (u) :=—/(1a*\u|1’) lufP dx+/f|u\2p dx.
]RN

RN

Then we have the following result.

Theorem 1.2. (i) Suppose that B(¢1) > 0. Let A\n — A7 (dg) and pn > Ho (An) be as in Theorem 1.1 and let
Un := Uy, ), be the least energy positive solution of Eq. (P, ,) obtained by Theorem 1.1. Then un — 0 in X as
n — oo,
(if) For 0 < A < Ay (@g) . Let uy  be the least energy positive solution obtained in Theorem 1.1. Then uy, y — uy’
inXasy — oo, where uy € H(l) (Q) is a positive solution of
{ —Au-Adg(u+ (e *uP) [uP?u=Ffx)u*?u inQ, Po)
u=0, onoQ. =

The second result is to establish the existence of multiple positive solutions for Eq. (Pu, D) with A > A4 (ag).

Theorem 1.3. Suppose that B (¢1) < 0. Then there exists 6y > O such that for any A1 (ag) < A < A1 (dg) + 6o
and for u enough large, Eq. (Py, ,1) has two positive solutions uf}% and uf; with “,(41)/1 is negative energy and “,(12)/1
is positive energy. Furthermore, ul(}ll is the least energy positive solution of Eq. (P},, ,1) .

Finally, we investigate the nature of least energy positive solution ul(})}l as A — Aj (ag) and g — oo. As men-
tioned in the introduction a curve of positive solutions bifurcates to the right at 1; (@) when B (¢1) < 0 and
u sufficiently large. The following theorem implies that “Si\ will lie on this branch and the concentration of
of the solutions for Eq. (P, ;) with A > A; (@) .
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Theorem 1.4. (i) Suppose that B(¢1) < 0. Let An — Aj (ag) and un — oo be as in Theorem 1.3 and let

uld = uﬁn) A, be the least energy positive solutions of Eq. (P, »,) obtained by Theorem 1.3. Then

un — 0; —¢1 inXasn— co.

_an
[t [2n

(ii) For A1 (ag) < A < A1 (ag) + 6o. Let ul% (i = 1, 2) be the positive solutions obtained in Theorem 1.3. Then

u}% — uE{)’“ in X as y — oo, where u/({)’“ € H}(Q) are positive solutions of Eq. (Pe) .

Remark 1.2. In fact, our method can also be applied to the Choquard equation involving nonautonomous per-
turbation:

—Au+Vy ()u=(Ia*uP) P2 u+f(x)[u*2uinRk",
(Cy,/l)

ue H (RN),

and obtain the same conclusions as all the previous theorems under the same hypotheses and in addition f is
change sign in Q. Since the proofs are similarly, and so we leave it to the reader to check. Some progress on the
existence of positive solutions to Eq. (Cy, A), can be refer to [40, 41].

The plan of the paper is as follows. In Section 2, some preliminary results are presented and we discuss the
Nehari manifold and examine carefully the connection between the Nehari manifold and the fibrering maps.
In Section 3, we discuss the Nehari manifold when A < A; (@) . In particular, we prove that Theorems 1.1, 1.2.
In Section 4, we discuss the case when A > A (ag) . In particular, we prove that Theorems 1.3, 1.4.
Throughout this paper we denote a strong convergence by “—” and a weak convergence by “—”.

2 Variational setting and Preliminaries

In this section, we give the variational setting for Eq. (P, ;) . Let

X={ueH (RN) | /guzdx<oo
RN
be equipped with the inner product and norm
(u,v) = /Vqu+guvdx, lull = {(u, u)l/z.
RN

For u > 0, we also need the following inner product and norm

(u,v), = /VquHJguvdx, l[ull, = (u, u)ll/z.

RN

Itis clear that [|-|| < [|-||,, for p > 1 and set X, = (X, ||-||y) . It follows from conditions (V1) and (V) and the
Hélder and Sobolev inequalities that we have

/(|Vu\2 +u2) dx

RN

/|Vu|2dx+ / u?dx + / u’dx
RN {g<c} {g2c}

(1+|{g<c}|§ S‘z)/\vmz dx+%/gu2dx
RN

RN

IN

IN

max{l +|{g < c}|% S72, %} / (\Vu\z dx+gu2> dx,
RN
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this implies that the imbedding X — H! (R") is continuous, where the set {g > ¢} := {x eRV|gx) = c} .
Moreover, using conditions (V1) and (V3), and the Holder and Sobolev inequalities again, we have for any
re(2,27,

/|u\rdx
RN

27—, r-2
N S
N2 27-2

~
|
~

IN

u?dx + / u’dx S 2 /\Vu|2dx
{g>c} {g<c} N

2 -r
2"-2

r-2

%/Hogude+ |{g < c}|% S_Z/IVu|2 dx (S‘I% Hu||ﬁ%)ztz
RN N

IN

{g<c} =

& [ully, for u = po := S {g< W, (21

where, S the best constant for the embedding of D*2(RV) in L2 (RY). Moreover, if we assume that u ¢
2N]

L¥a (]RN ), then by the Hardy-Littlewood—Sobolev inequality ( see [20, 25, 26]) to the function |ul’ <

L¥a (RN ) , we obtain, in view of the Holder inequality and (2.1),

N-a N+a
N 2N

2N ’ 2Np
/(I“*Mp)'“‘pdx = /‘Ia*|u|p’”’“ dx /\u\m dx
N N

RN

N

N+a
N

2Np
- / | ¥ dx 22)
N

IN

1_pN-2)
Cy o, 22 [{g < Y1

- 2Np
N+a

N
oo (rE)\”
Noa, g ~ 2epai2r (N52)  T(N) :
We use the variational methods to find positive solutions of Eq. (P, ;) . Associated with the Eq. (P, ;) , we
consider the energy functional J,, ; : X — RN

ull2?, 2.3)

where

1 1
]y,/\ (u) = jAy,/I (u) - EB W,

where
Ay () = |lul? —/\/auzdx
RN

and
B) := —/ (I * [ufP) Jul? dx + /f|u\2p dx.
RN RN
Because the energy functional | A is not bounded below on X, it is useful to consider the functional on the
Nehari manifold (see [29])
Ny = {u e X\{0} | (Ja(w),u)=0}.
Thus, u € N},J 2 if and only if
Au,A (w)-B(u)=0.

Hence, ifu € N, 2 then

Jua) = (% - %) Aya(u) = (% - %) B(u).
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Note that N, ; contains every nonzero solution of Eq. (Pu, A) - It is useful to understand N, ; in terms of the
stationary points of mappings of the form hy(t) = J, A(tu)(t > 0). Such a map is known as the fibrering map.
It was introduced by Drabek and Pohozaev [17], and further discussed by Brown and Zhang [12]. It is clear
that, if u is a local minimizer of ]y’ 1, then hy, has a local minimum at ¢ = 1. Moreover, tu € Ny, 1 if and only
if hy,(t) = 0 for u € X\ {0}. Thus, points in N,,,» correspond to stationary points of the maps h, and so it

is natural to divide N, ; into three subsets N;’ 1 Ny and Ng, ;1 corresponding to local minima, local maxima

and points of inflexion of fibrering maps. We have
hy(6) = tA, 2 (W) - 77 B (u) (2.4)

and
hy(6) = Ay a W) - (2p - D P B (W) .
Hence if we define
N;,A ={ue Nya:Aua(w)-2p-1)Bu)> 0};
Noa={ueN, 4, (w)-(2p-1)Bu)=0};
Na={ueN,: 4, w)-2p-1)Bu) <0},
which indicates that for u € N, », we have hy,(1) =0and u € N;,A, Ng’/\, N, 2 if hl(1) >0, hl(1) =0, k(1)<
0, respectively. Moreover, it is easy to show that
N;’A ={ue N A @ -R2p-1)Bu) > 0}
={ueN,;:(2p-2)B(u) <0}
={ueN,,:B(u)<0}.
Similarly,
N, ,={ueN,:Bu)>0}

and
Noa={ueN,,:Bu)=0}.

Moreover, by (2.4), if A, ) (u) and B (u) have the same sign, then hy has exactly one turning point at

(2.5)

Ay (u)} 7z

) = { B

and if A  (v) and B (u) have opposite signs, then hy has no turning points. Thus, if A, ; (u), B (u) > 0, then
hy(t) > 0 for t small and positive but h,(t) — —oo as t — oo; also hy(t) has a unique (maximum) stationary
point at t(u) and t(u)u € N, . Similarly, if A, y (), B(u) <O, hy(t) < 0 for t small and positive, hy(t) — oo as
t — oo and hy(t) has a unique minimum at t(u) so that t(u)u € N;, 2 Finally, if A, 3 (w) B (u) < 0, hy is strictly
increasing (resp. decreasing) for all t > 0. Thus, we have the following results.

Lemma 2.1. Ifu € X\{0}, then

(i) a multiple of u lies is N, , if and only if Ay, 5 (), B (u) > 0;

(i) a multiple of u lies is Ny, , if and only if Ay, 3 (u) , B (u) < 05

(iii) when Ay, » (u) B (u) < 0, no multiple of u lies in N, ;.

The following Lemma shows that minimizers on N, ; are critical points for J, ; in X.

Lemma 2.2. Suppose that ug is a local minimizer for Jua0nNy 3 and that ug ¢ Ng,}l. Then ];/1,/1(“0) =0.

Proof. The proof of Lemma 2.2 is essentially same as that in Brown and Zhang [12, Theorem 2.3] (or see Binding
et al. [5]), so we omit it here. O
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In order to prove main results, we will use a special case of the classical Brezis-Lieb lemma [8] for Riesz
potentials.

Lemma 2.3. (Brezis—Lieb lemma for the Riesz potential [28, Lemma 2.4]). Let {un} be a bounded sequence in
L*(RY). Ifun — u a.e.inRY, then

/ (Ia * Jun = ulP) [un — ulP dx = / (In* [un|?) |un|P dx - / (In * [uf?) [ulP dx +0(1).
RN RN RN
We need the following result.
Lemma2.4. Let yp — oo asn — oo and {vn} C X with ||vn||y, < co for some co > 0. Then there exist

subsequence {vn} and vo € H} (Q) such that v — voin X and vn — vg in L' (]RN) forall2 <r < 2" and
B(vn) = B(vo).

Proof. Since [[val| < |[va||,, < co. We may assume that there exists vo € X such that

Va — VpinX,
Vn — voa.e.in]RN,

vn — Voin Ly, (RN) for2<r<2".
By Fatou’s Lemma, we have

2
v

/gv%dx < liminf/gvf,dx < liminfm =0,

n—oo n—soo Un
RN RN
this implies that [,y gvidx =0orvy =0a.e.inRY \ Qand vy € H} (Q) by condition (V3) . We now show that
Vn — Voin L’ (RN ) . Suppose on the contrary. Then by Lions vanishing lemma (see [27, Lemma 1.1] or [42,
Lemma 1.21]), there exist dy > 0, Ry > 0 and x, € RY such that

(v - vo)? dx = dy.

BN(xn ;RO)

Moreover, x, — oo, and hence,

B (xn, Ro) N {x eRN:g< CH — 0. By the Holder inequality, we have

(Vvn - Vo)2 dx — 0.

B(xn,Ro)N{g<c}

Consequently,

v

Co HV"||;24” > UncC / vadx = pnc / (vn = Vo) dx

B(xn,Ro)N{g=c} B(xn,Ro)N{g=c}

MUnC / (vn —vo)* dx - / (vn - v0)* dx + 0(1)

(n>Ro) B(xn,Ro)N{g<c}
— oo,

which a contradiction. Thus, v, — vgin L” (RN ) forall 2 < r < 2. Moreover, by (2.2) and Lemma 2.3,

B(vn) — B(vo), since 2 < Y2 < 2". This completes the proof. O

Next, we consider the following eigenvalue problem

—Au(x) + pug (x) u (x) = Aa(x)u(x) for x € RY. (2.6)
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We can approach this problem by a direct method and attempt to obtain nontrivial solutions of problem (2.6)
as relative minima of the functional

Ii(u) = %/\VMZ +ugu’dx,
RN

on the unit sphere in B = {u €eX: [on au’dx = 1} . Equivalently, we may seek to minimize a quotient as

follows
Jan IVul? + pgudx

X _ inf 2.
1, (@) ueg{{o} o audx @7
Then, by (2.1),
vul 24 2
.f]RN‘ Y| +2ng X > S — forall u = po,
Sy audx lall. [{g < c}¥

SZ

this implies that A a@z—=——
(@) 2 o

> 0. Moreover, by condition (V3),

- 2 2 2 2 2
inf Jon [VU|” + pugudx . inf Jen IVU|” + pgu®dx _ inf f(i|Vu| ’
uex\{0} Sy au?dx ueHL(Q)\{0} S au?dx ueHYQ\{0} [, Aqu?dx

which indicates that Xl, u(a) < Ay (ag) for all y > 0. Then we have the following results.

Lemma 2.5. For each y > g there exists a positive function gy € X with [y a<p,§ dx = 1 such that

hun(@ = [ 1994 + ngpiax < (@o).

RN

Furthermore, Xl,y (a) — A7 (ag) and gy — @1 as u — oo, where ¢ is positive principal eigenfunction of
problem (1.1).
Proof. Let {un} C X with [y aujdx = 1 be a minimizing sequence of (2.7), that is

/|Vun\2 + ygu%dx — XL” (a) asn — oo.

RN

Since Xl,y (a) < A1 (ag) for all u = 0, there exists Co > 0 independent of y such that [|unl|, < Co. Thus, there
exist a subsequence {u,} and ¢, € X such that

un — @uinXy,
Un — (pya.e.inRN,

Un — (pyinLl’OC(]RN) for2<r<2’.

/auﬁdx—> /agoﬁdx= 1.
RN

RN

Moreover, by condition (V,),

Now we show that un — ¢y in X,,. Suppose on the contrary. Then
/|V(py|2 +yg<p,5dx < lirpl}inf/ |Vun|? + pguidx = Xl,y (a),
RN RN
which is impossible. Thus, un — @y in Xu, which implies that [,y a@idx = 1 and [oy [Veu|* + ugeidx =

Xl,y (a). Since |py| € X and

Au (a)=/\V<Pu\2+u§¢ﬁdX=/\Vlwl\zwglwlde,
RN RN
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by the maximum principle, we may assume that ¢, is positive eigenfunction of problem (Py) . Moreover,
by the Harnack mequahty due to Trudinger [39], we must have /\1 (@) < Ay (ag) . Now, by the definition of
A ,u (@), there holds A g (@) < A e (a) for uy < p,. Hence, for any sequence un — oo, let ¢y := @y, be the
minimizer of A; ,, (a). Then [,y apidx = 1and

L,yn (a) = / |V(pn\2 + yng(pf,dx <A (ag),
]RN
that N
A1y, (@) — do < Ay (ag) for some dy > 0
and
l@nll < ll@nll,, < VA1 (ag), for n sufficiently large.
Thus, by Lemma 2.4, we may assume that there exists ¢, € Hj (Q) such that ¢, — ¢@o in X and ¢n, — @¢ in
L’ (RN> forall 2 < r < 2". Then

/|V(po|2 dx < lirllginf/ IV on|® + ung@idx = do
[0} RN
and

n—soo
RN Q

lim [ apidx = /ngp(z)dx =1.

Since dy < Aj(ag) and A; (ag) is positive principal eigenvalue of problem (1.1). Thus, we must has
Jo |V@o|? dx = A1 (@g) and @ = ¢1 a positive principal eigenfunction of problem (1.1), which completes
the proof. O

3 The Proof of Theorems 1.1, 1.2 (A < A, (ayp))

First, we investigate the behavior of J. A 0N N}‘l, A

Lemma3.1. Foreach0 < A < Ay (dg) there exists jiy (A) = po with limy _,)-G,) Ho (A) = oo such that for every
M >l (A), we have

()Nt =N s
(ii) the energy functional | uA is coercive and bounded below on N A Furthermore, there exists do > O such that

(-1 (A @-2)
szl,y (a)

inf > o1 1
ug&;’}\]y,/l(u) 2 d, >0 G

forallu e N, ;

Proof. (i) By Lemma 2.5, for each 0 < A < A1 (ag) there exists Ji, (A) = uo such that for every u > i, (1) , there
holds A < Ay, (a) < A1 (dg) , which indicates that

lull% > 0 for allu € X\ {0}. (3.2)

Apa (W) = \|u||i —A/auzdx > Aljl(a)_)/l
RN

1,u a

Thus, by Lemma 2.1, the submanifolds N+ aand N0 aareempty andsoN,, ) = N,

(i) By (2.1) and (3.2) , foreach u > 11, ()l) andu € Nu 1» We obtain

Avy (@) -2

e L1l
A1 (a)

IN

AW <(2p-1)B)

IN

@r-Dfll. K

S ||ul|2P
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which indicates that

~ 1/(2p-2)
(A @-2)
Il = do == -
Qr-DAu(@|fllc {g < c} ™=
Thus,
-1 (p—l) Al,u(a)—/l B
]y,/l(u) = pTAﬂx/\ (u) 2 (N ) dé/(p Q) >0,
p 2pAy,, (a)
this implies that the energy functional J, , is coercive and bounded below on N This completes the proof.

O

We now show that there exists a minimizer on Nlj, A Which is a critical point of J, 1(u) and so a nontrivial
solution of Eq. (Pu, 1) - First, we define

c(Q)= inf u,
1(Q) ueMP)}[(Q)]};,A'H&(Q)()

where
M, 1(Q) = {u € Hj(Q) : <J;,A\Hg(o) ), u> =0}.

Note that

1 _
Jualmy@® = 5 /qulzdx—//laQuzdx
Q Q
—% —/(I,x*\u|p)\u|pdx+/f|u\2pdx ,
0 0

a restriction of J w2 0n Hé(Q), and ¢;(Q) independent of u. Since 0 < A < A1 (@g), similar to the argument of
(3.1), we can conclude that ]y,A|H3(Q) is bounded below on M}M(Q). Moreover, Hé(.Q) C Xy forall u > 0, one
can see that
0<n< inf J,,(u) < cy(Q) forall p > po.
uENM

Taking Dg > c;(Q). Then we have

0<ns inf J,,(u) <cp(Q) < Do (3.3)
“eN,],A ’

for all u = po. Furthermore, we have the following results.

Theorem 3.2. For each 0 < A < A (ag) there exists jio (A) = J, (A) such that ], ; has a minimizer on N, 1 for
allu > po (A).

Proof. By Lemma 3.1 and the Ekeland variational principle [19], for each u > i, (A) there exists a minimizing
sequence {un} C N, , such that

. _ s / _
nh_)n:q]y,/\(un) = ug}}é,A]u,,\(u) >0and ]u,/\(u") o(1).
Since infueN)-M Jua(u) < Do, again using Lemma 3.1, there exists Co > 0 such that |lun|| u < Co. Thus, there
exist a subsequence {un} and uy € X such that ]y’,\(uo) > 0,],'1,;1(110) =0 and

Un — UginXy,
U, — upae.inRY, (3.4)

un — uoinL{OC(RN) for2<r<2".
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Then by condition (V4),

n—oo
RN RN

lim auﬁdx=/au(2)dx. (3.5)

Moreover, follows from Brezis-Lieb lemma [8] and Lemma 2.3 obtain that
B (un - uo) = B (un) - B (uo) + o(1). (3.6)

Now we show that un — ug in Xy. Let vo = un — up. Then v, — 0 in Xj,. By the Sobolev and Gagliardo-
Nirenberg inequalities, for any u > Ji, (1) we have that

1
/vndx<— / ugvadx + / vf,dxsﬁ||vn|\i+o(1)

{g=c} {g<c}
and
. 2'p-1)
2 -2p 2*2
Jiwzax < co(ml) ™ /an|2dx) +o(1)
RN N
2"-2p
1 2"-2
Co (ﬁ) [valls? + 0 (1)
or
/ [va|?P dx < Iy a3 + (1), (37)
RN

*
2 -2p

where IT, = Co (%) ¥ Thus, using (3.4) - (3.6) gives

Jud (Vi) = Jya (un) = Jya (o) + 0 (1) and (Jy, 4(vn), vn) = o(1). (3.8)

Consequently, by (3.5), (3.6), (3.8) and Lemma 3.1, one has

\

. 1,
Dy = uér&;]y,;t(u)—]y,,\(uo)EJM(vn)—5<]y,ﬂ(vn),vn>+0(l)

-1y (2 -1
.- (~1,y (@-A) ol + o),
2p/11,y (a)

which shows that there exists a constant C; > O such that
[vall, < C1+0(1) forA> g (A). (39)
Since 1 < 242 < p < 23, it follows from (3.5), (3.7) and (3.9) that
o) = (patn)sva) = Vally (1= Il I [val 2 ) + 0(1)

vally (1= 11l € 2) + 0 (1) (310)

v

Notice that IT, — 0 as u — oo. Then by (3.10), there exists }io (A) = H, (A) such that for u > pip (A), there
holds v, — 0in Xj,. Hence un — up in X, and so

Jua(uo) = hm 0 Jy(un) = 1nf ]u A(),

which indicates that ug is a minimizer on N2 This completes the proof. O
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We are now ready to prove Theorem 1.1: By Theorem 3.2, ], ) has a minimizer uo on N, forall u > g ().
Since B (up) > O and ug ¢ Ng,/\, by Lemma 2.2, uo is a critical point of J, 4. Since J, z(|u]) = J, 21(u), then
without loss of generality we may assume that ug is positive. This completes the proof.

Next, we now consider what happens as A — A7 (@g) or p — oo. As might be expected from the intro-
duction the sign of B (¢»1) plays an important role. We conclude the following results by considering the case
where B (¢1) > 0.

Theorem 3.3. Suppose that B (¢p1) > 0. Then

|
e

lim  inf u) =
AaA;(EQ)ueN;’A]”’A( )

Proof. We may assume without loss of generality that [|¢1 ]|, = 1. For 0 < A < A (@g), we must have that
Ay 2 (¢1) > 0, which implies that Ay y (¢1) , B(¢1) > O forall u > 1y (A) . Hence t(¢1)¢1 € N, ;, where

oy (L (TP AagDa\ ' (@) - s agta) T
' B(¢1) B(¢)1) .

Thus,

p-2 [(/\1 (@g)-A7) fRN a(l)%dx}p/(p‘l)
& B(p) /PP

—0asd — A (ag).

Jua(t(@1)1) =

Since 0 < infueN;A]y,A(u) < Jua(t(@1)1), it follows that limA—m;(a) infueN;A]y,A(u) = 0. This completes the
proof. O

Next, we are ready to prove Theorem 1.2: (i) Since An — A7 (@) and g (An) — oo as n — oo, we have
Un — o0 as n — oo, Firstly, we show that {uy} is bounded. Suppose on the contrary. Then we may assume

without loss of generality that ||un ||y, — ecasn — oco. Letvy = ﬁ Since ||vn||u, = 1, by Lemma 2.4, there
nlipn

exist subsequence {v,} and vo € H} (Q) such that v, — v in L" (RN) for 2 < r < 2" and B (vn) — B(vo).
Hence
lim [ avidx = /av(z)dx.
n—oo
RN RN
By Theorem 3.3,

2 -2
Jyn, (un) = P2 ”“””;21,1 —}ln/au%dx = p—B(un) —0asn — oo,

2p 2p
RN

dividing by ||un|| ,24” it is easy to see that

lim ||vn|\§n—/1n/avﬁdx =0

n—oo
RN
and
: 2p-2 _
m [un|l, "B (va) = 0.
Thus,

n—oo

lim }ln/avﬁdx =N (ﬁg)/av%dx =1
RN RN
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and
nli_>n°1°B (vn) = B(vo) = 0.

Now, we show that
lim / |Vvn|?dx = / |Vvo|2dx.
n—oo
RN RN
If not, then we may assume that

0< /(\Vvo\z - A1 (@g) avd)dx < liminf ||vn||121 —/\n/avﬁdx =0
n—oo n
RN RN

which is impossible. Thus, we must have

/(|Vv0|2—}(1 (@q) av(z))dx=nli_)m anHin—An/avﬁdx =0,
Q RN

and so vy = k¢, for some k. Since B (vo) = |k|?” B(¢p1) = 0 and B(¢;) > 0, it follows that k = 0. But, as
fRN avdx # 0, this is impossible. Hence {un} is bounded. By Lemma 2.4, we may assume that there exists

uo € H} (Q) such that
lim [ au’dx = /au%dx and lim B (un) = B (up)-
n—oo n—oo

RN RN

Moreover, by Theorem 3.3,

-1 -2
]un’/\n(un) = IjZTAun’An (Un) = IjoB (un) —0asn— oo,

which indicates that
nli_>m B (un) = B(up) =0.

Since
0< /(|w0|2 - A1 (@g) aud)dx < liminf Ay, 1, (un) = 0,
RN

and so ug = k¢; for some k. Since B (uo) = |k|*! B(¢1) = 0 and B (¢h1) > 0, it follows that k = 0 and uy = 0.
Therefore, u, — 0in X.
(ii) Here we follow the argument in [9] (or see [45]) to investigate the concentration for positive solutions of Eq.
(Py,,2) - For any sequence un — o, letun := u,, ) be the positive solutions of Eq. (P, ) obtained in Theorem
1.1. By Lemma 3.1 there exists a positive constants co and Co are independent of y» such that ||un||, < coand
Jy,2 (un) 2 Co.Therefore, by Lemma 2.4, we may assume that there exists uo € H} (Q) such that un — ug in
Xand un — upinL’ (RN) forall 2 < r < 2". Now for any ¢ € C5° (Q), because <],’1m,1 (un), <p> = 0, it is easy
to check that

/Vu0V<pdx =2 /Eguofpdx + /f [uolP~% uppdx,

) ) )
that is, uo is a weak solution of Eq. (Po) by the density of C3° (Q) in H} (Q2) . Now, we show that un — ug in
X. Because <];4n,/t (un), un> = <];zn,/t (un), u0> =0, we have

HunH;n = /\/a(un)2 dx+/f|un\p dx (3.11)
RN RN

and
(un, Uo),, =/1/aunu0dx+/f\un|1"’2 UnUodx. (3.12)
RV RN
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By (3.11),(3.12)and un — upin L’ (RN) forall 2 < r < 2", we have
. 2 s T _ 2
m jun|, = m (un, uo),, = lim (un, uo) = [uol|” -
On the other hand, the weakly lower semi-continuity of norm yields
[uoll? < liminf [lun||* < lim [un||? ,
n—oo n—oo n

and thus, un — uo in X. Moreover, by J,, 1 (un) 2 Co > O, one has ug # 0, which completes the proof.

4 The Proof of Theorems 1.3, 1.4 (A > A, (ap))

IfA> Ay (ap), then

Ay (1) = /(|V¢1|2 - Aagdx = (A1 (ag) —A)/aqb%dx <Oforallu> 0.
RN RN

Hence, if B(¢1) < 0, then by Lemma 2.1, N;’ A # 0. Thus, as well shall see, N,, , may consist of two distinct
components in this case which makes it possible to prove the existence of at least two positive solutions by
showing that J, ; has an appropriate minimizer on each component.

If A is just greater than A; (ag), then roughly speaking ||u]| i < A fpu au?dx if and only if u is almost a
multiple of ¢, for y enough large. Thus, if B (¢1) < 0, it should follow that does not there exists u € X\ {0}
suchthatA, ) (¢1) < 0and B (¢1) 2 0. This is made precise in the following lemma and we show subsequently
that N° , =) (or Nx= N;, AUN, 1) is an important condition for establishing the existence of minimizers.

wA
Let

Apr={ueX\{0}: 4, (w)=<0}

and
By ={u € X\{0}:B(u)=20}.

Then we have

Lemma 4.1. Suppose that B(¢1) < 0. Then there exist §o > 0 and jio > po such that A, y N By, 3 = 0 for all
A1 (@p) < A< Ay (dg) + 60 and u > Ho. In particular, N;l,l =(forall A1 (@q) < A < Ay (@g) + 8o and u > Ho.

Proof. Suppose that the result is false. Then there exist sequences {pn}, {An} and {wn} C X\ {0} with A, —
Ai (@g) and pn — oo such that

Ay 2 W) = W3, = An / awldx <0

RN
and
B(wn) = (—/(Ia*|Wn|p) |Wn P dx+/f|wn|2pdx) > 0.
RN RN
Let un = Miﬁy" Since ||un|| < |lun|lu, = 1, by Lemma 2.4, we may assume that there exists ug € H{ (Q) such

that un — ugp a.e.in RN, up — ugin L’ (RN) forall 2 < r < 2" and B (un) — B (uo) . Then

n—oo

lim An/auf,dx =] (ﬁg)/auédx >1. (4.)
RN

RN
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Now, we show that limn e [, [Vun|*dx = [,, |Vuo|>dx. Suppose on the contrary. Then by (4.1),

/ (|V110|2 -A (HQ)HQH(ZJ) dx = / (\VUO\Z -A (ﬁg)aué) dx

Q RN

N

lim inf HunHi —An/au%dx <0,
n—oo n

RN

which is impossible. Hence limy o [, [Vun|*dx = [, |Vuo|*dx. It follows that

o / (IVuol? - Ay @q) @gud)dx <0, (II) B(uo) = 0.
Q

But (I) implies that uy = k¢, for some k and then (II) implies that k = O which is impossible as

1 (@) [y augdx = 1. Thus, there exists 8o > 0 and o > po such that A, ; N B, ; = 0 for all A; (@g) <
A < A1 (dg) + 80 and u > Ho. Moreover, if Ng’A # (0, then there exists ug € N}‘i,,l suchAthat Uo € AyaNBya
which is impossible. Therefore, NE, 1 = 0forall A (@g) < A < Ay (ag) + 6o and u > . This completes the
proof. O

When Ng, A = 0, any non-zero minimizer for J, , on Ny, , (oron N, , ) is also a local minimizer on N, , and
so will be a critical point for J,, ; on N,, ; and a solution of Eq. (P, ;) . We next show that, if Ng’ 2 =0,itis
possible to obtain more information about the nature of the Nehari manifold. Since B (¢1) < 0, we can obtain
that N;’ 1 # 0 forall u > 0. Furthermore, we have the following results.

Lemma 4.2. Suppose that B(¢1) < 0. Then for any A1 (dg) < A < A1 (dg) + 6o and for u enough large, we have
the following results.

(i) Ny, ) is uniform bounded.

(ii) There exist two negative numbers k1 and k, such that

< inf < K.
K1 < ué%;’}‘]y,/l(u) K2
Proof. (i) Suppose on the contrary. Then there exist sequences {un} ¢ RY and {un} c Nj, 1 such that pn —
oo and ||un||u, — oo as n — oo. Clearly,
Ay, 2 (un) = B(un) < 0. (4.2)

Letvy = W Then by Lemma 2.4, we may assume that there exists vo € H} (Q) such that
nilkn

Vn —VvoinX;vn — voinL’ (RN) forall2<r<2’,

and
nli_{rgo B (vn) = B(vo). (4.3)
Thus,
lim [ avidx = / avddx. (4.4)
n—oo
RN RN
Moreover, by Fatou’s Lemma, .
/ |Vvo|?dx < lim inf/ |Vvn|?dx. (4.5)
n—oo
RN RN

Dividing (4.2) by |[un||7, gives
Ay, 2 (vn) = [un|l5?B (va) < 0. (4.6)
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Since
lim A, y(va)=1-Alim [ avidx=1-2 [ avddx
N—oo Hno n—oo
RN RN

and ||un||, — oo, it obtain that B (vo) = 0 and [p avidx > 0 from the conclusions (4.3) and (4.6) . Thus,
Vo € By 5 forall u > 0. Moreover, by vo € H} (Q), (4.5) and (4.4) , for every u > 0,

\|vo|\§—/t/avédx=/|vV0\2—Aavédx<1igi°13f,4m (vn) <0,
RN RN

which indicates that vo € A, ;. We now show that vn — v in X,. Suppose on the contrary. Then

A HvoHi —/avcz)dx = / IVvo|? - Aavddx < nangoAyn,A (vn) <0,
RN RN

since [,y gvddx = 0. Hencevg € Ay 2N B,y which is impossible. Since vn — vo in X, then [voll, = 1. Hence
Vo € By, 1- Moreover,
2 24 _ s
Ivolly, —/1/ avpdx = HIEEOAMM (vn) <0
RN
and so vo € Ay ;. Thus, vo € Ay N By which is impossible. Hence Ny, ; is uniform bounded for u > 0
sufficiently large.
(i1) By part (i), there exists Co > O such that ||ul|, < Co forallu € N;’A. Hence, making use of (2.1), foru € N;’A
we have

p-1p. . p-1 )
Jua) = 2ot s Pb ([ (1)l e 1) [ 1 ax
N RN
p-1 2p p-1 D _
> — Zp C1 Hu||y 2—2pSpC1CO—K1. (47)

Moreover, by B(¢1) < 0 and [, V1| dx - Afq agp3dx < 0, which indicates that the function hg, (t) =
Ju,a (t$1) have ¢ > 0 and k, < O are independent of y such that t5¢ € N, ) and

inf h¢1 (t= h¢1 (ta) =k <0.

0O<t<oco

This implies that
ir&f Jua W) <k <Oforall u > max {{y, 1} . (4.8)
ueN, ’

This completes the proof. O

Theorem 4.3. Suppose that B(¢1) < 0. Then for any A, (ag) < A < A1 (dg) + 6o and for u enough large, there
exists a minimizer of J, ;(u) onN,, ;.

Proof. By Lemmas 4.1, 4.2 and the Ekeland variational principle [19], there exists a minimizing sequence
{un} C N, ) such that
. . / _
Jim ]y, a(un) = uérlglgA]y,A(u) < xz and Jy z(un) = 0 (1)

and there exists Co > 0 such that ||uy|| e Co. Thus, there exist a subsequence {un} and up € X, such that
]}’M(uo) =0and

Un — UginXy,
un — uoa.e.in]RN,

un — uoinL{OC(RN) for2<r<2".
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Then by condition (V4),

n—oo
RN RN

lim auﬁdx=/au(2)dx. (4.9)

Moreover, follows from Brezis-Lieb lemma [8] and Lemma 2.3, obtain that

B (un — up) = B (un) - B(uo) + o(1). (4.10)

Now we prove that un — ug in X. Let vo = un — uo. Then vy, — 0 in Xj,. By the Sobolev and Gagliardo-
Nirenberg inequalities, for any u > Ji, we have that

1 1
/v%dxsﬁ / ugvadx + / v%dxsﬁ/ygvﬁdx+o(l)
RN

R {g=c} {g<c}
and
. 2'p-1)
1 == 72
/|vn|21’ dx < Co (ﬁ Hv,zn,i) /\erllzdx +0(1)
RN N
2"-2p
1 2"-2 2p
Co () Il <o)
or
[ vl <yl + o), @)
RN
22
where IT, = Co ()%C) *7? | Thus, using (4.9) and (4.10) gives
Jua (Vi) = Jya (n) = Jya (o) + 0 (1) and (Jy, 2(vn), vn) = o(1). (4.12)

Consequently, by (4.7), (4.9), (4.12) and Lemma 4.2 (ii), one has

Ky + k1| 2 ugg ]y,/l(u)_]y,]((uo)EJH,A(Vn)—i<]I/M1(Vn),vn>+0(1)
A

P lval + o(0),
which shows that there exists a constant C; > O such that

[vall, < C1 +0(1) for u > O sufficiently large. (4.13)
Since 1 < % < p < 2y, it follows from (4.9), (4.11) and (4.13) that

o(1)

(Tivn), va) = [vally (1= Collullvall}772) + 0(1)

vally (1= 1)l TGP 2) + 0 1) (4.14)

v

Notice that II, — 0 as g — oo. Then by (4.14), there holds v, — 0in X, for u > 0 sufficiently large. Hence
un — Up in Xy and so
= li = inf <Ko <0,
JuA(o) = lim_ ]y, j(un) uér&;‘AJ,l,A(u) < Ko
which implies that u is a minimizer on N, . O

We now turn our attention toN,, ;.
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Lemma 4.4. Suppose that B (¢1) < 0. Then for any A1 (ag) < A < A1 (@g) + 80 and for p enough large, we have
the following results

(i) there exists co > O such that ||u||,, 2 co forallu € N, ;;

(ii) every minimizing sequence for J,, y(u) on N, , is bounded;

(iii) infyen; | Juau) > 0.

Proof. (i) Suppose on the contrary. Then there exist {un} C R* and {un} C N, 1 such that yun — o and
l|unll,, — O.Hence, by (2.1),
0 <Ay 1(un) = B(un) - 0asn — oo.

Letvy = ﬁ Then, by Lemma 2.4, there exist subsequence {vn} and vo € H} (Q) such that

Vn —=VvoinX; vqn — voin L’ (RN) forall2 <r<2".

Thus, .
lim [ avidx = / av(z)dx (4.15)
n—oo
RN RN
and
Ay a (Vn) = [un|[2P% B(vn) — O as n — oo (4.16)

Moreover, by (4.15), (4.16), vo € H} () and Fatou’s Lemma, we can obtain that
. : 2 2
0= n11_>n3°AHn,,1 (va)=1 —)lnh_)n;/avndx =1 —/\/avodx,
RN RN

and for every y > 0

/ |Vvo|? - Aavgdx

2 2
HVOHy —/ACIVOdX
RN RN

IN

liminf | [[va| -/Aavﬁdx =0,
n—oo n
RN

this implies that vo # O and vo € A, forall p > 0. Since B(vn) > 0 and B (vn) — B(vo), it follows that
HVVTOH)A € By,x forall u > 0. Hence, vo € Ay 3 N By, ) for all u > 0, which a contradiction.

(ii) Suppose on the contrary. Then there exist sequences {un} C R" with yn — oo such that N, , is
unbounded for all n, that is for every n there exists a minimizing sequence {un,m} C N,.a such that

lun,m||u, — o= as m — oo. Moreover,

p-1 .
A =B — f 1
oA (Un,m) (un,m) — 2p uell{ll;m Jupa(W) @s m — oo, (4.17)

where infyen-  Jy, A(u) = O for all n. Let wy = un,n. Then wy € N, 1 and |[wnlly, — ooasn — oo. Let
M ’ ns

Vn = W Then by Lemma 2.4, we may assume that there exist subsequence {v,} and vy € H} (Q) such

thatvy — voin X, vy — voinL" (RN) forall 2 < r < 2" and B (vn) — B (Vo) . Then by condition (V)

lim av%dx=/av(2)dx. (4.18)

n—oo
RN RN

Dividing (4.17) by \|Wn||;21n and m = n gives

Ay, 2 (Vn) = [Wal5 2B (va) — O. (4.19)
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Since ||wn||u, — +oo, it follows that B (v4) — 0 and so B (vp) = 0. We now show that v, — v¢ in X. Suppose
otherwise, then by (4.18) and (4.19),

/ |Vvo|? - Aavddx
RN

Ivoll* -2 [ avia
RN

N

lim inf anHﬁ" —)l/avf,dx =0.
n—oo
RN

Thus, vo # 0 and for every u > 0, there holds vo € A, 3 N B, , which is impossible. Hence vy — vo in X. It
follows that ||volly = 1, [y VV§dx = 0 and

\|Vo|\;24 -A /av(z)dx =B(vg)=0
RN
Thus, for every u > 0, there holds vo € A, 3 N B, ) which is impossible as A, 3 N B, 4 = 0. Hence, every
minimizing sequence for J,, 4(u) on N, ) is bounded for y sufficiently large.
(iii) Assume that 1nfueN o, Aw) =0. Then by the Ekeland variational principle [19], there exists a minimizing
sequence {un} C N, ; such that

lim J, 2 (un) = ug&gA]y,A(u) and J;, ;(un) = 0(1).

By part (ii), {un} is bounded and so there exist a subsequence {u,} and up € X, such thatJ ;/4 1(up) =0and

un — UpinXy,
Upn — Upga.e.in RN,

. r N *
Uun — UpinLp.(R") for2sr<2.

Then by condition (V)

n—oo
RN RN

lim avﬁdx=/av(2)dx. (4.20)

Moreover, follows from Brezis-Lieb lemma [8] and Lemma 2.3, obtain that
B (un — up) = B (un) - B(uo) + o(1). (4.21)

Now we prove that un — up in Xy. Let v = un — ug. Then v, — 0 in Xj. By the Sobolev and Gagliardo-
Nirenberg inequalities, for 4 enough large we have that

1 1
/v%,dxsﬁ / ugvadx + / v,z,dxsﬁ/,ugvf,dx+o(1)
RN

RN {s=c} {g<c}
and
2 (p-1)
1 22
/|vn|zpdx < Co (y \vnHy) /\an| dx +0(1)
RN
2"-2p
< c T vl + o (1)
= 0 ,LlC nily .
or

/ Va2 dx < Ty vl 22 + 0(1), ©22)
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*
2 -2p

where IT,, = Cy (;%b) ¥ g-N@-1) Thuys, using (4.21) and un — uo in X, gives

JuA (Vi) =Ty (un) = Ju,2 (o) + 0 (1) and (J;, 3 (Vn), va) = 0(1). (4.23)

Consequently, by (4.20), (4.21) and (4.23), one has

v

. 1 /
ug‘gA],,,A(u) = Jua (Uo) Juavn) = 5 (Juavn), vn) +0 (1)

p-1
2p

v

[valli + 0(2). (4.24)

Suppose that infueN; , Jua(u) = 0.

(iti - A)Ifup € N, ;, then by (4.24) and uo = 0, anHﬁ — 0, this shows that un, — ug in Xy, and so

(o) = lim_ Jy, 2(un) = uér&E‘AJy,A(u) =0.

It then follows exactly as in the proof in part (i) that uo € A, 3 N B,z which is impossible as A, y N B, 3 = 0.
(iii-B)Ifug € N;,A, then by (4.7) and (4.24), there exists Co > O such that

[vall, < Co + o (1) for u enough large. (4.25)
Since 1 < M2 < p < 2, it follows from (4.18), (4.22) and (4.25) that

o) = patva)vn) = [vally (1= flls I vl ) + 0(2)

vally (1= 1fll WG ) + 0 (1) (4.26)

v

Notice that I, — 0 as u — oo. Then by (4.26), for y enough large, there holds v, — 0 in X,,. Hence un — uo
in X, and so up € N}], » this is a contradiction. Thus, infueN; R Iy, 1(w) > 0 for u enough large. This completes
the proof. O

Theorem 4.5. Suppose that B (¢1) < 0. Then for any A1 (ag) < A < A1 (ag) + 6o and for u enough large, there
exists a minimizer of J, (u) onN,, ;.

Proof. By Lemmas 4.1, 4.4 (iii) and the Ekeland variational principle [19], there exists a minimizing sequence
{un} C N, ; such that
. R / _
lim Jy, a(un) = uér&;]y,,\(u) and J;, y(un) = 0(1).

Similar the argument in (3.3), there exists Dy > 0 independent of y such that infueN;.A Jua(u) < Do for all
M = Mo. Moreover, by Lemma 4.4 (ii), there exists Co > O such that [|unl|, < Co. Thus, there exist a subsequence
{un} and up € X, such that])’l,/\(uo) =0and

Un — UginXy,

Upn — Uga.e.in RN,

Un — uginlLy, (]RN) for2<r<2".

Then by condition (V4),

n—oo

lim [ avidx = /avédx, (4.27)
RN RN

and follows from Brezis—Lieb lemma [8] and Lemma 2.3 obtain that

B (un — ug) = B (un) — B (up) + o(1). (4.28)
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Now we prove that un — ug in X. Let vy = un — uo. Then vy, — 0 in Xj,. By the Sobolev and Gagliardo-
Nirenberg inequalities, for u enough large we have that

1 1
/v%,dxsﬁ / ygvf,dx+ / vfldxsﬁ/ygvﬁdx+o(1)
]RN

RY {g2c} {g<c}
and
. 2"(p-1)
2 -2p 22
val®dx s Co(—=iwvall2) " | [ Vval?dx +o(1)
n = 0 uc nlly n
RN N
1 2*;2;:
2°-2
< Co (ﬁ) [vall2? +0 (1)
or
[l < e unl? + o), (4.29)
RN
z*:zp
where IT, = Co (}%) *7? _ Thus, using (4.27) and (4.28) gives
Jua (vn) = Jya (un) = Ju 2 (o) + 0 (1) and Jj, 5 (va) = o(1). (4.30)

Consequently, by (4.27), (4.30) and Lemma 4.2 (ii), one has

(Tuavn), vi) + 0 (1)

D=

Do +lxe| =2 inf J, a() = Jy 2 (o) = Jya (V) -
ueN,

p-2

2p

v

[vallz + 0(1), 4.31)
which shows that there exists a constant C; > 0 such that for y enough large,

lvall, < C1+0(1). (4.32)
Since 1 < % < p < 2y, it follows from (4.29) (4.31) and (4.32) that

0(1)

(Taa)vn) 2 [ally (1= Iflloo Tl ]}7) + 0(1)

lvally (1= 11l €2 ) + 0 (1) 4.33)

v

Notice that IT, — 0 as u — . Then by (4.33), for u enough large, there holds v, — 0 in X,,. Hence un — ug
in X, and so

Jua(o) = lim_ Jy, (un) = ué%gAJy,A(u),

which implies that uo is a minimizer on N, ;. O

We are now ready to prove Theorem 1.3: By Theorem 4.5 and 4.3, there exist §y such that when A; (ag) <
A < A1 (ag) + 6o and for u enough large, ]P, 2 has minimizers in each of Ng}}1 and N}(f);l, that is there exist

u;(ll)A € N;,/l and ul(f)}l €N, such that

Wy_ . _ @
Jualuy, ) = ug&g}‘]y,/\(u) <Ky <0< u}:_%f:}l]y,/l(u) = Jualuy ).

Since J,, A(u}%) =]y, A(|ug)/1\) forj = 1, 2, we may assume that these minimizers are positive. Moreover, by
Lemma 4.1, N, 3 =N, ; UN, ;. It follows that the minimizers are local minimizers in N,  which do not lie in

Ng) 1» and so by Lemma 2.2, ul(})/\ and uLZ)A are positive solutions of Eq. (Py’ A) . This completes the proof.
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Next, we are ready to prove Theorem 1.4: (i) Since N;", A, is uniformly bounded, then {uy} is bounded,
from Lemma 2.4, we may assume that there exists uo € Hg (Q2) such that un — ug in X, un — ug in L"(R") for
all 2 <r < 2" and B (un) — B (uo) . We also have

n—oo
RN RN

lim auﬁdx=/au(2)dx

and
lun||® = An / aujdx < Ay, 2, (un) = B (un) < O for n sufficiently large.
RN

We now show that un, — ug in X. Suppose on the contrary. Then

/ (Yol + Viid - Ay (@g) aud)dx

/ (IVuol? - Ay (@g) aud)dx
RN RN

N

lim inf HunHZ—}ln/au%dx <0,
n—oo
RN

which is impossible. Thus, un — up in X and so

IN

/(|Vuo|2 + Vud - Ay (@) aud)dx
RN
B(uo) <0,

/ (Vuol - A1 (@0) aud)dx
Q

this implies that [,,(|Vuo| - Ay (@q) @oug)dx = 0 and we must have ug = k¢ for some k. But, as B (¢1) < 0,

it follows that k = 0. Therefore, u, — O in X. Next, let v, = W Then by Lemma 2.4, we may assume

that there exists vo € H} (Q)\ {0} such that v, — voin X, vi — voin L’ (]RN) forall2 < r < 2" and
B(vn) — B(vo) . Thus,

lim [ avidx = /av(z)dx. (4.34)
n—oo
RN RN
Clearly,
[ val|? —An/avﬁdx < Ay, 2, (Vn) = [unl ;2 ?B(va) < 0 (4.35)

RN

for n sufficiently large. We now show that v, — v in X. Suppose on the contrary. Then by (4.34) and (4.35),

/ (IVvol? - Ay (@q) Aovd)dx / (Vo> + V3 - Ay (@g) gvd)dx
Q RN

N

lim inf |\vn||2—An/av%dx <0,
n—roo
]RN

and so
/ (V0|2 - Ay (@g) AgvB)dx < O,
0]

which gives a contradiction. Hence vn — v, in X, which indicates that [, |Vvo|?dx = 1 and

/ (V0|2 - Ay (@g) @gvd)dx = O.
Q

Therefore, vy = ¢ . . _
(ii) For any sequence pun — oo, let u(,{) 1= ugz (j = 1, 2) be the solutions obtained in Theorem 1.3 with u,(}n) €
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N+ .1 and u( ) ¢ N, - Similar to the argument of proofs in Lemma 4.4 (ii) and Lemma 4.2 (i) there exists a
p051t1ve constant co is independent of u, such that

|

Therefore, by Lemma 2.4, we may assume that there exist ug) € H}(Q) such that u(,{) — ug) in X and
B ( 5{)) — B ( g)) Now for any ¢ € C7 (Q), because <]y 2 ( U)) ,<p> = 0, it is easy to check that

/Vu(’)Wpdx A/agu (pdx+/ (Ia*
Fo}

/f‘ o)‘ 2p-2 u® pdx,

< Co. (4.36)

N NP2
ug)‘ )’ug)‘ ug)fpdx

that is, u(]) are weak solutions of Eq (PW) by the density of Cg‘j (Q) in H} (Q) . Now, we show that u(,{) — ug)
in X forj = 1, 2. Because <]}’1M (ug)) ,u(n’)> = <]’ A (u(,{)) ,ug)> = 0, we have

Mns
Ju

2 N2
—A/a(ug)) dx+/([a*
Hn
RN Q

u(,{)‘p> ‘ug)‘p dx = /f ‘ug) ’p dx (4.37)
RN

and

<un ,ug) A/aun uo)dx+/ (Ia*

/f’ 0)‘ uPuddx. (4.38)

N2 NP2 N
ug)) >‘ug)‘ u(,{)ug)dx

By (4.36) - (4.38)and u¥) — u? in L" (]RN> forall 2 < r < 2", we have

2 I S 12
= lim <uﬂ),ug)> = lim <ug),ug)> = Hug)H
Un n—oo Un n—oo

On the other hand, the weakly lower semi-continuity of norm yields

n—oo

2 2
Hug)H < liminf ||u¥

n—roo

s

n—eo Hn

and thus, ug) > co > 0, which implies that

(2) # 0. Moreover, by (4.8), there exists ko < 0
(1)> - i
u = inf u) < ko for all n.
]y,,,/l ( n uEN;n,A]yn’A( ) 0

Thus,
]”’A|Hé(_o) (ugl)) < Ko < O,
which implies that u(l) # 0. To complete the proof, it remains to show that u(()l) and uéz) are distinct. That

]H,A|H3(.O) (ugl)) <Ko <Oand],, ,\\Hl(o) (u(() )) > 0 implies that u(l) # u(z) This completes the proof.
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