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Abstract: In this paper we investigate the existence, multiplicity and asymptotic behavior of positive solution
for the nonlocal nonlinear Schrödinger equations. We exploiting the relationship between the Nehari mani-
fold and eigenvalue problems to discuss how the Nehari manifold changes as parameters µ, λ changes and
show how existence, multiplicity and asymptotic results for positive solutions of the equation are linked to
properties of the manifold.
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1 Introduction
In this paper we are concerned with the existence and multiplicity of positive solutions of the nonlocal non-
linear Schrödinger equation{

−∆u + Vµ,λ (x) u +
(
Iα * up

)
|u|p−2 u = f (x) |u|2p−2 u in RN ,

u ∈ H1
(
RN
)
, (Pµ,λ)

where N ≥ 3, N+αN ≤ p < N
N−2 and Iα is the Riesz potential of order 0 < α < min

{
N, 2*

}
(2* = 2N

N−2 ) on the
Euclidean space RN , de�ned for each point x ∈ RN\{0} by

Iα (x) =
Γ
(N−α

2
)

Γ
( α
2
)
πN/22α |x|N−α

with Γ being the Euler gamma function. Throughout this paper, we assume that the parameters µ, λ > 0 and
the functions Vµ,λ := µg − λa and f satisfy the following conditions:
(V1)g is a nonnegative continuous function on RN ;
(V2)there exists c > 0 such that the set {g < c} :=

{
x ∈ RN | g (x) < c

}
is nonempty and has �nite measure;

(V3)Ω = int
{
x ∈ RN | g (x) = 0

}
is nonempty bounded domain and has a smooth boundary with Ω ={

x ∈ RN | g (x) = 0
}
;

(V4)a ∈ LN/2
(
RN
)
∩ L∞

(
RN
)
and

∣∣{x ∈ Ω : a (x) > 0
}∣∣ > 0;

(F1)f ∈ L∞
(
RN
)
and

∣∣{x ∈ Ω : f (x) > 0
}∣∣ > 0.

Remark 1.1. By condition (V4) , the set
{
x ∈ Ω : a (x) > 0

}
has positive Lebesguemeasure, we can assume that

λ1 (aΩ) denote the positive principal eigenvalue of the problem

−∆u(x) = λaΩ(x)u(x) for x ∈ Ω; u(x) = 0 for x ∈ ∂Ω, (1.1)
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where aΩ is a restriction of a on Ω Clearly, λ1 (aΩ) has a corresponding positive principal eigenfunction ϕ1.

In recent years, nonlinear Schrödinger type equation has been widely studied under variant assumptions on
potential g and weight function f . Most of the literature has focused on the equation for g being a positive
potential and f being a positive weight function with satis�es the some assumptions of in�nite limits. More-
over, the conditions (V1) − (V3) imply that µg represents a potential well whose depth is controlled by µ. µg
is called a steep potential well if µ is su�ciently large and one expects to �nd solutions which localize near
its bottom Ω. This problem has found much interest after being �rst introduced by Bartch and Wang [11] in
the study of the existence of positive solutions for nonlinear Schrödinger equations and has been attracting
much attention, see [3, 9, 10, 38, 43] and the references therein. Later, the steep potential well is introduced
to the study of some other types of nonlinear di�erential equations by some researchers, such as nonlocal
nonlinear elliptic equations [18, 24, 33, 34, 45, 46].

When N = 3 and the nonlocal nonlinear term
(
Iα * up

)
|u|p−2 u =

(
I * u2

)
u for α = p = 2. Then Eq. (Pµ,λ)

is the one type of the following nonlocal nonlinear Schrödinger equation:

−∆u + V (x) u + σ(I * u2)u = f (x) |u|2p−2 u in R3, (1.2)

where 1 < p < 3 and the parameter σ > 0. It is easy to know that u is a solution of Eq. (1.2) if and only if (u, ϕ)
is a solution of the following equation:{

−4u + V(x)u + σϕu = f (x) |u|2p−2 u, in R3,
−4ϕ = u2, in R3.

(1.3)

It is well known that Eq. (1.3) is called the Schrödinger–Poisson system, whichwas �rst introduced in [7] as a
physicalmodel describing a chargedwave interactingwith its own electrostatic �eld. Eq. (1.3) also appears in
the electromagnetic �eld, semiconductor theory, nonlinear optics and plasma physics. Due to the important
applications in physics, Eq. (1.3) has been widely studied via modern variational methods under various
hypotheses on the potential function and the nonlinearity; see [2, 4, 16, 23, 30, 31, 35–37] and the references
therein. More precisely, Ruiz [30] obtained the existence, nonexistence and multiplicity of radial positive
solutions for Eq. (1.3) with V = f ≡ 1. It turn out that p = 3

2 is a critical value for the existence of nontrivial
solutions. Ruiz’s approach is based on minimizing the energy functional I associated with Eq. (1.3) on a
certain manifold that is the Nehari–Pohozaev manifold:

Nr = {u ∈ H1
r (R3)\{0} : Q(u) = 0},

where H1
r (R3) consists of radially symmetric functions in H1(R3) and Q(u) = 0 is derived by subtracting the

Pohozaev identity of equations (1.3) from the equation 2〈I(u), u〉 = 0. They proved that when 1 < p < 3/2
and for σ is su�ciently small, Eq. (1.3) has two positive radial solutions v1, v2 with

0 < I (v1) < I (v2) = inf
u∈H1

r (R3)
I (u) < 0.

In recent years, many authors have been studying such topics (existence of two positive solutions which one
of the negative energy), for example, Chen [14], Huang et al. [21, 22] and Shen and Han [32], consider the
following Schrödinger–Poisson system{

−4u + (1 − λh (x)) u + l (x)ϕu = f (x) |u|2p−2 u, in R3,
−4ϕ = l (x) u2, in R3,

(1.4)

where 2 < p < 3, l ∈ L2
(
R3) , f ∈ C (R3) changes sign in R3 and lim|x|→∞ f (x) = f∞ < 0. They proved that

system (1.4) has two positive solutions which one of the negative energy for λ > λ1 (h), where λ1 (h) is the
�rst eigenvalue of −∆ + id in H1 (R3) with nonnegative weight function h ∈ L3/2

(
R3) .

Very recently, it has proven in [36] that the problem (1.3) admits a positive solution when V ≡ 1, 1 < p ≤
2, and σ belongs to a certain interval. To this end, the authors introduced the �ltration of the Nehari manifold
N, that is

N(c) = {u ∈ N : I(u) < c},
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and showed that this setN(c) under the givenassumptions is theunionof twodisjoint nonempty sets, namely,

N(c) = N(1) ∪N(2),

which are both C1 sub-manifolds ofN(c) and natural constraints of I. Moreover,N(1) is bounded such that I is
coercive andboundedbelowon it, whereas I is unboundedbelowonN(2). Moreover, they use the argument of
concentration compactness principle to obtain aminimizer of I onN(1), which is a critical point of I. Actually
the authors also establishedN(2) may not contain any non-zero critical point of I for 1+

√
73

6 < p ≤ 2.
Motivated by the above works [14, 21, 22, 30, 32, 36], in the present article we mainly study the exis-

tence and multiplicity of positive solutions for Eq. (Pµ,λ) can not require conditions f changes sign inR3 and
lim|x|→∞ f (x) = f∞ < 0. Furthermore, the existence of least energy positive solutions with negative energy
and asymptotic behavior of positive solutions are also discussed. Themainmethod of this paper is to consider
minimization on two distinct components of the Nehari manifold corresponding to Eq.

(
Pµ,λ

)
. The approach

to Eq.
(
Pµ,λ

)
has been inspired by the papers of [12, 13, 44]. They used the Neharimanifold and �breringmaps

to study the bifurcation phenomena for a nonlinear elliptic problem on bounded domains or RN . Since Eq.(
Pµ,λ

)
is on RN , its variational setting is characterized by lack of compactness. To overcome this di�culty

we apply a simpli�ed version of the steep well method of [11] and concentration compactness principle of
[27]. Furthermore, the �rst eigenvalue of problem −∆u + µg (x) u = λa (x) u in RN is less than λ1 (aΩ) , which
indicates that the original method at [12, 13, 21] cannot be directly applied, thus we provide an approximation
estimate of eigenvalue to prove that the existence of positive solution for Eq.

(
Pµ,λ

)
when 0 < λ < λ1 (aΩ) .

The �rst result is to establish the existence of least energy positive solutions and the asymptotic behavior
of the solutions for Eq. (Pµ,λ) with 0 < λ < λ1 (aΩ).

Theorem 1.1. For any 0 < λ < λ1 (aΩ) there exists µ̃0 (λ) > 0 with limλ→λ−1(aΩ) µ̃0 (λ) = ∞ such that for every
µ > µ̃0 (λ), Eq. (Pµ,λ) has a least energy positive solution uµ,λ .

Next, we now consider what happens as λ → λ−1 (aΩ) or µ →∞. Let

B (u) := −
∫
RN

(
Iα * |u|p

)
|u|p dx +

∫
RN

f |u|2p dx.

Then we have the following result.

Theorem 1.2. (i) Suppose that B (ϕ1) > 0. Let λn → λ−1 (aΩ) and µn > µ̃0 (λn) be as in Theorem 1.1 and let
un := uµn ,λn be the least energy positive solution of Eq. (Pµn ,λn ) obtained by Theorem 1.1. Then un → 0 in X as
n →∞.
(ii) For 0 < λ < λ1 (aΩ) . Let uµ,λ be the least energy positive solution obtained in Theorem 1.1. Then uµ,λ → u∞λ
in X as µ →∞, where u∞λ ∈ H

1
0(Ω) is a positive solution of{

−∆u − λaΩ (x) u +
(
Iα * up

)
|u|p−2 u = f (x) |u|2p−2 u in Ω,

u = 0, on ∂Ω. (P∞)

The second result is to establish the existence of multiple positive solutions for Eq. (Pµ,λ) with λ > λ1 (aΩ).

Theorem 1.3. Suppose that B (ϕ1) < 0. Then there exists δ0 > 0 such that for any λ1 (aΩ) < λ < λ1 (aΩ) + δ0
and for µ enough large, Eq.

(
Pµ,λ

)
has two positive solutions u(1)µ,λ and u

(2)
µ,λ with u(1)µ,λ is negative energy and u(2)µ,λ

is positive energy. Furthermore, u(1)µ,λ is the least energy positive solution of Eq.
(
Pµ,λ

)
.

Finally, we investigate the nature of least energy positive solution u(1)µ,λ as λ → λ+1 (aΩ) and µ → ∞. As men-
tioned in the introduction a curve of positive solutions bifurcates to the right at λ1 (aΩ) when B (ϕ1) < 0 and
µ su�ciently large. The following theorem implies that u(1)µ,λ will lie on this branch and the concentration of
of the solutions for Eq. (Pµ,λ) with λ > λ1 (aΩ) .
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Theorem 1.4. (i) Suppose that B (ϕ1) < 0. Let λn → λ+1 (aΩ) and µn → ∞ be as in Theorem 1.3 and let
u(1)n := u(1)µn ,λn be the least energy positive solutions of Eq. (Pµn ,λn ) obtained by Theorem 1.3. Then

un → 0 ; un
‖un‖µn

→ ϕ1 in X as n →∞.

(ii) For λ1 (aΩ) < λ < λ1 (aΩ) + δ0. Let u(j)µ,λ (j = 1, 2) be the positive solutions obtained in Theorem 1.3. Then
u(j)µ,λ → u(j),∞λ in X as µ →∞, where u(j),∞λ ∈ H1

0(Ω) are positive solutions of Eq. (P∞) .

Remark 1.2. In fact, our method can also be applied to the Choquard equation involving nonautonomous per-
turbation: {

−∆u + Vµ,λ (x) u =
(
Iα * up

)
|u|p−2 u + f (x) |u|2p−2 u in RN ,

u ∈ H1
(
RN
)
, (Cµ,λ)

and obtain the same conclusions as all the previous theorems under the same hypotheses and in addition f is
change sign in Ω. Since the proofs are similarly, and so we leave it to the reader to check. Some progress on the
existence of positive solutions to Eq.

(
Cµ,λ

)
, can be refer to [40, 41].

The plan of the paper is as follows. In Section 2, some preliminary results are presented and we discuss the
Nehari manifold and examine carefully the connection between the Nehari manifold and the �brering maps.
In Section 3, we discuss the Nehari manifold when λ < λ1 (aΩ) . In particular, we prove that Theorems 1.1, 1.2.
In Section 4, we discuss the case when λ > λ1 (aΩ) . In particular, we prove that Theorems 1.3, 1.4.

Throughout this paper we denote a strong convergence by “→” and a weak convergence by “⇀”.

2 Variational setting and Preliminaries
In this section, we give the variational setting for Eq.

(
Pµ,λ

)
. Let

X =

u ∈ H1
(
RN
)
|
∫
RN

gu2dx < ∞


be equipped with the inner product and norm

〈u, v〉 =
∫
RN

∇u∇v + guvdx, ‖u‖ = 〈u, u〉1/2 .

For µ > 0, we also need the following inner product and norm

〈u, v〉µ =
∫
RN

∇u∇v + µguvdx, ‖u‖µ = 〈u, u〉
1/2
µ .

It is clear that ‖·‖ ≤ ‖·‖µ for µ ≥ 1 and set Xµ =
(
X, ‖·‖µ

)
. It follows from conditions (V1) and (V2) and the

Hölder and Sobolev inequalities that we have∫
RN

(
|∇u|2 + u2

)
dx =

∫
RN

|∇u|2 dx +
∫

{g<c}

u2dx +
∫

{g≥c}

u2dx

≤
(
1 + |{g < c}|

2
N S−2

)∫
RN

|∇u|2 dx + 1
c

∫
RN

gu2dx

≤ max
{
1 + |{g < c}|

2
N S−2, 1c

}∫
RN

(
|∇u|2 dx + gu2

)
dx,
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this implies that the imbedding X ↪→ H1
(
RN
)
is continuous, where the set {g ≥ c} :=

{
x ∈ RN | g (x) ≥ c

}
.

Moreover, using conditions (V1) and (V2) , and the Hölder and Sobolev inequalities again, we have for any
r ∈
[
2, 2*

]
,

∫
RN

|u|r dx ≤

 ∫
{g≥c}

u2dx +
∫

{g<c}

u2dx


2*−r
2*−2
S− 2N

N−2

∫
RN

|∇u|2 dx

 N
N−2


r−2
2*−2

≤

 1
µc

∫
RN

µ0gu2dx + |{g < c}|
2
N S−2

∫
RN

|∇u|2 dx

 2*−r
2*−2 (

S−
2N
N−2 ‖u‖

2N
N−2
µ

) r−2
2*−2

≤ |{g < c}|
2*−r
2*

Sr ‖u‖rµ for µ ≥ µ0 := S2c−1 |{g < c}|−
2
N , (2.1)

where, S the best constant for the embedding of D1,2(RN) in L2* (RN). Moreover, if we assume that u ∈
L

2Np
N+α

(
RN
)
, then by the Hardy–Littlewood–Sobolev inequality ( see [20, 25, 26]) to the function |u|p ∈

L
2N
N+α

(
RN
)
, we obtain, in view of the Hölder inequality and (2.1) ,

∫
RN

(
Iα * |u|p

)
|u|p dx ≤

∫
RN

∣∣Iα * |u|p∣∣ 2N
N−α dx

 N−α
2N
∫
RN

|u|
2Np
N+α dx

 N+α
2N

≤ CN,α, 2N
N+α

∫
RN

|u|
2Np
N+α dx

 N+α
N

(2.2)

≤
CN,α, 2N

N+α
|{g < c}|1−

p(N−2)
N+α

S
2Np
N+α

‖u‖2pµ , (2.3)

where

CN,α, 2N
N+α

=
Γ
(N−α

2
)

2απα/2Γ
(N+α

2
) ( Γ (N2 )Γ (N)

)α/N
.

We use the variational methods to �nd positive solutions of Eq.
(
Pµ,λ

)
. Associated with the Eq.

(
Pµ,λ

)
, we

consider the energy functional Jµ,λ : X → RN

Jµ,λ (u) =
1
2Aµ,λ (u) −

1
2p B (u) ,

where
Aµ,λ (u) := ‖u‖2µ − λ

∫
RN

au2dx

and
B (u) := −

∫
RN

(
Iα * |u|p

)
|u|p dx +

∫
RN

f |u|2p dx.

Because the energy functional Jµ,λ is not bounded below on X, it is useful to consider the functional on the
Nehari manifold (see [29])

Nµ,λ =
{
u ∈ X \ {0} |

〈
J′µ,λ (u) , u

〉
= 0
}
.

Thus, u ∈ Nµ,λ if and only if
Aµ,λ (u) − B (u) = 0.

Hence, if u ∈ Nµ,λ, then

Jµ,λ(u) =
(
1
2 −

1
2p

)
Aµ,λ (u) =

(
1
2 −

1
2p

)
B (u) .
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Note that Nµ,λ contains every nonzero solution of Eq.
(
Pµ,λ

)
. It is useful to understand Nµ,λ in terms of the

stationary points of mappings of the form hu(t) = Jµ,λ(tu)(t > 0). Such a map is known as the �brering map.
It was introduced by Drábek and Pohozaev [17], and further discussed by Brown and Zhang [12]. It is clear
that, if u is a local minimizer of Jµ,λ, then hu has a local minimum at t = 1. Moreover, tu ∈ Nµ,λ if and only
if h′u(t) = 0 for u ∈ X \ {0}. Thus, points in Nµ,λ correspond to stationary points of the maps hu and so it
is natural to divide Nµ,λ into three subsets N+

µ,λ, N−µ,λ and N0
µ,λ corresponding to local minima, local maxima

and points of in�exion of �brering maps. We have

h′u(t) = tAµ,λ (u) − t2p−1B (u) (2.4)

and
h′′u (t) = Aµ,λ (u) − (2p − 1) t2p−2B (u) .

Hence if we de�ne

N+
µ,λ =

{
u ∈ Nµ,λ : Aµ,λ (u) − (2p − 1) B (u) > 0

}
;

N0
µ,λ =

{
u ∈ Nµ,λ : Aµ,λ (u) − (2p − 1) B (u) = 0

}
;

N−µ,λ =
{
u ∈ Nµ,λ : Aµ,λ (u) − (2p − 1) B (u) < 0

}
,

which indicates that for u ∈ Nµ,λ, we have h′u(1) = 0 and u ∈ N+
µ,λ ,N0

µ,λ ,N
−
µ,λ if h′′u (1) > 0, h′′u (1) = 0, h′′u (1) <

0, respectively. Moreover, it is easy to show that

N+
µ,λ =

{
u ∈ Nµ,λ : Aµ,λ (u) − (2p − 1) B (u) > 0

}
=
{
u ∈ Nµ,λ : (2p − 2) B (u) < 0

}
=
{
u ∈ Nµ,λ : B (u) < 0

}
.

Similarly,
N−µ,λ =

{
u ∈ Nµ,λ : B (u) > 0

}
and

N0
µ,λ =

{
u ∈ Nµ,λ : B (u) = 0

}
.

Moreover, by (2.4), if Aµ,λ (u) and B (u) have the same sign, then hu has exactly one turning point at

t(u) =
[Aµ,λ (u)
B (u)

] 1
2p−2

(2.5)

and if Aµ,λ (u) and B (u) have opposite signs, then hu has no turning points. Thus, if Aµ,λ (u) , B (u) > 0, then
hu(t) > 0 for t small and positive but hu(t) → −∞ as t → ∞; also hu(t) has a unique (maximum) stationary
point at t(u) and t(u)u ∈ N−µ,λ. Similarly, if Aµ,λ (u) , B (u) < 0, hu(t) < 0 for t small and positive, hu(t)→∞as
t →∞and hu(t) has a unique minimum at t(u) so that t(u)u ∈ N+

µ,λ. Finally, if Aµ,λ (u) B (u) < 0, hu is strictly
increasing (resp. decreasing) for all t > 0. Thus, we have the following results.

Lemma 2.1. If u ∈ X\{0}, then
(i) a multiple of u lies is N−µ,λ if and only if Aµ,λ (u) , B (u) > 0;
(ii) a multiple of u lies is N+

µ,λ if and only if Aµ,λ (u) , B (u) < 0;
(iii) when Aµ,λ (u) B (u) < 0, no multiple of u lies in Nµ,λ .

The following Lemma shows that minimizers on Nµ,λ are critical points for Jµ,λ in X.

Lemma 2.2. Suppose that u0 is a local minimizer for Jµ,λ on Nµ,λ and that u0 ∈ ̸ N0
µ,λ. Then J

′
µ,λ(u0) = 0.

Proof. Theproof of Lemma2.2 is essentially sameas that inBrownandZhang [12, Theorem2.3] (or seeBinding
et al. [5]), so we omit it here.
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In order to prove main results, we will use a special case of the classical Brezis–Lieb lemma [8] for Riesz
potentials.

Lemma 2.3. (Brezis–Lieb lemma for the Riesz potential [28, Lemma 2.4]). Let {un} be a bounded sequence in
L2(RN). If un → u a.e. in RN , then∫

RN

(
Iα * |un − u|p

)
|un − u|p dx =

∫
RN

(
Iα * |un|p

)
|un|p dx −

∫
RN

(
Iα * |u|p

)
|u|p dx + o (1) .

We need the following result.

Lemma 2.4. Let µn → ∞ as n → ∞ and {vn} ⊂ X with ‖vn‖µn ≤ c0 for some c0 > 0. Then there exist
subsequence {vn} and v0 ∈ H1

0 (Ω) such that vn ⇀ v0 in X and vn → v0 in Lr
(
RN
)
for all 2 ≤ r < 2* and

B (vn)→ B (v0) .

Proof. Since ‖vn‖ ≤ ‖vn‖µn ≤ c0. We may assume that there exists v0 ∈ X such that

vn ⇀ v0 in X,
vn → v0 a.e. in RN ,
vn → v0 in Lrloc

(
RN
)

for 2 ≤ r < 2*.

By Fatou’s Lemma, we have ∫
RN

gv20dx ≤ lim inf
n→∞

∫
RN

gv2ndx ≤ lim inf
n→∞

‖vn‖2µn
µn

= 0,

this implies that
∫
RN gv

2
0dx = 0 or v0 = 0 a.e. inRN \Ω and v0 ∈ H1

0 (Ω) by condition (V3) . We now show that
vn → v0 in Lr

(
RN
)
. Suppose on the contrary. Then by Lions vanishing lemma (see [27, Lemma I.1] or [42,

Lemma 1.21]), there exist d0 > 0, R0 > 0 and xn ∈ RN such that∫
BN (xn ,R0)

(vn − v0)2 dx ≥ d0.

Moreover, xn →∞, and hence,
∣∣∣B (xn , R0) ∩ {x ∈ RN : g < c

}∣∣∣→ 0. By the Hölder inequality, we have∫
B(xn ,R0)∩{g<c}

(vn − v0)2 dx → 0.

Consequently,

c0 ≥ ‖vn‖2µn ≥ µnc
∫

B(xn ,R0)∩{g≥c}

v2ndx = µnc
∫

B(xn ,R0)∩{g≥c}

(vn − v0)2 dx

= µnc

 ∫
B(xn ,R0)

(vn − v0)2 dx −
∫

B(xn ,R0)∩{g<c}

(vn − v0)2 dx + o(1)


→ ∞,

which a contradiction. Thus, vn → v0 in Lr
(
RN
)

for all 2 ≤ r < 2*. Moreover, by (2.2) and Lemma 2.3,
B (vn)→ B (v0) , since 2 ≤ 2Np

N+α < 2*. This completes the proof.

Next, we consider the following eigenvalue problem

−∆u(x) + µg (x) u (x) = λa(x)u(x) for x ∈ RN . (2.6)
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We can approach this problem by a direct method and attempt to obtain nontrivial solutions of problem (2.6)
as relative minima of the functional

Iµ (u) =
1
2

∫
RN

|∇u|2 + µgu2dx,

on the unit sphere in B =
{
u ∈ X :

∫
RN au

2dx = 1
}
. Equivalently, we may seek to minimize a quotient as

follows

λ̃1,µ (a) = inf
u∈X\{0}

∫
RN |∇u|

2 + µgu2dx∫
RN au2dx

. (2.7)

Then, by (2.1) , ∫
RN |∇u|

2 + µgu2dx∫
RN au2dx

≥ S2

‖a‖∞ |{g < c}|
2
N

for all µ ≥ µ0,

this implies that λ̃1,µ (a) ≥ S2

‖a‖∞|{g<c}|
2
N
> 0. Moreover, by condition (V3) ,

inf
u∈X\{0}

∫
RN |∇u|

2 + µgu2dx∫
RN au2dx

≤ inf
u∈H1

0(Ω)\{0}

∫
RN |∇u|

2 + µgu2dx∫
RN au2dx

= inf
u∈H1

0(Ω)\{0}

∫
Ω |∇u|

2∫
Ω aΩu2dx

,

which indicates that λ̃1,µ (a) ≤ λ1 (aΩ) for all µ > 0. Then we have the following results.

Lemma 2.5. For each µ > µ0 there exists a positive function φµ ∈ X with
∫
RN aφ

2
µdx = 1 such that

λ̃1,µ (a) =
∫
RN

|∇φµ|2 + µgφ2
µdx < λ1 (aΩ) .

Furthermore, λ̃1,µ (a) → λ−1 (aΩ) and φµ → ϕ1 as µ → ∞, where ϕ1 is positive principal eigenfunction of
problem (1.1) .

Proof. Let {un} ⊂ X with
∫
RN au

2
ndx = 1 be a minimizing sequence of (2.7) , that is∫
RN

|∇un|2 + µgu2ndx → λ̃1,µ (a) as n →∞.

Since λ̃1,µ (a) ≤ λ1 (aΩ) for all µ ≥ 0, there exists C0 > 0 independent of µ such that ‖un‖µ ≤ C0. Thus, there
exist a subsequence {un} and φµ ∈ X such that

un ⇀ φµ in Xµ ,
un → φµ a.e. in RN ,

un → φµ in Lrloc
(
RN
)

for 2 ≤ r < 2*.

Moreover, by condition (V4) , ∫
RN

au2ndx →
∫
RN

aφ2
µdx = 1.

Now we show that un → φµ in Xµ . Suppose on the contrary. Then∫
RN

|∇φµ|2 + µgφ2
µdx < lim inf

n→∞

∫
RN

|∇un|2 + µgu2ndx = λ̃1,µ (a) ,

which is impossible. Thus, un → φµ in Xµ , which implies that
∫
RN aφ

2
µdx = 1 and

∫
RN |∇φµ|

2 + µgφ2
µdx =

λ̃1,µ (a) . Since |φµ| ∈ X and

λ̃1,µ (a) =
∫
RN

|∇φµ|2 + µgφ2
µdx =

∫
RN

|∇ |φµ||2 + µg |φµ|2 dx,
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by the maximum principle, we may assume that φµ is positive eigenfunction of problem
(
Pµ
)
. Moreover,

by the Harnack inequality due to Trudinger [39], we must have λ̃1,µ (a) < λ1 (aΩ) . Now, by the de�nition of
λ̃1,µ (a), there holds λ̃1,µ1 (a) ≤ λ̃1,µ2 (a) for µ1 < µ2. Hence, for any sequence µn → ∞, let φn := φµn be the
minimizer of λ1,µn (a). Then

∫
RN aφ

2
ndx = 1 and

λ̃1,µn (a) =
∫
RN

|∇φn|2 + µngφ2
ndx ≤ λ1 (aΩ) ,

that
λ̃1,µn (a)→ d0 ≤ λ1 (aΩ) for some d0 > 0

and
‖φn‖ ≤ ‖φn‖µn ≤

√
λ1 (aΩ), for n su�ciently large.

Thus, by Lemma 2.4, we may assume that there exists φ0 ∈ H1
0 (Ω) such that φn ⇀ φ0 in X and φn → φ0 in

Lr
(
RN
)
for all 2 ≤ r < 2*. Then∫

Ω

|∇φ0|2 dx ≤ lim inf
n→∞

∫
RN

|∇φn|2 + µngφ2
ndx = d0

and
lim
n→∞

∫
RN

aφ2
ndx =

∫
Ω

aΩφ2
0dx = 1.

Since d0 ≤ λ1 (aΩ) and λ1 (aΩ) is positive principal eigenvalue of problem (1.1) . Thus, we must has∫
Ω |∇φ0|2 dx = λ1 (aΩ) and φ0 = ϕ1 a positive principal eigenfunction of problem (1.1) , which completes

the proof.

3 The Proof of Theorems 1.1, 1.2 (λ < λ1 (aΩ))
First, we investigate the behavior of Jµ,λ on N−µ,λ .

Lemma 3.1. For each 0 < λ < λ1 (aΩ) there exists µ0 (λ) ≥ µ0 with limλ→λ−1(aΩ) µ0 (λ) = ∞ such that for every
µ > µ0 (λ) , we have
(i) Nµ,λ = N−µ,λ;
(ii) the energy functional Jµ,λ is coercive and bounded below onN−µ,λ . Furthermore, there exists d0 > 0 such that

inf
u∈N−µ,λ

Jµ,λ(u) ≥
(p − 1)

(
λ̃1,µ (a) − λ

)
2pλ1,µ (a)

d1/(p−1)0 > 0 (3.1)

for all u ∈ N−µ,λ .

Proof. (i) By Lemma 2.5, for each 0 < λ < λ1 (aΩ) there exists µ0 (λ) ≥ µ0 such that for every µ > µ0 (λ) , there
holds λ < λ̃1,µ (a) ≤ λ1 (aΩ) , which indicates that

Aµ,λ (u) = ‖u‖2µ − λ
∫
RN

au2dx ≥
λ̃1,µ (a) − λ
λ̃1,µ (a)

‖u‖2µ > 0 for all u ∈ X\ {0} . (3.2)

Thus, by Lemma 2.1, the submanifolds N+
µ,λ and N0

µ,λ are empty and so Nµ,λ = N−µ,λ .
(ii) By (2.1) and (3.2) , for each µ > µ0 (λ) and u ∈ N−µ,λ , we obtain

λ̃1,µ (a) − λ
λ̃1,µ (a)

‖u‖2µ ≤ Aµ,λ (u) < (2p − 1) B (u)

≤ (2p − 1) ‖f‖∞ |{g < c}|
2*−2p
2* S−2p ‖u‖2pµ ,
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which indicates that

‖u‖µ ≥ d0 :=

 Sp
(
λ̃1,µ (a) − λ

)
(2p − 1) λ̃1,µ (a) ‖f‖∞ |{g < c}|

2*−2p
2*

1/(2p−2)

.

Thus,

Jµ,λ(u) =
p − 1
2p Aµ,λ (u) ≥

(p − 1)
(
λ̃1,µ (a) − λ

)
2pλ̃1,µ (a)

d1/(p−1)0 > 0,

this implies that the energy functional Jµ,λ is coercive and bounded below onN−µ,λ . This completes the proof.

We now show that there exists a minimizer on N−µ,λ which is a critical point of Jµ,λ(u) and so a nontrivial
solution of Eq.

(
Pµ,λ

)
. First, we de�ne

cλ(Ω) = inf
u∈Mµ,λ(Ω)

Jµ,λ|H1
0(Ω)(u),

where
Mµ,λ(Ω) = {u ∈ H1

0(Ω) :
〈
J′µ,λ|H1

0(Ω) (u) , u
〉
= 0}.

Note that

Jµ,λ|H1
0(Ω)(u) = 1

2

∫
Ω

|∇u|2 dx −
∫
Ω

λaΩu2dx


− 1
2p

−∫
Ω

(
Iα * |u|p

)
|u|p dx +

∫
Ω

f |u|2p dx

 ,

a restriction of Jµ,λ on H1
0(Ω), and cλ(Ω) independent of µ. Since 0 < λ < λ1 (aΩ) , similar to the argument of

(3.1), we can conclude that Jµ,λ|H1
0(Ω) is bounded below onMµ,λ(Ω). Moreover, H1

0(Ω) ⊂ Xµ for all µ > 0, one
can see that

0 < η ≤ inf
u∈N−µ,λ

Jµ,λ(u) ≤ cλ(Ω) for all µ ≥ µ0.

Taking D0 > cλ(Ω). Then we have

0 < η ≤ inf
u∈N−µ,λ

Jµ,λ(u) ≤ cλ(Ω) < D0 (3.3)

for all µ ≥ µ0. Furthermore, we have the following results.

Theorem 3.2. For each 0 < λ < λ1 (aΩ) there exists µ̃0 (λ) ≥ µ0 (λ) such that Jµ,λ has a minimizer on N−µ,λ for
all µ > µ̃0 (λ) .

Proof. By Lemma 3.1 and the Ekeland variational principle [19], for each µ > µ0 (λ) there exists a minimizing
sequence {un} ⊂ N−µ,λ such that

lim
n→∞

Jµ,λ(un) = inf
u∈N−µ,λ

Jµ,λ(u) > 0 and J′µ,λ(un) = o (1) .

Since infu∈N−µ,λ Jµ,λ(u) < D0, again using Lemma 3.1, there exists C0 > 0 such that ‖un‖µ ≤ C0. Thus, there
exist a subsequence {un} and u0 ∈ X such that Jµ,λ(u0) ≥ 0, J′µ,λ(u0) = 0 and

un ⇀ u0 in Xµ ,
un → u0 a.e. in RN , (3.4)
un → u0 in Lrloc

(
RN
)

for 2 ≤ r < 2*.
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Then by condition (V4) ,
lim
n→∞

∫
RN

au2ndx =
∫
RN

au20dx. (3.5)

Moreover, follows from Brezis–Lieb lemma [8] and Lemma 2.3 obtain that

B (un − u0) = B (un) − B (u0) + o(1). (3.6)

Now we show that un → u0 in Xµ . Let vn = un − u0. Then vn ⇀ 0 in Xµ . By the Sobolev and Gagliardo–
Nirenberg inequalities, for any µ > µ0 (λ) we have that∫

RN

v2ndx ≤
1
µc

∫
{g≥c}

µgv2ndx +
∫

{g<c}

v2ndx ≤
1
µc ‖vn‖

2
µ + o (1)

and

∫
RN

|vn|2p dx ≤ C0
(

1
µc ‖vn‖

2
µ

) 2*−2p
2*−2

∫
RN

|∇vn|2 dx


2*(p−1)
2*−2

+ o (1)

≤ C0
(

1
µc

) 2*−2p
2*−2
‖vn‖2pµ + o (1)

or ∫
RN

|vn|2p dx ≤ Πµ ‖vn‖2pµ + o(1), (3.7)

where Πµ = C0
(

1
µc

) 2*−2p
2*−2 . Thus, using (3.4) − (3.6) gives

Jµ,λ (vn) = Jµ,λ (un) − Jµ,λ (u0) + o (1) and
〈
J′µ,λ(vn), vn

〉
= o(1). (3.8)

Consequently, by (3.5) , (3.6) , (3.8) and Lemma 3.1, one has

D0 ≥ inf
u∈N−µ,λ

Jµ,λ(u) − Jµ,λ (u0) ≥ Jµ,λ (vn) −
1
2p
〈
J′µ,λ(vn), vn

〉
+ o (1)

≥
(p − 1)

(
λ̃1,µ (a) − λ

)
2pλ̃1,µ (a)

‖vn‖2µ + o(1),

which shows that there exists a constant C1 > 0 such that

‖vn‖µ ≤ C1 + o (1) for λ > µ0 (λ) . (3.9)

Since 1 < N+α
N < p < 2*α, it follows from (3.5) , (3.7) and (3.9) that

o (1) =
〈
J′µ,λ(vn), vn

〉
≥ ‖vn‖2µ

(
1 − ‖f‖∞ Πµ ‖vn‖

2p−2
µ

)
+ o(1)

≥ ‖vn‖2µ
(
1 − ‖f‖∞ ΠµC

2p−2
1

)
+ o (1) . (3.10)

Notice that Πµ → 0 as µ → ∞. Then by (3.10) , there exists µ̃0 (λ) ≥ µ0 (λ) such that for µ > µ̃0 (λ) , there
holds vn → 0 in Xµ . Hence un → u0 in Xµ and so

Jµ,λ(u0) = lim
n→∞

Jµ,λ(un) = inf
u∈N−µ,λ

Jµ,λ(u),

which indicates that u0 is a minimizer on N−µ,λ. This completes the proof.
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We are now ready to prove Theorem 1.1: By Theorem 3.2, Jµ,λ has a minimizer u0 on N−µ,λ for all µ > µ̃0 (λ) .
Since B (u0) > 0 and u0 ∉ N0

µ,λ , by Lemma 2.2, u0 is a critical point of Jµ,λ . Since Jµ,λ(|u|) = Jµ,λ(u), then
without loss of generality we may assume that u0 is positive. This completes the proof.

Next, we now consider what happens as λ → λ−1 (aΩ) or µ → ∞. As might be expected from the intro-
duction the sign of B (ϕ1) plays an important role. We conclude the following results by considering the case
where B (ϕ1) > 0.

Theorem 3.3. Suppose that B (ϕ1) > 0. Then

lim
λ→λ−1(aΩ)

inf
u∈N−µ,λ

Jµ,λ(u) = 0.

Proof. We may assume without loss of generality that ‖ϕ1‖µ = 1. For 0 < λ < λ1 (aΩ) , we must have that
Aµ,λ (ϕ1) > 0, which implies that Aµ,λ (ϕ1) , B (ϕ1) > 0 for all µ > µ0 (λ) . Hence t(ϕ1)ϕ1 ∈ N−µ,λ , where

t(ϕ1) =
(∫

RN (|∇ϕ1|2dx − λaϕ2
1)dx

B (ϕ1)

)1/(2p−2)

=
(
(λ1 (aΩ) − λ)

∫
RN aϕ

2
1dx

B (ϕ1)

)1/(2p−2)

> 0.

Thus,

Jµ,λ(t(ϕ1)ϕ1) =
p − 2
2p

[
(λ1 (aΩ) − λ)

∫
RN aϕ

2
1dx

]p/(p−1)
B (ϕ1)1/(p−1)

→ 0 as λ → λ−1 (aΩ) .

Since 0 < infu∈N−µ,λ Jµ,λ(u) ≤ Jµ,λ(t(ϕ1)ϕ1), it follows that limλ→λ−1(a) infu∈N−µ,λ Jµ,λ(u) = 0. This completes the
proof.

Next, we are ready to prove Theorem 1.2: (i) Since λn → λ−1 (aΩ) and µ̃0 (λn) → ∞ as n → ∞, we have
µn → ∞ as n → ∞. Firstly, we show that {un} is bounded. Suppose on the contrary. Then we may assume
without loss of generality that ‖un‖µn →∞as n →∞. Let vn = un

‖un‖µn
. Since ‖vn‖µn = 1, by Lemma 2.4, there

exist subsequence {vn} and v0 ∈ H1
0 (Ω) such that vn → v0 in Lr

(
RN
)
for 2 ≤ r < 2* and B (vn) → B (v0) .

Hence
lim
n→∞

∫
RN

av2ndx =
∫
RN

av20dx.

By Theorem 3.3,

Jµn ,λn (un) =
p − 2
2p

‖un‖2µn − λn ∫
RN

au2ndx

 = p − 22p B (un)→ 0 as n →∞,

dividing by ‖un‖2µn it is easy to see that

lim
n→∞

‖vn‖2µn − λn ∫
RN

av2ndx

 = 0

and
lim
n→∞

‖un‖2p−2µn B (vn) = 0.

Thus,
lim
n→∞

λn
∫
RN

av2ndx = λ1 (aΩ)
∫
RN

av20dx = 1
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and
lim
n→∞

B (vn) = B (v0) = 0.

Now, we show that
lim
n→∞

∫
RN

|∇vn|2dx =
∫
RN

|∇v0|2dx.

If not, then we may assume that

0 ≤
∫
RN

(|∇v0|2 − λ1 (aΩ) av20)dx < lim inf
n→∞

‖vn‖2µn − λn ∫
RN

av2ndx

 = 0

which is impossible. Thus, we must have

∫
Ω

(|∇v0|2 − λ1 (aΩ) av20)dx = lim
n→∞

‖vn‖2µn − λn ∫
RN

av2ndx

 = 0,

and so v0 = kϕ1 for some k. Since B (v0) = |k|2p B (ϕ1) = 0 and B (ϕ1) > 0, it follows that k = 0. But, as∫
RN av

2
0dx ≠ 0, this is impossible. Hence {un} is bounded. By Lemma 2.4, we may assume that there exists

u0 ∈ H1
0 (Ω) such that

lim
n→∞

∫
RN

au2ndx =
∫
RN

au20dx and lim
n→∞

B (un) = B (u0) .

Moreover, by Theorem 3.3,

Jµn ,λn (un) =
p − 1
2p Aµn ,λn (un) =

p − 2
2p B (un)→ 0 as n →∞,

which indicates that
lim
n→∞

B (un) = B (u0) = 0.

Since
0 ≤

∫
RN

(|∇u0|2 − λ1 (aΩ) au20)dx ≤ lim inf
n→∞

Aµn ,λn (un) = 0,

and so u0 = kϕ1 for some k. Since B (u0) = |k|2p B (ϕ1) = 0 and B (ϕ1) > 0, it follows that k = 0 and u0 ≡ 0.
Therefore, un → 0 in X.
(ii) Herewe follow the argument in [9] (or see [45]) to investigate the concentration for positive solutions of Eq.(
Pµ,λ

)
. For any sequence µn →∞, let un := uµn ,λ be the positive solutions of Eq.

(
Pµn ,λ

)
obtained in Theorem

1.1. By Lemma 3.1 there exists a positive constants c0 and C0 are independent of µn such that ‖un‖µn ≤ c0 and
Jµn ,λ (un) ≥ C0.Therefore, by Lemma 2.4, we may assume that there exists u0 ∈ H1

0 (Ω) such that un ⇀ u0 in
X and un → u0 in Lr

(
RN
)
for all 2 ≤ r < 2*. Now for any φ ∈ C∞0 (Ω), because

〈
J′µn ,λ (un) , φ

〉
= 0, it is easy

to check that ∫
Ω

∇u0∇φdx = λ
∫
Ω

aΩu0φdx +
∫
Ω

f |u0|p−2 u0φdx,

that is, u0 is a weak solution of Eq. (P∞) by the density of C∞0 (Ω) in H1
0 (Ω) . Now, we show that un → u0 in

X. Because
〈
J′µn ,λ (un) , un

〉
=
〈
J′µn ,λ (un) , u0

〉
= 0, we have

‖un‖2µn = λ
∫
RN

a (un)2 dx +
∫
RN

f |un|p dx (3.11)

and
〈un , u0〉µn = λ

∫
RN

aunu0dx +
∫
RN

f |un|p−2 unu0dx. (3.12)
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By (3.11) , (3.12) and un → u0 in Lr
(
RN
)
for all 2 ≤ r < 2*, we have

lim
n→∞

‖un‖2µn = lim
n→∞

〈un , u0〉µn = lim
n→∞

〈un , u0〉 = ‖u0‖2 .

On the other hand, the weakly lower semi-continuity of norm yields

‖u0‖2 ≤ lim inf
n→∞

‖un‖2 ≤ lim
n→∞

‖un‖2µn ,

and thus, un → u0 in X. Moreover, by Jµn ,λ (un) ≥ C0 > 0, one has u0 ≠ 0, which completes the proof.

4 The Proof of Theorems 1.3, 1.4 (λ > λ1 (aΩ))
If λ > λ1 (aΩ), then

Aµ,λ (ϕ1) =
∫
RN

(|∇ϕ1|2 − λaϕ2
1)dx = (λ1 (aΩ) − λ)

∫
RN

aϕ2
1dx < 0 for all µ > 0.

Hence, if B (ϕ1) < 0, then by Lemma 2.1, N+
µ,λ ≠ ∅. Thus, as well shall see, Nµ,λ may consist of two distinct

components in this case which makes it possible to prove the existence of at least two positive solutions by
showing that Jµ,λ has an appropriate minimizer on each component.

If λ is just greater than λ1 (aΩ), then roughly speaking ‖u‖2µ ≤ λ
∫
RN au

2dx if and only if u is almost a
multiple of ϕ1 for µ enough large. Thus, if B (ϕ1) < 0, it should follow that does not there exists u ∈ X\ {0}
such thatAµ,λ (ϕ1) ≤ 0 andB (ϕ1) ≥ 0. This ismadeprecise in the following lemmaandwe showsubsequently
that N0

µ,λ = ∅ (or Nµ,λ = N+
µ,λ ∪ N

−
µ,λ) is an important condition for establishing the existence of minimizers.

Let
Aµ,λ =

{
u ∈ X\ {0} : Aµ,λ (u) ≤ 0

}
and

Bµ,λ = {u ∈ X\ {0} : B (u) ≥ 0} .

Then we have

Lemma 4.1. Suppose that B (ϕ1) < 0. Then there exist δ0 > 0 and µ̂0 ≥ µ0 such that Aµ,λ ∩ Bµ,λ = ∅ for all
λ1 (aΩ) < λ < λ1 (aΩ) + δ0 and µ > µ̂0. In particular, N0

µ,λ = ∅ for all λ1 (aΩ) < λ < λ1 (aΩ) + δ0 and µ > µ̂0.

Proof. Suppose that the result is false. Then there exist sequences {µn}, {λn} and {wn} ⊂ X\ {0} with λn →
λ+1 (aΩ) and µn →∞ such that

Aµn ,λn (wn) = ‖wn‖
2
µn − λn

∫
RN

aw2
ndx ≤ 0

and

B (wn) =

−∫
RN

(
Iα * |wn|p

)
|wn|p dx +

∫
RN

f |wn|2pdx

 ≥ 0.
Let un = wn

‖wn‖µn
. Since ‖un‖ ≤ ‖un‖µn = 1, by Lemma 2.4, we may assume that there exists u0 ∈ H1

0 (Ω) such

that un → u0 a.e. in RN , un → u0 in Lr
(
RN
)
for all 2 ≤ r < 2* and B (un)→ B (u0) . Then

lim
n→∞

λn
∫
RN

au2ndx = λ+1 (aΩ)
∫
RN

au20dx ≥ 1. (4.1)
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Now, we show that limn→∞
∫
Ω |∇un|

2dx =
∫
Ω |∇u0|

2dx. Suppose on the contrary. Then by (4.1) ,∫
Ω

(
|∇u0|2 − λ1 (aΩ) aΩu20

)
dx =

∫
RN

(
|∇u0|2 − λ1 (aΩ) au20

)
dx

< lim inf
n→∞

‖un‖2µn − λn ∫
RN

au2ndx

 ≤ 0,
which is impossible. Hence limn→∞

∫
Ω |∇un|

2dx =
∫
Ω |∇u0|

2dx. It follows that

(I)
∫
Ω

(|∇u0|2 − λ1 (aΩ) aΩu20)dx ≤ 0, (II) B (u0) ≥ 0.

But (I) implies that u0 = kϕ1 for some k and then (II) implies that k = 0 which is impossible as
λ+1 (aΩ)

∫
RN au

2
0dx ≥ 1. Thus, there exists δ0 > 0 and µ̂0 ≥ µ0 such that Aµ,λ ∩ Bµ,λ = ∅ for all λ1 (aΩ) <

λ < λ1 (aΩ) + δ0 and µ > µ̂0. Moreover, if N0
µ,λ ≠ ∅, then there exists u0 ∈ N0

µ,λ such that u0 ∈ Aµ,λ ∩ Bµ,λ
which is impossible. Therefore, N0

µ,λ = ∅ for all λ1 (aΩ) < λ < λ1 (aΩ) + δ0 and µ > µ̂0. This completes the
proof.

When N0
µ,λ = ∅, any non-zero minimizer for Jµ,λ on N+

µ,λ (or on N−µ,λ ) is also a local minimizer on Nµ,λ and
so will be a critical point for Jµ,λ on Nµ,λ and a solution of Eq.

(
Pµ,λ

)
. We next show that, if N0

µ,λ = ∅, it is
possible to obtainmore information about the nature of the Nehari manifold. Since B (ϕ1) < 0, we can obtain
that N+

µ,λ ≠ ∅ for all µ > 0. Furthermore, we have the following results.

Lemma 4.2. Suppose that B (ϕ1) < 0. Then for any λ1 (aΩ) < λ < λ1 (aΩ) + δ0 and for µ enough large, we have
the following results.
(i) N+

µ,λ is uniform bounded.
(ii) There exist two negative numbers κ1 and κ2 such that

κ1 ≤ inf
u∈N+

µ,λ

Jµ,λ(u) < κ2.

Proof. (i) Suppose on the contrary. Then there exist sequences {µn} ⊂ RN+ and {un} ⊂ N+
µn ,λ such that µn →

∞ and ‖un‖µn →∞ as n →∞. Clearly,

Aµn ,λ (un) = B (un) < 0. (4.2)

Let vn = un
‖un‖µn

. Then by Lemma 2.4, we may assume that there exists v0 ∈ H1
0 (Ω) such that

vn ⇀ v0 in X; vn → v0 in Lr
(
RN
)

for all 2 ≤ r < 2*,

and
lim
n→∞

B (vn) = B (v0) . (4.3)

Thus,
lim
n→∞

∫
RN

av2ndx =
∫
RN

av20dx. (4.4)

Moreover, by Fatou’s Lemma, ∫
RN

|∇v0|2dx ≤ lim inf
n→∞

∫
RN

|∇vn|2dx. (4.5)

Dividing (4.2) by ‖un‖2µn gives
Aµn ,λ (vn) = ‖un‖

p−2
µn B (vn) < 0. (4.6)
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Since
lim
n→∞

Aµn ,λ (vn) = 1 − λ lim
n→∞

∫
RN

av2ndx = 1 − λ
∫
RN

av20dx

and ‖un‖µn → ∞, it obtain that B (v0) = 0 and
∫
RN av

2
0dx > 0 from the conclusions (4.3) and (4.6) . Thus,

v0 ∈ Bµ,λ for all µ > 0. Moreover, by v0 ∈ H1
0 (Ω) , (4.5) and (4.4) , for every µ > 0,

‖v0‖2µ − λ
∫
RN

av20dx =
∫
RN

|∇v0|2 − λav20dx < lim inf
n→∞

Aµn ,λ (vn) ≤ 0,

which indicates that v0 ∈ Aµ,λ . We now show that vn → v0 in Xµ . Suppose on the contrary. Then

λ ‖v0‖2µ −
∫
RN

av20dx =
∫
RN

|∇v0|2 − λav20dx < lim
n→∞

Aµn ,λ (vn) ≤ 0,

since
∫
RN gv

2
0dx = 0. Hence v0 ∈ Aµ,λ∩Bµ,λ which is impossible. Since vn → v0 in Xµ, then ‖v0‖µ = 1. Hence

v0 ∈ Bµ,λ. Moreover,

‖v0‖2µ − λ
∫
RN

av20dx = lim
n→∞

Aµn ,λ (vn) ≤ 0

and so v0 ∈ Aµ,λ . Thus, v0 ∈ Aµ,λ ∩ Bµ,λ which is impossible. Hence N+
µ,λ is uniform bounded for µ > 0

su�ciently large.
(ii) By part (i), there exists C0 > 0 such that ‖u‖µ ≤ C0 for all u ∈ N+

µ,λ. Hence,making use of (2.1), for u ∈ N+
µ,λ

we have

Jµ,λ(u) =
p − 1
2p B (u) ≥ −p − 12p

∫
RN

(
Iα * |u|p

)
|u|p dx + ‖f‖∞

∫
RN

|u|2p dx


≥ −p − 12p C1 ‖u‖2pµ ≥ − p − 12pSp C1C

p
0 = κ1. (4.7)

Moreover, by B (ϕ1) < 0 and
∫
Ω |∇ϕ1|2 dx − λ

∫
Ω aϕ

2
1dx < 0, which indicates that the function hϕ1 (t) =

Jµ,λ (tϕ1) have t+0 > 0 and κ2 < 0 are independent of µ such that t+0φ ∈ N+
µ,λ and

inf
0<t<∞

hϕ1 (t) = hϕ1

(
t+0
)
= κ2 < 0.

This implies that
inf

u∈N+
µ,λ

Jµ,λ (u) ≤ κ2 < 0 for all µ > max {µ1, µ2} . (4.8)

This completes the proof.

Theorem 4.3. Suppose that B (ϕ1) < 0. Then for any λ1 (aΩ) < λ < λ1 (aΩ) + δ0 and for µ enough large, there
exists a minimizer of Jµ,λ(u) on N+

µ,λ .

Proof. By Lemmas 4.1, 4.2 and the Ekeland variational principle [19], there exists a minimizing sequence
{un} ⊂ N+

µ,λ such that
lim
n→∞

Jµ,λ(un) = inf
u∈N+

µ,λ

Jµ,λ(u) ≤ κ2 and J′µ,λ(un) = o (1)

and there exists C0 > 0 such that ‖un‖µ ≤ C0. Thus, there exist a subsequence {un} and u0 ∈ Xµ such that
J′µ,λ(u0) = 0 and

un ⇀ u0 in Xµ ,
un → u0 a.e. in RN ,
un → u0 in Lrloc

(
RN
)

for 2 ≤ r < 2*.
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Then by condition (V4) ,
lim
n→∞

∫
RN

au2ndx =
∫
RN

au20dx. (4.9)

Moreover, follows from Brezis–Lieb lemma [8] and Lemma 2.3, obtain that

B (un − u0) = B (un) − B (u0) + o(1). (4.10)

Now we prove that un → u0 in Xµ . Let vn = un − u0. Then vn ⇀ 0 in Xµ . By the Sobolev and Gagliardo–
Nirenberg inequalities, for any µ > µ0 we have that∫

RN

v2ndx ≤
1
µc

∫
{g≥c}

µgv2ndx +
∫

{g<c}

v2ndx ≤
1
µc

∫
RN

µgv2ndx + o (1)

and

∫
RN

|vn|2p dx ≤ C0
(

1
µc ‖vn‖

2
µ

) 2*−2p
2*−2

∫
RN

|∇vn|2 dx


2*(p−1)
2*−2

+ o (1)

≤ C0
(

1
µc

) 2*−2p
2*−2
‖vn‖2pµ + o (1)

or ∫
RN

|vn|2p dx ≤ Πµ ‖vn‖2pµ + o(1), (4.11)

where Πµ = C0
(

1
µc

) 2*−2p
2*−2 . Thus, using (4.9) and (4.10) gives

Jµ,λ (vn) = Jµ,λ (un) − Jµ,λ (u0) + o (1) and
〈
J′µ,λ(vn), vn

〉
= o(1). (4.12)

Consequently, by (4.7) , (4.9) , (4.12) and Lemma 4.2 (ii), one has

κ2 + |κ1| ≥ inf
u∈N+

µ,λ

Jµ,λ(u) − Jµ,λ (u0) ≥ Jµ,λ (vn) −
1
2p
〈
J′µ,λ(vn), vn

〉
+ o (1)

≥ p − 1
2p ‖vn‖

2
µ + o(1),

which shows that there exists a constant C1 > 0 such that

‖vn‖µ ≤ C1 + o (1) for µ > 0 su�ciently large. (4.13)

Since 1 < N+α
N < p < 2*α, it follows from (4.9) , (4.11) and (4.13) that

o (1) =
〈
J′λ(vn), vn

〉
≥ ‖vn‖2µ

(
1 − C0Πµ ‖vn‖2p−2µ

)
+ o(1)

≥ ‖vn‖2µ
(
1 − ‖f‖∞ ΠµC

2p−2
1

)
+ o (1) . (4.14)

Notice that Πµ → 0 as µ → ∞. Then by (4.14) , there holds vn → 0 in Xµ for µ > 0 su�ciently large. Hence
un → u0 in Xµ and so

Jµ,λ(u0) = lim
n→∞

Jµ,λ(un) = inf
u∈N+

µ,λ

Jµ,λ(u) ≤ κ0 < 0,

which implies that u0 is a minimizer on N+
µ,λ .

We now turn our attention to N−µ,λ .
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Lemma 4.4. Suppose that B (ϕ1) < 0. Then for any λ1 (aΩ) < λ < λ1 (aΩ) + δ0 and for µ enough large, we have
the following results
(i) there exists c0 > 0 such that ‖u‖µ ≥ c0 for all u ∈ N−µ,λ;
(ii) every minimizing sequence for Jµ,λ(u) on N−µ,λ is bounded;
(iii) infu∈N−µ,λ Jµ,λ(u) > 0.

Proof. (i) Suppose on the contrary. Then there exist {µn} ⊂ R+ and {un} ⊂ N−µn ,λ such that µn → ∞ and
‖un‖µn → 0. Hence, by (2.1) ,

0 < Aµn ,λ (un) = B (un)→ 0 as n →∞.

Let vn = un
‖un‖µn

. Then, by Lemma 2.4, there exist subsequence {vn} and v0 ∈ H1
0 (Ω) such that

vn ⇀ v0 in X; vn → v0 in Lr
(
RN
)

for all 2 ≤ r < 2*.

Thus,
lim
n→∞

∫
RN

av2ndx =
∫
RN

av20dx (4.15)

and
Aµn ,λ (vn) = ‖un‖

2p−2
µn B (vn)→ 0 as n →∞. (4.16)

Moreover, by (4.15) , (4.16) , v0 ∈ H1
0 (Ω) and Fatou’s Lemma, we can obtain that

0 = lim
n→∞

Aµn ,λ (vn) = 1 − λ lim
n→∞

∫
RN

av2ndx = 1 − λ
∫
RN

av20dx,

and for every µ > 0

‖v0‖2µ −
∫
RN

λav20dx =
∫
RN

|∇v0|2 − λav20dx

≤ lim inf
n→∞

‖vn‖2µn − ∫
RN

λav2ndx

 = 0,

this implies that v0 ≠ 0 and v0 ∈ Aµ,λ for all µ > 0. Since B (vn) > 0 and B (vn) → B (v0), it follows that
v0

‖v0‖µ ∈ Bµ,λ for all µ > 0. Hence, v0 ∈ Aµ,λ ∩Bµ,λ for all µ > 0, which a contradiction.
(ii) Suppose on the contrary. Then there exist sequences {µn} ⊂ R+ with µn → ∞ such that N−µn ,λ is
unbounded for all n, that is for every n there exists a minimizing sequence {un,m} ⊂ N−µn ,λ such that
‖un,m‖µn →∞ as m →∞. Moreover,

Aµn ,λ (un,m) = B (un,m)→
p − 1
2p inf

u∈N−µn ,λ
Jµn ,λ(u) as m →∞, (4.17)

where infu∈N−µn ,λ Jµn ,λ(u) ≥ 0 for all n. Let wn = un,n . Then wn ∈ N−µn ,λ and ‖wn‖µn → ∞ as n → ∞. Let
vn = wn

‖wn‖µn
. Then by Lemma 2.4, we may assume that there exist subsequence {vn} and v0 ∈ H1

0 (Ω) such

that vn ⇀ v0 in X, vn → v0 in Lr
(
RN
)
for all 2 ≤ r < 2* and B (vn)→ B (v0) . Then by condition (V4)

lim
n→∞

∫
RN

av2ndx =
∫
RN

av20dx. (4.18)

Dividing (4.17) by ‖wn‖2µn and m = n gives

Aµn ,λ (vn) = ‖wn‖
p−2
µn B (vn)→ 0. (4.19)
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Since ‖wn‖µn → +∞, it follows that B (vn) → 0 and so B (v0) = 0. We now show that vn → v0 in X. Suppose
otherwise, then by (4.18) and (4.19) ,∫

RN

|∇v0|2 − λav20dx = ‖v0‖2 − λ
∫
RN

av20dx

< lim inf
n→∞

‖vn‖2µn − λ ∫
RN

av2ndx

 = 0.

Thus, v0 ≠ 0 and for every µ > 0, there holds v0 ∈ Aµ,λ ∩ Bµ,λ , which is impossible. Hence vn → v0 in X. It
follows that ‖v0‖µ = 1,

∫
RN Vv

2
0dx = 0 and

‖v0‖2µ − λ
∫
RN

av20dx = B (v0) = 0.

Thus, for every µ > 0, there holds v0 ∈ Aµ,λ ∩ Bµ,λ which is impossible as Aµ,λ ∩ Bµ,λ = ∅. Hence, every
minimizing sequence for Jµ,λ(u) on N−µ,λ is bounded for µ su�ciently large.
(iii) Assume that infu∈N−µ,λ Jµ,λ(u) = 0. Thenby theEkelandvariational principle [19], there exists aminimizing
sequence {un} ⊂ N−µ,λ such that

lim
n→∞

Jµ,λ(un) = inf
u∈N−µ,λ

Jµ,λ(u) and J′µ,λ(un) = o (1) .

By part (ii), {un} is bounded and so there exist a subsequence {un} and u0 ∈ Xµ such that J′µ,λ(u0) = 0 and

un ⇀ u0 in Xµ ,
un → u0 a.e. in RN ,
un → u0 in Lrloc

(
RN
)

for 2 ≤ r < 2*.

Then by condition (V4)
lim
n→∞

∫
RN

av2ndx =
∫
RN

av20dx. (4.20)

Moreover, follows from Brezis–Lieb lemma [8] and Lemma 2.3, obtain that

B (un − u0) = B (un) − B (u0) + o(1). (4.21)

Now we prove that un → u0 in Xµ . Let vn = un − u0. Then vn ⇀ 0 in Xµ . By the Sobolev and Gagliardo–
Nirenberg inequalities, for µ enough large we have that∫

RN

v2ndx ≤
1
µc

∫
{g≥c}

µgv2ndx +
∫

{g<c}

v2ndx ≤
1
µc

∫
RN

µgv2ndx + o (1)

and

∫
RN

|vn|2p dx ≤ C0
(

1
µc ‖vn‖

2
µ

) 2*−2p
2*−2

∫
RN

|∇vn|2 dx


2*(p−1)
2*−2

+ o (1)

≤ C0
(

1
µc

) 2*−2p
2*−2
‖vn‖2pµ + o (1) .

or ∫
RN

|vn|2p dx ≤ Πµ ‖vn‖2pµ + o(1), (4.22)
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where Πµ = C0
(

1
µb

) 2*−2p
2*−2 S−N(p−1). Thus, using (4.21) and un ⇀ u0 in Xµ gives

Jµ,λ (vn) = Jµ,λ (un) − Jµ,λ (u0) + o (1) and
〈
J′µ,λ(vn), vn

〉
= o(1). (4.23)

Consequently, by (4.20) , (4.21) and (4.23), one has

inf
u∈N−µ,λ

Jµ,λ(u) − Jµ,λ (u0) ≥ Jµ,λ (vn) −
1
2p
〈
J′µ,λ(vn), vn

〉
+ o (1)

≥ p − 1
2p ‖vn‖

2
µ + o(1). (4.24)

Suppose that infu∈N−µ,λ Jµ,λ(u) = 0.
(iii − A) If u0 ∈ N−µ,λ , then by (4.24) and u0 = 0, ‖vn‖2µ → 0, this shows that un → u0 in Xµ , and so

Jµ,λ(u0) = lim
n→∞

Jµ,λ(un) = inf
u∈N−µ,λ

Jµ,λ(u) = 0.

It then follows exactly as in the proof in part (i) that u0 ∈ Aµ,λ ∩Bµ,λ which is impossible asAµ,λ ∩Bµ,λ = ∅.
(iii − B) If u0 ∈ N+

µ,λ , then by (4.7) and (4.24) , there exists C0 > 0 such that

‖vn‖µ ≤ C0 + o (1) for µ enough large. (4.25)

Since 1 < N+α
N < p < 2*α, it follows from (4.18) , (4.22) and (4.25) that

o (1) =
〈
J′µ,λ(vn), vn

〉
≥ ‖vn‖2µ

(
1 − ‖f‖∞ Πµ ‖vn‖

2p−2
µ

)
+ o(1)

≥ ‖vn‖2µ
(
1 − ‖f‖∞ ΠµC

2p−2
0

)
+ o (1) . (4.26)

Notice that Πµ → 0 as µ →∞. Then by (4.26) , for µ enough large, there holds vn → 0 in Xµ . Hence un → u0
in Xµ , and so u0 ∈ N−µ,λ this is a contradiction. Thus, infu∈N−µ,λ Jµ,λ(u) > 0 for µ enough large. This completes
the proof.

Theorem 4.5. Suppose that B (ϕ1) < 0. Then for any λ1 (aΩ) < λ < λ1 (aΩ) + δ0 and for µ enough large, there
exists a minimizer of Jµ,λ(u) on N−µ,λ .

Proof. By Lemmas 4.1, 4.4 (iii) and the Ekeland variational principle [19], there exists a minimizing sequence
{un} ⊂ N−µ,λ such that

lim
n→∞

Jµ,λ(un) = inf
u∈N−µ,λ

Jµ,λ(u) and J′µ,λ(un) = o (1) .

Similar the argument in (3.3) , there exists D0 > 0 independent of µ such that infu∈N−µ,λ Jµ,λ(u) < D0 for all
µ ≥ µ0. Moreover, by Lemma4.4 (ii), there exists C0 > 0 such that ‖un‖µ ≤ C0. Thus, there exist a subsequence
{un} and u0 ∈ Xµ such that J′µ,λ(u0) = 0 and

un ⇀ u0 in Xµ ,
un → u0 a.e. in RN ,
un → u0 in Lrloc

(
RN
)

for 2 ≤ r < 2*.

Then by condition (V4) ,
lim
n→∞

∫
RN

av2ndx =
∫
RN

av20dx, (4.27)

and follows from Brezis–Lieb lemma [8] and Lemma 2.3 obtain that

B (un − u0) = B (un) − B (u0) + o(1). (4.28)
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Now we prove that un → u0 in Xµ . Let vn = un − u0. Then vn ⇀ 0 in Xµ . By the Sobolev and Gagliardo–
Nirenberg inequalities, for µ enough large we have that∫

RN

v2ndx ≤
1
µc

∫
{g≥c}

µgv2ndx +
∫

{g<c}

v2ndx ≤
1
µc

∫
RN

µgv2ndx + o (1)

and

∫
RN

|vn|2p dx ≤ C0
(

1
µc ‖vn‖

2
µ

) 2*−2p
2*−2

∫
RN

|∇vn|2 dx


2*(p−1)
2*−2

+ o (1)

≤ C0
(

1
µc

) 2*−2p
2*−2
‖vn‖2pµ + o (1)

or ∫
RN

|vn|2p dx ≤ Πµ ‖vn‖2pµ + o(1), (4.29)

where Πµ = C0
(

1
µc

) 2*−2p
2*−2 . Thus, using (4.27) and (4.28) gives

Jµ,λ (vn) = Jµ,λ (un) − Jµ,λ (u0) + o (1) and J′µ,λ (vn) = o(1). (4.30)

Consequently, by (4.27) , (4.30) and Lemma 4.2 (ii), one has

D0 + |κ1| ≥ inf
u∈N−µ,λ

Jµ,λ(u) − Jµ,λ (u0) ≥ Jµ,λ (vn) −
1
p
〈
J′µ,λ(vn), vn

〉
+ o (1)

≥ p − 2
2p ‖vn‖

2
µ + o(1), (4.31)

which shows that there exists a constant C1 > 0 such that for µ enough large,

‖vn‖µ ≤ C1 + o (1) . (4.32)

Since 1 < N+α
N < p < 2*α, it follows from (4.29) (4.31) and (4.32) that

o (1) =
〈
J′λ(vn), vn

〉
≥ ‖vn‖2µ

(
1 − ‖f‖∞ Πµ ‖vn‖

2p−2
µ

)
+ o(1)

≥ ‖vn‖2µ
(
1 − ‖f‖∞ ΠµC

2p−2
1

)
+ o (1) . (4.33)

Notice that Πµ → 0 as µ →∞. Then by (4.33) , for µ enough large, there holds vn → 0 in Xµ . Hence un → u0
in Xµ and so

Jµ,λ(u0) = lim
n→∞

Jµ,λ(un) = inf
u∈N−µ,λ

Jµ,λ(u),

which implies that u0 is a minimizer on N−µ,λ .

We are now ready to prove Theorem 1.3: By Theorem 4.5 and 4.3, there exist δ0 such that when λ1 (aΩ) <
λ < λ1 (aΩ) + δ0 and for µ enough large, Jµ,λ has minimizers in each of N(1)

µ,λ and N(2)
µ,λ , that is there exist

u(1)µ,λ ∈ N
+
µ,λ and u

(2)
µ,λ ∈ N

−
µ,λ such that

Jµ,λ(u(1)µ,λ) = inf
u∈N+

µ,λ

Jµ,λ(u) < κ2 < 0 < inf
u∈N−µ,λ

Jµ,λ(u) = Jµ,λ(u(2)µ,λ).

Since Jµ,λ(u(j)µ,λ) = Jµ,λ(|u
(j)
µ,λ|) for j = 1, 2, we may assume that these minimizers are positive. Moreover, by

Lemma 4.1, Nµ,λ = N+
µ,λ ∪N

−
µ,λ . It follows that the minimizers are local minimizers in Nµ,λ which do not lie in

N0
µ,λ , and so by Lemma 2.2, u(1)µ,λ and u

(2)
µ,λ are positive solutions of Eq.

(
Pµ,λ

)
. This completes the proof.
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Next, we are ready to prove Theorem 1.4: (i) SinceN+
µn ,λn is uniformly bounded, then {un} is bounded,

from Lemma 2.4, we may assume that there exists u0 ∈ H1
0 (Ω) such that un ⇀ u0 in X, un → u0 in Lr(RN) for

all 2 ≤ r < 2* and B (un)→ B (u0) . We also have

lim
n→∞

∫
RN

au2ndx =
∫
RN

au20dx

and
‖un‖2 − λn

∫
RN

au2ndx ≤ Aµn ,λn (un) = B (un) < 0 for n su�ciently large.

We now show that un → u0 in X. Suppose on the contrary. Then∫
RN

(|∇u0|2 − λ1 (aΩ) au20)dx =
∫
RN

(|∇u0|2 + Vu20 − λ1 (aΩ) au20)dx

< lim inf
n→∞

‖un‖2 − λn ∫
RN

au2ndx

 ≤ 0,
which is impossible. Thus, un → u0 in X and so∫

Ω

(|∇u0|2 − λ1 (aΩ) au20)dx ≤
∫
RN

(|∇u0|2 + Vu20 − λ1 (aΩ) au20)dx

= B (u0) ≤ 0,

this implies that
∫
Ω(|∇u0|

2 − λ1 (aΩ) aΩu20)dx = 0 and we must have u0 = kϕ1 for some k. But, as B (ϕ1) < 0,
it follows that k = 0. Therefore, un → 0 in X. Next, let vn = un

‖un‖µn
. Then by Lemma 2.4, we may assume

that there exists v0 ∈ H1
0 (Ω) \ {0} such that vn ⇀ v0 in X, vn → v0 in Lr

(
RN
)

for all 2 ≤ r < 2* and
B (vn)→ B (v0) . Thus,

lim
n→∞

∫
RN

av2ndx =
∫
RN

av20dx. (4.34)

Clearly,
‖vn‖2 − λn

∫
RN

av2ndx ≤ Aµn ,λn (vn) = ‖un‖
2p−2
µn B (vn) < 0 (4.35)

for n su�ciently large. We now show that vn → v0 in X. Suppose on the contrary. Then by (4.34) and (4.35) ,∫
Ω

(|∇v0|2 − λ1 (aΩ) aΩv20)dx =
∫
RN

(|∇u0|2 + Vv20 − λ1 (aΩ) aΩv20)dx

< lim inf
n→∞

‖vn‖2 − λn ∫
RN

av2ndx

 ≤ 0,
and so ∫

Ω

(|∇v0|2 − λ1 (aΩ) aΩv20)dx < 0,

which gives a contradiction. Hence vn → v0 in X, which indicates that
∫
Ω |∇v0|

2dx = 1 and∫
Ω

(|∇v0|2 − λ1 (aΩ) aΩv20)dx = 0.

Therefore, v0 = ϕ1.
(ii) For any sequence µn → ∞, let u(j)n := u(j)µn (j = 1, 2) be the solutions obtained in Theorem 1.3 with u(1)µn ∈
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N+
µn ,λ and u

(2)
µn ∈ N−µn ,λ. Similar to the argument of proofs in Lemma 4.4 (ii) and Lemma 4.2 (i) there exists a

positive constant c0 is independent of µn such that∥∥∥u(j)n ∥∥∥
µn
≤ c0. (4.36)

Therefore, by Lemma 2.4, we may assume that there exist u(j)0 ∈ H1
0 (Ω) such that u(j)n ⇀ u(j)0 in X and

B
(
u(j)n
)
→ B

(
u(j)0
)
. Now for any φ ∈ C∞0 (Ω), because

〈
J′µn ,λ

(
u(j)n
)
, φ
〉
= 0, it is easy to check that∫

Ω

∇u(j)0 ∇φdx − λ
∫
Ω

aΩu(j)0 φdx +
∫
Ω

(
Iα *

∣∣∣u(j)0 ∣∣∣p) ∣∣∣u(j)0 ∣∣∣p−2 u(j)0 φdx
=

∫
Ω

f
∣∣∣u(j)0 ∣∣∣2p−2 u(j)0 φdx,

that is, u(j)0 are weak solutions of Eq. (P∞) by the density of C∞0 (Ω) in H1
0 (Ω) . Now, we show that u(j)n → u(j)0

in X for j = 1, 2. Because
〈
J′µn ,λ

(
u(j)n
)
, u(j)n

〉
=
〈
J′µn ,λ

(
u(j)n
)
, u(j)0

〉
= 0, we have

∥∥∥u(j)n ∥∥∥2
µn
− λ
∫
RN

a
(
u(j)n
)2
dx +

∫
Ω

(
Iα *

∣∣∣u(j)n ∣∣∣p) ∣∣∣u(j)n ∣∣∣p dx = ∫
RN

f
∣∣∣u(j)n ∣∣∣p dx (4.37)

and 〈
u(j)n , u(j)0

〉
µn
− λ
∫
RN

au(j)n u(
j)
0 dx +

∫
Ω

(
Iα *

∣∣∣u(j)n ∣∣∣p) ∣∣∣u(j)n ∣∣∣p−2 u(j)n u(j)0 dx
=

∫
RN

f
∣∣∣u(j)n ∣∣∣p−2 u(j)n u(j)0 dx. (4.38)

By (4.36) − (4.38) and u(j)n → u(j)0 in Lr
(
RN
)
for all 2 ≤ r < 2*, we have

lim
n→∞

∥∥∥u(j)n ∥∥∥2
µn

= lim
n→∞

〈
u(j)n , u(j)0

〉
µn

= lim
n→∞

〈
u(j)n , u(j)0

〉
=
∥∥∥u(j)0 ∥∥∥2 .

On the other hand, the weakly lower semi-continuity of norm yields∥∥∥u(j)0 ∥∥∥2 ≤ lim inf
n→∞

∥∥∥u(j)n ∥∥∥2 ≤ lim
n→∞

∥∥∥u(j)n ∥∥∥2
µn
,

and thus, u(j)n → u(j)0 in X for j = 1, 2. By Lemma 4.4 (i) and the fact that
∥∥∥u(2)n ∥∥∥

µn
> c0 > 0, which implies that

u(2)0 ≠ 0. Moreover, by (4.8) , there exists κ0 < 0

Jµn ,λ
(
u(1)n
)
= inf
u∈N+

µn ,λ

Jµn ,λ (u) ≤ κ0 for all n.

Thus,
Jµ,λ|H1

0(Ω)

(
u(1)0

)
≤ κ0 < 0,

which implies that u(1)0 ≠ 0. To complete the proof, it remains to show that u(1)0 and u(2)0 are distinct. That
Jµ,λ|H1

0(Ω)

(
u(1)0

)
≤ κ0 < 0 and Jµ,λ|H1

0(Ω)

(
u(2)0

)
> 0 implies that u(1)0 ≠ u(2)0 . This completes the proof.
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