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Abstract: The main goal of this work is to investigate the initial boundary value problem of nonlinear wave
equation with weak and strong damping terms and logarithmic term at three di�erent initial energy levels,
i.e., subcritical energy E(0) < d, critical initial energy E(0) = d and the arbitrary high initial energy E(0) >
0 (ω = 0). Firstly, we prove the local existence of weak solution by using contraction mapping principle. And
in the framework of potential well, we show the global existence, energy decay and, unlike the power type
nonlinearity, in�nite time blow up of the solution with sub-critical initial energy. Then we parallelly extend
all the conclusions for the subcritical case to the critical case by scaling technique. Besides, a high energy
in�nite time blow up result is established.

Keywords:Wave equation; global solution; weak and strong damping terms; energy decay; in�nite time blow
up; logarithmic nonlinearity

1 Introduction and main results
In this paper, we study initial boundary value problem of nonlinear wave equation with weak and strong
damping terms and logarithmic source term

utt − ∆u − ω∆ut + µut = u ln |u|, (x, t) ∈ Ω × (0,∞), (1.1)
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (1.2)
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.3)

where Ω ⊂ Rn (n ≥ 1) is a bounded domain with a smooth boundary ∂Ω,

ω ≥ 0, µ > −ωλ1, (1.4)

λ1 being the �rst eigenvalue of the operator −∆ under homogeneous Dirichlet boundary conditions.
The undamped hyperbolic equation

utt − ∆u = f (u), (1.5)

was introduced by D’Alembert [1] to model the propagation of waves along vibrating elastic string. By intro-
ducing the potential well, the global existence and �nite time blow up of solution to (1.5) with E(0) < d were
proved by Payne and Sattinger in [2], [3] respectively.

The nonlinear wave equation with linear weak damping term was considered by Levine and Serrin [4] in
abstract form

Putt + A(u) + Q(t, ut) = F(u) (1.6)
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and they proved the nonexistence of global solution for the negative initial energy, i.e., E(0) < 0. Later, Pucci
and Serrin [5] extended this results to E(0) < D1, where D1 is positive. Vitillaro [6] studied the similar problem
replacing the linear weak damping term by the nonlinear one

utt − ∆u + b|ut|m−2ut = c|u|p−2u (1.7)

and derived the conditions of initial data leading to �nite time blow up of the solution for E(0) ≤ E1.
For the initial boundary value problem of classical strongly damped wave equation

utt − ∆u − ∆ut = f (u), (1.8)

Webb [7] gave the local existence uniqueness, global existence and the asymptotic behavior of the solution.
For the initial boundary value problem of strongly damped semilinear wave equation

utt − ω∆ut − ∆u + ϕ(u) = f , (1.9)

Pata and Squassina [8] proved the existence of the universal attractor, in the presence of a quite general non-
linearity of critical growth. Moreover, they obtained the asymptotic behavior of the solutions in dependence
of the damping coe�cient.

For the wave equation with both linear weak and strong damping terms, we can directly go to [9] for the
most recent progress. Gazzola and Squassina [9] proved that the initial boundary value problem of the weak
and strong damping hyperbolic equation

utt − ∆u + µut − ω∆ut = |u|p−2u, (1.10)

has a unique local solution, and the global existence and nonexistence results were also proved for E(0) ≤ d.
Also, the �nite time blow up of solution with high energy E(0) > d (ω = 0, µ > 0) was obtained.

The logarithmic nonlinearity is of much interest in physics, since it appears naturally in in�ation cos-
mology and super symmetric �led theories, quantum mechanics and nuclear physics [10], [11]. Haraux and
Cazenave[12] proved the existence and uniqueness of solution for the Cauchy problem for the nonlinear
Schrödinger equation

iut + ∆u + Vu + ku log |u|2 = 0 in RN ×R+ (1.11)

and for the nonlinear Klein-Gordon equation

utt − ∆u = ku log |u|2 in R3 ×R+. (1.12)

Górka [13] obtained that the initial boundary value problem of logarithmic Klein-Gordon equation
utt − uxx + u = εu log |u|2, x ∈ O, t ∈ [0, T),
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ O,
u(x, t) = 0, x ∈ ∂O, t ∈ [0, T),

(1.13)

whereO is a �nite interval V = [a, b], admits global weak solutions for all (u0, u1) ∈ H1
0 × L2 and ε ∈ [0, 1] in

one-dimensional case.
The weak damping with logarithmic wave equation

utt − ∆u + ut + u + |u|2u = u ln |u|2 (1.14)

was introduced by Hiramatsu [14] to model the dynamics of Q-ball in theoretical physics. Then its initial
boundary value problem was considered by Han in [15]

utt − ∆u + u + ut + |u|2u = u ln |u|2, x ∈ Ω, t ∈ [0, T),
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T)

(1.15)
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and the global existence of weak solutions was proved, for all (u0, u1) ∈ H1
0 × L2 in R3. By constructing an

appropriate Lyapunov function, Zhang and Liu [16] obtained the exponential decay estimates of energy with
E(0) < d for all (u0, u1) ∈ H1

0 × L2, I(u0) > 0.
Al-Gharabli andMessaoudi [17] proved the global existence and the exponential decay of solutions of the

following plate equation 
utt + ∆2u + u + ut = ku ln |u|, x ∈ Ω, t > 0,
u(x, t) = ∂u

∂v (x, t) = 0, x ∈ ∂Ω, t ≥ 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.16)

for all (u0, u1) ∈ H2
0(Ω) × L2(Ω) and 0 < E(0) < d, I(u0) > 0. Later, Al-Gharabli andMessaoudi [18] considered

a general damping h(ut) instead of a linear ut one considered in [17], where h is a function having a polyno-
mial growth near the origin. They established the global existence and the general decay of solutions for all
(u0, u1) ∈ H2

0(Ω) × L2(Ω), 0 < E(0) < d and I(u0) > 0.
As shown in the previous works, the dynamical behaviors of solutions are quite di�erent whenwith pres-

ence of di�erent nonlinearities, i.e., power type and logarithmic type. To be speci�c, with the presence of
logarithmic term, the �nite time blow up of solution don’t occur anymore which means the Nehari manifold
in the initial energy spaceH1

0 no longer plays a role as a threshold separating global and non-global existence
of solution. And instead in this article the results show that Nehari manifold can be viewed as a threshold
which indicates the decay or in�nite time blow up of solutions. In order to investigate and describe the dy-
namical behavior of solution that strongly relied on the initial data, we focus on the logarithmic term in three
initial data levels, i.e., subcritical energy E(0) < d, critical initial energy E(0) = d and the arbitrary high initial
energy E(0) > 0 (ω = 0).

The present paper is organized as follows. Section 2 presents some notations and preliminaries. In sec-
tion 3, we state our main results. Section 4 prove the local existence of solution. Section 5 prove the global
existence, asymptotic behavior and in�nite time blow up of solution for E(0) < d. In section 6, the global
existence, asymptotic behavior and blowup of solution for E(0) = d is proved. At last, in Section 7, we prove
the in�nite time blowup result for E(0) > 0 (ω = 0).

2 Notations and primary lemmas
In this section, we present some preliminaries to prove themain results. We denote the inner product and the
norm on H1

0(Ω) by (·, ·) and ‖∇ · ‖, respectively. The symbol ‖ · ‖ will indicate the norm on L2(Ω). Moreover,
we denote by 〈·, ·〉 the duality pairing between H−1(Ω) and H1

0(Ω). For any v, w ∈ H1
0(Ω), we have

(v, w)* = ω
∫
Ω

∇v∇w + µ
∫
Ω

vw

and

‖v‖* = (v, v)
1
2
* .

By (1.4), ‖ · ‖* is an equivalent eccentric module over H1
0(Ω).

First, for problem (1.1)-(1.3) we introduce the energy functional

E(t) = 1
2‖ut‖

2 + 1
2‖∇u‖

2 − 1
2

∫
Ω

u2 ln |u|dx + 1
4‖u‖

2, (2.1)

the potential energy functional

J(u) = 1
2‖∇u‖

2 − 1
2

∫
Ω

u2 ln |u|dx + 1
4‖u‖

2 (2.2)
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and the Nehari functional
I(u) = ‖∇u‖2 −

∫
Ω

u2 ln |u|dx. (2.3)

By a direct computation,
J(u) = 1

2 I(u) +
1
4‖u‖

2. (2.4)

By I(u) we de�ne the potential well (stable set)

W = {u ∈ H1
0(Ω) | I(u) > 0} ∪ {0}, (2.5)

the outer space of potential well (unstable set)

V = {u ∈ H1
0(Ω) | I(u) < 0} (2.6)

and the Nehari manifold

N = {u ∈ H1
0(Ω)\{0} | I(u) = 0}. (2.7)

The depth of potential well is de�ned as

d = inf
u∈N

J(u). (2.8)

On the other hand, as the di�erence between two types of nonlinearities, assumptions on the power type
nonlinearity don’twork on the logarithmic one. Consequently, introducing the logarithmic Sobolev inequality
and revisiting the corresponding estimates is a necessity to handle logarithmic nonlinear term u ln |u|. The
following logarithmic Sobolev inequality was introduced by [20], Chapter 8.14 (also see [19] for a di�erent
proof).

Lemma 2.1. [19, 20] If u ∈ H1(Rn) and a > 0. Then

2
∫
Rn

|u(x)|2 ln
(
|u(x)|
‖u‖

)
dx + n(1 + ln a)‖u‖2 ≤ a

2

π

∫
Rn

|∇u(x)|2dx.

For u ∈ H1
0(Ω), we can de�ne u(x) = 0 for x ∈ Rn\Ω. Then u ∈ H1(Rn), that is to say, for a general domain

Ω, we have following logarithmic Sobolev inequality,

2
∫
Ω

|u(x)|2 ln
(
|u(x)|
‖u‖

)
dx + n(1 + ln a)‖u‖2 ≤ a

2

π

∫
Ω

|∇u(x)|2dx, (2.9)

where u ∈ H1
0(Ω) and a > 0.

Lemma 2.2. Assume that u ∈ H1
0(Ω)\{0}. Then we have

(i) lim
λ→0

J(λu) = 0 and lim
λ→+∞

J(λu) = −∞;

(ii) There exists a unique λ* = λ*(u) such that d
dλ J(λu)|λ=λ* = 0, where λ* = exp

(
‖∇u‖2−

∫
Ω u

2 ln |u|dx
‖u‖2

)
;

(iii) J(λu) is increasing on the interval (0, λ*), decreasing on the interval (λ*, +∞) and attains its maximum
unique λ* ∈ (0, +∞) such that

I(λu)


> 0, 0 < λ < λ*,
= 0, λ = λ*,
< 0, λ* < λ < +∞.
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Proof. (i) We get

J(λu) = λ
2

2 ‖∇u‖
2 − λ

2

2

∫
Ω

u2 ln |λu|dx + λ
2

4 ‖u‖
2

= λ
2

2 ‖∇u‖
2 − λ

2

2

∫
Ω

u2 ln |u|dx − λ
2

2 ln |λ|‖u‖2 + λ
2

4 ‖u‖
2

= λ
2

2

‖∇u‖2 − ∫
Ω

u2 ln |u|dx − ln |λ|‖u‖2 + 1
2‖u‖

2

 , (2.10)

which tells lim
λ→0

J(λu) = 0 and lim
λ→+∞

J(λu) = −∞.
(ii) A direct computation on (2.10) yields

d
dλ J(λu) = λ‖∇u‖

2 − λ
∫
Ω

u2 ln |u|dx − λ ln |λ|‖u‖2

= λ

‖∇u‖2 − ∫
Ω

u2 ln |λu|dx

 ,
(2.11)

which means d
dλ J(λu)|λ=λ* = 0, where λ* = exp

(
‖∇u‖2−

∫
Ω u

2 ln |u|dx
‖u‖2

)
.

(iii) The conclusion (iii) directly follows from

I(λu) = λ2‖∇u‖2 − λ2
∫
Ω

u2 ln |u|dx − λ2 ln |λ|‖u‖2

= λ dJ(λu)dλ

and conclusion (ii).

Lemma 2.3. Let u ∈ H1
0(Ω) and r := (2π) n4 e n

2 .

(i) If 0 < ‖u‖ ≤ r, then I(u) ≥ 0;
(ii) If I(u) < 0, then ‖u‖ > r;
(iii) If I(u) = 0 and ‖u‖ = 0, then ‖u‖ ≥ r.

Proof. (i) Using the logarithmic Sobolev inequality (2.9), for a > 0, we get

I(u) = ‖∇u‖2 −
∫
Ω

u2 ln |u|dx

= ‖∇u‖2 −
∫
Ω

u2
(
ln |u|‖u‖ + ln ‖u‖

)
dx

≥
(
1 − a

2

2π

)
‖∇u‖2 + n(1 + ln a)2 ‖u‖2 − ‖u‖2 ln ‖u‖.

(2.12)

Taking a =
√
2π, we gain

I(u) ≥
(
n(2 + ln(2π))

4 − ln ‖u‖
)
‖u‖2. (2.13)

If 0 < ‖u‖ ≤ r, then n(2+ln(2π))
4 ≥ ln ‖u‖, which gives I(u) ≥ 0.
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(ii) From (2.13) and I(u) < 0, we can see that(
n(2 + ln(2π))

4 − ln ‖u‖
)
‖u‖2 < 0,

which means

‖u‖ > (2π)
n
4 e

n
2 = r.

(I) This conclusion is similar to the proof of (ii).

Lemma 2.4. The depth of potential well d in (2.8) satis�es

d ≥ 14(2π)
n
2 en . (2.14)

Proof. From the de�nition of d in (2.8) and Lemma 2.3 in (iii) , it follows that u ∈ N. As a result, we obtain

0 = I(u) ≥
(
n(2 + ln(2π))

4 − ln ‖u‖
)
‖u‖2, (2.15)

which implies
‖u‖ ≥ (2π)

n
4 e

n
2 . (2.16)

By virtue of (2.4), I(u) = 0 and (2.16), we obtain

J(u) = 1
2 I(u) +

1
4‖u‖

2

= 1
4‖u‖

2 (2.17)

≥ 14(2π)
n
2 en ,

which gives (2.14).

Lemma 2.5. Let u be a solution of problem (1.1)-(1.3), then E(t) is a non-increasing function with respect to t.

Proof. Multiplying Eq. (1.1) by ut and integrating it over Ω × [s, t), we can obtain

E(t) +
t∫
s

‖ut(τ)‖2*dτ = E(s). (2.18)

Thus, the proof is completed.

De�nition 2.6. Function u = u(x, t) is called a weak solution of problem (1.1)-(1.3) over Ω × [0, T], if

u ∈ C([0, T], H1
0(Ω)) ∩ C1([0, T], L2(Ω)) ∩ C2([0, T], H−1(Ω)),

ut ∈ L2([0, T], H1
0(Ω)) and there holds

〈utt(t), η〉 +
∫
Ω

∇u(t)∇ηdx + ω
∫
Ω

∇ut(t)∇ηdx + µ
∫
Ω

ut(t)ηdx

=
∫
Ω

u(t) ln |u(t)|ηdx, ∀ η ∈ H1
0(Ω), a.e. t ∈ [0, T), (2.19)

where u(x, 0) = u0(x) in H1
0(Ω), ut(x, 0) = u1(x) in L2(Ω).
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3 Main results
In this section, we state our main results about problem (1.1)-(1.3).

Theorem 3.1. Let u0(x) ∈ H1
0(Ω), u1(x) ∈ L2(Ω) and (1.4) holds. Then there exists a time T > 0 such that

problem (1.1)-(1.3) admits a unique weak solution u on [0, T] satifying

u ∈ C([0, T], H1
0(Ω)) ∩ C1([0, T], L2(Ω)) ∩ C2([0, T], H−1(Ω)).

Theorem 3.2. Let u0(x) ∈ H1
0(Ω), u1(x) ∈ L2(Ω) and (1.4) holds. Assume that E(0) < d, then when u0(x) ∈ W ,

problem (1.1)-(1.3) admits a global weak solution u(t) ∈ L∞(0, +∞;H1
0(Ω)) with ut(t) ∈ L∞(0, +∞; L2(Ω)) for

0 ≤ t < ∞.

Theorem 3.3. Let u0(x) ∈ H1
0(Ω), u1(x) ∈ L2(Ω) and (1.4) holds. Assume that E(0) < d, then when u0(x) ∈ W ,

there exist two positive constants Ĉ and ξ independent of t such that

0 < E(t) ≤ Ĉe−ξt , t ≥ 0.

Theorem 3.4. Let u0(x) ∈ H1
0(Ω), u1(x) ∈ L2(Ω) and (1.4) holds. Assume that E(0) < d, then when u0(x) ∈ V ,

the existence time of solution to problem (1.1)-(1.3) is in�nite and

lim
t→+∞

‖u(t)‖2 = +∞.

Theorem 3.5. Let u0(x) ∈ H1
0(Ω), u1(x) ∈ L2(Ω) and (1.4) holds. Assume that E(0) = d, then when u0(x) ∈ W ,

problem (1.1)-(1.3) admits a global weak solution u(t) ∈ L∞(0, +∞;H1
0(Ω)) with ut ∈ L∞(0, +∞; L2(Ω)) for

0 ≤ t < ∞.

Theorem 3.6. Let u0(x) ∈ H1
0(Ω), u1(x) ∈ L2(Ω) and (1.4) holds. Assume that E(0) = d, then when u0(x) ∈ W,

there exist two positive constants Ĉ and ξ independent of t such that

0 < E(t) ≤ Ĉ*e−ξt , t ≥ 0.

Theorem 3.7. Let u0(x) ∈ H1
0(Ω), u1(x) ∈ L2(Ω) and (1.4) holds. Assume that E(0) = d, then when u0(x) ∈ V ,

the existence time of solution to problem (1.1)-(1.3) is in�nite and

lim
t→+∞

‖u(t)‖2 = +∞.

Theorem 3.8. Let u0(x) ∈ H1
0(Ω), u1(x) ∈ L2(Ω). Assume that ω = 0, µ ≥ 0 and u0(x), u1(x) satisfy that

(I) : ‖u0‖2 > 4E(0) > 0,
(II) : (u0(x), u1(x)) > 0,
(III) : u0(x) ∈ V ,

then the existence time of solution to problem (1.1)-(1.3) is in�nite and

lim
t→+∞

‖u(t)‖2 = +∞.

Remark 3.9. When E(0) ≤ d, we derive the global well-posedness and the decay of solution provided u0(x) ∈
W. However when E(0) > 0 and u0(x) ∈ W, it is still open that whether global solution exists.
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4 Local existence
For a �xed T > 0, consider the space

H = C([0, T], H1
0(Ω)) ∩ C1([0, T], L2(Ω)),

endowed with the norm

‖u‖2H = max
t∈[0,T]

(‖∇u(t)‖2 + ‖ut(t)‖2). (4.1)

4.1 Proof of Theorem 3.1.

To establish the uniqueness and existence of local solution to problem (1.1)-(1.3), we �rst prove the following
lemma.

Lemma 4.1. For any T > 0 and u ∈ H, there exists a unique

v ∈ C([0, T], H1
0(Ω)) ∩ C1([0, T], L2(Ω)) ∩ C2([0, T], H−1(Ω)) (4.2)

such that vt ∈ L2([0, T], H1
0(Ω)) solves the linear problem
vtt − ∆v − ω∆vt + µvt = u ln |u|, x ∈ Ω, t ∈ [0, T),
v(x, 0) = u0(x), vt(x, 0) = u1(x), x ∈ Ω,
v(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T),

(4.3)

where u0(x) and u1(x) are de�ned in (1.3).

Proof. (4.3) is an inhomogenous linear problem for v, carrying a good energy structure. Therefore it su�ces
to show that the forcing term is L2, so that one can apply a standard Galerkin method to extract a solution.
So we estimate

∫
Ω(u ln |u|)

2dx. First by a direct calculation and sobolev inequality, we have∫
Ω

(u ln |u|)2dx =
∫

{x∈Ω;|u(x)|≤1}

(u ln |u|)2 dx +
∫

{x∈Ω;|u(x)|>1}

(u ln |u|)2 dx

≤ e−2|Ω| +
(
n − 2
2

)2 ∫
{x∈Ω;|u(x)|>1}

u
2n
n−2 dx (4.4)

≤ e−2|Ω| +
(
n − 2
2

)2
c

2n
n−2
* ‖∇u‖

2n
n−2 ,

where c* is the best constant of the Sobolev embedding H1
0(Ω) ↪→ L

2n
n−2 (Ω). Next we claim the uniqueness.

Arguing by contradiction, we suppose that there exist two solutions v and w such that (4.3) hold. Then by
subtracting the obtained two equations and testing with vt − wt, we can derive

‖∇v(t) −∇w(t)‖2 + ‖vt(t) − wt(t)‖2 + 2
t∫

0

‖vt(τ) − wt(τ)‖2*dτ = 0,

which directly says w ≡ v. So we complete the proof.

Take (u0(x), u1(x)) satisfying (1.4), set R2 = 2(‖∇u0‖2 + ‖u1‖2) and consider

UT = {u ∈ H : u(x, 0) = u0(x), ut(x, 0) = u1(x) , ‖u‖H ≤ R}, ∀ T > 0. (4.5)
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Again Lemma 4.1 simpli�es that for ∀ u ∈ UT , there exists v = Φ(u) such that v is the unique solution to
problem (4.3). Next we prove that for a suitable T > 0,Φ is a contractive map satisfying Φ(UT) ⊂ UT .

First we can conclude that

‖∇v(t)‖2 + ‖v̇(t)‖2 + 2
t∫

0

‖vt(τ)‖2*dτ

=‖∇u0‖2 + ‖u1‖2 + 2
t∫

0

∫
Ω

u(τ) ln |u(τ)|vt(τ)dxdτ. (4.6)

where v = Φ(u) is the corresponding solution, to problem (4.3) for �xed u ∈ UT .
Similar to the arguments of (4.6), we can derive that

2
t∫

0

∫
Ω

u(τ) ln |u(τ)|vt(τ)dxdτ (4.7)

≤
t∫

0

(‖u(τ) ln |u(τ)|‖2 + ‖v̇h(τ)‖2)dτ.

Hence, (4.7) becomes

2
t∫

0

∫
Ω

u(τ) ln |u(τ)|vt(τ)dxdτ ≤ cTR
2n

(n−2) + 2
t∫

0

‖v̇h(τ)‖2*dτ, (4.8)

for all t ∈ (0, T]. Combining (4.6) with (4.7) and taking the maximum over [0, T] gives

‖v‖2H ≤ 12R
2 + cTR

2n
(n−2) . (4.9)

Choosing T su�ciently small, we get ‖v‖H ≤ R, which shows that Φ(UT) ⊂ UT .
Now taking w1 and w2 in UT , subtracting the two equations (4.3) for v1 = Φ(w1) and v2 = Φ(w2), and

setting v = v1 − v2 we obtain for all η ∈ H1
0(Ω) and a.e. t ∈ [0, T]

〈vtt(t), η〉 +
∫
Ω

∇v(t)∇ηdx + ω
∫
Ω

∇vt(t)∇ηdx + µ
∫
Ω

vt(t)ηdx

=
∫
Ω

(
w1(t) ln |w1(t)| − w2(t) ln |w2(t)|

)
ηdx

=
∫
Ω

ξ (t)(w1(t) − w2(t))ηdx, (4.10)

where
0 ≤ ξ (t) ≤ (ln |w1(t) + w2(t)| + 1)(w1(t) + w2(t)) ln |w1(t) + w2(t)|.

Therefore, taking η = vt in (4.10) and arguing as above, gives

‖Φ(w1) − Φ(w2)‖2H = ‖v‖2H ≤ cR
4n

(n−2) T‖w1 − w2‖2H ≤ δ‖w1 − w2‖2H

for some δ < 1 as long as T is su�ciently small. So by the Contraction Mapping Principle, we can conclude
that problem (1.1)-(1.3) admits a unique solution.

5 Sub-critical initial energy

5.1 Global existence for E(0) < d.

We �rst prove the invariant setW under the �ow of problem (1.1)-(1.3).
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Lemma 5.1. (Invariant setW when E(0) < d) Let u0(x) ∈ H1
0(Ω) and u1(x) ∈ L2(Ω). If E(0) < d and u0(x) ∈ W,

then we have

u(t) ∈ W (5.1)

and

‖u‖2 < 4d for all t ∈ [0, T). (5.2)

Proof. Let u(t) be the weak solution of problem (1.1)-(1.3) with E(0) < d, u0(x) ∈ W and T be the maximum
existence time of u(t). From Lemma 2.5 we have

E(t) ≤ E(0) < d for all t ∈ [0, T), (5.3)

namely,
1
2‖ut(t)‖

2 + J(u(t)) = E(t) < d ∀ t ∈ [0, T). (5.4)

Arguing by contradiction, we suppose that there exists the �rst t0 ∈ (0, T) such that I(u(t0)) = 0 and I(u(t)) >
0 for 0 ≤ t < t0, i.e.,

‖∇u(t0)‖2 =
∫
Ω

u(t0)2 ln |u(t0)|dx. (5.5)

From the de�nition ofN, thenwehave u(t0) ∈ N, which implies that J(u(t0)) ≥ d. From (2.8) and the de�nition
of E(t), it holds that

E(t0) =
1
2‖ut(t0)‖

2 + J(u(t0)) ≥ d,

which contradicts (5.3). Then u(t) ∈ W for all t ∈ [0, T), which together with (5.4) and (2.17) gives

d > E(t) = 1
2‖ut(t)‖

2 + J(u)

= 1
2‖ut(t)‖

2 + 1
2 I(u) +

1
4‖u‖

2

≥ 14‖u‖
2.

Thus, the proof of Lemma 5.1 is completed.

Now let us turn to prove the existence of global solution to problem (1.1)-(1.3) with E(0) < d.
Proof of Theorem 3.2
From Lemma 5.1 it implies u(t) ∈ W for any t ∈ [0, T). By (2.18), we get

1
2‖ut‖

2 + 1
2‖∇u‖

2 + 1
4‖u‖

2 ≤ E(0) +
∫
Ω

u2 ln |u|dx, (5.6)

which together with the Logarithmic Sobolev inequality leads to

‖ut‖2 +
(
1 − a

2

2π

)
‖∇u‖2 + n(1 + ln a) + 12 ‖u‖2 ≤ C1 + ‖u‖2 ln ‖u‖. (5.7)

Here and in the sequel we denote by Ci > 0, i = 1, 2, 3 as constants. Choosing 0 < a <
√
2π that

1 − a
2

2π > 0,

we get

‖ut‖2 + ‖∇u‖2 + ‖u‖2 ≤ C2(1 + ‖u‖2 ln ‖u‖2). (5.8)

Recalling Lemma 5.1, we have

‖u‖2 < 4d.

Hence, from inequality (5.8) it follows that

‖ut‖2 + ‖∇u‖2 + ‖u‖2 ≤ C3,

where C3 > 0 is a constant independent of t. Therefore similar as theproof of Lemma4.1weknow that problem
(1.1)-(1.3) admits a global weak solution.
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5.2 Asymptotic behavior for E(0) < d.

Next, we can now prove the asymptotic behavior of the solution to problem (1.1)-(1.3), which relies on the
construction of a Lyapunov functional by performing a suitable modi�cation of the energy.

Proof of Theorem 3.3
First, we de�ne

L(t) := E(t) + ε
∫
Ω

utudx +
εω
2 ‖∇u‖

2, (5.9)

where ε > 0 will be chosen later. From Lemma 5.1 and (2.1)-(2.3) it implies that

0 < E(t), ∀t ≥ 0. (5.10)

It is easy to see that L(t) and E(t) are equivalent in the sense that there exist two positive constants β1 > 0
and β2 > 0 depending on ε such that

β1E(t) ≤ L(t) ≤ β2E(t) for t ≥ 0. (5.11)

Taking the derivative of L(t) with respect to time yields

dL(t)
dt = − ω‖∇ut‖2 − µ‖ut‖2 + ε‖ut‖2 − ε‖∇u‖2

+ ε
∫
Ω

u2 ln |u|dx − εµ
∫
Ω

utudx, (5.12)

together with Eq.(1.1). Now, we estimate the last term on the right hand side of (5.12) as follows. By using
Young’s inequality, we obtain, ∫

Ω

utudx ≤
1
4δ ‖ut‖

2 + δ‖u‖2, δ > 0. (5.13)

Substituting (5.13) into (5.12) with (2.1) gives that

dL(t)
dt ≤ −MεE(t) − ω‖∇ut‖2 +

(
Mε
2 + ε − µ + εµ4δ

)
‖ut‖2

+
(
Mε
4 + εµδ

)
‖u‖2 + ε

(
M
2 − 1

)
‖∇u‖2 (5.14)

+ ε
(
1 − M2

)∫
Ω

u2 ln |u|dx, ∀M > 0.

By logarithmic Sobolev inequality, we have

dL(t)
dt ≤ −MεE(t) − ω‖∇ut‖2 +

(
Mε
2 + ε − µ + εµ4δ

)
‖ut‖2

+
(
Mε
4 + εµδ + ε

(
1 − M2

)(
ln ‖u‖ − n2 (1 + ln a)

))
‖u‖2

+ ε
(
1 − M2

)(
a2
2π − 1

)
‖∇u‖2. (5.15)

Recalling (2.1), (2.4) and E(t) ≤ E(0) < d, we get

ln ‖u‖2 < ln(4J(u)) < ln 4d. (5.16)

Now, choosing M < 2, and ε small enough such that(
Mε
2 + ε − µ + εµ4δ

)
< 0.
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Then inequality (5.15) becomes

dL(t)
dt ≤

(
Mε
4 + εµδ + ε2

(
1 − M2

)(
ln(4d) − n(1 + ln a)

))
‖u‖2

−MεE(t) + ε
(
1 − M2

)(
a2
2π − 1

)
‖∇u‖2. (5.17)

Since 0 < M < 2 and J(u) ≤ E(0) < d, by taking

e
2α
n ≤ a2 ≤ 2π,

where α = ln(4d) + M+µδ
2−M − n, and taking δ > 0 small enough such that

a2
2π − 1 ≤ 0 (5.18)

and

Mε
4 + εµδ + ε2

(
1 − M2

)(
ln(4d) − n(1 + ln a)

)
≤ 0, (5.19)

then we have

dL(t)
dt ≤ −MεE(t), ∀t > 0. (5.20)

Further, by virtue of (5.11), let ξ = Mε
β2 , (5.20) becomes

dL(t)
dt ≤ − ξL(t), ∀t > 0, (5.21)

namely,

L(t) ≤ Ce−ξt , ∀t > 0, (5.22)

which together with (5.11) shows

0 < E(t) ≤ Ĉe−ξt , ∀t > 0. (5.23)

This completes the proof.

5.3 Blow-up for E(0) < d.

To prove the blow-up results for problem (1.1)-(1.3) with E(0) < d, we �rst give the invariant set V. Similar to
Lemma 5.1, we also have the following lemma.

Lemma 5.2. (Invariant set V when E(0) < d) Let u0(x) ∈ H1
0(Ω) and u1(x) ∈ L2(Ω). If E(0) < d and u0(x) ∈ V,

then we have

u(t) ∈ V (5.24)

and

‖u‖2 > 4d for all t ∈ [0, T). (5.25)

Now we turn to show that the blow up in in�nite time for problem (1.1)-(1.3) with E(0) < d.
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Proof of Theorem 3.4
Let u(x, t) be a weak solution of problem (1.1)-(1.3) with E(0) < d, I(u0) < 0. Arguing by contradiction, we

suppose that the solution u is global. Then for any T > 0 we may consider the auxiliary function G : [0, T]→
R+ de�ned by

G(t) := ‖u‖2 +
t∫

0

‖u(τ)‖2*dτ + (T − t)‖u0‖2* . (5.26)

Since G(t) > 0 is positive over [0, T] and continuous, there exists a ρ > 0 (independent of the choice of T)
such that

G(t) ≥ ρ for all t ∈ [0, T]. (5.27)

Furthermore,

G′(t) = 2
∫
Ω

uutdx + ‖u‖2* − ‖u0‖2*

= 2
∫
Ω

uutdx + 2
t∫

0

(u(τ)ut(τ))*dτ (5.28)

and

G′′(t) = 2〈utt , u〉 + 2‖ut‖2 + 2(u, ut)* for a.e. t ∈ [0, T]. (5.29)

Testing Eq. (1.1) with u and plugging the result into (5.29) we obtain

G′′(t) = 2

‖ut‖2 − ‖∇u‖2 + ∫
Ω

u2 ln |u|dx

 for a.e. t ∈ [0, T]. (5.30)

Therefore, we get

G(t)G′′(t) − (G′(t))2

=2G(t)

‖ut‖2 − ‖∇u‖2 + ∫
Ω

u2 ln |u|dx


+ 4

η(t) − (G(t) − (T − t)‖u0‖2* )
‖ut‖2 + t∫

0

‖ut(τ)‖2*dτ

 ,

where

η(t) =

‖u‖2 + t∫
0

‖u(τ)‖2*dτ

‖ut‖2 + t∫
0

‖ut(τ)‖2*dτ


−

∫
Ω

uutdx +
t∫

0

(u(τ), ut(τ))*dτ

2

.

By Schwarz inequality, we can get

‖u‖2‖ut‖2 ≥

∫
Ω

uutdx

2

,
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t∫
0

‖u(τ)‖2*dτ
t∫

0

‖ut(τ)‖2*dτ ≥

 t∫
0

(u(τ), ut(τ))*dτ

2

and ∫
Ω

uutdx
t∫

0

(u(τ), ut(τ))*dτ

≤‖u‖

 t∫
0

‖u(τ)‖2*dτ


1
2

‖ut‖

 t∫
0

‖u(τ)‖2*dτ


1
2

.

These three inequalities entail η(t) ≥ 0 for any t ∈ [0, T]. As a consequence,we reach the followingdi�erential
inequality

G(t)G′′(t) − (G′(t))2 ≥ G(t)ξ (t) for a.e. t ∈ [0, T], (5.31)

where ξ : [0, T]→ R+ is the map de�ned by

ξ (t) := −2‖ut‖2 − 2I(u) − 4
t∫

0

‖ut(τ)‖2*dτ. (5.32)

From Lemma 2.5, Lemma 5.2, (2.4) and E(0) < d, we know

ξ (t) = 4J(u(t)) − 4E(t) − 2I(u(t)) − 4
t∫

0

‖ut(τ)‖2*dτ

= ‖u‖2 − 4E(t) − 4
t∫

0

‖ut(τ)‖2*dτ

≥ ‖u‖2 − 4E(0)
> ‖u‖2 − 4d > 0.

(5.33)

Since E(0) < d, there exists δ > 0 (independent of T) such that

ξ (t) ≥ δ for all t ≥ 0. (5.34)

Hence, by (5.27) and (5.34), it follows that

G(t)G′′(t) − (G′(t))2 ≥ ρδ > 0 for a.e. t ∈ [0, T],

which means G(t)G′′(t) − (G′(t))2 > 0. On the other hand, by directly calculation, we can see that

(lnG(t))
′
= G

′(t)
G(t) (5.35)

and

(lnG(t))′′ = G(t)G
′′(t) − (G′(t))2
G2(t) > 0. (5.36)

By (5.36), we know that (lnG(t))′ is increasing with respect to t, using this fact, integrating (5.35) from t0 to t,
we have

(lnG(t))′ = (lnG(t0))′ +
t∫

t0

G(t)G′′(t) − (G′(t))2
G2(t) dτ
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and

ln |G(t)| − ln |G(t0)|

=
t∫

t0

(lnG(τ))′dτ

=
t∫

t0

G′

G(τ)dτ

≥G
′(t0)
G(t0)

(t − t0),

where 0 ≤ t0 ≤ t. Then

G(t) ≥ G(t0) exp
(
G′(t0)
G(t0)

(t − t0)
)
.

Since G(0) = 0 and G′(0) > 0, we can take t0 su�ciently small such that G′(t0) > 0 and G(t0) > 0. Then for
su�ciently large t,

‖u‖2 = G′(t) ≥ G
′(t)

G(t0)
G(t) ≥ G′(t) exp

(
G′(t)
G(t0)

(t − t0)
)
≥ Ce2t ,

i.e.,

lim
t→+∞

G(t) = +∞.

This shows that the weak solution u to problem (1.1)-(1.3) blows up at +∞.

6 Critical initial energy
Lemma 6.1. If E(0) = d, then there exists a t0 ∈ (0, T) such that

t0∫
0

‖uτ‖2*dτ > 0. (6.1)

Proof. Arguing by contradiction we suppose that
∫ t
0 ‖uτ‖

2
*dτ ≡ 0 for 0 ≤ t < T, which gives ‖ut‖ ≡ 0 for

0 ≤ t < T . So we can get u(t) ≡ u0(x), which contradicts the assumption of Lemma 6.1.

6.1 Global existence for critical initial energy.

Lemma 6.2. Let u0(x) ∈ H1
0(Ω) and u1(x) ∈ L2(Ω). If E(0) = d and u0(x) ∈ W, then we have

u(t) ∈ W . (6.2)

Proof. We prove that u(t) ∈ W for 0 ≤ t < T . Arguing by contradiction we suppose that there exists a t0 ∈
(0, T) such that I(u(t0)) = 0 and ‖u(t0)‖ ≠ 0, which says J(u(t0) ≥ d. Hence, by

1
2‖ut(t0)‖

2 + J(u(t0)) +
t0∫
0

‖uτ‖2*dτ = E(0) = d,

we get
∫ t0
0 ‖uτ‖

2
*dτ = 0 and ‖ut‖2 = 0 for 0 ≤ t ≤ t0, which implies du

dt = 0 and u(x, t) = u0(x) for x ∈ Ω, 0 ≤
t ≤ t0. Thus we can conclude I(u(t0)) = I(u0) > 0, which contradicts I(u(t0)) = 0.
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Now we turn to prove the existence of global solution to problem (1.1)-(1.3) with E(0) = d.
Proof of Theorem 3.5
First Theorem 3.1 gives the existence of the local solution. From Lemma 6.1 we can get (6.1). By (2.18) and

E(0) = d we obtain

E(t0) = d −
t∫

0

‖uτ‖2*dτ < d.

Moreover, from Lemma 6.2 it follows u(t0) ∈ W. Let v(t) = u(t+ t0) and t ≥ 0, then v(t) is a solution of problem
(1.1)-(1.3), which combining Theorem 3.2 says that T = +∞.

6.2 Asymptotic behavior for E(0) = d.

Next, we can now prove the asymptotic behavior of the solution to problem (1.1)-(1.3) with E(0) = d.
Proof of Theorem 3.6
From Theorem 3.5 it implies that there exists a t0 > 0 such that E(t0) < d, I(u(t0)) > 0 or ‖u(t0)‖ = 0,

which together with Theorem 3.3 says,

0 < E(t) ≤ Ĉe−ξ (t−t0), t ≥ t0

and

0 < E(t) ≤ Ĉ*e−ξt , t ≥ t0,

where Ĉ* = Ĉe−ξt0 .

6.3 In�nite time blow up for the critical initial energy.

Lemma 6.3. Let u0(x) ∈ H1
0(Ω) and u1(x) ∈ L2(Ω). If E(0) = d and u0(x) ∈ V, then we have

u(t) ∈ V . (6.3)

Proof. Arguing by contradiction, we suppose that there exists a t0 ∈ (0, T) such that

I(u) < 0, 0 < t < t0

and
I(u(t0)) = 0,

which together with (2.8) gives J(u(t0)) ≥ d. The remainder of this proof is similar to the proof of Lemma 6.2.

Now we turn to show that the blow up in in�nite time of the solution to problem (1.1)-(1.3) with E(0) = d.
Proof of Theorem 3.7
First Theorem 3.1 gives the existence of the local solution. By the similar arguments as those in the proof

of Theorem 3.5, together with Lemma 6.1 and Lemma 6.3. we can set E(t0) < d and I(u(t0)) < 0. The remainder
of the proof is the same as Theorem 3.4.

7 In�nite time blow up for E(0) > 0 (ω = 0)
We �rst prove the following lemmas to obtain that the unstable set V is invariant with respect to t under the
�ow of problem (1.1)-(1.3) with E(0) > 0, ω = 0 and µ ≥ 0.
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Lemma 7.1. Let δ ∈ R, T > 0and let h beaLipschitzian function over [0, T).Assume that h(0) ≥ 0, h′(t)+δh(t) >
0 a.e. t ∈ (0, T). Then h(t) > 0, ∀t ∈ (0, T).

Proof. Di�erentiating eδth(t) gives

eδth(t)
dt = δeδth(t) + eδth′(t) = eδt(h′(t) + δh(t)) > 0, (7.1)

combining with h(0) ≥ 0, we know eδth(t) > e0h(0) ≥ 0. In other words, h(t) > 0 for all t ∈ (0, T).

Lemma 7.2. Let u0(x) ∈ H1
0(Ω), u1(x) ∈ L2(Ω), ω = 0, µ ≥ 0 and (u0, u1) ≥ 0, then the map {t 7→ ‖u(t)‖2} is

strictly increasing as long as u(t) ∈ V, where u(t) is the solution of problem (1.1)-(1.3).

Proof. Let

H(t) := ‖u‖2, (7.2)

then we have
H′(t) = 2(u, ut)

and
H′′(t) = 2〈utt , u〉 + 2‖ut‖2.

Notice that, for any t ∈ (0, T) we have

〈utt , u〉 =
d
dt (u, ut) − ‖ut‖

2. (7.3)

And multiplying Eq. (1.1) by u yields

〈utt , u〉 + ‖∇u‖2 + µ(ut , u) = (u ln |u|, u). (7.4)

Substituting (7.3) into (7.4) gives

d
dt

(
(u, ut) +

µ
2‖u‖

2
)
= ‖ut‖2 − I(u), (7.5)

which shows

d2
dt2 ‖u‖

2 + µ ddt ‖u‖
2 = 2‖ut‖2 − 2I(u). (7.6)

From u(t) ∈ V, (7.6) implies
H′′(t) + H′(t) > 0, t ∈ [0, T).

Obviously, from Lemma 7.1 and H′(0) = (u0(x), u1(x)) ≥ 0. We conclude that the map {t 7→ ‖u(t)‖2} is strictly
increasing for all t ∈ (0, T).

In the following, we show the invariance of the unstable set V under the �ow of problem (1.1)-(1.3) with E(0) >
0.

Lemma 7.3. (Invariant set V when E(0) > 0) Let u0(x) ∈ H1
0(Ω), u1(x) ∈ L2(Ω) and u be a weak solution of

problem (1.1)-(1.3) with the maximum existence time interval [0, T), T ≤ +∞. Assume that E(0) > 0, ω = 0 and
the initial data satisfy

‖u0‖2 > 4E(0), (7.7)

then the solution u(t) of problem (1.1)-(1.3) with E(0) > 0 belongs to V, provided that u0(x) ∈ V .
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Proof. We prove u(t) ∈ V for t ∈ [0, T). Arguing by contradiction, we suppose that t0 ∈ (0, T) is the �rst time
such that

I(u(t0)) = 0 (7.8)

and
I(u(t) < 0 for t ∈ [0, t0).

Hence from Lemma 7.2 it follows that the map {
t 7→ ‖u(t)‖2

}
is strictly increasing on the interval [0, t0), which together with (7.2) gives that

H(t) = ‖u(t)‖2 > ‖u0‖2 > 4E(0), ∀t ∈ (0, t0). (7.9)

Moreover, from the continuity of u(t) in t, we obtain

‖u(t0)‖2 > 4E(0). (7.10)

Recalling (2.1) and (2.18), we have

E(0) =E(t) + µ
t∫

0

‖uτ‖2dτ

=12‖ut‖
2 + 1

2‖∇u‖
2 − 1

2

∫
Ω

u ln |u|dx + 1
4‖u‖

2

+ µ
t∫

0

‖uτ‖2dτ (7.11)

=12‖ut‖
2 + 1

2 I(u) +
1
4‖u‖

2 + µ
t∫

0

‖uτ‖2dτ,

which together with (7.8), µ ≥ 0 shows that

E(0) ≥E(t0) + µ
t0∫
0

‖uτ‖2dτ

≥12‖ut(t0)‖
2 + 1

2 I(u(t0)) +
1
4‖u(t0)‖

2 (7.12)

=12‖ut(t0)‖
2 + 1

4‖u(t0)‖
2

≥14‖u(t0)‖
2.

Obviously (7.12) contradicts (7.10). So the proof is completed.

In the end we present the in�nite time blow up result of the solution to problem (1.1)-(1.3) with E(0) > 0.
Proof of Theorem 3.8
Recalling the auxiliary function G(t) in (5.26), similarly as the proof of Theorem 3.4, we have

G′(t)G(t) − (G′(t))2

≥G(t)

G′′(t) − 4

‖ut‖2 + t∫
0

‖uτ(τ)‖2*dτ


≥G(t)

−2‖ut‖2 − 2I(u) − 4 t∫
0

‖uτ(τ)‖2*dτ


(7.13)
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and

ξ (t) := −2‖ut‖2 − 2I(u) − 4
t∫

0

‖uτ(τ)‖2*dτ. (7.14)

From (7.11) and (2.1)-(2.3), we can deduce (7.14) to

ξ (t) = ‖u‖2 − 4E(0). (7.15)

At this point, (7.7) and (7.15) indicate that

ξ (t) > σ > 0. (7.16)

Therefore by (7.13)-(7.16) and (5.27), we have

G(t)G′′(t) − (G′(t))2 > ρσ > 0, t ∈ [0, T).

This tells us that
lim
t→+∞

G(t) = +∞.

The remainder of the proof is similar to that of Theorem 3.4.
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