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1 Introduction

Let Q C RN be a bounded domain with a C>~boundary 00Q.
We study the following parametric (p, 2)-equation:

{—Apu(z) - Au(z) = Au(2)|P2u(z) + f(z,u(z)) inQ b2 As0. ®)

ulpn =0
For 1 < g < o0, A4 denotes the g—-Laplace differential operator defined by
Aqu = div (\Du|q_2Du) for all u € W29(Q).

When g = 2, we have the Laplace differential operator denoted by A.

In the right hand side (reaction) of the problem, we have a parametric term x — A|X|P’2x with A > 0 being
a parameter and also a perturbation f(z, x) which is a Caratheodory function (thatis, forall x € R, z — f(z, x)
is measurable and for a.a. z € Q, x — f(z, x) is continuous).

We do not impose any sign condition on f(z,-) and we assume that for a.a. z € Q, f(z,-) is (p -
1)-superlinear near +oo. However, we do not assume that it satisfies the usual in such cases Ambrosetti-
Rabinowitz condition (the AR-condition for short).

Our aim is to prove multiplicity theorems providing sign information for all the solutions produced. To
this end, first we look for constant sign solutions and we prove bifurcation-type results describing in a precise
way the changes in the sets of positive and negative solutions respectively as the parameter A moves in the
positive semiaxis (0, +oo). We also show that there exist extremal constant sign solutions (that is, a smallest
positive solution and a biggest negative solution). Then these extremal constant sign solutions are used to
generate nodal (that is, sign changing) solutions. By strengthening the conditions on the perturbation f(z, -)
and using also tools from the theory of critical groups (Morse theory), we prove a multiplicity theorem for
small values of the parameter A > 0. So, we show that when the parameter A > 0 is small, problem (P,) has at
least seven nontrivial solutions all with sign information: two positive, two negative and three nodal.

We mention that (p, 2)-equations (that is, equations driven by a p-Laplacian and a Laplacian), arise in
problems of mathematical physics (see, for example, Benci-D’Avenia-Fortunato-Pisani [1]). We also mention
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the work of Zhikov [2] who used (p, 2)-equations to describe phenomena in nonlinear elasticity. More pre-
cisely, Zhikov introduced models for strongly anisotropic materials in the context of homogenization. For this
purpose Zhikov introduces the so-called double phase functional

]p,q(u)=/[IDu|p+a(z)\Du|q] dz
Q

withO < a(z) s Mfora.a.z€ Q,1<qg<p,uc Wé’p (Q). Here the modulating coefficient a(z) dictates the
geometry of the composite made of two different materials with hardening exponents p and q respectively.

Recently there have been some existence and multiplicity results for such equations. We mention the
works of Aizicovici-Papageorgiou-Staicu [3, 4], Cingolani-Degiovanni [5], Gasifiski-Papageorgiou [6, 7], He-
Guo-Huang-Lei [8], Papageorgiou-Radulescu [9, 10], Papageorgiou-Radulescu-Repovs [11], Sun [12], Sun-
Zhang-Su [13]. The multiplicity theorem here is the first one producing seven solutions of nonlinear non-
homogeneous equations.

Our approach combines variational methods based on the critical point theory, together with truncation
and comparison techniques and Morse theory (critical groups).

2 Mathematical Background

The variational methods which we will use, involve the direct method of the calculus of variations and
the mountain pass theorem, which for the convenience of the reader we recall below.

Suppose that X is a Banach space and X" its topological dual. By (-, -), we denote the duality brackets for
the pair (X", X). Given ¢ € C}(X, R), we say that ¢(-) satisfies the Cerami condition (the C- condition for short),
if the following property holds:

Every sequence {un}n»1 C X such that

{@n)}ns1 C Ris bounded,

(1 + lun|D@'(un) = 0in X" asn — oo,

admits a strongly convergent subsequence.

This compactness-type condition on the functional ¢(-), leads to a deformation theorem from which one
derives the minimax theory of the critical values of ¢. One of the first and most important results in this
theory, is the so-called mountain pass theorem.

Theorem 2.1. If X is a Banach space, ¢ € C(X, R), it satisfies the C-condition, ug, u; € X, ||[u1 - uol|x > p,

max{p(uo), p(u1)} <inf {@() : u-uolx = p} = mp

and

¢ =inf max @(y(t)) withT ={y € C([0, 1], X) : y(0) = ug, y(1) = uy },
y€er Ost<1

then, ¢ = my, and c is a critical value of ¢ (that is, there exists u € X such that ¢(u) = ¢ and ¢'(u) = 0).
In what follows for a given ¢ € C1(X, R), by K, we denote the critical set of ¢, that is,
Ky={uec X:¢'(u)=0}.

The main spaces in the analysis of problem (P,), are the Sobolev spaces Wcl)’p (Q) and H}(Q) and the
Banach space C}(Q) = {u € C1(Q) : u|yq = 0}.
We have
Co(Q) C WyP(Q) C HH(Q)  (recall thatp > 2)
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and the space C}(Q) is dense in both Wé’p (Q) and H}(Q). By || - || we denote the norm of the Sobolev
space Wé’p (Q). On account of the Poincaré inequality, we have

|ul| = |Dullp  forallu e WiP(Q).
The space C3(Q) is an ordered Banach space with positive (order) cone
Ci={ueCiQ):u(z)=0 forallz € Q}.
This cone has a nonempty interior given by

intC+={u€C+:u(z)>OforallzeQand% <O}.
onlon

Here g—’r‘[ = (Du, n)gx is the normal derivative of u(-), with n(-) being the outward unit normal on 0Q.
Suppose fp : Q x R — R is a Caratheodory function such that

Ifo(z, X)| < ao(2) (1 + |x|”1> fora.a.zc Q, allxc R

with ag € L=(Q) and

* M ifp <N
1<rsp = {Np i p (the critical Sobolev exponent corresponding to p).
+oo ifpz N

We set Fo(z, x) = f(f fo(z, s) ds and consider the C!-functional ¢ : Wé’p (Q) — R defined by

po(u) = %HDqu + %HDuH% - /Fo(z, u)dz forallu e Wé’p(Q).
0

The next result is an outgrowth of the nonlinear regularity theory (see Lieberman [14], Theorem 1). It is a
special case of a more general result of Papageorgiou-Radulescu [15].

Proposition 2.1. Ifug € Wé’p (Q) is a local C}(Q)-minimizer of @, that is, there exists po > O such that
©o(uo) < polup +h)  forall 1Bl 1) < Pos

thenuo € CL*(Q) = C1*(Q) N C3(Q) and it is also a local WP (Q)-minimizer of g, that is, there exists p1 > 0
such that
®ouo) < polug +h)  forall ||h|| < p;.

This result is more effective when it is combined with the following strong comparison principle, which is a
special case of a result of Gasifiski- Papageorgiou [16] (Proposition 3.2).

If hy, h, € L*°(Q), then we write that h; < h, if for all K C Q compact, we have 0 < cg < h,(z) - h1(z) for
a.a.ze k.

Proposition 2.2. If&, hy, hy, € L=(Q), é(z) 2 0fora.a.z € Q,hy < hy,andu € C§(Q)\ {0}, veintCi,u<v
satisfy

- Apu(2) - Au(2) + E@)|u@)P*u(z) = hy(2),

— Apv(2) - Av(2) + E@V(2)P ! = hy(2)

fora.a.z € Q,thenv —u € int C,.

For g € (1, +o0), let Ag : WH9(Q) » W 19(Q) = W 9(Q) (2 + % = 1) be the nonlinear map defined by
(Ag(u), h) = / |Du|?*(Du, Dh)pndz ~ forallu, h € Wy9(Q).
Q
The following proposition recalls the main properties of this map (see, for example, Motreanu-Motreanu-
Papageorgiou [17], p. 40).
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Proposition 2.3. The map Aq4(+) is bounded (that is, maps bounded sets to bounded sets), continuous,
strictly monotone (hence maximal monotone too) and of type (S): (that is, if un ~ u in Wé’p (Q) and
lim sup(A(un), un — u) <0, then uy — u in Wé’p(Q)).

n—s+oo

Ifg=2,then A, = A € L(H}(Q), HH(Q)).
We will need some basic facts about the spectrum of (-A, H}(Q)). So, we consider the following linear
eigenvalue problem
-Au(z) = Xu(z) in Q, Ulyo = 0. 2.1)

We say that AcRisan eigenvalue of (-A, H}(Q)), if problem (2.1) admits a nontrivial solution u € H}(Q)
known as an eigenfunction corresponding to A.Viathe spectral theorem for compact self-adjoint operators, we
show that the spectrum consists of a strictly increasing sequence {Zk(z)} kxen Of eigenvalues and Zk(z) — oo,
The corresponding sequence {un(2)}en € HE(Q) of eigenfunctions of (2.1), forms an orthonormal basis of
H0 () and an orthogonal basis of L?(Q). Standard regularity theory implies that {un(z)}neN C Ci(Q). By
E()lk(z)) we denote the eigenspace corresponding to the eigenvalue )lk(2) k € N. We have E()lk(z)) C CH(Q)
and we have the following orthogonal direct sum decomposition

H3(Q) = D ERi(2)).

keN

Each eigenspace E (Xk(z)) has the so-called Unique Continuation Property (UCP for short) which says that,
if u € E(A;(2)) vanishes on a set of positive Lebesgue measure, then u = 0.
The eigenvalues {A;(2)}xcn have the following properties:

. Xl(z) > 0 is simple (that is, dim E(Zl(z)) =1).

- 2
. 3,(2) = inf {'D"'Z cue HYQ), u# 0} 2.2)
llull5
* A2 =sup ”m'lz sue DER, u o} - inf ”ﬁ”z cue DER, u o} 23)
2 k=1 2 k=m

In (2.2) the infimum is realized on E (11(2)).

In (2.3) both the supremum and the infimum are realized on E (Xm(z)).

The above properties imply that the elements of E (Xl) have constant sign. On the other hand the elements
of E (Xk(z)), k = 2, are nodal (that is, sign-changing). Moreover, if by i, (2) we denote the L?—normalized (that
is, ||u1(2)|2 = 1) positive eigenfunction corresponding to A1(2), then the strong maximum principle implies
that 1, (2) € int C..

The following useful inequalities are easy consequences of the above properties.

Proposition 2.4.
(a) IfmeN,nel=Q),n(z)=< Xm(z)for aa.zeQ,n= Zm(z), then

|Dull3 - / n(20? dz = ¢, | Dull3

forsomecq >0,allu € @E(ﬁk(z)).
k=m

(b) IfmeN,nel=Q),n):= ;\\m(z)for aa.zeQ,n= Zm(z), then

|Dul3 - / n(2? dz < —c, | Du3
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m
forsome c, >0, allu ¢ @E(ﬁk(z)).
k=1

We also consider the corresponding nonlinear eigenvalue problem for the p—Laplacian
~-Apu(z) = ﬁ\u(z)|p"2u(z) in Q, Ulyg = 0.

This problem has a smallest eigenvalue Zl (p) > O which is isolated (that is, there exists € > 0 such
that (A1(p), A1(p) + €) contains no eigenvalues), simple (that is, if u, v are eigenfunctions corresponding to
A1(p) > 0, then U = &V for some ¢ € R\ {0}) and admits the following variational characterization

| Dullp .

A1(p) = inf :
[ullp

ue WyP(Q), u#0|. (2.4)

The infimum in (2.4) is realized on the corresponding one dimensional eigenspace, the elements of which
are in C}(Q) (nonlinear regularity theory, see Lieberman [14]) and have fixed sign. Using (2.4) and these prop-
erties, we obtain

Proposition 2.5. Ifn € L*°(Q), n(z) < Xl (p)fora.a.z e Q,n # Xl (p), then there exists c3 > 0 such that

[ Dullb —/n(z)\u|p dz > c3|[Dullhy  forallu € WyP(Q).
)

Next we recall some basic definitions and facts concerning critical groups.
So, let X be a Banach space, ¢ € C L(X,R), c € R. We introduce the following sets

e ={xeX:p):=cl},
Ky={ueX:¢'(u)=0} (thecritical setof p),
Ky ={ucKy: oW =ch

For a topological pair (Y1, Y) such that Y, C Y; C X and every k € Ng by H (Y, Y>) we denote the
k™ —relative singular homology group with integer coefficients. Given u € K5 isolated, the critical groups of
@ at u, are defined by

Cilp, u) = Hi (9 N U, 9 n U\ {u}),

with U being a neighborhood of u such that Ky N ¢ N'U = {u}. The excision property of singular homology,
implies that the above definition is independent of the particular choice of the neighborhood U.

Suppose that ¢ € C*(X, R) satisfies the C-condition and inf ¢(Ky) > —oo. Let ¢ < inf ¢(Ky). Then the
critical groups of ¢ at infinity, are defined by

Cr(@, 00) = Hi(X, ) forall k € No.

This definition is independent of the choice of the level ¢ < inf p(Ky). Indeed, if ¢’ < ¢ < inf ¢(Ky), then
by the second deformation theorem (see [18], p. 628), we know that (pcl is a strong deformation retract of ¢°.
Therefore

Hy(X, 9%) = Hy(X, 9¢) forall k € No

(see Motreanu-Motreanu-Papageorgiou [17], p. 145).
Suppose that Ky, is finite. We define the following items:

M(t,u) = Z rank Cy (¢, Wtk forallt e R, allu e Ko,
keNy
P(t,0) = Z rank Cy (¢, oo)tk forallt € R.

keNy
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The Morse relation says that
> M(t,u) = P(t, o) + 1+ )Q() forallt e R, (2.5)
ueky,

where Q(t) = Z Bit* is a formal series in ¢ € R with nonnegative integer coefficients.
k=0
Finally, let us fix our notation. For x € R, we set x* = max{+x, 0}. Then, for u € Wé’p (Q), we define
u*(+) = u(-)*. We know that

u* e Wé’p([)), u=u"-u, |u=u"+u.

By | - |y we denote the Lebesgue measure on RY and by | - | the norm of RN as well as the absolute value in R.
By (-, -)pv we denote the inner product in RV. Given u, v € Wy (Q), u < v, then the order interval in Wé’p Q)
determined by u and v is defined by

[u, vl = {y € WyP(Q) : u(z) < y(2) s v(z) fora.a.z e Q}.

By int u, v] we denote the interior in the C}(Q)-norm topology of [u, v] 0 C}(Q). By [u) we denote the

@l
half-line in W;*(Q) defined by

[w={ye Wé’p(()) :u(z) < y(z) foraa.z € Q}.

Finally, by 6y ., k, m € Np, we denote the Kronecker symbol, that is,

1 ifk=m
Okm = ] .
0 ifk#m

3 Constant sign solutions

In this section we produce constant sign solutions and we investigate how the sets of positive and negative
solutions of (P,) depend on the parameter A > 0.

The hypotheses on the perturbation f(z, x) are the following:

H(f): f : @ xR — Ris a Caratheodory function such that f(z, 0) = 0 for a.a. z € Q and

D Ifz,0<al@) (1+x") foraa.z € Q,allx € R, witha € L™(Q2) and

. I\I,pr ifp<N . .
p<r<p = p (the critical Sobolev exponent corresponding to p);

+oo ifp=xN
.. x . F(z,x) .
(ii) IfF(z,x) = fo f(z, s)ds, then Xl_lgl X = +oo uniformly for a.a. z € Q;
(iii) thereexist>0andq e ((r - p) max { %, 1} ,p*) such that

0 <7 < liminf {Z XX~ PFG X)
X—r*

X[ uniformly for a.a. z € Q;

(iv) there exist m € N, m = 2, and functions 9, Je L*°(Q) such that
Xm(z) <9(z) < @(z) < Xmﬂ(z) fora.a.z € Q,

9% An), 9% Ana(2),
f(z,x)
X

< lim sup < E(z) uniformly for a.a. z € Q;

x—0

9(2) < liminf flz, %)
x—0 X
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(v)  forevery p > 0, there exists Ep > 0 such that for a.a. z € Q the function
X — f(z,x) + Z’p\x|p"2x

is nondecreasing on [-p, p].

Remarks. Hypotheses H(f)(ii), (iii) imply that
lim @29

X—>+oo ‘X|p’2X

= +co uniformly fora.a.z € Q.

So, the perturbation term is (p — 1)-superlinear. However, we do not use the usual in such cases AR-condition.
Recall that the AR-condition says that there exist q > p and M > 0 such that

0<qF(z,x) < f(z,x)x foraa.zc Q, all|x| M and O0< es%ian(-, +M). 3.1)
Integrating, we obtain the following weaker condition
c4|x|? < F(z,x) fora.a.z € Q, all |x| 2 M, withc, > 0. (3.2

From (3.1) and (3.2) it follows that for a.a. z € Q, f(z, -) has at least (q — 1)-polynomial growth near +oo. So,
the AR-condition although very convenient in verifying the C-condition, it is rather restrictive (see the Examples
below). For this reason we employ hypothesis H(f)(iii) which is more general. Indeed, suppose that the AR-
condition holds. We may assume that q > (r - p) max {%, 1}. Then

fz,x)x-pF(z,x) _ f(z,x)x-qF(z,x) F(z, x)
e - AT
= (q- p)F|(i|’qX) (see (3.1))
= (g-plcs>0 (see (3.2)),
= liminf f(z, )x - pF(z, x) >(q - p)cs >0 uniformly for a.a. z € Q.

X—+00 ‘x‘q

So, hypothesis H(f)(iii) is verified. Near zero, for a.a. z € Q, f(z, -) is nonuniformly nonresonant with respect
to the spectral interval [Am(2), Aps1(2)].

Examples. The following functions satisfy hypotheses H(f). For the sake of simplicity, we drop the
z—dependence:

T-2 : <
f1(X)={8X+|X| b iflx| <1

x| 2x - [x|92x if|x|> 1

with § € (Zm(z),zmﬂ(z))forsome meN,m22and2<1T<oo,p<q<r,

_ T-2 . <
£00 = {B(X x|"x) if|x| =1

9x[P2x1In|x| if|x|>1

with 9 € (;I\m(z),;ierl(z))fOr somemeN,m=2andt > 2.
Note that f1 satisfies the AR-condition, while f> does not.

We introduce the following sets:

L* ={A>0: problem (P,) has a positive solution},

S} = set of positive solutions of (P;).
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Similarly, we define,

L~ ={A>0: problem (P,) has a negative solution},

S; = set of negative solutions of (P,).

We start by establishing the nonemptiness of £* and £~ and we locate the set S} and S;.
Proposition 3.1. If hypotheses H(f) hold, then L*, L™ # @ and S} C int C,, Sy C —int C,.

Proof. We do the proof for the pair (£*, S7), the proof for the pair (£, S}) being similar.
So, we consider the C'-functional Yy Wé’p (Q) — R defined by

1 1 A
i) = I;HDMHﬁ + 5 11Dull3 - I;Hu*\lﬁ - /F(Z, u")dz, forallu e WyP(Q).
Q

Evidently if T € (1, 2), hypothesis H(f)(iv) implies that

lim &%)

x—0+ xT-1

=0 uniformly fora.a. z € Q.

So, given € > 0, we can find ¢5 = c5(€, T) > 0 such that
F(z,x) < €|x|" +cs|x|” fora.a.z € Q,allx € R.

Then we have
1

DE GRUYTER

(3.3)

UHE I%HDM’HZ + v (IDu™ |5 = Allu™|ID) - ecellul|” - c7||ul”  forsome cg > 0, c7 > O (see (3.3)).

IfA < (0, Xl (p)), then using Proposition 2.5 we obtain

i)

v

csllull’ - (ecellul|” + c7|lul|") for some cg >0

[cs = (ece|ul|™™ + c7||ul|"P)] flulfP

We consider the function
&) =ecet™ P + 7P, t>0.

Evidently ¢ € C1(0, +o0). Moreover, since T < 2 < p < r, we see that
&(t) » +oocast — 0" and as t — +oo,
So, we can find tq € (0, +o0) such that

&(to) = inf [£(f) : t > 0],
= ¢'(t)) =0,

_ _[ecelp-1) &
= t() = to(é‘) = [q(ri—p)} .

Note that é(tg) — 0* as € — 0. Therefore we can find €q > 0 such that

&(tg) < cg foralle € (0, €),
= inf [Pr(u) : lul| = to] =my >0 (see (3.4))

Hypothesis H(f)(ii) implies that if u € int C., then
PY;(tu) — —coas t — +oo.

Claim. For every A > 0, the functional l/);{ satisfies the C-condition.

(34)

(3.5)

(3.6)
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Let {un}ns1 C Wé ’P(Q) be a sequence such that

|Y1(un)| < My forsome M; >0, alln € N, (3.7)
(1 + unl)@}) (un) - 0 in WP (Q)asn — oo. (3.8)

From (3.8) we have

(Ap(un), 1) + (A, ) =2 [ @iy~ hdz= [ fuphdz) < 0L 69)
Q Q "
forall h € Wy P(Q), with €5 — 0*.
In (3.9) we choose h = —u; € Wé’p(.()). Then
|Duy |5 +||Duy||5 < €n foralln € N,
= u,—0in Wé’p(Q) asn — oo, (3.10)
From (3.7) and (3.10), we have
D35 + 510w - [ (AR + pFez, )] dz = M G
Q
for some M, > 0,alln € N.
Also from (3.9) with h = u}, € Wé’p (Q), we obtain
~||Dus |5 - || Duzll3 +/ [A(up) + f(z, up)uy| dz<en foralln e N. (3.12)
Q
We add (3.11) and (3.12) and obtain
/ [f(z, up)uy - pF(z, up)] dz < M3 forall Ms >0, alln € N, (recall p > 2). (3.13)
0
Hypotheses H(f)(i), H(f)(iii) imply that we can find 7)o € (0, 7)) and ¢y > O such that
Nolx|? - co = f(z, X)x - pF(z,x) fora.a.zec Q,allx € R.
Using this in (3.13), we obtain that
{u;}nzl C LY(Q) is bounded, (3.14)

First suppose that N # p. From hypothesis H(f)(iii) it is clear that we can have q < r < p” (recall that if N < p,
then p* = +o0). So, we can find t € (0, 1) such that

1 1-t ¢t

- Tx

r q p

Invoking the interpolation inequality (see, for example, Gasifiski-Papageorgiou [18], p. 905), we have

1-t t
[unllr < l[unllg™ llunllp,
= |luplly < ciollug” for some c1p > 0,alln € N (3.15)

(see (3.4) and recall that Wé’p Q) — LP (Q)).

’

In (3.9) let h = uj; € WP(Q). Then

1Dw; B + 1Dwi 3 - / AW + £z, ubu) dz < eq forall n € N,
[0}



DE GRUYTER

458 =— N.S.Papageorgiou and A. Scapellato, Constant sign and nodal solutions

forsome c11 = c11(A) > 0,alln e N

= |Junll? < c11 [1+ ||unlly]
(see hypothesis H(f)(i) and recall that r > p)

= Junl? < c12 {1 - HuZ“tr} for some 1, > 0, all n € N, (see (3.15)). (3.16)
Hypothesis H(f)(iii) implies that tr < p. So, from (3.16) it follows that
{u;}ngl c W(l)’p(Q) is bounded,
(3.17)

=  {Un}ys C Wé’p(Q) is bounded (see (3.10)).

Now suppose that N = p. In this case p* = +oo and Wé’p — L5(Q) foralls € [1, +o0). Lets > r > g and as

before pick t € (0, 1) such that

1 1-t t
=4,
S

r q

o = Sa)
s-q

We see that
M—>r—qass—>p*=+:><>.
S—-q

By hypothesis H(f)(iii) we have

r-q<p,
= tr=s(s%_qq) < p for s > r big.

Therefore in this case too, we conclude that (3.17) holds.
Passing to a subsequence if necessary, we have
un % uin Wé’p(.()) and u, — uinL'(Q). (3.18)

In (3.9) we choose h = up —u € Wé’p (Q), pass to the limit as n — oo and use (3.18). Then

lim_ [(Ap(un), tn — u) + (A(un), tn - u)] =0,

= limsup [(Ap(un), Un —u) + (AW, un - u)} <0 (since A(-) is monotone)
n—oo

= limsup(Ap(un), un - u) <0,
n—oo
= Up—u in Wé’p (Q) (see Proposition 2.3).

Therefore 1 satisfies the C-condition. This proves the Claim.
Then with A € (0, A1(p)), from (3.5), (3.6) and the Claim, we see that we can apply Theorem 1 (the moun-

tain pass theorem) and find u, € Wé’p (Q) such that
up € Ky: and P;(0) =0 <my < Pi(uy) (see (3.5).

Therefore u; # 0 and we have
(Ap(up), hy + (A(up), h) = / [)l(uj{)p"l +f(z, u,{)} hdz forallh e WiP(Q).
Q

Choosing h = —uj € W(l,’p (Q), we obtain
u, =0, uy #0.

From (3.9) we have
(3.19)

~Apup(2) - Auy(2) = Aup (2P + f(z, up(2)) foraa.z e Q, “A’ag =0.
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From (3.19) and Corollary 6.8, p. 208, of Motreanu-Motreanu-Papageorgiou [17], we have that u; € L*(Q).
Then Theorem 1 of Lieberman [14], implies that

u, € Cs \ {O}

Let p = ||uj ||l and let /.fp > 0 be as postulated by hypothesis H(f)(v). Then from (3.19) we have

= Apu(z) — Auy(z) + /gpu,\(z)p’1 >0 foraa.zeQ,
= u, €intC. (see Pucci-Serrin [19], pp. 111,120).
Therefore (0, Xl (p)) C £L" and S C int C,. Similarly we show that £~ # @ and that S; C —int C.. O

Next we show that both £* and £~ are intervals.
Proposition 3.2. If hypotheses H(f) hold, A ¢ £L* (resp.A € £L™)and 0 < § < A, then § € L™ (resp. 9 € L7).

Proof. We do the proof for £*, the proof for £~ being similar.
Let A € £L*. We can find u) € S; C int C.. Then we introduce the following truncation of the reaction in
problem (Py):
0 ifx<o
eg(z,x) =< 9P+ f(z, x) if 0 <x<uy(2) - (3.20)
P +flzm(2)  ifuy(2) < x

This is a Caratheodory function. We set Eg(z, x) = fg eg(z,s)ds and consider the C'-functional @5 :
Wé’p (Q) — R defined by

) = %||Du||§ + %HDuH% - /Eg(z, w)dz forallu e WiP(Q).
0

From (3.20) it is clear that 1,7)5(-) is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can
finug € Wé’p (Q) such that

Pi(ug) = inf [ig(u) ‘ue wgsp(a)] . (3.21)

On account of hypothesis H(f)(iv), we see that given € > 0, we can find § > 0 such that
F(z,x) 2 % [9(z) - €] x* foraa.ze Q, all|x|<8. (3.22)

Letu € E(Zm(z)) C C4(Q) and choose t € (0, 1) small such that
O<tu(z)<é forallz e Q. (3.23)

Then we have

Py(tu)

IN

P p t? ) 2 € 2,12
EHDqu + 5|\Du||2 - ?/8(2)11 dz + 5t lullz  (see(3.22), (3.23))
0

t* t2 2 2 €2, 12
= EIIDuH5+5 [IIDulz—/S(Z)u dz| + S 7([ull3
Q

IN

p 2
%HDqu + %(—CB +€)|ul|3 forsome cq3 > O (see Proposition 2.4).

Choosing € ¢ (0, c13), we have that

- tP t2
Pi(t) < - I1Dullp - -callul>.
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Since p > 2, choosing t € (0, 1) even smaller, we have

17)5(tu) <0,
= Piug) <0=1P50) (see(321), = ug#0.

From (3.21), we have
-~ /
(1/13) (ug) =0

S (Ap(ug), B + (Alug), h) = / eg(z, uphdz forall h € WEP(Q). (3.24)

Q

In (3.24) we choose h = —uj € Wé’p (Q). Then

|IDug|5 + |[Dug)3 = 0 (see (3.20)),

= uUyg=20, ug#0.
Also, in (3.24) we choose h = (ug — uy)* € Wé’p(.Q). Then
(Ap(ug), (ug —up)*y + (Alug), (ug —u))")

- / [Sufl’"l +f(z, uA)} (ug-uy)"dz (see(3.20))

Q
< / [/\uf{’l +f(z, u/\)} (ug-uy)*dz (sinced<A)

Q
= (Ap(u,\), (ug = u,ﬂ*) + <A(Ll/1), (ug = u,\)+> (since U, € S/\),
= Uy <uy.

So, we have proved that
ug € [0, uy], ug # 0. (3.25)

From (3.24), (3.25) and (3.20), we conclude that

- Apug(2) - Aug(z) = Jug(2)’ ! + f(z, ug(z)) fora.a. z € Q, ug\m =0,

= 9eL anduy e Sy CintC;.

Similarly for £~ O

The following Corollary is a useful byproduct of the above proof.

Corollary 3.1. If hypotheses H(f) hold, then

(a) ifo0<9<AeLtandu, € S}, then 9 € L' and we can find ug € S C int C+ such that
u,—ug € Cs \ {0};
(b) if0<9<Ae L andvy € S),then9 € L™ and we can findvg € Sy C —int C+ such that

Vg—V) € C+\{0}

We can improve this corollary.
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Proposition 3.3. If hypotheses H(f) hold, then

€))] if0<9<AeLrandu, € S5, then9 € L* and we can find ug € Sy C int C. such that
Uy—uy c int Cy;
(b) if0<9<Ae L andvy € Sy, thend € L™ and we can find vy € Sy C —int C. such that

Vg -V, €intCs.

Proof.

€))] From Corollary (3.1), we already know that 9 € £* and we can find uy € S§ C int C. such that
up-ug e Cy \ {0} (3.26)
Let p = ||luy || and let Ep > 0 be as postulated by hypothesis H(f)(v). Then
- Apug — Aug + Epug_l
= ub '+ flz, ug) + Epus’l
= }lug_l +f(z, ug) + {pus"l -A- |9)u§"1
Auﬁ‘l +f(z, uy) + Epu’}f‘l (see (3.26), hypothesis H(f)(v) and recall that 9 < A)

— Apuy — Auy +Epuﬁ’_1 (since uy € S3). (3.27)

IN

Let

hi(2) = uy ™ + f(z, ug) + &ub?,

hy(z) = Wbt + fz, up) + Epuf\’"l.
Evidently hy, h, € L*°(Q2) and we have
hy(2) - h1(2) = A - Quyg(z)P™! fora.aze Q.

Since ug € int C+ we see that h; < h,. Invoking Proposition 2.2, from (3.27) we conclude that u;—ug €
int C+.
(b)  The proof is similar, using this time part (b) of Corollary 3.1.

Weset A =supL*and Af =sup L.
Proposition 3.4. If hypotheses H(f) hold, then Af < +o0 and Ax < +oo.

Proof. W~e do the proof for A}, the proof for A; being similar. On account of hypotheses H(f)(i), (ii), (iii), we
can find A > 0 big such that

P14 f(z,x)20 foraa.ze Q,allx=>0. (3.28)
Let A > Aand suppose that A € £*. We can find u, € S, C int C.. So, we have

ouy

on < 0.

0Q
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Therefore we can find § > O such that, if 0Q4 = {z € Q : d(z, 0Q) = 6}, then

au/\
o <0. (3.29)
0Qs

Consider the open set Q5 = {z € Q : d(z,0Q) > 6} and set ms = minu, > O (recall that u, € int C,). For
Qs

€ >0, we set m§ = mg + € and for p = [|u; || let Ep > 0 be as postulated by hypothesis H(f)(v). We have
— Apm§ - AmS + Ep(mE)P

Epm’g’l +u(e) with u(e) - 0" ase — 0*

Xmg"l +f(z, mg) + Epm’g_l +u(e) (see(3.28))

= AmE 4+ f(z,mg) + EmE —(A-)mE ! + p(e)  (see (3.28))

Ambt + f(z, mg) + Epmg’_l for € > 0 small

IN

IN

IN

Auﬁ"l +f(z, uy) + Epuf{'l (recall that mg < u; on Q)

IN

- Apuy — Auy +Epuf\’_1 fora.a.z € Q. (3.30)

Then from (3.29), (3.30) and Proposition 2.10 of Papageorgiou-Radulescu-Repovs [20], we have
u, - mj € int C+(Qs) for e > 0 small,
which contradicts the definition of mg. Therefore A ¢ £* and so
A <A< +oo.

Similarly we show that Ax < +oo. O

Hypotheses H(f)(i), (iv), imply that given € > 0, we can find ¢;5 > O such that

Alx|? + f(z, 0)x 2 [9(z) - €lx* - c15)x|” fora.a.z e Q,allx € R,allA > 0. (3.31)

This unilateral growth restriction on the reaction of (P, ), leads to the following auxiliary (p, 2)-equation:

{—Apu(z) - Au(2) = [9(2) - €lu(z) - c15|u(z)|"2u(z) inQ 632)

u|ao =0

Proposition 3.5. Forall € > 0 small, problem (3.32) has a unique positive solution u) € int C and, since (3.32)
is odd, v; = —uz ¢ —int C. is the unique solution of (3.32).

Proof. Consider the C'—functional o : Wé’p (2) — R defined by
1 p. 1 2 Cisy 4+yr 1 2 1,p
o(u) = EHDqu + i||Du\|2 + THu 7 - 5 [9(2) - €](u™)*dz forallu € W, (Q).
Q

Evidently o(-) is coercive (recall that p > 2). Also, it is sequentially weakly lower semicontinuous. So, we can
find u} € Wy (Q) such that
o(uy) = inf [o(w) : u € WyP(2)] . (3.33)

As in the proof of Proposition 3.2, for € > 0 small we have

o(uy) < 0 = 0(0),

= uy#0.
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From (3.33) we have
o'(uy) =0,

S (AL, B+ (AGL), Y = / [9(2) - elw)) hdz - A / ()" 'hdz forallh e WiP(Q).  (334)
Q

In (3.34) we choose h = —(u;)‘ € W(l,’p (Q2). Then

ID(uy) |15 + [Dup) |5 = 0
= uz 20, u; # 0.

So, from (3.34) we have that u} is a positive solution of (3.32) and the nonlinear regularity theory (see [14])
implies that u} € C. \ {0}. We have

Apuy + Auy < cps||uy||SP )Pt foraa.z e Q,

= u,*l € intC, (see Pucci-Serrin [19], pp. 111, 120).

Next we show the uniqueness of this positive solution. To this end we consider the integral functional
j: LY(Q) - R = RU {+oo} defined by

1 1/2p L 1 1/2)12 1/2 1,p
j(u)={P|Du 5+ 31Du )3 ifu>0,u’ e WoP (@)

+o00 otherwise

Letdom;j = {u € L'(Q) : j(u) < +oo} (the effective domain of j(-)).
From Lemma 1 of Diaz-Saa [21], we have that

j() is convex.
Suppose that u}, u} are two positive solutions of (3.32). We have
Uy, Uy € int Cs
Then, for h € C(l)(ﬁ) and for |t| < 1 small, we have
(up? +thedomj and (u;)*+th € domj.

It is easy to see that j(-) is Gateaux differentiable at (1})* and at (u})? in the direction h. Moreover, using the
chain rule and the nonlinear Green’s identity (see Gasifski-Papageorgiou [18], p. 211), we have

g 1 [ -Apuy - Au)
i () =3 / =M

7 (@) m-3 [ A”“A Aot~ ATy g,
2
Q

forall h e C}(Q).
The convexity of j(-) implies the monotonicity of j'(-). Therefore

(uy - uy) dz

[—Apu;—ﬂu; ApuA AuA:|
Up A

P B

15 [@) 2 - @) 2] @ - @) dz < 0,
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* ~%
= U, =1u,.

This proves the uniqueness of the positive solution of problem (3.32).
Since problem (3.32) is odd, it follows that

*

* .
vy =-u, € —int Cs,

is the unique negative solution of (3.32). O

These solutions provide bounds of the elements of S} and of Sj.

Proposition 3.6. If hypotheses H(f) hold, then

(a)
(b)

Proof.

(a)

uy<uforallu e S;,AeL*;
vsvforallve S;,Ae L.

LetA € L"and u € S C int C+. With € > 0 small as dictated by Proposition 3.5, we introduce the
following Caratheodory function:

0 ifx<o0
ki(z,x) = < [9(2) - €]x — c15x" 1 if0<x<ulx) - (3.35)

[9(2) - €lu(z) - cisulz) ! ifu(z) <x
We set K+(z, x) = [; k+(z, s) ds and consider the C' ~functional 7 : WyP(Q) — R defined by

T+(u) = %HDqu + %HDuH% - /K+(z, u)dz forallu ¢ WyP(Q).
)

Evidently 7. (-) is coercive (see (3.35)) and sequentially weakly lower semicontinuous. So, we can find
u) € Wé’p (Q) such that
7.(t1}) = inf [n(u) tue Wé’p (Q)} . (3.36)

As before we have
7+(Uy) < 0 = 74(0)
= U #0.
From (3.36) we have
Th (@) = 0,

= (Ap(@y), h) + (A(Uiy), h) = / ki(z,uiPhdz forallh € WyP(Q). (3.37)
Q

In (3.37) first we choose h = —(u})” € Wé”’ (Q). Then
ID@3)7|I + ID@) 7|3 = 0 (see (3.35)),
= Uy=0, uy #0.

Next in (3.37) we choose (4} - u)* € Wé’p (Q). Then
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(Ap(@), (@ ~w)") + (A(@y), (@ ~w)")

=/ [(8(2) -€u- cl5u"1} Uy -u)'dz (see (3.35))
Q
s/ [/lup"1 +f(z, u)} Uy -u)"dz (see (3.31))
Q
=(Ap W), (@) - w)") + (AW), (@ - w") (since u € S}),
= Upsu.

So, we have proved that
iy € [0,u], Uy #0. (3.38)

From (3.37) and (3.38) it follows that u) is a positive solution of problem (3.32). Hence Proposition 3.5
implies that

il\; = u; € int C+,

= u; <u forallu € S (see (3.38)).

(b) LetAde £ andv e Sj. We introduce the Caratheodory function k-(z, x) defined by

[9(2) - €]v(z) - c15|v(2)|2v(z) ifx < v(2)
k-(z,x) = < [9(2) - €]x - c15|x|"x ifv(z)sx<0. (3.39)
0 ifO<x

Weset K_(z, x) = fg k_(z, s) ds and consider the C!-functional 7- : Wcl)’p (Q) — R defined by

-(u) = I%HDqu; + 2w - /K_(z, wdz forallu e WiP(Q).
2

Working as in part (a), using this time the functional 7-(-) and (3.39) we show that

vs<vy forallves;.

O

Using these bounds, we can produce extremal constant sign solutions, that is, a smallest positive solution
and a biggest negative solution.

Proposition 3.7. If hypotheses H(f) hold, then

(@)  forevery A € L* problem (P;) has a smallest positive solutionuy € S3 C int C., that is,
uy<u foralluc Sy;
(b)  forevery A € L™ problem (P,) has a biggest negative solution vy € S; C —int C., that is,

v<vy, forallvesSj.
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Proof.

(b)

(a) From Filippakis-Papageorgiou [22], we know that S} is downward directed (thatis, if u;, u; €
S}, then we can find u € Sj such that u < u;, u < uy). Hence using Lemma 3.10, p. 178, of Hu-
Papageorgiou [23], we can find {un}n>1 C S} decreasing such that

inf S} = inf up.
n=1
We have

(Ap(un), h) + (A(un), h) = / [)luﬁ_l +f(z, un)} hdz forallhe Wé’p(()), alln e N, (3.40)
Q

O<up<u; forallnmeN. (3.41)
In (3.40) we choose h = u, € Wé’p (Q). Then on account of (3.41) and hypothesis H(f)(i), we obtain

HDuan +||Dun||3 < c1¢ forsome cjg > 0,alln € N,

= {un}ps1 C Wé’p(Q) is bounded.
So, by passing to a subsequence if necessary, we have
un % Uy in WyP(Q) and  un — uy in LP(Q). (3.42)

If in (3.40) we choose h = up - U, € Wé’p (Q), pass to the limit as n — oo, use (3.42) and reason as in
the proof of Proposition 3.1 (see the Claim), we obtain

Un — Uy in WEP(Q). (343)

So, if in (3.40) we pass to the limit as n — oo and use (3.43), then

(Ap(@y), B + (A, h) = / @+ flz,wp| hdz forall h e Wi (). (344)
0]

From Proposition 3.6, we know that

uy<up forallneN,
= uy<u,; (see(3.43)). (3.45)

From (3.44) and (3.45) we conclude that
uy €S CintCy and u, =infSj.

From Filippakis-Papageorgiou [22], we know that S} is upward directed (that is, if v1, v, € S}, then
wecan find v € Sj such that vy < v, v, <v). So, in this case we can find {vn} -1 C S increasing such
that

sup S, = sup vn.
n=1

Reasoning as in part (a), we obtain

vy €S, C-intC+ and Vv, =supS;.

We examine the maps A — 1, from £ into C, C C3(Q) and of A — v, from £ into -C C C}(Q).

Proposition 3.8. If hypotheses H(f) hold, then

(a)

the map A — u, from L™ into C. is
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(b)

Proof.

(a)

(b)

e strictly increasing (thatis, if 0 < 9 < A € £L*, then u, - Uy € int C.);
3 left continuous;

the map A — v, from L~ into -C., is

e strictly decreasing (that is, if 0 < 9 < A € L™, thenug — U, ¢ int C.);
. left continuous.

From Proposition 3.3(a) we know that we can find ug € S§ C int C+ such that

Uy —ug € int C4,

= Uj-ugeintCs.

Alsolet {An}n>1 C £7 such that Ay — (AY)". We setu, = Uy, € Sj{" CintC, forall n € N. Then

(Ap(Hn), B + (A(Hn), h) = / [An(m)l"l + f(z, m)} hdz forallh e WiP(Q),allneN,  (3.46)
Q
0 < Un < Uy forall n € N (from the monotonicity of A — ). (3.47)

Then (3.46) and (3.47) imply that
{Un} sy C Wé’p (Q) is bounded. (3.48)

From (3.48) and Corollary 8.6, p. 208, of Motreanu-Motreanu-Papageorgiou [17], we know that we can
find cy7 > 0 such that
|[tinlles < c17 foralln € N. (3.49)

Using (3.49) and Theorem 1 of Lieberman [14], we can find a € (0, 1) and ¢,g > 0 such that

U, € Cy*(Q) and %l gt < €18 foralln € N.
The compact embedding of Cé’“(ﬁ) into C}(Q), implies that at least for a subsequence we have

Un — Uy in C5(Q), Uy € Sj.. (3.50)
We claim that u): = uy.. Arguing by contradiction, suppose that u;: # u,:. So, we can find z5 € Q
such that

Uy: (20) < Uy (20)
= Up:(z0) < unlzo) = Uy, (z0) foralln = ny,
which contradicts the strict monotonicity of A — ;. Hence u,: = uy,; and for the original sequence
we have
Un — U)+ in C3(Q)asn — oo,
= A+ u, is left continuous.

In this case Proposition 3.5(b) implies that A — Vv, is strictly decreasing from £~ into Cé(ﬁ). Also,

reasoning as in part (a) and using the maximality of v;, we establish the left continuity of A — v,
from £~ into -C;. O
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So far we know that
(0,A5) C L C(0,A4],
(0,A5) C £~ C (0, A].

It is natural to ask whether the critical parameter values A; and Ax are admissible. In the next proposition we
show that A}, A; are not admissible and so

L5 =(0,A) and £ =(0,A5).
Proposition 3.9. If hypotheses H(f) hold, then A\i ¢ L and Az ¢ L~

Proof. We do the proof for Ai, the proof for Ax being similar.

We argue indirectly. So, suppose that A € £*. From Proposition 3.7, we know that problem (P,:) admits
a minimal positive solution u» = uy: € int C+. Let 9 < A¥ < A. We know that ux — uy € int C;. So, we can define
the following Caratheodory function:

Aug(z)P ™ + f(z, ug(2)) if x < Uy(z)
Bz, X) = { AP 1+ (2, %) if Ug(z) < x < U(2) -
Au(2)P 1 + f(z, ux(2))  ifux(z) < x

Let B(z, ) = Iy B, (z, s)ds and consider the C!—functional J, : Wy P(Q) — R defined by

ya(u) = %||Du||§ + %HDuH% - /ﬁ,\(z, u)dz, forallue Wé’p(!)).
o

Evidently y,(-) is coercive and sequentially lower semicontinuous. So, we can find Ui, € Wé’p (Q) such
that

JAE@) = inf [J2) : u € WGP(@)]
= Y =0,

= (Ap(uy), h) + (A(uy), h) = //ﬁ\,\(z, Uphdz forall h € W P(Q).
0
First we choose h = (ug - U,)* € Wé’p (Q). Then

(Ap(up), (g — Uup)") + (A(up), (ug - up)")

_ / A+ £z, )| @ - W) dz

Q
2/ [Sﬁf;_l +f(z, ﬁs)} (ug -uy)*dz (since 9 < A)
Q
=(Ap(uy), (Ug - up)") + (A(uyg), (ug - uy)*) (since Uy € S}),
= ﬁ,g < ﬁ/\.

Similarly, choosing h = (i - ux)" € Wé’p (Q), we obtain
Uy < Us.
So, we have proved that
uy € [ug, us,
= Ae L, acontradiction since A > A}.

This means that AY ¢ £*.
Similarly we show that Ax ¢ £~. O
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Remark. It is worth pointing out that when we have a concave-convex problem (that is, when the parametric
term in the reaction, is Au(z)4™ ' with 1 < g < 2 < p), then A € L+ and Ax € L~ (see Papageorgiou-Rddulescu

[24]).

So, we have

LY=(0,AF) and £ =(0,A5).

Now we show that forall A € £* (resp. all A € £7), we have at least two positive (resp. two negative)
solutions.

Proposition 3.10. If hypotheses H(f) hold, then

(a)

(b)

Proof.

(a)

forall A € £* = (0, AY) problem (P,) has at least two positive solutions uy, Uy € intCs, uy < Uy,
Uy # Up;
forallA € £~ = (0, A7) problem (P,) has at least two negative solutions vy, vy € int C+,Vy < vy, vy # V.

Since A € £*, we can find uy € Sy C intC.. Using u, € intC, to truncate the reaction of problem
(P2), we introduce the Caratheodory function gj(z, x) defined by

(3.51)

gz, %) - {A”A(Z)p_l (@) i< u@)

AP+ f(z, x) ifuy(z) <x
We set G;(z, x) = jg gi(z, s)ds and consider the C 1_functional ®;: Wé’p (Q) — R defined by

o) = Zl)HDqu + %HDuH% - / Gi(z,u)dz forallu e WyP(Q).
o)

Letn € (A, AY) and uy € Sy C int C, such that u, — u, € int C.. Consider the Caratheodory function

(2,0 = {g}(z, X) if x < uy(2) G:52)

gz, un(2) ifuy(z) <x’
We set G}(z, x) = o 81(z, s) ds and consider the C'-functional @j : WyP(Q) — R defined by

o) = %HDqu + %HDuH% - / Gi(z,u)dz forallue WyP(Q).
Q

As before we can check that
K@ Cluy)nintC+ and K%; C [uy, up]l nint C,. (3.53)

Moreover, since @ is coercive and sequentially weakly lower semicontinuous, we can find u; €
WP (Q) such that

@@y = inf |@iw) 1 u e WHP(Q)|,
= uc Kﬂ C [up, upl nint C;  (see (3.53)). (3.54)

We may assume that u, = u, or otherwise we already have a second positive solution of (P;) (see
(3.51), (3.52)). Note that

Pilio.uy) = Phlo,,  (se€ B:51), (3.52). (3.55)
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Since uy — u, € int C; and u;, € int C4, from (3.55) we infer that

uy is a local C3(Q)-minimizer of ¢},

= u,isalocal Wé’p (Q)-minimizer of ¢} (see Proposition 2.1). (3.56)
On account of (3.53) we may assume that
K@ is finite. (3.57)

Otherwise we already have an infinity of positive solutions of problem (P,), all bigger than u, and so
we are done. Therefore (3.56) and (3.57) imply that there exists p € (0, 1) small such that

@3 (uy) <inf [P () : |[u-wy| = p] = my (3.58)

(see Aizicovici-Papageorgiou-Staicu [25], proof of Proposition 29).
Hypothesis H(f)(ii) implies that if u € int C., then

Pi(tu) — —co as t — +oo. (3.59)
Finally as in the proof of Proposition 3.1 (see the Claim), we show that
93 (-) satisfies the C-condition. (3.60)

Then (3.58), (3.59), (3.60) permit the use of Theorem 1 (the mountain pass theorem). So, we can find
i) € WyP(Q) such that

U, K@ Clup)) nintCy (see (3.53)) and mj < Pi(Uy). (3.61)
From (3.58) and (3.61) we conclude that
U, € int C, is a solution of (Py), uy < Uy, u, # ;.
(b) In this case, let v; € S; C —int C+ and consider the Caratheodory function g} (z, x) defined by

Alx[P72x + f(z, x) ifx <v(2)

. (3.62)
AVA@)P2vi(2) + f(z, vi(2))  if x> vy(2)

gz, x) = {

We set G (z, x) = [, &3(z, s)ds and consider the C'~functional @} : WP (Q) — R defined by

o) = %HDqu + %||Du||§ - / Gi(z,u)dz forallu e W)P(Q).
0

Working as in part (a) this time using (3.62) and the functional (7);, we produce a second positive
solution v; € -int C. such that vy < vy, vy # V. O

So, summarizing the situation concerning the solutions of constant sign for problem (P,), we can state the
following theorem.
Theorem 3.1. If hypotheses H(f) hold, then

(a) there exists A € (0, +o0) such that

e forall A > A% problem (P,) has no positive solutions;
e forall A € (0,A}) problem (P,) has at least two positive solutions u,, U, € intCs, uy < Uy,
uy # Uy;
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e forall A € (0,Af) problem (P;) has a smallest positive solution u, < intC. and the map
A= U, from L* = (0, AY) into C. is strictly increasing and left continuous;

(b) there exists Ax € (0, +o0) such that

e forall A > A% problem (P;) has no negative solutions;

e forall A € (0,A:) problem (P,) has at least two negative solutions v;,V € —-intCy, V) < vy,
Vi # Vs

e forall A € (0,A5) problem (P,) has a biggest negative solution v; € —int C, and the map
AV, from £ = (0, AY) into —C. is strictly decreasing and left continuous.

4 Nodal solutions

In this section we look for nodal (that is, sign changing) solutions for problem (P,).
To this end, we need to strengthen the conditions on the perturbation f(z, -). The new hypotheses on
f(z, x) are the following:

H(f)': f : Q@ xR — R is a Caratheodory function such that f(z,0) = 0 fora.a. z € Q, f(z, -) € C}(R) and
D Ifiz 0 <al@) (1+|x]?)fora.a.ze Q,allx € R, witha € L=(Q),p<r<p".

N e . F(z,x)
(i) IfF(z,x) = [ f(z,s)ds, then xg&l" |x|P

(iii) thereexistny >0andgq ¢ ((r - p) max {%, 1} ,p*> such that

= +oo uniformly for a.a. z € Q;

0<7< liminff(z’ X)x - pF(z, X)

X—+00 |X|q

uniformly for a.a. z € Q;
(iv) there exist m € N, m > 2, such that

Zm(z) < fi(z,0) = lin}) @ < ﬁmﬂ(z) uniformly for a.a. z € Q,
x—

Fil50) Z Am2),  fil-0) # Apea (2).

Remark. Note that in this case hypothesis H(f)(V) is automatically satisfied.

Let A« = min{A;, Ax} > 0. Also, for A > 0, let ¢, € Wé’p (2) — R be the energy (Euler) functional for problem
(P,) defined by

o (u) = %HDqu + %HDuH% - I%Hu”g —/F(z, u)dz forallu e Wé’p([)).
oy

We know that ¢, € C2(WyP(Q),R) forall A > 0.

Lemma 4.1. If hypotheses H(f) hold and A > 0, then Ci(p,,0) = 6y 4,7 for all k € Ny with
m
dm = P EA(2)).

k=1

Proof. Let EA : H}(Q) — R be the C?>-functional defined by

L) = %HDuH% - %Huug - /F(z, u)dz forallu € H(Q)
Q
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We consider the following orthogonal direct sum decomposition of the space H} (Q):
HE(Q) = Hn & Hpoas (4.1)

with .
Hn = @EMQ) and Hpa = P EA(2)).
k=1 k=m+1

Hypothesis H(f)(iv) implies that given € > 0, we can find § > 0 such that

L [9(z) - €]x? < F(z, X) < %[5(2) +elx? fora.a.zec 0, all |x| < 6. (4.2)

N

The subspace Hy, is finite dimensional. So, all norms on H, are equivalent. Therefore, we can find p1€(0,1)
small such that
uecHnm, HuHHé(Q) <p1 = |u(@)| <48 forallz € Q (see (4.2)). (4.3)

Therefore for u € Hp, with ||“HH3(Q) < p1, we have
i~ 1 2 1 2 € 2
A =5 275 5 H(Q .
Q) < S1Dullz - 5 [ 9@ dz + = ullgyq) (see (4.3))
Q

< Z[-co + e]|u] f{é(g) (see Proposition 2.4(b)).

N~

Choosing € € (0, ¢,), we obtain
G(w) <0 forallu € Hy with [l < p1- (4.4)
On the other hand from (4.2) and hypothesis H(f)(i), we have
F(z,x) < %[5(2) +el® + cio|x|” fora.a.ze Q,allxeR (4.5)

with ¢19 > 0. For u € H,;;1 we have

= 1 A 1 (5 €
@) 2 Z1IDullz - lulty - 5 / N2u’ dz - = |[ullfa) — Caslully (see (4.5))
9}

v

Sler = elluly ) - €20 [l g+ Il for some cz0 > 0.
Choosing € € (0, c1) and assuming that |Ju]| H(Q) < 1, we have
[AOE c21\|u||§é(m - sz““”%&(ﬂ) for all u € H}(Q) and with c5; > 0, ¢22 = €22(A) > 0.
Since p > 2, we can find p; € (0, 1) small such that
G >0 forallu € Hpy, 0 < [|ullg1o) < pa- (4.6)

Let p = min{pq, p2} > 0. From (4.4) and (4.6) it follows that ZA(-) has a local linking at the origin with respect
to the decomposition (4.1). Since ¢} € C*(H3(Q), R), we can apply Proposition 2.3 of Su [26] and infer that

(81, 0) = 6.4, Z forall k e No. %)

Let () = EA | Whr ()" Since Wé’p (Q) is dense in H}(Q), from (4.7) we have

Cr({1, 0) = Ci(¢y, 0)  forall k € Ny (see [10]),
= Cx({y,0) = 6x.q,Z  forall k € Ny (see (4.7)). (4.8)
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Note that 1
lpa(w) - ()| = E\Iull” (4.9)

and

(@A) = (1w, B = [(Ap@), k)| < || Dullb " IR
= llpa@) = Gl < JulP. (4.10)

From (4.9), (4.10) and the C'-continuity of critical groups (see Gasifiski-Papageorgiou [27], Theorem 5.126, p.
836), we have

Cr({y,0) = Cr(gy,0) forall k € N,
= Cilpp,0) =6y 4,2  forall k € Ny (see (4.8)).

We can use this lemma to produce multiple nodal solutions.

Proposition 4.1. If hypotheses H(f)' hold and A € (0, A+), then problem (P;) admits at least three nodal solu-
tions

¥0,,¥ € C5(Q).
Proof. According to Proposition 3.7, we have two extremal constant sign solutions
uyeintCy and v, € -intCs.
We consider the Caratheodory function w,(z, x) defined by

AA@)IP2a(2) + f(z,Vp(2))  if x < Va(2)
wa(z, X) = ¢ A|x[P2x + f(z, x) ifvy(z) s x <uy(2) - (4.11)
AU (2P + fz, Uy (2) ifuy(2) < x

We set Wy(z, x) = jg w,(z, s) ds and consider the C!-functional 7, : Wé’p(.()) — R defined by

Th(u) = %HDqu + %HDuH% - / Wy(z,u)dz forallu € WyP(Q).
Q

Also, let T3 be the positive and negative truncations of 7,, that is,

T3(u) = %HDuHﬁ + %HDuH% - / Wy(z, +u*)dz forallu e Wé’p(.()).
0

As before, using (4.11) we can show that
Kz, C vy, mpl N Co(Q), Kz C[0,mINCs,  Ki C 13, 01N (-Cy).
The extremality of u; and v, implies that
Kz, C vy, mpl N C5(Q), Kz = {0,101}, Kz C {¥1,0}. (4.12)
On account of (4.12) we see that we may assume that
Kz, is finite. (4.13)

Otherwise from (4.11) and the extremality of u; and v,, we see that we already have an infinity of smooth
nodal solutions.
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Claim. &, ¢ int C+ and v, € —int C. are local minimizers of 7.
Evidently 7} is coercive (see (4.11)) and sequentially weakly lower semicontinuous. So, we can find u; €
Wé *P(Q) such that
T1(y) = inf [ﬂ ‘ue Wé’p(Q)] . (4.14)

As in the proof of Proposition 3.2, exploiting hypothesis H(f)(iv) we see that
Ti(uy) < 0 =7,(0),
= U #0. (4.15)
From (4.14) we have
u, c K?X ={0,u;} (see(4.12)
= Uy=1Uu, €intC, (see (4.15))

Note that

T

=T

C (o

So, it follows that

U, €intC, isalocal C}(Q)-minimizer of 7,

= u,cintC, isalocal Wé’p (Q)-minimizer of T, (see Proposition 2.1).

Similarly for v, € —int C, using this time the functional 7;.
This proves the Claim.
Without any loss of generality, we assume that

TA(Vp) < TA(p).

The reasoning is similar if the opposite inequality holds. From (4.13) and the Claim it follows that there
exists p € (0, 1) small such that

?A(VA) < /‘l:,\(ﬂ/\) < inf [?A(u) : ||u - ﬁ/\” = p} = fr\l/\, HVA _HAH >p. (4.16)
The functional 7, is coercive, hence
T, satisfies the C-condition. (4.17)

Then (4.16) and (4.17) permit the use of Theorem 2.1 (the mountain pass theorem). So, there exists yg €
Wé 'P(Q) such that

Yo € Kz C [V, Ul N CH(Q) (see (4.12)), my < Ty(vo) (see (4.16)). (4.18)

From (4.16) and (4.18) we see that
Yo & {up, Va}- (4.19)

We consider the homotopy
h(t,u)=(1- 0T () + tpy(u) forall (¢, u) € [0, 1] x Wé’p(Q).
Suppose we could find {tn}ns1 C [0, 1] and {un}ns1 C Wé’p(.()) such that
tn — t in [0,1], un— 0 in WIP(Q), hi(tn,un)=0 forallneN. (4.20)

From the equality in (4.20), we have

(Ap(un), h) + (A(un), h) = (1 - tn) / wy(t, un)h dz+tn /A|un|p"2unhdz +tn /.f(z, up)hdz
{ 0 0

2 (4.21)

forallh € WyP(Q),alln € N.
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In (4.21) we choose h = un € W} (Q) and we infer that
{un}ns1 € WEP(Q) is bounded.

Invoking Corollary 6.8, p. 208, of Motreanu-Motreanu-Papageorgiou [17], we see that we can find a € (0, 1)
and c¢,3 > O such that
up € Cy*(Q) and [unllcra < c23 forallneN. (4.22)
0

From (4.20) and the compact embedding of C}**(Q) into C3(Q2), we have

un — 0 in C3(Q),
= Up € [vy, uy] forall n = ng,
= {un}tnen, C Kz (see (4.11)).

= T)

This contradicts (4.13). Therefore (4.20) can not occur and so from the homotopy invariance of critical groups
(see Gasinski-Papageorgiou [27], Theorem 5.125, p. 836), we have that

C(T),0) = Cr(p,,0) forall k € N,
= Ck(/‘l:/\, 0) = 6k,dmZ forall k No. (4.23)

Recall that yq is a critical point of T, of mountain pass type. Therefore
C1(Ta, ¥0) #0 (4.24)

(see Motreanu-Motreanu-Papageorgiou [17], Proposition 6.100, p. 176).
Comparing (4.23) and (4.24), we infer that

Yo € {0,uy, vy} (see (3.61)).

Then (4.18), (4.11) and the extremality of u; and v, imply that y, € C}(Q) is a nodal solution of (P;).
Let a : RN — RY be defined by

a(y) = lyP2y+y forally e RV,
Note that a € CY(RY, RY) (recall that p > 2) and
diva(Du) = Apu +Au forallu € Wé’p(.()).

We have

va(y) = |y’ [I+ yﬁzy] +1 forally ¢ R"

= (VaWE, &) g = &) forally, & e RV,
So, applying the tangency principle of Pucci-Serrin [19] (Theorem 2.5.2, p. 35), we obtain
Va(2) < yo(z) < uy(2) forallz e Q. (4.25)

Let p = max {||Uy|ces [|V2]|= }- The differentiability of f(z, -) and hypothesis H(f)'(i) imply that we can find
¢p > O such that for a.a. z € Q, the function

X — flz,x) + §p|x|p"2x
is nondecreasing on [-p, p]. Then we have

~ Apyo(2) - Ayo(2) + & yo@IP2yo(2)
= Ayo@IP 2yo(2) + £z, ¥o(2)) + &lyo@)P2yo(2)
< NP+ f(z, W(2) + (2P

= —ApUy(2) - AU(2) + U (2Pt foraa.z € Q. (4.26)
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We set

h1(2) = Alyo(2)P2y0(2) + f(2, Yo(2) + &lyo(@) P 2y0(2),

hy(2) = (2P 7L + f(z, Ua(2)) + &ty (2)P L.
Evidently hq, h, € L*°(Q) and we have

A [ﬁA(Z)p_l - I)/o(Z)Ip_zyo(z)} <hy(z) - hi(z) fora.a.ze Q,
= hy < hy (see(4.25)).

Then from (4.26) and invoking Proposition 2.2, we infer that
Uy -Yo € int Cs.
In a similar fashion, we show that

Yo _V}l € int C+,
= Yo € int%@ [VA, HA]. (4.27)

Consider the homotopy
h(t,u)=(1- OT(w) + to;(w) forall (¢, u) € [0, 1] x Wcl)’p(()).
Suppose we could find {tn}ns1 C [0, 1] and {un}tps1 € Wé’p(.Q) such that
tn—t in [0,1], un —yo in WZP(Q), hj(tn,un) =0 foralln e N. (4.28)
Then reasoning as before, via the nonlinear regularity theory, we obtain

Un — Yo in C3(Q)asn — oo,
= up€[vy,uy] foralln = ng (see(4.27))
= {untn=n, C Kz, (see (4.11)),

which contradicts (4.13). So, (4.28) can not be true and we have

Crx(Tr, y0) = Ci(@a, yo) forall k € No, (4.29)
= Ci(pa,y0) #0 (see (4.24)). (4.30)

But ¢, € CZ(Wé”’ (Q), R). So, from (4.29) and Proposition 3.5, Claim 3, in Papageorgiou-Radulescu [9],
we have

Ck((p/h )/0) = 5;{’1Z forall k € No, (4.31)
= Ci(Ty,¥0) = 6x1Z forall k € Ny (see (4.29)). (4.32)

From the Claim in the beginning of the proof, we know that u; and v, are local minimizers of 7,. Hence
Ck(/‘l:/\,ﬂ,\) = Ck(/‘l:/\, V/\) = 6k,OZ for all k € Np. (4.33)

From (4.23) we have
Ck(/‘l:/\, 0) = 6k,dmZ forall k € No. (4.34)

We know that T is coercive (see (4.11)). Therefore

Ci(T), 00) = 6y 0Z forall k € No. (4.35)



DE GRUYTER N. S. Papageorgiou and A. Scapellato, Constant sign and nodal solutions = 477

Suppose that Kz, = {0, Uy, V), Yo}. Then using (4.34), (4.33), (4.31), (4.35) and the Morse relation with ¢t = -1
(see (2.5)), we obtain

1% +2(-1)° + (-1)* = (-1)°,

— (-1)% =0, acontradiction.

So, there exists y € Kz, y ¢ {0,Uy, V3, Yo} From (4.12) it follows that y € C3(Q) is nodal. Moreover, as
for yo, using Proposition 2.2, we show that

y € intg ) [Va, Il (4.36)

Finally, from Proposition 10 of He-Guo-Huang-Lei [8], we know that (P,) has a nodal solution y € C}(Q) such
that

5; g lntc(l)(a) [V/\’ ﬁA];

= yc C3(Q) is the third nodal solution of (Py).

So, we can state the following multiplicity theorem for problem (P,).

Theorem 4.2. If hypotheses H(f)' hold, then there exists A« > O such that for all A € (0, A+) problem (P,) has
at least seven nontrivial solutions

u,\,ﬁAeintC+, u,\sﬁ,l, ll,\#ﬁ)\,
VA,i/\/\ € —int C4, /l;/\ SV, Vi # /17;1,

¥0,9,¥ € C5(Q) nodal withy,,y € it ) Vi, 1yl
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