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Abstract: We propose a method for the localization of solutions for a class of nonlinear problems arising
in the homogenization theory. The method combines concepts and results from the linear theory of PDEs,
linear periodic homogenization theory, and nonlinear functional analysis. Particularly, we use the Moser-
Harnack inequality, arguments of �xed point theory and Ekeland’s variational principle. A signi�cant gain
in the homogenization theory of nonlinear problems is that our method makes possible the emergence of
�nitely or in�nitely many solutions.
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1 Introduction
The aim of homogenization theory is that, starting from an initial problem depending on a small positive
parameter ε related to the heterogeneous character of the problem, to �nd an approximation of its solution
which solves a problem independent of ε, called the homogenized problem. From a mathematical point of
view this is obtained by passing to the limit with ε → 0 in the initial problem.

One of the main features in classical homogenization problems is the uniqueness of the solution of the
problem under study. This is crucial in order to justify the convergence of the whole sequence of solutions of
the microscopic problem to the solution of the homogenized problem. In the nonlinear case, there is a wide
class of problems for which the uniqueness of the solution fails. When several solutions of a problem exist,
it is important to be able to carry on the analysis on one particular solution and this needs its localization.
A lot of results for nonlinear problems in homogenization theory have been obtained in the last years (see
for instance [1], [3], [7], [8] [10], [12], [13], [18]). In most cases, in order to pass to the limit, it was necessary to
obtain upper estimates of the solutions. However, up to our knowledge, none of these works had to deal with
estimates from below of the solutions.

The aim of this paper is to develop amethod of localization in bounded sets for the solutions of nonlinear
homogenization problems, which allows the emergence of multiple solutions for a given problem. The local-
ization which will be given on the initial problem, for each ε small enough, will be preserved after passage to
the limitwith ε → 0.Wewill illustrate thismethod on a simplemodel, namely the homogenization of an ellip-
tic nonlinear Dirichlet problem stated in a �xed domain, with periodic fast oscillating coe�cients depending
on the small parameter ε, which expresses the heterogeneous properties of the medium. We emphasize that
our method applies to more involved problems in nonlinear homogenization theory.

The results are then extended to systems, for which we are able to localize each component of the solu-
tion, independently. Moreover, the solution appears as a Nash equilibrium with respect to the energy func-
tionals associated to the equations of the system. In this case again, for a given nonlinear system, by the
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localization technique, we are able to prove the existence of �nitely or in�nitely many local Nash equilibrium
solutions.

The starting point of our analysis is a linear microscopic pivot problem with a right-hand side g ∈ L∞(Ω)
which allows to estimate the solutions uε both from below and from above, independently of ε, via two con-
stants mg andMg respectively. At this point, we underline the role of the Moser-Harnack inequality in estab-
lishing the lower boundmg (see Lemma 3.1), which, up to our knowledge, is new in the frame of homogeniza-
tion theory.

The question we answer in this paper is how the source term g can be modi�ed by a nonlinear source
factor f (uε) with a feedback action, such that the solution uε of the new problem remains L∞-bounded inde-
pendently of ε, between two given bounds r, R. The same question is also addressed for nonlinear systems.

Our study ismotivated by real-world applications in physics, engineering andbiology, fromwhere at least
two physical requirements emerge. In these cases the solution corresponds to a density rate.

First requirement: Find a suitable nonlinear state-dependent source factor f (uε), in order to guarantee
that the density rate uε stays bounded between two a priori given bounds r, R, 0 < r < R. Such a requirement
is natural in problems arising from medicine, where for instance the concentration rate of a drug in a tissue
with a nonhomogeneous structure must remain between some prescribed limits. The same question can be
addressed in problems of thermodynamics, when the heat di�usion in strongly heterogeneous media has to
be limited.

Second requirement: The nonlinear state-dependent source factor f being given, �nd the bounds of
the corresponding density rate uε .

Our approach makes use of methods and results from the linear theory of PDEs (weak and strong max-
imum principle, Poincaré and Moser-Harnack inequalities, compact embedding theorems), linear periodic
homogenization theory, and concepts and techniques of nonlinear functional analysis (Banach’s contraction
principle and its vector version owed to Perov, Ekeland variational principle, Nash equilibrium).

The paper is organized as follows: In Section 2 we give the statement of the problem and we recall some
basic results of periodic linear homogenization theory. In Section 3 we state and prove the main existence
and localization result giving a variational characterization to the solution and, as a consequence, we obtain
a multiplicity result for nonlinearities with a repeated suitable behavior. These solutions are local minima of
the associated energy functionals. Section 4 is devoted to the study of a nonlinear system, for which we are
able to localize componentwise the solution.

2 Statement of the problem and preliminaries results
We are concerned with the following nonlinear problem with homogeneous Dirichlet boundary conditions,
and strongly periodic oscillating coe�cients:{

−div
(
Aε(x)∇uε

)
= g(x)f

(
uε
)

in Ω
uε = 0 on ∂Ω.

(2.1)

Here Ω ⊂ Rn is an open domain with su�ciently smooth boundary ∂Ω. We make the following assumptions
on the data:

Let Y = (0, 1)n. For α, β ∈ R, with 0 < α ≤ β, let M(α, β, Y) be the set of all the matrices A ∈ (L∞(Y))n×n

such that for any ξ ∈ Rn,
α|ξ |2 ≤ (A(y)ξ , ξ ) ≤ β|ξ |2, (2.2)

almost everywhere in Y. For a Y-periodic symmetric matrix A ∈ M(α, β, Y), we set

Aε(x) = A
({ x

ε
})

a.e. in Ω.

The function g belongs to the space L∞(Ω) and the function f : R→ R is continuous.
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Throughout this paper Ω′ is a �xed subdomain of Ω, Ω
′
⊂⊂ Ω. We �rst look for su�cient conditions

on f and g such that, for given numbers 0 < r < R, problem (2.1) has a solution uε such that the following
boundedness conditions

0 ≤ uε(x) ≤ R for a.a. x ∈ Ω, (2.3)
r ≤ uε(x) for a.a. x ∈ Ω′, (2.4)

are satis�ed for each ε > 0 small enough.
Then, we prove that, after passage to the limit in (2.1) with ε → 0, the limit u of the sequence uε solves

uniquely the problem {
−div

(
A0∇u

)
= g(x)f (u) in Ω

u = 0 on ∂Ω,
(2.5)

which is therefore the homogenized problem of (2.1). The solution u of the homogenized problem, satis�es
the same boundedness conditions. Here the entries of the constant matrix A0 are de�ned in (2.8)-(2.9) below.
This localization is useful for the numerical computation of the solutions, especially when an initial approx-
imation is required.

In addition, this localization result, applied to distinct pairs of numbers (rk , Rk) yields �nitely or in�nitely
many solutions for problem (2.1), provided that either

0 < rk < Rk < rk+1 < Rk+1

or
0 < rk+1 < Rk+1 < rk < Rk .

Analogously, in Section 4, we discuss the localization of solutions for nonlinear systems. In this case
the localization can be obtained componentwise, which is a signi�cant gain for the treatment of systems in
comparison with the classical approach.

2.1 The linear homogenization problem

We start by recalling a classical result from the homogenization of linear elliptic problems. With the domain
Ω and the coe�cients Aε de�ned as before, we consider the linear problem (see [2, Chapter 1]):{

−div
(
Aε(x)∇uε

)
= h(x) in Ω

uε = 0 on ∂Ω.
(2.6)

If h ∈ L2(Ω) is given, then one can prove (see for instance [5, Chapter 6] and references therein) that problem
(2.6) admits a unique solution uε ∈ H1

0(Ω) which converges to some u weakly in H1
0 (Ω) , and strongly in

L2 (Ω). The limit u is the unique solution of the homogenized problem{
−div

(
A0∇u

)
= h(x) in Ω

u = 0 on ∂Ω
(2.7)

with the constant homogenized coe�cients given by

A0ij =
∫
Y

(
aij −

n∑
k=1

aik
∂χj
∂yk

)
dy, (2.8)

where, for i, j = 1, ..., n, aij are the entries of the matrix A. The j-th components of the vectorial function χ,
χj ∈ H1

per(Y) (j = 1, . . . , n) are the unique weak solutions of the following cell problems:{
−divy(A(y)(∇yχj − ej)) = 0 in Y ,
MY (χj) = 0.

(2.9)
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Here H1
per(Y) denotes the space of H1 functions which are Y-periodic and MY (v) represents the mean value

on the set Y of a function v.
When we make additional assumptions on the right-hand side h, one has more information on the cor-

responding solution of problem (2.6), as illustrated by the two remarks below.

Remark 2.1. If h(x) ≥ 0 for a.e. x ∈ Ω, then the weak maximum principle (see [9, Theorem 8.1]) guarantees
that for every ε > 0, one has uε(x) ≥ 0 a.e. in Ω.

Remark 2.2. If h ∈ L∞(Ω) then, according to [9, Theorem 8.15], the solution uε belongs to L∞(Ω) and there
is a constant Γh, independent of ε, such that ∥∥uε∥∥L∞(Ω) ≤ Γh .
In view of Remark 2.2, we de�ne for each ε ∈ (0, 1), the solution operator

Sε : L∞(Ω)→ V := H1
0(Ω) ∩ L∞(Ω),

h 7→ Sε(h) := uεh ,

where uεh is the corresponding solution of problem (2.6).
The operator Sε is linear and due to Remark 2.1, it preserves the positivity and the order, more exactly

if 0 ≤ h1 ≤ h2, then 0 ≤ Sε(h1) ≤ Sε(h2).

Searching now a weak solution uε ∈ V of problem (2.1) is thus equivalent to solving the nonlinear equa-
tion

uε = Sε(gf (uε)). (2.10)

For each ε, denoting
Nε(v) := Sε(gf (v)), v ∈ V , (2.11)

any solution of problem (2.10) is a �xed point of the operator Nε . The existence and the uniqueness of such
a �xed point will be obtained by using Banach’s contraction principle. Alternatively, the existence and the
uniqueness of the solution of (2.1) can be obtained using the variational approach in connection with the
energy functional associated to (2.1), namely

Jε : V → R,

Jε (v) = 1
2

∫
Ω

Aε (x)∇v ·∇v −
∫
Ω

g (x)
v(x)∫
0

f (τ) dτ.

Similarly, we associate to problem (2.5) the energy functional

J : V → R,

J (v) = 1
2

∫
Ω

A0∇v ·∇v −
∫
Ω

g (x)
v(x)∫
0

f (τ) dτ.

3 Main results for equations

3.1 A lower bound lemma

Our aim in this paper being the localization of solutions of problem (2.1), as shown in (2.3)–(2.4), we need
bounds from above and from below. For the upper bounds, we use classical results from the literature, as
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mentioned in Remark 2.2. Getting lower bounds is a more di�cult task and, up to our knowledge, it is new
in the frame of the homogenization theory. To obtain such lower bound estimates, we make use of an aux-
iliary result, Lemma 3.1, whose proof is based on Moser-Harnack’s inequality. The key auxiliary result is the
following.

Lemma 3.1. For each h ∈ L∞ (Ω) with h ≥ 0 in Ω and h > 0 on a subset of nonzero measure of Ω, there exist
εh > 0 and γh > 0 such that uε (x) ≥ γh for a.a. x in the �xed subdomain Ω′ ⊂⊂ Ω and every ε < εh .

Proof. The proofwill be done by contradiction. Assume the contrary. Then for every integer k ≥ 1, there exists
εk < 1/k with

inf
Ω′
uεk < 1

k . (3.1)

Let p ∈ R be �xed such that 1 ≤ p < n/ (n − 2) if n ≥ 3 and p = 2 if n < 3. Using Moser-Harnack’s inequality
(see [11, Theorem 12.1.2]) and covering arguments as in [15, Theorem 1.3], we have

inf
Ω′
uεk ≥ C

∥∥uεk∥∥Lp(Ω′) , (3.2)

where the constant C > 0 only depends on p, Ω, Ω′, and the ellipticity constants α and β in (2.2). From (3.1)
and (3.2) we deduce that ∥∥uεk∥∥Lp(Ω′) → 0 as k →∞. (3.3)

Since p < n/ (n − 2) < 2n/ (n − 2) = 2*, the injection of H1
0 (Ω) in Lp (Ω) is compact, and consequently up to

a subsequence we have uεk → u in Lp (Ω), where u is the solution of the homogenized problem (2.7). Then
from (3.3), ‖u‖Lp(Ω′) = 0, that is u = 0 in Ω′, which is impossible in view of the strong maximum principle
applied to the homogenized problem (2.7) in which h ≥ 0 and h is not the null function.

Coming back to our initial question, namely the localization of the solution for problem (2.1), let us de�ne,
for the given numbers 0 < r < R, the set

DrR =
{
v ∈ V : 0 ≤ v (x) ≤ R a.e. in Ω, r ≤ v (x) a.e. in Ω′} .

Note that the set DrR is a closed subset of H1
0(Ω). Indeed, if vk ∈ DrR and vk → v in H1

0(Ω), then vk → v in
L2(Ω) and there is a subsequence

(
vkj
)
of the sequence (vk) such that vkj (x) → v(x) for a.a. x ∈ Ω (see [4,

Theorem 4.9]). Then, from the de�nition of DrR, since

0 ≤ vkj (x) ≤ R a.e in Ω, and r ≤ vkj (x) a.e. in Ω′,

passing to the limit we obtain

0 ≤ v(x) ≤ R a.e in Ω, and r ≤ v(x) a.e. in Ω′,

that is v ∈ DrR .

3.2 Invariance of DrR through the operator Nε

The �rst step for applying Banach’s contraction principle to the nonlinear operator (2.11) is to guarantee the
invariance condition. To this aim we state our �rst hypothesis.

(h1) g (x) ≥ 0 a.e in Ω, g (x) = 0 for x ∈ Ω \ Ω′, and g > 0 on a subset of nonzero measure; f (τ) ≥ 0 for every
τ ≥ 0.
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Let v ∈ DrR . Since r ≤ v (x) ≤ R a.e. in Ω′ and f is continuous, we have

mf := min
τ∈[r,R]

f (τ) ≤ f (v (x)) ≤ Mf := max
τ∈[r,R]

f (τ) , a.e. in Ω′.

Clearly 0 ≤ mf ≤ Mf . This, together with the property of g of being nonnegative in Ω and to be zero outside
Ω′, gives

g (x)mf ≤ g (x) f (v (x)) ≤ g (x)Mf , a.e. in Ω.

Then using the positivity and monotonicity properties of Sε , Remark 2.2, by applying Nε to the previous in-
equalities we obtain

0 ≤ Nε (v) (x) = Sε (gf (v)) (x) ≤ Sε
(
gMf

)
(x)

= Mf Sε (g) (x) ≤ Mf Γg , for a.a. x ∈ Ω.

For the lower estimation, we make use of Lemma 3.1, applied for g, and we obtain:

Nε (v) (x) ≥ Sε
(
gmf

)
(x) = mf Sε (g) (x) ≥ mf γg , for a.a. x ∈ Ω′. (3.4)

We are now in position to derive a su�cient condition for Nε (v) ∈ DrR to hold, and thus for the invariance
condition Nε (DrR) ⊂ DrR to be veri�ed, namely

(h2) Mf Γg ≤ R and r ≤ mf γg .

Remark 3.1. If in addition the function f is nondecreasing on the interval [r, R] , then mf = f (r) , Mf = f (R)
and condition (h2) becomes

(h2)’ f (R) Γg ≤ R and r ≤ f (r) γg .

This gives an answer to the second requirement stated in the Introduction: f being given, such bounds
r, R always exist if the following asymptotic conditions are satis�ed:

lim
τ→+∞

f (τ)
τ = 0, lim

τ→0
f (τ)
τ = +∞.

3.3 The contraction condition

Assume that f is Lipschitz continuous on the interval [r, R] , moreprecisely that the following conditionholds:

(h3) There exists a constant 0 ≤ l < αλ1/ ‖g‖L∞(Ω) such that

|f (τ) − f (τ)| ≤ l |τ − τ| for all τ, τ ∈ [r, R] . (3.5)

Here λ1 is the �rst eigenvalue of the Dirichlet problem for −∆.

We recall that imposing on f the Lipschitz continuity condition is natural for getting uniqueness in non-
linear problems. Nevertheless, in our case, this condition is assumed only locally, as is often the case in real-
world applications, and mathematically it makes the possibility to study by localization problems having
multiple solutions.

For any �xed ε > 0, we prove that, under hypothesis (h3), the operator Nε satis�es the contraction prop-
erty on DrR . To this aim, let v1, v2 ∈ DrR , and denote wi = Nε (vi) , i = 1, 2. Then{

−div
(
Aε∇wi

)
= gf (vi) in Ω

wi = 0 on ∂Ω



298 | Renata Bunoiu and Radu Precup, Localization and multiplicity in homogenization

in the weak sense, for i = 1, 2. These give{
−div

(
Aε∇ (w1 − w2)

)
= g [f (v1) − f (v2)] in Ω

w1 − w2 = 0 on ∂Ω

in the weak sense. Thus, multiplying by w1 − w2 and integrating over Ω yield∫
Ω

Aε∇ (w1 − w2) ·∇ (w1 − w2) =
∫
Ω

g [f (v1) − f (v2)] (w1 − w2) . (3.6)

For the left-hand side integral in (3.6), by the ellipticity condition (2.2) on Aε, one has

α ‖w1 − w2‖2H1
0(Ω)

≤
∫
Ω

Aε∇ (w1 − w2) ·∇ (w1 − w2) . (3.7)

For the right-hand side integral in (3.6), since g is zero outside Ω′, v1 (x) , v2 (x) ∈ [r, R] for a.a. x ∈ Ω′, and
by using (h3), we have∫

Ω

g [f (v1) − f (v2)] (w1 − w2) =
∫
Ω′

g [f (v1) − f (v2)] (w1 − w2)

≤ l
∫
Ω′

g |v1 − v2| |w1 − w2|

≤ l ‖g‖L∞(Ω) ‖v1 − v2‖L2(Ω) ‖w1 − w2‖L2(Ω) .

Two times application of Poincaré’s inequality with the sharp constant 1/
√
λ1 yields∫

Ω

g [f (v1) − f (v2)] (w1 − w2) ≤
l ‖g‖L∞(Ω)

λ1
‖v1 − v2‖H1

0(Ω)
‖w1 − w2‖H1

0(Ω)
. (3.8)

Now (3.6)-(3.8) imply

‖w1 − w2‖H1
0(Ω)

≤
l ‖g‖L∞(Ω)
αλ1

‖v1 − v2‖H1
0(Ω)

, (3.9)

which in view of (h3) shows that Nε is a contraction on DrR, with the contraction constant

L :=
l ‖g‖L∞(Ω)
αλ1

< 1.

3.4 Existence and localization result

We are now in position to state the existence and localization result for the nonlinear problem (2.1).

Theorem 3.2. Assume that conditions (h1)-(h3) hold. Then there exists ε0 > 0 such that
(i) for any ε < ε0, problem (2.1) has a unique solution uε in DrR , which is in DrR the unique minimum point

of the energy functional Jε .
(ii) uε → u as ε → 0, weakly in H1

0 (Ω) and strongly in L2 (Ω) , where u is the unique function in DrR which
solves the homogenized problem (2.5). Also u is in DrR the unique minimum point of the energy functional J, and

Jε
(
uε
)
→ J (u) as ε → 0.

Proof. (a) The existence and uniqueness in DrR of uε follows from Banach’s contraction principle, in view of
the previous considerations. In order to prove the convergence of uε to u, note that, due to the boundedness in
L∞ (Ω) of the set

{
gf
(
uε
)}

, the set {uε} is bounded inH1
0 (Ω) , and so relatively compact in L2 (Ω) . Thus there

is a subsequence
(
uεk
)
with εk → 0 which is weakly convergent in H1

0 (Ω) to some u ∈ H1
0 (Ω) , and strongly
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convergent in L2 (Ω) to u. Obviously, the limit u belongs to DrR . Now we are in position to pass to the limit in
problem (2.1). The limit of the left-hand side of (2.1) is found as in the linear case (see [5, Chapter 9]), while
for the right-hand side of (2.1) we use the uniform boundedness of

(
uεk
)
in L∞ (Ω) , its strong convergence

in L2 (Ω) , and the continuity of Nemytskii’s operator associated to f from L2 (Ω) to itself. Thus, the limit u
satis�es problem (2.5). The uniqueness in DrR of the solution of the homogenized problem, can be proved
with similar arguments as above, by means of Banach’s contraction principle, and implies that the entire
sequence

(
uε
)
converges to u, weakly in H1

0 (Ω) , and strongly in L2 (Ω) .
(b) To show that for each �xed ε, uε minimizes Jε in DrR , let us �rst note that Jε is a C1 functional on V

and under the standard identi�cation of H−1 (Ω) to H1
0 (Ω) , one has(

Jε
)′ (v) = v − Nε (v) . (3.10)

Hence the �xed points of Nε are the critical points of Jε . It is easy to see that Jε is bounded from below on
DrR . Then, using Ekeland’s variational principle (see, e.g., [6], [17]), there is a minimizing sequence (vk) of
elements from DrR such that

Jε (vk) ≤ infDrR
Jε + 1

k (3.11)

and
Jε (vk) ≤ Jε (v) +

1
k ‖v − vk‖H1

0(Ω)
(3.12)

for all v ∈ DrR . For any �xed index k, choose

vt = vk − t
(
Jε
)′ (vk) , 0 < t < 1.

Using (3.10), one has
vt = (1 − t) vk + tNε (vk) .

Here, one has vk ∈ DrR and by the invariance property in Section 3.2, Nε (vk) also belongs to DrR. Since DrR is
convex, it follows that vt ∈ DrR for every t ∈ (0, 1) . Replacing v by vt into (3.12) and then dividing by t, yields

t−1
(
Jε (vk) − Jε

(
vk − t

(
Jε
)′ (vk))) ≤ 1k ∥∥∥(Jε)′ (vk)∥∥∥H1

0(Ω)
,

whence letting t go to zero, one �nds〈(
Jε
)′ (vk) , (Jε)′ (vk)〉 ≤ 1k ∥∥∥(Jε)′ (vk)∥∥∥H1

0(Ω)
,

that is ∥∥∥(Jε)′ (vk)∥∥∥H1
0(Ω)

≤ 1k .

Hence
wk :=

(
Jε
)′ (vk)→ 0 in H1

0 (Ω) . (3.13)

Using (3.10), we have wk = vk − Nε (vk) and by the contraction property of Nε , we �nd∥∥vk+p − vk∥∥H1
0(Ω)

≤
∥∥Nε (vk+p) − Nε (vk)∥∥H1

0(Ω)
+
∥∥wk+p − wk∥∥H1

0(Ω)

≤ L
∥∥vk+p − vk∥∥H1

0(Ω)
+
∥∥wk+p − wk∥∥H1

0(Ω)
,

whence ∥∥vk+p − vk∥∥H1
0(Ω)

≤ 1
1 − L

∥∥wk+p − wk∥∥H1
0(Ω)

.

This ensures that (vk) is a Cauchy sequence, so it converges in H1
0 (Ω) to some vε . Clearly vε ∈ DrR and from

(3.11) and (3.13), passing to the limit with k → ∞ we obtain that vε minimizes Jε in DrR and
(
Jε
)′ (vε) = 0.

Hence vε is a �xed point in DrR of Nε . The uniqueness of the �xed point, guaranteed by Banach’s contraction
principle, implies that vε = uε as desired. The proof of the fact that the limit u, solution of the homogenized
problem, minimizes J in DrR is analogous.

Finally the convergence Jε
(
uε
)
→ J (u) follows from a standard result in homogenization theory (see [5,

Section 8.2]) and the properties of Nemytskii’s operator.
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Remark 3.2. (Multiplicity) If the conditions (h1)-(h3) are satis�ed for two pairs of numbers (r, R), let them be
(r1, R1) and (r2, R2) , with 0 < r1 < R1 < r2 < R2, then the sets Dr1R1 and Dr2R2 are disjoint, and according
to Theorem 3.2, problem (2.1), as well as the corresponding homogenized problem (2.5), have two distinct
solutions, one in Dr1R1 and the other in Dr2R2 . This argument, extended to a �nite or in�nite sequence of
pairs (r, R) , can be used in order to obtainmultiple (�nitely or in�nitely many) solutions of problem (2.1) and
of the corresponding homogenized problem (2.5).

Remark 3.3. Under the assumption that g vanishes inΩ\Ω′, wewere able to localize the solutions assuming
the Lipschitz continuity condition for f only locally, in the interval [r, R] . It is precisely this local Lipschitz
conditionwhich allows us to obtain, via Theorem 3.2, multiple solutions. If the assumption that g vanishes in
Ω \ Ω′ does not hold, one can however localize the solutions in the set DrR , but under the stronger condition
that f is Lipschitz continous in [0, R] instead of [r, R] . Correspondingly, in this case Mf is

Mf = max
τ∈[0,R]

f (τ)

and the estimation from below (3.4) should be driven as follows:

Nε (v) (x) ≥ Sε (1Ω′gf (v)) (x) ≥ Sε
(
1Ω′gmf

)
(x)

= mf Sε (1Ω′g) (x) ≥ mf γ1Ω′ g .

Here 1Ω′ is the characteristic function of Ω′, i.e., 1Ω′ (x) = 1 if x ∈ Ω′, 1Ω′ (x) = 0 for x ∈ Ω \ Ω′. This implies
that γg in (3.4) should be replaced by γ1Ω′ g .

Nevertheless, under this stronger Lipschitz condition on f , Theorem 3.2 cannot produce multiple solu-
tions. Indeed, if Theorem 3.2 would apply to two pairs of numbers, let them be (r1, R1) and (r2, R2) , with
0 < r1 < R1 < r2 < R2, then the sets Dr1R1 and Dr2R2 being disjoints, Nε would have two distinct �xed points,
one in Dr1R1 and other in Dr2R2 . On the other hand, f should be Lipschitz continuous on [0, R2] with the
Lipschitz constant l < αλ1/ ‖g‖L∞(Ω) . Then it is easy to see that the contraction condition on Nε , namely in-
equality (3.9), holds true for every v1, v2 ∈ BR2 := {v ∈ V : 0 ≤ v (x) ≤ R2 for a.a. x ∈ Ω}, and this guarantees
that Nε has at most one �xed point in BR2 . Since both disjoint sets Dr1R1 and Dr2R2 are included in BR2 , we
get a contradiction. This justi�es our claim about multiplicity.

4 Componentwise localization for systems
The technique used in Section 3 for one equation can be extended to systems, for the localization of each
component of the solution, individually. For simplicitywediscuss only a systemof twoequations inΩ, namely{

−div
(
Aε1 (x)∇uε1

)
= g1 (x) f1

(
uε1, uε2

)
−div

(
Aε2 (x)∇uε2

)
= g2 (x) f2

(
uε1, uε2

) (4.1)

under the Dirichlet boundary condition uεi = 0 on ∂Ω, i = 1, 2.
We assume on the matrices Aεi , and on the functions gi , fi , similar hypotheses as in Section 2, allowing

the ellipticity constants for the two equations to be di�erent, namely αi and βi , i = 1, 2. Then, solving the
Dirichlet problem for system (4.1) in the weak sense is equivalent to �nding in V × V the �xed point of the
problem

uε1 = Nε1
(
uε1, uε2

)
uε2 = Nε2

(
uε1, uε2

)
where Nεi = Sεi (gi fi) , i = 1, 2. Also, in terms of the energy functionals associated to the equations of the
system, solving problem (4.1) is equivalent to solving the critical point problem

Jε11
(
uε1, uε2

)
= 0

Jε22
(
uε1, uε2

)
= 0,
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where by Jεii (v1, v2) we have denoted the Fréchet derivative of Jεi (v1, v2) with respect to the variable vi , for
i = 1, 2, and the expressions of the functionals Jεi (v1, v2) are

Jε1 (v1, v2) = 1
2

∫
Ω

Aε1 (x)∇v1 ·∇v1 −
∫
Ω

g1 (x)
v1(x)∫
0

f1 (τ, v2 (x)) dτ,

Jε2 (v1, v2) = 1
2

∫
Ω

Aε2 (x)∇v2 ·∇v2 −
∫
Ω

g2 (x)
v2(x)∫
0

f2 (v1 (x) , τ) dτ.

We are interested to guarantee the existence and uniqueness of a solution
(
uε1, uε2

)
in a bounded subset of

V × V, more exactly
(
uε1, uε2

)
∈ D := Dr1R1× Dr2R2 , where 0 < r1 < R1 and 0 < r2 < R2 are given numbers.

Here are the hypotheses that duplicate the assumptions made in Section 3 for a single equation:

(H1) gi (x) ≥ 0 a.e in Ω, gi (x) = 0 for x ∈ Ω \Ω′, and gi > 0 on a subset of nonzero measure; fi (τ1, τ2) ≥ 0 for
every τ1, τ2 ≥ 0.

(H2) MiΓgi ≤ Ri and ri ≤ miγgi , where

Mi = max
τ1∈[r1 ,R1]
τ2∈[r2 ,R2]

fi (τ1, τ2) , mi = min
τ1∈[r1 ,R1]
τ2∈[r2 ,R2]

fi (τ1, τ2) .

(H3) There exist constants 0 ≤ lij (i, j = 1, 2) such that

|fi (τ1, τ2) − fi (τ1, τ2)| ≤ li1 |τ1 − τ1| + li2 |τ2 − τ2|
for all τ1, τ1 ∈ [r1, R1] and τ2, τ2 ∈ [r2, R2] ,

and the spectral radius of the matrix L =
[
Lij
]
i,j=1,2 , where

Lij :=
lij ‖gi‖L∞(Ω)

αiλ1
(i, j = 1, 2)

is less than one.

Theorem 4.1. Assume that conditions (H1)-(H3) hold. Then there exists ε0 > 0 such that for any ε < ε0 :
(i) system (4.1) has a unique solution

(
uε1, uε2

)
∈ D, which is in D the unique Nash equilibrium point with

respect to the energy functionals Jε1, Jε2, i.e.,

Jε1
(
uε1, uε2

)
= min
Dr1R1

Jε1
(
·, uε2

)
and Jε2

(
uε1, uε2

)
= min
Dr2R2

Jε2
(
uε1, ·

)
.

(ii) uεi → ui as ε → 0, weakly in H1
0 (Ω) and strongly in L2 (Ω) , where (u1, u2) is the unique couple of

functions in D which solves the homogenized system{
−div

(
A01∇u1

)
= g1 (x) f1 (u1, u2)

−div
(
A02∇u2

)
= g2 (x) f2 (u1, u2) .

(4.2)

Also (u1, u2) is in D the unique Nash equilibrium with respect to the energy functionals J1, J2 associated to the
equations of the homogenized system (4.2), and

Jεi
(
uε1, uε2

)
→ Ji (u1, u2) as ε → 0, for i = 1, 2.

Proof. (a) Existence, uniqueness and localization:Using similar arguments as in the case of a single equation,
we obtain for any (v1, v2) , (v1, v2) ∈ D and i ∈ {1, 2} :

0 ≤ Nεi (v1, v2) (x) ≤ MiSεi (gi) (x) ≤ MiΓgi , for a.a. x ∈ Ω,
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and
Nεi (v1, v2) (x) ≥ miSεi (gi) (x) ≥ miγgi , for a.a. x ∈ Ω′, (4.3)

which in view of (H2) show that Nε (D) ⊂ D, where Nε =
(
Nε1, Nε2

)
.

Also ∥∥Nεi (v1, v2) − Nεi (v1, v2)∥∥H1
0(Ω)

≤ Li1 ‖v1 − v1‖H1
0(Ω)

+ Li2 ‖v2 − v2‖H1
0(Ω)

, i = 1, 2

which, using the matrix L de�ned in (H3), can be written in the matrix form[ ∥∥Nε1 (v1, v2) − Nε1 (v1, v2)∥∥H1
0(Ω)∥∥Nε2 (v1, v2) − Nε2 (v1, v2)∥∥H1
0(Ω)

]
≤ L
[
‖v1 − v1‖H1

0(Ω)
‖v2 − v2‖H1

0(Ω)

]
.

Then, from Perov’s �xed point theorem (see [14, Theorem 1]), the operator Nε has in D a unique �xed point(
uε1, uε2

)
, solution of system (4.1).

(b) Nash equilibrium: In order to prove that the solution
(
uε1, uε2

)
is a Nash equilibrium, we use an

iterative approximation scheme. We start with a �xed element uε2,0 in Dr2R2 . At each step k (k ≥ 1), uε2,k−1
been determined at step k−1, �rst we apply Ekeland’s principle to Jε1

(
·, uε2,k−1

)
and �nd an uε1,k ∈ Dr1R1 such

that
Jε1
(
uε1,k , u

ε
2,k−1

)
≤ inf
Dr1R1

Jε1
(
·, uε2,k−1

)
+ 1
k ,

∥∥Jε11 (uε1,k , uε2,k−1)∥∥H1
0(Ω)

≤ 1k . (4.4)

Next we apply Ekeland’s principle to Jε2
(
uε1,k , ·

)
and obtain an uε2,k ∈ Dr2R2 with

Jε2
(
uε1,k , u

ε
2,k
)
≤ inf
Dr2R2

Jε2
(
uε1,k , ·

)
+ 1
k ,

∥∥Jε22 (uε1,k , uε2,k)∥∥H1
0(Ω)

≤ 1k . (4.5)

Let
vk := Jε11

(
uε1,k , u

ε
2,k−1

)
and wk := Jε22

(
uε1,k , u

ε
2,k
)
.

From (4.4) and (4.5), one has vk , wk → 0 in H1
0 (Ω) . Also, as in the case of one equation, we have

uε1,k − N
ε
1
(
uε1,k , u

ε
2,k−1

)
= vk (4.6)

uε2,k − N
ε
2
(
uε1,k , u

ε
2,k
)

= wk .

The �rst equality in (4.6) written for k and k + p, with p ∈ N \ {0} , yields∥∥uε1,k+p − uε1,k∥∥H1
0(Ω)

≤
∥∥Nε1 (uε1,k+p , uε2,k+p−1) − Nε1 (uε1,k , uε2,k−1)∥∥H1

0(Ω)
+
∥∥vk+p − vk∥∥H1

0(Ω)
(4.7)

≤ L11
∥∥uε1,k+p − uε1,k∥∥H1

0(Ω)
+ L12

∥∥uε2,k+p−1 − uε2,k−1∥∥H1
0(Ω)

+
∥∥vk+p − vk∥∥H1

0(Ω)

≤ L11
∥∥uε1,k+p − uε1,k∥∥H1

0(Ω)
+ L12

∥∥uε2,k+p − uε2,k∥∥H1
0(Ω)

+L12
(∥∥uε2,k+p−1 − uε2,k−1∥∥H1

0(Ω)
−
∥∥uε2,k+p − uε2,k∥∥H1

0(Ω)

)
+
∥∥vk+p − vk∥∥H1

0(Ω)
.

The second equality in (4.6) written for k and k + p gives∥∥uε2,k+p − uε2,k∥∥H1
0(Ω)

≤ L21
∥∥uε1,k+p − uε1,k∥∥H1

0(Ω)
+ L22

∥∥uε2,k+p − uε2,k∥∥H1
0(Ω)

+
∥∥wk+p − wk∥∥H1

0(Ω)
. (4.8)

Denote

ak,p =
∥∥uε1,k+p − uε1,k∥∥H1

0(Ω)
, bk,p =

∥∥uε2,k+p − uε2,k∥∥H1
0(Ω)

,

ck,p =
∥∥vk+p − vk∥∥H1

0(Ω)
, dk,p =

∥∥wk+p − wk∥∥H1
0(Ω)

.

Clearly,
ck,p → 0 and dk,p → 0 as k →∞, uniformly with respect to p. (4.9)
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With these notations, (4.7) and (4.8) become

ak,p ≤ L11ak,p + L12bk,p + ck,p + L12
(
bk−1,p − bk,p

)
,

bk,p ≤ L21ak,p + L22bk,p + dk,p ,

which can be expressed in the matrix form[
ak,p
bk,p

]
≤ L
[
ak,p
bk,p

]
+
[
ck,p + L12

(
bk−1,p − bk,p

)
dk,p

]
. (4.10)

Under the assumption that the spectral radius of the matrix L is less than one, the matrix I − L (where I is the
unit matrix), is invertible and its inverse contains only nonnegative elements (see [14, Lemma 2]). Thus (4.10)
gives [

ak,p
bk,p

]
≤ (I − L)−1

[
ck,p + L12

(
bk−1,p − bk,p

)
dk,p

]
.

Let (I − L)−1 =
[
ρij
]
. Then

ak,p ≤ ρ11
(
ck,p + L12

(
bk−1,p − bk,p

))
+ ρ12dk,p (4.11)

bk,p ≤ ρ21
(
ck,p + L12

(
bk−1,p − bk,p

))
+ ρ22dk,p .

From the second inequality, one has

bk,p ≤
ρ21L12

1 + ρ21L12
bk−1,p +

ρ21ck,p + ρ22dk,p
1 + ρ21L12

. (4.12)

Note that the sequence
(
bk,p

)
k≥1 is bounded uniformly with respect to p. Indeed, from (4.6),

uε2,k − wk = N
ε
2
(
uε1,k , u

ε
2,k
)
,

whence {
−div

(
Aε (x)∇

(
uε2,k − wk

))
= g2 (x) f2

(
uε1,k , u

ε
2,k
)

in Ω
uε2,k − wk = 0 on ∂Ω.

Since the right-hand side is bounded in L∞ (Ω) independently of k, this implies∥∥uε2,k − wk∥∥H1
0(Ω)

≤ c0

for every k. As a result, the sequence
(
uε2,k

)
k≥1 is bounded in the norm of H1

0 (Ω) by some constant c. Then,
clearly bk,p ≤ 2c, as claimed. Now we recall a lemma proved in [16, Lemma 3.2].

Lemma 4.2. Let
(
xk,p

)
,
(
yk,p

)
be two sequences of real numbers depending on a parameter p, such that(
xk,p

)
is bounded uniformly with respect to p,

and
0 ≤ xk,p ≤ λxk−1,p + yk,p (4.13)

for all k, p and some λ ∈ [0, 1). If yk,p → 0 as k → ∞ uniformly with respect to p, then xk,p → 0 uniformly
with respect to p.

We apply the previous lemma for

xk,p = bk,p , yk,p =
ρ21ck,p + ρ22dk,p

1 + ρ21L12
and λ = ρ21L12

1 + ρ21L12
bk−1,p .

According to (4.12), one has (4.13), while due to (4.9), one has yk,p → 0 as k → ∞, uniformly with respect to
p. Also, obviously, 0 ≤ λ < 1. It follows that bk,p → 0 as k →∞, uniformly with respect to p, that is

(
uε2,k

)
is a

Cauchy sequence. Next, the �rst inequality in (4.11) implies that
(
uε1,k

)
is also a Cauchy sequence. Let vε1, vε2

be the limits of the sequences
(
uε1,k

)
,
(
uε2,k

)
as k →∞, respectively. Clearly

(
vε1, vε2

)
∈ D, and passing to the

limit in (4.4), (4.5) we obtain that
(
vε1, vε2

)
solves system (4.1). The uniqueness of the solution in D implies that(

vε1, vε2
)
=
(
uε1, uε2

)
.
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