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Abstract: An important class of Schur-convex functions is generated by convex functions via the well-known
Hardy-Littlewood—Pdélya—Karamata inequality. Sherman’s inequality is a natural generalization of the HLPK
inequality. It can be viewed as a comparison of two special inner product expressions induced by a convex
function of one variable. In the present note, we extend the Sherman inequality from the (bilinear) inner prod-
uct to a (nonlinear) map of two vectorial variables satisfying the Leon—Proschan condition. Some applications
are shown for directional derivatives and gradients of Schur-convex functions.
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1 Introduction

We say that an n-tuple y = (y1, ..., yn)! € R" is majorized by an n-tuple X = (x1, ..., x,)T € R", and write
y < X, if

l l n n
Zy[i]SZX[i] forl=1,...,n, and Zyi=ZXi.
i=1 i=1 i=1 i=1

Here x{1} > - -+ > x{n) and y1] > - -+ > y[n] are the entries of x and y, respectively, arranged in decreasing order
[13, p. 8].
It is known that for X,y € R",

y <x ifandonlyif vy € convP;x, (1.1)

where the symbol conv means “the convex hull of”, and IP,, denotes the group of n x n permutation matrices
(see [5, p. 16], [6, p. 12] and [7]).

An n x m real matrix S = (s;;) is called column stochastic (resp. row stochastic) if s;; >0 fori=1,...,n,
j=1,...,m, and all column sums (resp. row sums) of S are equal to 1, i.e,, Y1, s;j=1forj=1,...,m
(resp. Zj’ﬁl sij=1fori=1,...,n).

An n x n real matrix S = (s;;) is said to be doubly stochastic if it is column stochastic and row stochastic
[13, pp. 29-30]. The set of all n x n doubly stochastic matrices is denoted by D,,.

A doubly stochastic matrix is a convex combination of some permutation matrices, and vice versa [13,
Theorem A.2.]. That is, D, = conv IP,,. Therefore, (1.1) takes the following form: for x,y € R",

y<x ifandonlyif y=Sx

for some doubly stochastic n x n matrix S (see [13, p. 33]).
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A function F : J® —» R with an interval J ¢ R is said to be Schur-convex on J" if for x,y € J",
y < x implies F(y) < F(x).
See [13, pp. 79-154] for applications of Schur-convex functions.

Some important examples of Schur-convex functions are included in the following theorem.

Theorem A ([8, 11]). Letf: ] — R be a real convex function defined on an interval ] c R.
Then, forX = (X1, X2, ..., x)T € JTandy = (y1,¥2,...,yn)T € J",

n n
y<x implies Y fly:) <) fixi).
i=1 i=1
Throughout, the symbol (-)T denotes the operation of taking the transpose of a matrix. So, S is a column
stochastic matrix if and only if S” is a row stochastic matrix.
A generalization of Theorem A is the following result (see [17], cf. also [4]).

Theorem B ([17]). Let f be a real convex function defined on an interval ] c R. Let a = (a, ..., a,)! e R,
b=, ..., b)) e R, x=(x1,...,x)T €J"andy = y1,...,ym)T €J™.
If
y=Sx and a=S"b (1.2)

for some n x m row stochastic matrix S = (s;;), then

Y bifty) < ) aif(xi). (1.3)
j=1 i=1

If f is concave, then inequality (1.3) is reversed.

Statements (1.2) and (1.3) are referred to as Sherman’s condition and Sherman’s inequality, respectively. Con-
sult [1-4, 9, 10, 14-16] for generalizations and applications of Theorem B.
Observe that, when m = n, inequality (1.3) can be rewritten as

(b, fly)) < (a, f(x)), (1.4)

where (-, -) is the standard inner product on R”", and f(x) = (f(x1), .. ., f(x2))T and f(¥) = (fy1), . . ., fya)T.
Further, (1.4) can be restated as
¥(b, fly)) < ¥(a, f(x)), (1.5)

where V¥ is the inner product map on R", i.e.,
Y(c,z) ={c,z) forc,ze R".

In the next section, we study inequalities of the form (1.5) for an arbitrary (nonlinear) map ¥ of two
variables in R".

2 Sherman-type inequality for nonlinear maps

In [12], Leon and Proschan gave some interesting inequalities for the Hadamard product map ¥(x,y) = X0y,
whereXoy = (X1¥1,..., XpYn) forx = (x1,...,x,)T e R"andy = (y1,...,yn)" € R™ They applied a finite
reflection group G acting on R" with the property that for each g € G there exist h, k € G such that

Xogy =k((hx)oy) forx,yeR". (2.1)

Example 2.1. Let ¥ : R" x R" — R" be defined by ¥(x, V) = X o y, the Hadamarad product on R".
If G = IP,, (the permutation group acting on R"), then

Xopy =p(p~ixoy) forx,yeR"andp € P,.
So, (2.1)ismetwithg=p, h=p 1 =pTand k = p.
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If G = C,, (the sign changes group acting on R"), then
Xocy=(cx)oy forx,yeR"andc € Cp.

Therefore, (2.1) holds with g = ¢, h = c and k = id.

In what follows, we adapt this idea for any map W of two vectorial variables and for the group G = P, of n x n
permutation matrices acting on R”".

We say that amap ¥ : R" x R" — R! admits the Leon—Proschan property for the permutation group Py, if
for each g € IP, there exist h € P, and k € P; such that

¥(x,gy) = k¥(hx,y) forx,y e R". (2.2)

With k = id, statement (2.2) is called the simplified Leon—Proschan property.

Example 2.2. Take ¥ : R" x R" — R! tobe given by ¥(x, y) = ®(x + y), where ® : R" — R!is a permutation-
invariant function.
We have
Y, py)=¥(p'x,y) forx,yeR'andp € P,.

Therefore, (2.2) holds with g = p, h = p~ = pT and k = id.
More generally, let ¥ : R" x R" — R! be a permutation-invariant function in the sense

Y(px, py) = ¥(x,y) forallx,y € R"andp € P,,.
Then it follows that
Y(x,py)=¥Y(p 'x,y) forallx,y e R"andp € P,
which is the simplified Leon-Proschan property withg = pand h=p~! = pT.

Throughout, < stands for the componentwise order on R!with € N.
For a given function f : R — R, we extend f to R" by

fOay o X)) = (), o )T forxa, ..., xn € R (2.3)
In the sequel, for amap ¥ : R" x R" — R/, we consider the set
Ay = {x e R": fory, z € R" inequality y < z implies ¥(x, y) < ¥(x, z)}.
In other words,
Ay = {x € R" : the one-variable map ¥(x, - ) is nondecreasing on R"}. (2.4)
For example, if ¥ is the inner product map, then
Ay ={x e R": fory, z € R" inequality y < zimplies (x, y) < (x,z)} = R].

Theorem 2.3. Let ¥ : R" x R" — R! be a map. Let f: R — R be a convex function. Assume the following
conditions:
(i) The map ¥ admits the simplified Leon—Proschan property, that is, for each g € P, there exists h € P,, such
that
Y(x,gy) = Y(hx,y) forx,yeR".

(ii) Foreachx € R" the one-variable map ¥ (X, -) is convex (with respect to <) on R", i.e., foryy, ..., Vm € R",
ty ooy tm =20, Y0 ti =1,

m m
‘P(X, Z tiYi) < z ti¥Y(x,v;).
i-1 i-1
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(iii) Foreachy € R" the one-variable map \¥( -, y) is concave (with respect to <) on R", i.e., forX1, ..., X, € R",
oo oy tm 20, Y1t =1,

m m
‘P( Z tix;, y) > Z ti¥Y(xi,y).
i=1 i=1

Fixany X,y € R"anda,b € R" withb € Ay. If

m m
y= Z tigix and a= Z tihib (2.5)
i=1 i=1
for some g; € P, and h; € P, such that ¥(h;x,y) = ¥(X, 8iy), i = 1, ..., m, then the following Sherman-type
inequality holds:

(b, f(y)) < ¥(a, f(x)). (2.6)
Proof. For any z € R" we get
¥(b, ) tigiz) < Y t¥(b, gi2) = Y. t¥(hib,2) < ¥( ). tihib, 2) = ¥(a, 2). 2.7)
i=1 i=1 i=1 i=1

In fact, the first inequality is due to (ii). The first equality follows from (i). The second inequality is a conse-
quence of (iii). And the last equality is valid by (2.5).
By setting z = f(x), from (2.7) we have

(b, Y tigifx)) < ¥(a, fx). (2.8)
i=1

Because the extension (2.3) of f is convex on R" (with respect to <), we find that

f( 1:21 figiX> < ) tif(gix).

i=1

Hence, by the monotonicity of ¥(b, -) on R" (with respect to <) (see (2.4)), we obtain

‘P(b,f( i tigix>> < ‘P(b, i fif(giX)>-
i=1 i=1

It is not hard to check that
flgix) = gifx), i=1,...,m.

Therefore, the last inequality becomes
m m
‘P<b,f< Y tigix>> < ‘I’(b, D tigif(x)>- (2.9)
i=1 i=1
Finally, by combining (2.5), (2.8) and (2.9) we derive a Sherman-type inequality as follows:
m m
Wb, fiy)) = ¥(b, £ Y tigix) ) < (b, Y tigif(0)) < Wia, fx)).
i=1 i=1

This completes the proof. O
By M,, we denote the space of all n x n real matrices. Clearly, IP,, ¢ D, ¢ M,,.

Corollary 2.4. Let f: R — R be a convex function and let ¥ : R" x R" — R! be a map satisfying assump-
tions (ii) and (iii) of Theorem 2.3. Additionally, let 6 : M,, — M, be a linear map such that
(i) foreachg € Py,

Y(x,gy) = ¥(0(g)x,y) forx,yeR" (2.10)

Fixanyx,y € R" and a,b € R" withb € Ay. If
y=Sx and a=06(S)b (2.11)

for some S € Dy, then inequality (2.6) holds.
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Proof. Since S € conv IP,, we obtain that S = Zﬁl tig; for some g1,...,9m € P, and tq,...,t,y =0 with
t1 +...+tyn = 1. Then (2.11) implies (2.5). So, it is enough to apply Theorem 2.3. O

Corollary 2.5. Let f: R — R be a convex function and let ¥ : R" x R" — R! be a map satisfying assump-
tions (ii) and (iii) of Theorem 2.3. Additionally, assume that
(i) amap V¥ is permutation-invariant in the sense that for each g € P,

Y(gx,gy)=¥Y(X,y) forx,yeR"
Fixany X,y € R"anda,b € R" withb € Ay. If
y=Sx and a=S"b (2.12)
for some S € Dy, then inequality (2.6) holds.
Proof. 1t follows from (i’) that
¥(x,gy) = Y(g'x,y) forx,ycR'andg ¢ P,.

However, for g € P, one has g~ = g”. So, (2.10) is met with 8(g) = g~* = g7 for g € P,,. Therefore, the usage
of Corollary 2.4 with 8 = (-)7 leads us to (2.6) via (2.11) and (2.12), as desired. O

3 Sherman-type inequalities induced by directional derivative of
a Schur-convex function

We remind that for a function ¥ : R" — R the directional derivative Vy1)(x) of 1 at the point X in the direc-
tion y is given by
Vy$(x) = lim w
(provided the limit there exists).
It is readily seen that if i is permutation-invariant, i.e., Y (px) = P(x) for x € R" and p € Py, then
VpoyP(px) = Vyip(x) forx,y € R"and p € Py. (3.1)

Thus the directional derivative of ) is a permutation-invariant map.
By taking W(x, y) = Vy(x) with X, y € R", we find that

Ay = {x € R" : the one-variable map ¥(x, -) = V.i)(x) is nondecreasing on R"}.

Theorem 3.1. Let i : R" — R be a Schur-convex function. Assume that for any x,y € R" there exists the
directional derivative Vy(X) of y at the point X in the direction y. Let f: R — R be convex. Assume that
assumptions (ii) and (iii) of Theorem 2.3 are satisfied for ¥ (X, y) = Vyip(x) with X,y € R".

Fixanyx,y € R"anda,b € R" withb € Ay. If

y=Sx and a=S"b (3.2)
for some S € Dy, then the following Sherman-type inequality holds:
Vig () < Vi P(a). (3.3)

Proof. Since i is Schur-convex, it is permutation-invariant. By virtue of (3.1), the directional derivative of ¢
is permutation-invariant. That is, Corollary 2.5 (i’) is fulfilled with ¥ (x, y) = Vy3(x) for x, y € R". Simultane-
ously, (3.2) gives (2.12) which implies (2.6). Thus we get (3.3), completing the proof. O

We now consider Theorem 3.1 in the context of 1) with Gateaux differentiability. That is, we assume that the
directional derivative Vyi)(x), viewed as a function of a direction y, is linear and continuous on R". Then
there exists the gradient Vi)(x) of ¢ at the point x such that

Vy(x) = (Vi(x),y) forx,yeR",

where (-, -) is the standard inner product on R".
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For the map ¥(x,y) = (V{(x), y) with X, y € R", we find that

Ay = {x € R" : the one-variable map (Vi{)(x), - ) is nonnegative on R"}
={x e R": V(x) € R}}.

Thus the condition b € Ay means that Vi)(b) € R.

Corollary 3.2. Let i : R" — R be a Gateaux differentiable Schur-convex function. Let f : R — R be convex.
Assume that the assumption (iii) of Theorem 2.3 is satisfied for ¥ (X, y) = (V{(x), y) with X,y € R".
Fix any X,y € R" and a, b € R" with Vi)(b) € R If

y=Sx and a=S"b

for some S € Dy, then the following Sherman-type inequality holds:

(Vib(b), f(y)) < (Vi(a), f(x)). (3.4)

Proof. Condition (ii) of Theorem 2.3 holds by the linearity of ¥ (x, y) = (V{)(x), y) with respect to y. Therefore,

it is sufficient to apply Theorem 3.1. O
By putting

P(x) = x> = (x,x) forxeR", (3.5)

which is a Schur-convex function by virtue of its convexity and permutation-invariance, we have
Vi(x) = 2x forx e R". (3.6)

In this case, condition Viy(b) € R} means that b € R7.
It is interesting that under (3.5) and (3.6) inequality (3.4) in Corollary 3.2 holds in the form

(b, f(y)) < (a, f(x)),

which is the classical Sherman’s inequality (see Theorem B). Thus Corollary 3.2 is a generalization of The-
orem B (whenever m = n). Moreover, by setting a = (1, ..., 1) € R" with a doubly stochastic S, we can get
Theorem A.

It is not hard to verify for the map ¥ (X, y) = Vxi(y) with X, y € R" that

Ay = {x € R" : the one-variable map ¥(x, -) = Vxi(-) is nondecreasing on R"}.

Theorem 3.3. Let i : R" — R be a Schur-convex function. Assume that for any x,y € R" there exists the
directional derivative Vx(y) of P at the point x in the direction y. Let f : R — R be convex. Assume that
assumptions (ii) and (iii) of Theorem 2.3 are satisfied for ¥(x,y) = Vx(y) with X,y € R".

Fixanyx,y € R"and a,b € R" withb € Ay. If

y=Sx and a=S"b (3.7)
forsome S € Dy, then the following Sherman-type inequality holds:
Ve (f(y)) < Vapp(f(x)). (3.8)

Proof. Because 1 is Schur-convex, its directional derivative is permutation-invariant (see (3.1)). For this rea-
son, Corollary 2.5 (1’) is satisfied for the map ¥(x,y) = Vxi(V¥), X, ¥ € R". Furthermore, (3.7) gives (2.12),
which implies (2.6). Finally, we get (3.8), as claimed. O

For the map ¥ (x, y) = (VY(y), X) with X, y € R" we have
Ay = {x € R" : the one-variable map ¥(x, -) = (Vi(-), X) is nondecreasing on R"}.

Condition b € Ay means that the one-variable map ¥(b, - ) = (Vi(-), b) is nondecreasing on R", that is,
fory,z e R",
y<z implies (Viy(y),b) < (Vi)(z),b). (3.9)
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Corollary 3.4. Let Y : R" — R be a Gdteaux differentiable Schur-convex function. Let f : R — R be convex.
Assume that assumptions (ii) and (iii) of Theorem 2.3 are satisfied for ¥(x,y) = (Vi(y), X) withx,y € R".
Fixany x,y € R" and a,b € R" withb € Ay. If

y=Sx and a=S'b

for some S € Dy, then the following Sherman-type inequality holds:

(VY(f(y), b) < (Vi (f(x)), a). (3.10)
Proof. 1t is sufficient to apply Theorem 3.3. O
To illustrate the last result, choose

P(x) = exp(x,e) forxeR", (3.11)

wheree = (1, ..., 1) € R". This is a Schur-convex function.
It is readily seen that
Vi(x) = (exp(x, e))e forx e R". (3.12)

Here
Y(x,V) = (Vi(y), X) = ((exp(y, e))e, X) = (e, X) exp(y, ).

Evidently, this map is convex with respect to y and concave with respect to x, which proves the validity of
conditions (ii) and (iii) in Theorem 2.3.
In this case, condition b € Ay means that (3.9) holds in the form

y <z implies (e,b)exp(y,e) < (e,b)exp(z,e),

which is true whenever (e, b) > 0.
It follows from (3.11) and (3.12) that inequality (3.10) in Corollary 3.4 holds in the form

(e, b) exp(f(y), e) < (e, a) exp(f(x), e).
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