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Abstract: An important class of Schur-convex functions is generated by convex functions via the well-known
Hardy–Littlewood–Pólya–Karamata inequality. Sherman’s inequality is a natural generalization of the HLPK
inequality. It can be viewed as a comparison of two special inner product expressions induced by a convex
function of one variable. In the present note,we extend the Sherman inequality from the (bilinear) inner prod-
uct to a (nonlinear)mapof two vectorial variables satisfying the Leon–Proschan condition. Someapplications
are shown for directional derivatives and gradients of Schur-convex functions.
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1 Introduction
We say that an n-tuple y = (y1, . . . , yn)T ∈ ℝn is majorized by an n-tuple x = (x1, . . . , xn)T ∈ ℝn, and write
y ≺ x, if

l
∑
i=1
y[i] ≤

l
∑
i=1
x[i] for l = 1, . . . , n, and

n
∑
i=1
yi =

n
∑
i=1
xi .

Here x[1] ≥ ⋅ ⋅ ⋅ ≥ x[n] and y[1] ≥ ⋅ ⋅ ⋅ ≥ y[n] are the entries of x and y, respectively, arranged in decreasing order
[13, p. 8].

It is known that for x, y ∈ ℝn,

y ≺ x if and only if y ∈ convℙnx, (1.1)

where the symbol conv means “the convex hull of”, and ℙn denotes the group of n × n permutation matrices
(see [5, p. 16], [6, p. 12] and [7]).

An n × m real matrix S = (sij) is called column stochastic (resp. row stochastic) if sij ≥ 0 for i = 1, . . . , n,
j = 1, . . . ,m, and all column sums (resp. row sums) of S are equal to 1, i.e., ∑ni=1 sij = 1 for j = 1, . . . ,m
(resp.∑mj=1 sij = 1 for i = 1, . . . , n).

An n × n real matrix S = (sij) is said to be doubly stochastic if it is column stochastic and row stochastic
[13, pp. 29–30]. The set of all n × n doubly stochastic matrices is denoted by𝔻n.

A doubly stochastic matrix is a convex combination of some permutation matrices, and vice versa [13,
Theorem A.2.]. That is,𝔻n = convℙn. Therefore, (1.1) takes the following form: for x, y ∈ ℝn,

y ≺ x if and only if y = Sx

for some doubly stochastic n × n matrix S (see [13, p. 33]).
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A function F : Jn → ℝ with an interval J ⊂ ℝ is said to be Schur-convex on Jn if for x, y ∈ Jn,

y ≺ x implies F(y) ≤ F(x).

See [13, pp. 79–154] for applications of Schur-convex functions.
Some important examples of Schur-convex functions are included in the following theorem.

Theorem A ([8, 11]). Let f : J → ℝ be a real convex function defined on an interval J ⊂ ℝ.
Then, for x = (x1, x2, . . . , xn)T ∈ Jn and y = (y1, y2, . . . , yn)T ∈ Jn,

y ≺ x implies
n
∑
i=1
f(yi) ≤

n
∑
i=1
f(xi).

Throughout, the symbol ( ⋅ )T denotes the operation of taking the transpose of a matrix. So, S is a column
stochastic matrix if and only if ST is a row stochastic matrix.

A generalization of Theorem A is the following result (see [17], cf. also [4]).

Theorem B ([17]). Let f be a real convex function defined on an interval J ⊂ ℝ. Let a = (a1, . . . , an)T ∈ ℝn+,
b = (b1, . . . , bm)T ∈ ℝm+ , x = (x1, . . . , xn)T ∈ Jn and y = (y1, . . . , ym)T ∈ Jm.

If
y = Sx and a = STb (1.2)

for some n × m row stochastic matrix S = (sij), then
m
∑
j=1
bj f(yj) ≤

n
∑
i=1
ai f(xi). (1.3)

If f is concave, then inequality (1.3) is reversed.

Statements (1.2) and (1.3) are referred to as Sherman’s condition and Sherman’s inequality, respectively. Con-
sult [1–4, 9, 10, 14–16] for generalizations and applications of Theorem B.

Observe that, when m = n, inequality (1.3) can be rewritten as

⟨b, f(y)⟩ ≤ ⟨a, f(x)⟩, (1.4)

where ⟨ ⋅ , ⋅ ⟩ is the standard inner product onℝn, and f(x) = (f(x1), . . . , f(xn))T and f(y) = (f(y1), . . . , f(yn))T .
Further, (1.4) can be restated as

Ψ(b, f(y)) ≤ Ψ(a, f(x)), (1.5)

where Ψ is the inner product map onℝn, i.e.,

Ψ(c, z) = ⟨c, z⟩ for c, z ∈ ℝn.

In the next section, we study inequalities of the form (1.5) for an arbitrary (nonlinear) map Ψ of two
variables inℝn.

2 Sherman-type inequality for nonlinear maps
In [12], Leon and Proschan gave some interesting inequalities for the Hadamard productmap Ψ(x, y) = x ∘ y,
where x ∘ y = (x1y1, . . . , xnyn)T for x = (x1, . . . , xn)T ∈ ℝn and y = (y1, . . . , yn)T ∈ ℝn. They applied a finite
reflection group G acting onℝn with the property that for each g ∈ G there exist h, k ∈ G such that

x ∘ gy = k((hx) ∘ y) for x, y ∈ ℝn. (2.1)

Example 2.1. Let Ψ : ℝn × ℝn → ℝn be defined by Ψ(x, y) = x ∘ y, the Hadamarad product onℝn.
If G = ℙn (the permutation group acting onℝn), then

x ∘ py = p(p−1x ∘ y) for x, y ∈ ℝn and p ∈ ℙn.

So, (2.1) is met with g = p, h = p−1 = pT and k = p.
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If G = ℂn (the sign changes group acting onℝn), then

x ∘ cy = (cx) ∘ y for x, y ∈ ℝn and c ∈ ℂn.

Therefore, (2.1) holds with g = c, h = c and k = id.

In what follows, we adapt this idea for anymap Ψ of two vectorial variables and for the group G = ℙn of n × n
permutation matrices acting onℝn.

We say that a map Ψ : ℝn × ℝn → ℝl admits the Leon–Proschan property for the permutation groupℙn if
for each g ∈ ℙn there exist h ∈ ℙn and k ∈ ℙl such that

Ψ(x, gy) = kΨ(hx, y) for x, y ∈ ℝn. (2.2)

With k = id, statement (2.2) is called the simplified Leon–Proschan property.

Example 2.2. TakeΨ : ℝn × ℝn → ℝl to be given byΨ(x, y) = Φ(x + y), where Φ : ℝn → ℝl is a permutation-
invariant function.

We have
Ψ(x, py) = Ψ(p−1x, y) for x, y ∈ ℝn and p ∈ ℙn.

Therefore, (2.2) holds with g = p, h = p−1 = pT and k = id.
More generally, let Ψ : ℝn × ℝn → ℝl be a permutation-invariant function in the sense

Ψ(px, py) = Ψ(x, y) for all x, y ∈ ℝn and p ∈ ℙn.

Then it follows that

Ψ(x, py) = Ψ(p−1x, y) for all x, y ∈ ℝn and p ∈ ℙn,

which is the simplified Leon–Proschan property with g = p and h = p−1 = pT .

Throughout, ≤ stands for the componentwise order onℝl with l ∈ ℕ.
For a given function f : ℝ → ℝ, we extend f toℝn by

f((x1, . . . , xn)T) = (f(x1), . . . , f(xn))T for x1, . . . , xn ∈ ℝ (2.3)

In the sequel, for a map Ψ : ℝn × ℝn → ℝl, we consider the set

AΨ = {x ∈ ℝn : for y, z ∈ ℝn inequality y ≤ z implies Ψ(x, y) ≤ Ψ(x, z)}.

In other words,

AΨ = {x ∈ ℝn : the one-variable map Ψ(x, ⋅ ) is nondecreasing onℝn}. (2.4)

For example, if Ψ is the inner product map, then

AΨ = {x ∈ ℝn : for y, z ∈ ℝn inequality y ≤ z implies ⟨x, y⟩ ≤ ⟨x, z⟩} = ℝn+.

Theorem 2.3. Let Ψ : ℝn × ℝn → ℝl be a map. Let f : ℝ → ℝ be a convex function. Assume the following
conditions:
(i) The map Ψ admits the simplified Leon–Proschan property, that is, for each g ∈ ℙn there exists h ∈ ℙn such

that
Ψ(x, gy) = Ψ(hx, y) for x, y ∈ ℝn .

(ii) For each x ∈ ℝn the one-variable map Ψ(x, ⋅ ) is convex (with respect to ≤) onℝn, i.e., for y1, . . . , ym ∈ ℝn,
t1, . . . , tm ≥ 0,∑mi=1 ti = 1,

Ψ(x,
m
∑
i=1
tiyi) ≤

m
∑
i=1
tiΨ(x, yi).
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(iii) For each y ∈ ℝn the one-variablemapΨ( ⋅, y) is concave (with respect to≤) onℝn, i.e., for x1, . . . , xm ∈ ℝn,
t1, . . . , tm ≥ 0,∑mi=1 ti = 1,

Ψ(
m
∑
i=1
tixi , y) ≥

m
∑
i=1
tiΨ(xi , y).

Fix any x, y ∈ ℝn and a, b ∈ ℝn with b ∈ AΨ. If

y =
m
∑
i=1
tigix and a =

m
∑
i=1
tihib (2.5)

for some gi ∈ ℙn and hi ∈ ℙn such that Ψ(hix, y) = Ψ(x, giy), i = 1, . . . ,m, then the following Sherman-type
inequality holds:

Ψ(b, f(y)) ≤ Ψ(a, f(x)). (2.6)

Proof. For any z ∈ ℝn we get

Ψ(b,
m
∑
i=1
tigiz) ≤

m
∑
i=1
tiΨ(b, giz) =

m
∑
i=1
tiΨ(hib, z) ≤ Ψ(

m
∑
i=1
tihib, z) = Ψ(a, z). (2.7)

In fact, the first inequality is due to (ii). The first equality follows from (i). The second inequality is a conse-
quence of (iii). And the last equality is valid by (2.5).

By setting z = f(x), from (2.7) we have

Ψ(b,
m
∑
i=1
tigi f(x)) ≤ Ψ(a, f(x)). (2.8)

Because the extension (2.3) of f is convex onℝn (with respect to ≤), we find that

f(
m
∑
i=1
tigix) ≤

m
∑
i=1
ti f(gix).

Hence, by the monotonicity of Ψ(b, ⋅ ) onℝn (with respect to ≤) (see (2.4)), we obtain

Ψ(b, f(
m
∑
i=1
tigix)) ≤ Ψ(b,

m
∑
i=1
ti f(gix)).

It is not hard to check that
f(gix) = gi f(x), i = 1, . . . ,m.

Therefore, the last inequality becomes

Ψ(b, f(
m
∑
i=1
tigix)) ≤ Ψ(b,

m
∑
i=1
tigi f(x)). (2.9)

Finally, by combining (2.5), (2.8) and (2.9) we derive a Sherman-type inequality as follows:

Ψ(b, f(y)) = Ψ(b, f(
m
∑
i=1
tigix)) ≤ Ψ(b,

m
∑
i=1
tigi f(x)) ≤ Ψ(a, f(x)).

This completes the proof.

By𝕄n we denote the space of all n × n real matrices. Clearly, ℙn ⊂ 𝔻n ⊂ 𝕄n.

Corollary 2.4. Let f : ℝ → ℝ be a convex function and let Ψ : ℝn × ℝn → ℝl be a map satisfying assump-
tions (ii) and (iii) of Theorem 2.3. Additionally, let θ :𝕄n →𝕄n be a linear map such that
(i’) for each g ∈ ℙn,

Ψ(x, gy) = Ψ(θ(g)x, y) for x, y ∈ ℝn. (2.10)

Fix any x, y ∈ ℝn and a, b ∈ ℝn with b ∈ AΨ. If

y = Sx and a = θ(S)b (2.11)

for some S ∈ 𝔻n, then inequality (2.6) holds.
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Proof. Since S ∈ convℙn, we obtain that S = ∑mi=1 tigi for some g1, . . . , gm ∈ ℙn and t1, . . . , tm ≥ 0 with
t1 + . . . + tm = 1. Then (2.11) implies (2.5). So, it is enough to apply Theorem 2.3.

Corollary 2.5. Let f : ℝ → ℝ be a convex function and let Ψ : ℝn × ℝn → ℝl be a map satisfying assump-
tions (ii) and (iii) of Theorem 2.3. Additionally, assume that
(i’) a map Ψ is permutation-invariant in the sense that for each g ∈ ℙn

Ψ(gx, gy) = Ψ(x, y) for x, y ∈ ℝn.

Fix any x, y ∈ ℝn and a, b ∈ ℝn with b ∈ AΨ. If

y = Sx and a = STb (2.12)

for some S ∈ 𝔻n, then inequality (2.6) holds.

Proof. It follows from (i’) that

Ψ(x, gy) = Ψ(g−1x, y) for x, y ∈ ℝn and g ∈ ℙn.

However, for g ∈ ℙn one has g−1 = gT . So, (2.10) is met with θ(g) = g−1 = gT for g ∈ ℙn. Therefore, the usage
of Corollary 2.4 with θ = ( ⋅ )T leads us to (2.6) via (2.11) and (2.12), as desired.

3 Sherman-type inequalities induced by directional derivative of
a Schur-convex function

We remind that for a function ψ : ℝn → ℝ the directional derivative ∇yψ(x) of ψ at the point x in the direc-
tion y is given by

∇yψ(x) = limt→0
ψ(x + ty) − ψ(x)

t
(provided the limit there exists).

It is readily seen that if ψ is permutation-invariant, i.e., ψ(px) = ψ(x) for x ∈ ℝn and p ∈ ℙn, then

∇pyψ(px) = ∇yψ(x) for x, y ∈ ℝn and p ∈ ℙn. (3.1)

Thus the directional derivative of ψ is a permutation-invariant map.
By taking Ψ(x, y) = ∇yψ(x) with x, y ∈ ℝn, we find that

AΨ = {x ∈ ℝn : the one-variable map Ψ(x, ⋅ ) = ∇⋅ψ(x) is nondecreasing onℝn}.

Theorem 3.1. Let ψ : ℝn → ℝ be a Schur-convex function. Assume that for any x, y ∈ ℝn there exists the
directional derivative ∇yψ(x) of ψ at the point x in the direction y. Let f : ℝ → ℝ be convex. Assume that
assumptions (ii) and (iii) of Theorem 2.3 are satisfied for Ψ(x, y) = ∇yψ(x) with x, y ∈ ℝn.

Fix any x, y ∈ ℝn and a, b ∈ ℝn with b ∈ AΨ. If

y = Sx and a = STb (3.2)

for some S ∈ 𝔻n, then the following Sherman-type inequality holds:

∇f(y)ψ(b) ≤ ∇f(x)ψ(a). (3.3)

Proof. Since ψ is Schur-convex, it is permutation-invariant. By virtue of (3.1), the directional derivative of ψ
is permutation-invariant. That is, Corollary 2.5 (i’) is fulfilled with Ψ(x, y) = ∇yψ(x) for x, y ∈ ℝn. Simultane-
ously, (3.2) gives (2.12) which implies (2.6). Thus we get (3.3), completing the proof.

We now consider Theorem 3.1 in the context of ψ with Gâteaux differentiability. That is, we assume that the
directional derivative ∇yψ(x), viewed as a function of a direction y, is linear and continuous on ℝn. Then
there exists the gradient ∇ψ(x) of ψ at the point x such that

∇yψ(x) = ⟨∇ψ(x), y⟩ for x, y ∈ ℝn,

where ⟨ ⋅, ⋅ ⟩ is the standard inner product onℝn.
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For the map Ψ(x, y) = ⟨∇ψ(x), y⟩ with x, y ∈ ℝn, we find that

AΨ = {x ∈ ℝn : the one-variable map ⟨∇ψ(x), ⋅ ⟩ is nonnegative onℝn}
= {x ∈ ℝn : ∇ψ(x) ∈ ℝn+}.

Thus the condition b ∈ AΨ means that ∇ψ(b) ∈ ℝn+.

Corollary 3.2. Let ψ : ℝn → ℝ be a Gâteaux differentiable Schur-convex function. Let f : ℝ → ℝ be convex.
Assume that the assumption (iii) of Theorem 2.3 is satisfied for Ψ(x, y) = ⟨∇ψ(x), y⟩ with x, y ∈ ℝn.

Fix any x, y ∈ ℝn and a, b ∈ ℝn with ∇ψ(b) ∈ ℝn+. If

y = Sx and a = STb

for some S ∈ 𝔻n, then the following Sherman-type inequality holds:

⟨∇ψ(b), f(y)⟩ ≤ ⟨∇ψ(a), f(x)⟩. (3.4)

Proof. Condition (ii) of Theorem2.3holds by the linearity of Ψ(x, y) = ⟨∇ψ(x), y⟩with respect toy. Therefore,
it is sufficient to apply Theorem 3.1.

By putting
ψ(x) = ‖x‖2 = ⟨x, x⟩ for x ∈ ℝn, (3.5)

which is a Schur-convex function by virtue of its convexity and permutation-invariance, we have

∇ψ(x) = 2x for x ∈ ℝn. (3.6)

In this case, condition ∇ψ(b) ∈ ℝn+ means that b ∈ ℝn+.
It is interesting that under (3.5) and (3.6) inequality (3.4) in Corollary 3.2 holds in the form

⟨b, f(y)⟩ ≤ ⟨a, f(x)⟩,

which is the classical Sherman’s inequality (see Theorem B). Thus Corollary 3.2 is a generalization of The-
orem B (whenever m = n). Moreover, by setting a = (1, . . . , 1) ∈ ℝn with a doubly stochastic S, we can get
Theorem A.

It is not hard to verify for the map Ψ(x, y) = ∇xψ(y) with x, y ∈ ℝn that

AΨ = {x ∈ ℝn : the one-variable map Ψ(x, ⋅ ) = ∇xψ( ⋅ ) is nondecreasing onℝn}.

Theorem 3.3. Let ψ : ℝn → ℝ be a Schur-convex function. Assume that for any x, y ∈ ℝn there exists the
directional derivative ∇xψ(y) of ψ at the point x in the direction y. Let f : ℝ → ℝ be convex. Assume that
assumptions (ii) and (iii) of Theorem 2.3 are satisfied for Ψ(x, y) = ∇xψ(y) with x, y ∈ ℝn.

Fix any x, y ∈ ℝn and a, b ∈ ℝn with b ∈ AΨ. If

y = Sx and a = STb (3.7)

for some S ∈ 𝔻n, then the following Sherman-type inequality holds:

∇bψ(f(y)) ≤ ∇aψ(f(x)). (3.8)

Proof. Because ψ is Schur-convex, its directional derivative is permutation-invariant (see (3.1)). For this rea-
son, Corollary 2.5 (i’) is satisfied for the map Ψ(x, y) = ∇xψ(y), x, y ∈ ℝn. Furthermore, (3.7) gives (2.12),
which implies (2.6). Finally, we get (3.8), as claimed.

For the map Ψ(x, y) = ⟨∇ψ(y), x⟩ with x, y ∈ ℝn we have

AΨ = {x ∈ ℝn : the one-variable map Ψ(x, ⋅ ) = ⟨∇ψ( ⋅ ), x⟩ is nondecreasing onℝn}.

Condition b ∈ AΨ means that the one-variable map Ψ(b, ⋅ ) = ⟨∇ψ( ⋅ ), b⟩ is nondecreasing onℝn, that is,
for y, z ∈ ℝn,

y ≤ z implies ⟨∇ψ(y), b⟩ ≤ ⟨∇ψ(z), b⟩. (3.9)
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Corollary 3.4. Let ψ : ℝn → ℝ be a Gâteaux differentiable Schur-convex function. Let f : ℝ → ℝ be convex.
Assume that assumptions (ii) and (iii) of Theorem 2.3 are satisfied for Ψ(x, y) = ⟨∇ψ(y), x⟩ with x, y ∈ ℝn.

Fix any x, y ∈ ℝn and a, b ∈ ℝn with b ∈ AΨ. If

y = Sx and a = STb

for some S ∈ 𝔻n, then the following Sherman-type inequality holds:

⟨∇ψ(f(y)), b⟩ ≤ ⟨∇ψ(f(x)), a⟩. (3.10)

Proof. It is sufficient to apply Theorem 3.3.

To illustrate the last result, choose

ψ(x) = exp⟨x, e⟩ for x ∈ ℝn, (3.11)

where e = (1, . . . , 1) ∈ ℝn. This is a Schur-convex function.
It is readily seen that

∇ψ(x) = (exp⟨x, e⟩)e for x ∈ ℝn. (3.12)

Here
Ψ(x, y) = ⟨∇ψ(y), x⟩ = ⟨(exp⟨y, e⟩)e, x⟩ = ⟨e, x⟩ exp⟨y, e⟩.

Evidently, this map is convex with respect to y and concave with respect to x, which proves the validity of
conditions (ii) and (iii) in Theorem 2.3.

In this case, condition b ∈ AΨ means that (3.9) holds in the form

y ≤ z implies ⟨e, b⟩ exp⟨y, e⟩ ≤ ⟨e, b⟩ exp⟨z, e⟩,

which is true whenever ⟨e, b⟩ ≥ 0.
It follows from (3.11) and (3.12) that inequality (3.10) in Corollary 3.4 holds in the form

⟨e, b⟩ exp⟨f(y), e⟩ ≤ ⟨e, a⟩ exp⟨f(x), e⟩.
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