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Abstract: This paper is concerned with the following Kirchhoff-type problem with convolution nonlinearity:

−(a + b ∫
ℝ3

|∇u|2 dx)∆u + V(x)u = (Iα ∗ F(u))f(u), x ∈ ℝ3, u ∈ H1(ℝ3),

where a, b > 0, Iα : ℝ3 → ℝ, with α ∈ (0, 3), is the Riesz potential, V ∈ C(ℝ3, [0,∞)), f ∈ C(ℝ,ℝ) and
F(t) = ∫t0 f(s)ds. By using variational and some new analytical techniques, we prove that the above prob-
lem admits ground state solutions under mild assumptions on V and f . Moreover, we give a non-existence
result. In particular, our results extend and improve the existing ones, and fill a gap in the case where
f(u) = |u|q−2u, with q ∈ (1 + α/3, 2].
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1 Introduction and main results
In this paper, we consider the following Kirchhoff-type problem with convolution nonlinearity:

−(a + b ∫
ℝ3

|∇u|2 dx)∆u + V(x)u = (Iα ∗ F(u))f(u), x ∈ ℝ3, u ∈ H1(ℝ3), (1.1)

where a, b > 0, Iα : ℝ3 → ℝ, with α ∈ (0, 3), is the Riesz potential defined by

Iα(x) =
Γ(3−α2 )

Γ( α2 )2απ3/2|x|3−α
, x ∈ ℝ3 \ {0},

V ∈ C(ℝ3,ℝ), f ∈ C(ℝ,ℝ) and F(t) = ∫t0 f(s)ds.
Such a problem is often referred to as being nonlocal due to the appearance of the terms (∫ℝ3 |∇u|

2 dx)∆u
or (Iα ∗ F(u))f(u) which implies that (1.1) is no longer a pointwise identity. In particular, if b = 0, then (1.1)
reduces to the following generalized Choquard equation:

−∆u + V(x)u = (Iα ∗ F(u))f(u), u ∈ H1(ℝ3). (1.2)

When α = 2, V(x) ≡ 1 and f(u) = u, (1.2) is known as the Choquard–Pekar equation or the stationary non-
linear Hartree equation, which was introduced in 1954, in a work by Pekar [29] describing the quantum
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mechanics of a polaron at rest; for more details and applications, we refer to [19, 27]. For the case where
V(x) ≡ 1 and f(u) = |u|p−2u, (1.2) is known to have a solution if and only if 1 + α/3 < p < 3 + α (see [24,
p. 457], [27, Theorem 1]; see also [11, Lemma 2.7]). As described Moroz and Van Schaftingen in [28], since
the Hardy–Littlewood–Sobolev inequality [20] implies

∫
ℝ3

(Iα ∗ h1)h2(x)dx ≤ C(α)‖h1‖6/(3+α)‖h2‖6/(3+α) for all h1, h2 ∈ L6/(3+α), (1.3)

where 3 + α and 1 + α/3 are the upper and lower critical exponents, which appear as extensions of the expo-
nents 6 and 2 for the corresponding local problem.

Inspired by [24, 27, 28], we introduce the following basic assumption on f :
(F1) f ∈ C(ℝ,ℝ), f(t) = o(|t|α/3) as |t| → 0 and f(t) = o(|t|2+α) as |t| → ∞.

If we let α → 0 in (1.1), then it becomes formally the following Kirchhoff-type problemwith local nonlin-
earity g = Ff :

−(a + b ∫
ℝ3

|∇u|2 dx)∆u + V(x)u = g(u), x ∈ ℝ3, u ∈ H1(ℝ3), (1.4)

which is related to the stationary analogue of the Kirchhoff equation

ρ ∂
2u
∂t2
− (

P0
h
+

E
2L

L

∫
0

󵄨󵄨󵄨󵄨󵄨󵄨
∂u
∂x
󵄨󵄨󵄨󵄨󵄨󵄨
2
dx)∂

2u
∂x2
= 0. (1.5)

Equation (1.5) is proposed by Kirchhoff [15] as an extension of the classical D’Alembert’s wave equation for
free vibrations of elastic strings. Kirchhoff’s model takes into account the changes in length of the string
produced by transverse vibrations. For more details on the physical aspects, we refer the readers to [2, 3, 7,
8, 26].

After Lions [21] proposed an abstract functional analysis framework to (1.4), it has received more and
more attention from the mathematical community; there have been many works about the existence of non-
trivial solutions to (1.4) and its fractional version by using variational methods, for example, see [4, 6, 9, 12,
13, 16–18, 22, 30, 31, 34, 35, 37, 40–42] and the references therein. A typical way to deal with (1.4) is to
use the mountain-pass theorem. For this purpose, one usually assumes that g(t) is superlinear at t = 0 and
super-cubic at t = ∞. In this case, if g further satisfies the monotonicity condition
(G1) g(t)/|t|3 is increasing for t ∈ ℝ \ {0},
via the Nehari manifold approach, He and Zou [13] obtained the first existence result on ground state solu-
tions of (1.4). For the casewhere g(t) is not super-cubic at t = ∞, Li and Ye [17] proved that (1.4), with special
forms V = 1 and g(u) = |u|p−2u for 3 < p < 6, has a ground state positive solution by using aminimizing argu-
ment on a newmanifold that is defined by a condition which is a combination of the Nehari equation and the
Pohoz̆aev equality. This idea comes from Ruiz [33], in which the nonlinear Schrödinger–Poisson system was
studied. Later, by introducing another suitable manifold differing from [17], Guo [12] and Tang and Chen
[37] improved the above result to (1.4), where V satisfies
(V1) V ∈ C(ℝ3, [0,∞)) and V∞ := lim|y|→∞ V(y) ≥ V(x) for all x ∈ ℝ3,
(V2)󸀠 V ∈ C1(ℝ3,ℝ) and there exists θ󸀠 ∈ (0, 1) such that ∇V(x) ⋅ x ≤ aθ󸀠

2|x|2 for all x ∈ ℝ
3 \ {0},

and g satisfies
(G2) g ∈ C1(ℝ+,ℝ) and g(t)

t is increasing on (0,∞),
and
(G3) g ∈ C(ℝ,ℝ) and g(t)t+6G(t)

|t|t is nondecreasing on (−∞, 0) ∪ (0,∞), where G(t) = ∫t0 g(s)ds.
respectively, and some standard growth assumptions.

Compared with (1.2) and (1.4), it is more difficult to deal with (1.1) which involves two nonlocal terms.
In [23], Lü investigated the following special form of (1.1):

−(a + b ∫
ℝ3

|∇u|2 dx)∆u + (1 + μg(x))u = (Iα ∗ |u|q)|u|q−2u, x ∈ ℝ3, u ∈ H1(ℝ3), (1.6)



150 | S. Chen, B. Zhang and X. Tang, Kirchhoff-type problems with convolution nonlinearity

where q ∈ (2, 3 + α), μ > 0 is a parameter and g(x) is a nonnegative steep potential well function. By using
the Nehari manifold and the concentration compactness principle, Lü proved the existence of ground state
solutions for (1.6) if the parameter μ is large enough. It is worth pointing out that the same result is not avail-
able in the case where q ∈ (1 + α/3, 2], even when g(x) = 0, since both the mountain pass theorem and the
Neharimanifold argument do not work. In fact, in this case, it ismore difficult to get a bounded (PS) sequence
and to prove that the (PS) sequence converges weakly to a critical point of the corresponding functional in
H1(ℝ3). To the best of our knowledge, there seem to be no results dealt with this case in the literature. As for
the related study of problem (1.1) involving the critical exponents, we refer to [25, 32] for more details.

Motivated by the above-mentioned papers, we shall deal with the existence of ground state solutions
for (1.1) under (V1) and (F1). It is standard to check, according to (1.3), that under (V1) and (F1), the energy
functional defined in H1(ℝ3) by

Φ(u) = 12 ∫
ℝ3

[a|∇u|2 + V(x)u2]dx + b4( ∫
ℝ3

|∇u|2 dx)
2
−
1
2 ∫
ℝ3

(Iα ∗ F(u))F(u)dx (1.7)

is continuously differentiable and its critical points correspond to the weak solutions of (1.1). We say a
weak solution to (1.1) is a ground state solution if it minimizes the functional Φ among all nontrivial weak
solutions.

In addition to (F1), we also need the following assumptions on f :
(F2) lim|t|→∞ F(t)

|t|1−α = ∞,
(F3) the function |t|α[f(t)t + (3 + α)F(t)]/t is nondecreasing on (−∞, 0) ∪ (0, +∞).

Remark 1.1. (F3) is weaker than the following assumption, which is easier to verify:
(F4) the function |t|α f(t) is nondecreasing on (−∞, 0) ∪ (0, +∞).
It is easy to see that there are many functions which satisfy (F1), (F2) and (F4). In addition, there are some
functions which satisfy (F3), but not (F4), for example,

f(t) = α + 2
(2α + 1)(2α + 3) |t|

α t + (α + 1)|t|α−1t + α|t|α−2t sin t + |t|α cos t.

To overcome the lack of compactness of Sobolev embeddings in unbounded domains, different from [23] in
which a steep potential well was considered, we assume that V satisfies (V1) and the decay condition:
(V2) V ∈ C1(ℝ3,ℝ) and either of the following cases holds:

(i) ∇V(x) ⋅ x ≤ a
2|x|2 for all x ∈ ℝ

3 \ {0},
(ii) ‖max{∇V(x) ⋅ x, 0}‖3/2 ≤ (34 )

1/3π2a.
Now we are in a position to state the first main result.

Theorem 1.2. Assume that V and f satisfy (V1), (V2) and (F1)–(F3). Then problem (1.1) has a ground state
solution û ∈ H1(ℝ3).

Next, we further provide a minimax characterization of the ground state energy. To this end, we introduce a
new monotonicity condition on V as follows:
(V3) V ∈ C1(ℝ3,ℝ) and there exists θ ∈ [0, 1) such that

t 󳨃→ 4V(tx) + ∇V(tx) ⋅ (tx) + θa
2t2|x|2

is nonincreasing on (0, +∞) for every x ∈ ℝ3 \ {0}.
Similar to [12], we define the Pohoz̆aev functional related with (1.1):

P(u) = a2 ‖∇u‖
2
2 +

1
2 ∫
ℝ3

[3V(x) + ∇V(x) ⋅ x]u2 dx + b2 ‖∇u‖
4
2 −

3 + α
2 ∫
ℝ3

(Iα ∗ F(u))F(u)dx. (1.8)

It is well known that any solution u of (1.1) satisfies P(u) = 0. Motivated by [17, 37], we define the Nehari–
Pohoz̆aev manifold of Φ by

M := {u ∈ H1(ℝ3) \ {0} : J(u) := 12 ⟨Φ
󸀠(u), u⟩ + P(u) = 0}. (1.9)

Then every nontrivial solution of (1.1) is contained inM. Our second main result is as follows.



S. Chen, B. Zhang and X. Tang, Kirchhoff-type problems with convolution nonlinearity | 151

Theorem 1.3. Assume that V and f satisfy (V1), (V3) and (F1)–(F3). Then problem (1.1) has a ground state
solution ū ∈ H1(ℝ3) such that

Φ(ū) = inf
M

Φ = inf
u∈H1(ℝ3)\{0}

max
t>0

Φ(t1/2ut) > 0,

where and in the sequel ut(x) := u(x/t).

Applying Theorem 1.3 to the “limiting problem” of (1.1):

−(a + b ∫
ℝ3

|∇u|2 dx)∆u + V∞u = (Iα ∗ F(u))f(u), x ∈ ℝ3, u ∈ H1(ℝ3), (1.10)

similar to (1.7) and (1.9), we define

Φ∞(u) := 12 ∫
ℝ3

(a|∇u|2 + V∞u2)dx +
b
4( ∫
ℝ3

|∇u|2 dx)
2
−
1
2 ∫
ℝ3

(Iα ∗ F(u))F(u)dx (1.11)

and
M∞ := {v ∈ H1(ℝ3) \ {0} : J∞(u) = 12 ⟨(Φ

∞)󸀠(u), u⟩ + P∞(u) = 0},

where P∞(u) = 0 is the Pohoz̆ave type identity related with (1.10). Then we have the following corollary.

Corollary 1.4. Assume that (F1)–(F3) hold. Then problem (1.10) has a ground state solution ū∞ ∈ H1(ℝ3) such
that

Φ∞(ū∞) = inf
M∞ Φ∞ = inf

u∈H1(ℝ3)\{0}
max
t>0

Φ∞(t1/2ut) > 0.

In the last part of this paper, we give a non-existence result for the following special form of (1.1):

−(a + b ∫
ℝ3

|∇u|2 dx)∆u + u = (Iα ∗ |u|q)|u|q−2u, x ∈ ℝ3, u ∈ H1(ℝ3), (1.12)

where q > 1.

Theorem 1.5. If 1 < q < 1 + α/3 or q ≥ 3 + α, then problem (1.12) does not admit any nontrivial solution.

Remark 1.6. There are indeed functions which satisfy (V1)–(V3). An example is given by V(x) = V1 − A
|x|2+1 ,

where V1 > 1 and0 < A < a/8 are two positive constants. Our results extend and improve the previous results
on (1.1) in the literature, which are new evenwhen V ≡ V∞ > 0. In particular, Theorems 1.2 and 1.3 fill a gap
on (1.1) in the case where f(u) = |u|q−2u, with q ∈ (1 + α/3, 2].

Remark 1.7. Letting α → 0, our results cover the ones in [12, 17, 37], which dealt with (1.4) that can be
considered as a limiting problem of (1.1) when α → 0. In fact, if α = 0, then (V2)󸀠 and (G2) imply case (i) of
(V2) and (F3), respectively.Moreover, since (G3) and (F3) imply that G(t)/|t|t and |t|αF(t)/t are nondecreasing
on (−∞, 0) ∪ (0, +∞), respectively (see Lemma 2.3), one can see that (F3) reduces to (G3) when α = 0.

To prove Theorem 1.2, we will use Jeanjean’s monotonicity trick [14], that is, an approximation procedure
to obtain a bounded (PS)-sequence for Φ, instead of starting directly from an arbitrary (PS)-sequence. More
precisely, firstly, for λ ∈ [1/2, 1], we consider a family of functionals Φλ : H1(ℝ3) → ℝ defined by

Φλ(u) =
1
2 ∫
ℝ3

(a|∇u|2 + V(x)u2)dx + b4 ‖∇u‖
4
2 −

λ
2 ∫
ℝ3

(Iα ∗ F(u))F(u)dx. (1.13)

These functionals have a mountain pass geometry, and we denote the corresponding mountain pass levels
by cλ. Moreover, Φλ has a bounded (PS)-sequence {un(λ)} ⊂ H1(ℝ3) at level cλ for almost every λ ∈ [1/2, 1].
Secondly,weuse the global compactness lemma to show that thebounded sequence {un(λ)} convergesweakly
to a nontrivial critical point of Φλ. To do this, we have to establish the following strict inequality:

cλ < inf
K∞

λ

Φ∞λ , (1.14)
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where Φ∞λ is the associated limited functional defined by

Φ∞λ (u) =
1
2 ∫
ℝ3

(a|∇u|2 + V∞u2)dx +
b
4 ‖∇u‖

4
2 −

λ
2 ∫
ℝ3

(Iα ∗ F(u))F(u)dx, (1.15)

and
K∞λ := {w ∈ H1(ℝ3) \ {0} : (Φ∞λ )

󸀠(w) = 0}.

A classical way to obtain (1.14) is to find a positive function w∞λ ∈ K
∞
λ such that Φ∞λ (w

∞
λ ) = infK∞

λ
Φ∞λ when

nonconstant potential V(x) ≤ V∞. However, it seems to be impossible to obtain thew∞λ mentioned above only
under (F1)–(F3). So the usual arguments cannot be applied here to prove (1.14). To overcome this difficulty,
we follow a strategy introduced in [38], that is, we first show that there exists ū∞ such that

ū∞ ∈M∞, Φ∞(ū∞) = inf
M∞ Φ∞, (1.16)

and then, by means of the translation invariance for ū∞ and the crucial inequality

Φ∞λ (u) ≥ Φ
∞
λ (t

1/2ut) +
1 − t4
4 J∞λ (u) +

a(1 − t2)2
4 ‖∇u‖22 for all u ∈ H1(ℝ3) and t > 0

established in Lemma 3.3, we can find λ̄ ∈ [1/2, 1) such that

cλ < m∞λ := inf
M∞

λ

Φ∞λ for all λ ∈ (λ̄, 1] (1.17)

(see Lemma 3.5), where

M∞λ = {u ∈ H
1(ℝ3) \ {0} : J∞λ (u) =

1
2 ⟨(Φ
∞
λ )
󸀠(u), u⟩ + P∞λ (u) = 0}

and P∞λ (u) = 0 is the corresponding Pohoz̆ave type identity. In particular, any information on sign of ū∞ is
not required in our arguments. Finally, we choose two sequences {λn} ∈ (λ̄, 1] and {uλn } ⊂ H1(ℝ3) \ {0} such
that λn → 1 and Φ󸀠λn (uλn ) = 0, and by using (1.17) and the global compactness lemma, we get a nontrivial
critical point ū of Φ.

We would like to mention that in the proof of Theorem 1.2, a crucial step is to prove (1.16), which is a
corollary of Theorem 1.3. Inspired by [5, 36, 37], we shall prove Theorem 1.3 by following this scheme:
Step 1: we verifyM ̸= 0 and establish the minimax characterization of m := infM Φ > 0,
Step 2: we prove that m is achieved,
Step 3: we show that the minimizer of Φ onM is a critical point.

Althoughwemainly follow the procedure of [36], we have to facemany new difficulties due to themutual
competing effect between (∫ℝ3 |∇u|

2 dx)∆u and (Iα ∗ F(u))f(u). These difficulties enforce the implementation
of new ideas and techniques. More precisely, in step 1, we first establish a key inequality, namely,

Φ(u) ≥ Φ(t1/2ut) +
1 − t4
4 J(u) + a(1 − θ)(1 − t

2)2

4 ‖∇u‖22 for all u ∈ H1(ℝ3), t > 0, (1.18)

in Lemma 2.5, where some more careful analyses on the convolution nonlinearity are introduced, see Lem-
mas 2.1–2.4; then we construct a saddle point structure with respect to the fibre {t1/2ut : t > 0} ⊂ H1(ℝ3) for
u ∈ H1(ℝ3) \ {0}, see Lemma 2.8; finally, based on these constructions, we obtain the minimax characteriza-
tion of m, see Lemma 2.9. In step 2, we first choose a minimizing sequence {un} of Φ onM, and show that
{un} is bounded in H1(ℝ3); then, with the help of the key inequality (1.18) and a concentration-compactness
argument, we prove that there exist û ∈ H1(ℝ3) \ {0} and ̂t > 0 such that un ⇀ û in H1(ℝ3), up to transla-
tions and extraction of a subsequence, and ̂t1/2û ̂t ∈M is a minimizer of infM Φ, see Lemmas 2.14 and 2.15.
This step is most difficult since there is no global compactness and not any information on Φ󸀠(un). Finally,
in step 3, inspired by [38, Lemma 2.13], we use the key inequality (1.18), the deformation lemma and inter-
mediary theorem for continuous functions, which overcome the difficulty thatM may not be a C1-manifold
of H1(ℝ3), due to the lack of the smoothness of f(u), see Lemma 2.15.
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Throughout the paper we make use of the following notations:
∙ H1(ℝ3) denotes the usual Sobolev space equipped with the inner product and norm

(u, v) = ∫
ℝ3

(∇u ⋅ ∇v + uv)dx, ‖u‖ = (u, u)1/2 for all u, v ∈ H1(ℝ3).

∙ Ls(ℝ3) (1 ≤ s < ∞) denotes the Lebesgue space with the norm ‖u‖s = (∫ℝ3 |u|
s dx)1/s.

∙ For any u ∈ H1(ℝ3) \ {0}, ut(x) := u(x/t) for t > 0.
∙ For any x ∈ ℝ3 and r > 0, Br(x) := {y ∈ ℝ3 : |y − x| < r}.
∙ C1, C2, . . . denote positive constants possibly different in different places.

The rest of the paper is organized as follows. In Section 2,we study the existence of ground state solutions
for (1.1) by using the Nehari–Pohoz̆aev manifoldM, and give the proof of Theorem 1.3. In Section 3, based
on Jeanjean’s monotonicity trick, we consider the existence of ground state solutions for (1.1), and complete
the proof of Theorem1.2. In Section 4,we study the non-existence of solutions for problem (1.12) andpresent
the proof of Theorem 1.5.

2 Proof of Theorem 1.3
In this section, we give the proof of Theorem 1.3. To this end, we give some useful lemmas. Since V(x) ≡ V∞
satisfies (V1)–(V3), all conclusions on Φ are also true for Φ∞ in this paper. For (1.4), we always assume that
V∞ > 0. First, by a simple calculation, we can verify the following lemma.

Lemma 2.1. Assume that (V1) and (V3) hold. Then one has

4t4[V(x) − V(tx)] − (1 − t4)∇V(x) ⋅ x ≥ − θa(1 − t
2)2

2|x|2
for all t ≥ 0, x ∈ ℝ3 \ {0}. (2.1)

Lemma 2.2. Assume that (F1) and (F3) hold. Then for all s ≥ 0 and t ∈ ℝ,

g(s, t) := 4s(3+α)/2F(s1/2t) − 4F(t) + (1 − s2)[f(t)t + (3 + α)F(t)] ≥ 0. (2.2)

Proof. It is evident that (2.2) holds for all s > 0 and t = 0. For t ̸= 0, it follows from (F3) that

d
ds g(s, t) = 2s|t|

1−α{|s1/2t|α−1[f(s1/2t)s1/2t + (3 + α)F(s1/2t)]|t|α−1[f(t)t + (3 + α)F(t)]}
{
{
{

≥ 0, s ≥ 1,
≤ 0, 0 ≤ s < 1,

which implies that g(s, t) ≥ g(1, t) = 0 for all s ≥ 0 and t ∈ (−∞, 0) ∪ (0, +∞).

Lemma 2.3. Assume that (F1) and (F3) hold. Then

|t|αF(t)
t

is nondecreasing on (−∞, 0) ∪ (0, +∞). (2.3)

Proof. By (F1) and (2.2), one has

g(0, t) = f(t)t + (α − 1)F(t) ≥ 0 for all t ∈ ℝ. (2.4)

Since
d
dt(
|t|αF(t)

t )
= |t|α−2[f(t)t + (α − 1)F(t)],

(2.3) follows from (2.4).

Lemma 2.4. Assume that (F1) and (F3) hold. Then

h(t, u) := ∫
ℝ3

{t3+α(Iα ∗ F(t1/2u))F(t1/2u) +
1 − t4
4 (Iα ∗ F(u))f(u)u

−
(3 + α)t4 + 1 − α

4 (Iα ∗ F(u))F(u)}dx ≥ 0 for all t > 0, u ∈ H1(ℝ3). (2.5)
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Proof. Note that (F1) and (2.3) imply
F(t) ≥ 0 for all t ∈ ℝ (2.6)

and

Iα ∗ (
tα/2F(t1/2u)

t1/2
) − Iα ∗ F(u)

{
{
{

≥ 0, t ≥ 1,
≤ 0, 0 < t < 1.

(2.7)

By (F3), (2.6) and (2.7), we have
d
dt h(t, u) = ∫

ℝ3

{t2+α(Iα ∗ F(t1/2u))[f(t1/2u)t1/2u + (3 + α)F(t1/2u)] − t3(Iα ∗ F(u))[f(u)u + (3 + α)F(u)]}dx

= t3 ∫
ℝ3

|u|1−α{( t
α/2F(t1/2u)

t1/2
)|t1/2u|α−1[f(t1/2u)t1/2u + (3 + α)F(t1/2u)]

− (Iα ∗ F(u))|u|α−1[f(u)u + (3 + α)F(u)]}dx
{
{
{

≥ 0, t ≥ 1,
≤ 0, 0 < t < 1,

which implies that h(t, u) ≥ h(1, u) = 0 for all u ∈ H1(ℝ3). This shows that (2.5) holds.

By (1.7) and (1.8), one has

J(u) = a‖∇u‖22 +
1
2 ∫
ℝ3

[4V(x) + ∇V(x) ⋅ x]u2 dx + b‖∇u‖42 −
1
2 ∫
ℝ3

(Iα ∗ F(u))[f(u)u + (3 + α)F(u)]dx. (2.8)

Lemma 2.5. Assume that (V1), (V3), (F1) and (F3) hold. Then

Φ(u) ≥ Φ(t1/2ut) +
1 − t4
4 J(u) + a(1 − θ)(1 − t

2)2

4 ‖∇u‖22 for all u ∈ H1(ℝ3), t > 0. (2.9)

Proof. According to the Hardy inequality, we have

‖∇u‖22 ≥
1
4 ∫
ℝ3

u2

|x|2
dx for all u ∈ H1(ℝ3). (2.10)

Note that

Φ(t1/2ut) =
at2

2 ‖∇u‖
2
2 +

t4

2 ∫
ℝ3

V(tx)u2 dx + bt
4

4 ‖∇u‖
4
2

−
t3+α

2 ∫
ℝ3

(Iα ∗ F(t1/2u))F(t1/2u)dx for all u ∈ H1(ℝ3), t > 0. (2.11)

Thus, by (1.7), (2.5), (2.8) and (2.11), one has

Φ(u) − Φ(t1/2ut) =
a(1 − t2)

2 ‖∇u‖22 +
1
2 ∫
ℝ3

[V(x) − t4V(tx)]u2 dx + b(1 − t
4)

4 ‖∇u‖42

+
1
2 ∫
ℝ3

[t3−α(Iα ∗ F(t1/2u))F(t1/2u) − (Iα ∗ F(u))F(u)]dx

=
1 − t4
4 J(u) + a(1 − t

2)2

4 ‖∇u‖22 +
1
8 ∫
ℝ3

{4t4[V(x) − V(tx)] − (1 − t4)∇V(x) ⋅ x}u2 dx

+
1
2 ∫
ℝ3

{t3+α(Iα ∗ F(t1/2u))F(t1/2u) +
1 − t4
4 (Iα ∗ F(u))f(u)u

−
(3 + α)t4 + 1 − α

4 (Iα ∗ F(u))F(u)}dx

≥
1 − t4
4 J(u) + a(1 − θ)(1 − t

2)2

4 ‖∇u‖22.

This shows that (2.9) holds.
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Note that
J∞(u) = a‖∇u‖22 + 2V∞‖u‖

2
2 + b‖∇u‖

4
2 −

1
2 ∫
ℝ3

(Iα ∗ F(u))[f(u)u + (3 + α)F(u)]dx. (2.12)

From Lemma 2.5, we have the following two corollaries.

Corollary 2.6. Assume that (F1) and (F3) hold. Then

Φ∞(u) ≥ Φ∞(t1/2ut) +
1 − t4
4 J∞(u) + a(1 − t

2)2

4 ‖∇u‖22 for all u ∈ H1(ℝ3), t > 0. (2.13)

Corollary 2.7. Assume that (V1), (V3), (F1) and (F3) hold. Then

Φ(u) = max
t>0

Φ(t1/2ut) for all u ∈M.

Letting t → 0, (2.9) and (2.13) imply

Φ(u) ≥ 14 J(u) +
a(1 − θ)

4 ‖∇u‖
2
2 for all u ∈ H1(ℝ3) (2.14)

and
Φ∞(u) ≥ 14 J

∞(u) + a4 ‖∇u‖
2
2 for all u ∈ H1(ℝ3).

Lemma 2.8. Assume that (V1), (V3) and (F1)–(F3) hold. Then for any u ∈ H1(ℝ3) \ {0}, there exists a unique
tu > 0 such that t1/2u utu ∈M.

Proof. Let u ∈ H1(ℝ3) \ {0} be fixed and define a function ζ(t) := Φ(t1/2ut) on (0,∞). Clearly, by (2.8) and
(2.11), we have

ζ 󸀠(t) = 0 ⇔ at2‖∇u‖22 +
t4

2 ∫
ℝ3

[4V(tx) + ∇V(tx) ⋅ tx]u2 dx + bt4‖∇u‖42

−
t3+α

2 ∫
ℝ3

(Iα ∗ F(t1/2u))[f(t1/2u)t1/2u + (3 + α)F(t1/2u)]dx = 0

⇔ J(t1/2ut) = 0 ⇔ t1/2ut ∈M. (2.15)

Note that (F1) implies that for any ε > 0, there exists Cε > 0 such that

|f(t)t| + |F(t)| ≤ ε|t|1+3/α + Cε|t|3+α for all t ∈ ℝ. (2.16)

By (2.15) and (2.16), we have limt→0+ ζ 󸀠(t) = 0 and ζ 󸀠(t) > 0 for t > 0 small. By (F3), one has

tα/2[4f(t1/2u)t1/2u + (3 + α)F(t1/2u)]
t1/2

≥ 4f(u)u + (3 + α)F(u) for all t ≥ 1. (2.17)

From (F2), (2.6), (2.15) and (2.17), we can deduce that ζ 󸀠(t) < 0 for t large. Therefore, there exists some
̂t = tu > 0 such that ζ 󸀠( ̂t) = 0 and ̂t1/2u ̂t ∈M.

Next we claim that tu is unique for any u ∈ H1(ℝ3) \ {0}. In fact, for any given u ∈ H1(ℝ3) \ {0}, let
̂t1, ̂t2 > 0 be such that ζ 󸀠( ̂t1) = ζ 󸀠( ̂t2) = 0. Then J( ̂t1/21 u ̂t1 ) = J( ̂t

1/2
2 u ̂t2 ) = 0. Jointly with (2.9), we have

Φ( ̂t1/21 u ̂t1 ) ≥ Φ( ̂t
1/2
2 u ̂t2 ) +

(1 − θ)a( ̂t21 − ̂t
2
2)

2

4 ̂t21
‖∇u‖22 (2.18)

and

Φ( ̂t1/22 u ̂t2 ) ≥ Φ( ̂t
1/2
1 u ̂t1 ) +

(1 − θ)a( ̂t22 − ̂t
2
1)

2

4 ̂t22
‖∇u‖22. (2.19)

Both (2.18) and (2.19) imply that ̂t1 = ̂t2. Therefore, tu > 0 is unique for any u ∈ H1(ℝ3) \ {0}.

Combining Corollary 2.7 with Lemma 2.8, we have the following lemma.
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Lemma 2.9. Assume that (V1), (V3) and (F1)–(F3) hold. Then

inf
u∈M

Φ(u) = m = inf
u∈H1(ℝ3)\{0}

max
t>0

Φ(t1/2ut).

Lemma 2.10. Assume that (V1) and (V3) hold. Then there exist γ1, γ2 > 0 such that

γ1‖u‖2 ≤ a‖∇u‖22 +
1
2 ∫
ℝ3

[4V(x) + ∇V(x) ⋅ x]u2 dx ≤ γ2‖u‖2 for all u ∈ H1(ℝ3). (2.20)

Proof. Letting t = 0 and t →∞ in (2.1), we have, respectively,

∇V(x) ⋅ x ≤ θa
2|x|2

for all x ∈ ℝ3 \ {0} (2.21)

and
4V(x) + ∇V(x) ⋅ x ≥ 4V∞ −

θa
2|x|2

for all x ∈ ℝ3 \ {0}. (2.22)

The last inequality in (2.20) follows from (V1), (2.10) and (2.21). By (2.10) and (2.22), we have

a‖∇u‖22 +
1
2 ∫
ℝ3

[4V(x) + ∇V(x) ⋅ x]u2 dx ≥ (1 − θ)a‖∇u‖22 + 2V∞‖u‖
2
2

≥ min{(1 − θ)a, 2V∞}‖u‖2 := γ1‖u‖2 for all u ∈ H1(ℝ3),

as desired.

Lemma 2.11. Assume that (V1), (V3) and (F1)–(F3) hold. Then
(i) there exists ρ > 0 such that ‖u‖ ≥ ρ for all u ∈M,
(ii) m = infu∈M Φ(u) > 0.

Proof. (i) Since J(u) = 0 for u ∈M, by (1.3), (2.8), (2.16), (2.20) and the Sobolev embedding theorem, one
has

γ1‖u‖2 ≤ a‖∇u‖22 +
1
2 ∫
ℝ3

[4V(x) + ∇V(x) ⋅ x]u2 dx + b( ∫
ℝ3

|∇u|2 dx)
2

=
1
2 ∫
ℝ3

(Iα ∗ F(u))[f(u)u + (3 + α)F(u)]dx

≤ C1(‖u‖2+2α/3 + ‖u‖6+2α),

which implies

‖u‖ ≥ ρ := min{1, ( γ12C1
)
3/2α
} for all u ∈M. (2.23)

(ii) Let {un} ⊂M be such that Φ(un) → m. There are two possible cases.

Case 1: infn∈ℕ‖∇un‖2 := ρ1 > 0. In this case, by (2.14), one has

m + o(1) = Φ(un) = Φ(un) −
1
4 J(un) ≥

a(1 − θ)
4 ‖∇un‖

2
2 ≥

a(1 − θ)
4 ρ21.

Case 2: infn∈ℕ‖∇un‖2 = 0. By (2.23), passing to a subsequence, we have

‖∇un‖2 → 0, ‖un‖2 ≥
1
2ρ + o(1). (2.24)

By (V1), there exists R > 0 such that V(x) ≥ V∞/2 for |x| ≥ R. This implies

∫
{|tx|≥R}

V(tx)u2 dx ≥ V∞2 ∫
{|tx|≥R}

u2 dx for all t > 0, u ∈ H1(ℝ3). (2.25)



S. Chen, B. Zhang and X. Tang, Kirchhoff-type problems with convolution nonlinearity | 157

Making use of the Hölder inequality and the Sobolev inequality, we get

∫
{|tx|<R}

u2 dx ≤ (4πR
3

3t3
)
2/3
( ∫
{|tx|<R}

u6 dx)
1/3

≤ (
4πR3

3t3
)
2/3

S−1‖∇u‖22 for all t > 0, u ∈ H1(ℝ3). (2.26)

Let
δ0 = min{V∞, aS(

3
4πR3
)
2/3
}. (2.27)

By (1.3), (2.16) and the Sobolev embedding inequality, we have

∫
ℝ3

(Iα ∗ F(u))F(u)dx ≤ C(α)‖F(u)‖26/(3+α) ≤
1
4 δ0‖u‖

2+2α/3
2 + C2‖u‖6+2α6

≤
1
4 δ0‖u‖

2+2α/3
2 + C2S−(3+α)‖∇u‖6+2α2 for all u ∈ H1(ℝ3). (2.28)

Let tn = ‖un‖−22 . Then (2.24) implies that {tn} is bounded. Since J(un) = 0, it follows from (2.9), (2.11), (2.24)
and (2.28) that

m + o(1) = Φ(un) ≥ Φ(t1/2n (un)tn )

=
at2n
2 ‖∇un‖

2
2 +

t4n
2 ∫
ℝ3

V(tnx)u2n dx +
bt4n
4 ‖∇un‖

4
2 −

t3+αn
2 ∫
ℝ3

(Iα ∗ F(t1/2n un))F(t1/2n un)dx

≥
aS
2 (

3
4πR3
)
2/3

t4n ∫
{|tnx|<R}

u2n dx +
V∞t4n
4 ∫
{|tnx|≥R}

u2n dx

−
1
8 δ0t

4+4/3α
n ‖un‖2+2α/32 −

C2
2S3+α

t6+2αn ‖∇un‖6+2α2

≥
1
8 δ0t

4
n‖un‖22[2 − (t

4
n‖un‖22)

α/3] + o(1)

=
1
8 δ0 + o(1).

Cases 1 and 2 show that m = infu∈M Φ(u) > 0.

Combining [1, Lemma5.1], [10, Lemma2.2], [36, Lemmas 2.7 and2.8], and [39], we can obtain the following
Brezis–Lieb type lemma.

Lemma 2.12. Assume that (V1) and (F1) hold and ∇V(x) ⋅ x ∈ L∞(ℝ3). If un ⇀ ū in H1(ℝ3), then, along a
subsequence,

Φ(un) = Φ(ū) + Φ(un − ū) +
b
2 ‖∇ū‖

2
2‖∇(un − ū)‖

2
2 + o(1),

⟨Φ󸀠(un), un⟩ = ⟨Φ󸀠(ū), ū⟩ + ⟨Φ󸀠(un − ū), un − ū⟩ + 2b‖∇ū‖22‖∇(un − ū)‖
2
2 + o(1),

J(un) = J(ū) + J(un − ū) + 2b‖∇ū‖22‖∇(un − ū)‖
2
2 + o(1).

Lemma 2.13. Assume that (V1), (V3) and (F1)–(F3) hold. Then m ≤ m∞ := infu∈M∞ Φ∞(u).

Proof. In view of Lemmas 2.8 and 2.11, we have M∞ ̸= 0 and m∞ > 0. Arguing indirectly, we assume that
m > m∞. Let ε := m − m∞. Then there exists u∞ε such that

u∞ε ∈M∞ and m∞ + ε2 > Φ
∞(u∞ε ). (2.29)

In view of Lemma 2.8, there exists tε > 0 such that t1/2ε (u∞ε )tε ∈M. Thus, it follows from (V1), (1.7), (1.11),
(2.13) and (2.29) that

m − ε2 = m
∞ +

ε
2 > Φ

∞(u∞ε ) ≥ Φ∞(t
1/2
ε (u∞ε )tε ) ≥ Φ(t

1/2
ε (u∞ε )tε ) ≥ m.

This contradiction shows that m∞ ≥ m.
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Lemma 2.14. Assume that (V1), (V3) and (F1)–(F3) hold. Then m is achieved.

Proof. In view of Lemmas 2.8 and 2.11, we have M ̸= 0 and m > 0. Let {un} ⊂M be such that Φ(un) → m.
Since J(un) = 0, it follows from (2.14) that

m + o(1) = Φ(un) = Φ(un) −
1
4 J(un) ≥

a(1 − θ)
4 ‖∇un‖

2
2.

This shows that {‖∇un‖2} is bounded. Next, we prove that {‖un‖} is also bounded. Arguing by contradiction,
suppose that ‖un‖2 →∞. By (1.3), (2.16) and the Sobolev embedding inequality, one has, for all u ∈ H1(ℝ3),

∫
ℝ3

(Iα ∗ F(u))F(u)dx ≤ C(α)‖F(u)‖26/(3+α) ≤
δ0
4 (

δ0
16m)

α/3
‖u‖2+2α/32 + C3‖u‖6+2α6

≤
δ0
4 (

δ0
16m)

α/3
‖u‖2+2α/32 + C3S−(3+α)‖∇u‖6+2α2 , (2.30)

where δ0 > 0 is defined by (2.27). Let ̃tn = (16m/δ0‖un‖22)1/4, then ̃tn → 0. Since J(un) = 0, it follows from
(1.11), (2.9), (2.11), (2.25), (2.26) and (2.30) that

m + o(1) = Φ(un) ≥ Φ( ̃t1/2n (un) ̃tn )

=
a ̃t2n
2 ‖∇un‖

2
2 +
̃t4n
2 ∫
ℝ3

V( ̃tnx)u2n dx +
b ̃t4n
4 ‖∇un‖

4
2 −
̃t3+αn
2 ∫
ℝ3

(Iα ∗ F( ̃t1/2n un))F( ̃t1/2n un)dx

≥
aS
2 (

3
4πR3
)
2/3
̃t4n ∫
| ̃tnx|<R

u2n dx +
V∞ ̃t4n
4 ∫
{| ̃tnx|≥R}

u2n dx

−
δ0
8 (

δ0
16m)

α/3
̃t4+4/3αn ‖un‖2+2α/32 −

C3
2S3+α
̃t6+2αn ‖∇un‖6+2α2

≥
1
8 δ0
̃t4n‖un‖22[2 − (

δ0 ̃t4n‖un‖22
16m )

α/3
] + o(1)

= 2m + o(1).

This contradiction shows that {‖un‖2} is bounded. Hence, {un} is bounded in H1(ℝ3). Passing to a subse-
quence, we have un ⇀ ū in H1(ℝ3). Then un → ū in Lsloc(ℝ

3) for 2 ≤ s < 6 and un → ū a.e. in ℝ3. There are
two possible cases: (i) ū = 0 and (ii) ū ̸= 0.

Case (i) ū = 0, i.e., un ⇀ 0 in H1(ℝ3). Then un → 0 in Lsloc(ℝ
3) for 2 ≤ s < 2∗ and un → 0 a.e. in ℝ3. Using

(V1) and (2.21), it is easy to show that

lim
n→∞
∫
ℝ3

[V∞ − V(x)]u2n dx = lim
n→∞
∫
ℝ3

∇V(x) ⋅ xu2n dx = 0. (2.31)

From (1.7), (1.11), (2.8), (2.12) and (2.31), one can get

Φ∞(un) → m, J∞(un) → 0. (2.32)

By (F1), for some p ∈ (1 + α/3, 3 + α) and any ϵ > 0, there exists Cϵ > 0 such that

|f(t)t| + |F(t)| ≤ ϵ(|t|1+3/α + |t|3+α) + Cϵ|t|p for all t ∈ ℝ. (2.33)

From (1.3), (2.12), (2.16), (2.32), (2.33) and Lemma 2.11 (i), one has

min{a, 2V∞}ρ20 ≤ min{a, 2V∞}‖un‖2

≤ a‖∇un‖22 + 2V∞‖un‖
2
2 + b‖∇un‖

4
2

=
1
2 ∫
ℝ3

(Iα ∗ F(un))[f(un)un + (3 + α)F(un)]dx + o(1)

≤ C4[ϵ(‖un‖1+α/32 + ‖u‖6+2α6 ) + Cε‖un‖
p
6p/(3+α)]

2 + o(1). (2.34)
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Using (2.34) and Lions’ concentration compactness principle [39, Lemma1.21], we can prove that there exist
δ > 0 and a sequence {yn} ⊂ ℝ3 such that∫B1(yn)

|un|2 dx > δ. Let ûn(x) = un(x + yn). Thenwehave ‖ûn‖ = ‖un‖
and

J∞(ûn) = o(1), Φ∞(ûn) → m, ∫
B1(0)

|ûn|2 dx > δ. (2.35)

Therefore, there exists û ∈ H1(ℝ3) \ {0} such that, passing to a subsequence,

{{{
{{{
{

ûn ⇀ û in H1(ℝ3),
ûn ⇀ û in Lsloc(ℝ

3) for all s ∈ [1, 6),
ûn → û, a.e. onℝ3.

(2.36)

Let wn = ûn − û. Then (2.36) and Lemma 2.12 yield

Φ∞(ûn) = Φ∞(û) + Φ∞(wn) +
b
2 ‖∇û‖

2
2‖∇wn‖22 + o(1) (2.37)

and
J∞(ûn) = J∞(û) + J∞(wn) + 2b‖∇û‖22‖∇wn‖22 + o(1). (2.38)

For u ∈ H1(ℝ3), we let

Ψ∞(u) := Φ∞(u) − 14 J
∞(u) = a4 ‖∇u‖

2
2 +

1
8 ∫
ℝ3

(Iα ∗ F(u))[f(u)u + (α − 1)F(u)]dx. (2.39)

From (1.11), (2.12),(2.35), (2.37), (2.38) and (2.39), one has

Ψ∞(wn) = m − Ψ∞(û) + o(1), J∞(wn) ≤ −J∞(û) + o(1). (2.40)

If there exists a subsequence {wni } of {wn} such that wni = 0, then we have

Φ∞(û) = m, J∞(û) = 0. (2.41)

Next, we assume that wn ̸= 0. In view of Lemma 2.8, there exists tn > 0 such that t1/2n (wn)tn ∈M∞. We claim
that J∞(û) ≤ 0. Otherwise, if J∞(û) > 0, then (2.40) implies J∞(wn) < 0 for large n. From (1.11), (2.12),
(2.13), (2.40) and Lemma 2.13, we obtain

m − Ψ∞(û) + o(1) = Ψ∞(wn) = Φ∞(wn) −
1
4 J
∞(wn)

≥ Φ∞(t1/2n (wn)tn ) −
t3n
4 J∞(wn) +

a(1 − t2n)2

4 ‖∇wn‖22

≥ m∞ ≥ m for large n ∈ ℕ,

which is a contradiction due to Ψ∞(û) > 0. Hence, J∞(û) ≤ 0. In view of Lemma 2.8, there exists t∞ > 0 such
that t1/2∞ ût∞ ∈M∞. By (1.11), (2.4), (2.12), (2.13), (2.32), (2.35), (2.39), the weak semicontinuity of norm,
Fatou’s lemma and Lemma 2.13, we have

m = lim
n→∞

Ψ∞(ûn) ≥ Ψ∞(û) = Φ∞(û) −
1
4 J
∞(û)

≥ Φ∞(t1/2∞ ût∞ ) − t4∞4 J∞(û) +
a(1 − t2∞)2

4 ‖∇û‖22

≥ m∞ −
t4∞
4 J∞(û) +

a(1 − t2∞)2

4 ‖∇û‖22 ≥ m,

which implies that (2.41) holds too. In view of Lemma 2.8, there exists ̂t > 0 such that ̂t1/2û ̂t ∈M. Moreover,
it follows from (V1), (1.7), (1.11), (2.13) and (2.41) that

m ≤ Φ( ̂t1/2û ̂t) ≤ Φ∞( ̂t1/2û ̂t) ≤ Φ∞(û) = m.

This shows that m is achieved at ̂t1/2û ̂t ∈M.
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Case (ii) ū ̸= 0. In this case, analogous to the proof of (2.41), by using Φ and J instead of Φ∞ and J∞, we
can deduce that

Φ(ū) = m, J(ū) = 0.

Hence, the proof is complete.

Lemma 2.15. Assume that (V1), (V3) and (F1)–(F3) hold. If ū ∈M andΦ(ū) = m, then ū is a critical point ofΦ.

Proof. Following the idea of [38, Lemma 2.13], we use the deformation lemma and intermediary theorem for
continuous functions to prove this lemma. Assume that Φ󸀠(ū) ̸= 0. Then there exist δ > 0 and ϱ > 0 such that

‖u − ū‖ ≤ 3δ ⇒ ‖Φ󸀠(u)‖ ≥ ϱ.

By [37, equation (2.47)], one has limt→1‖t1/2ūt − ū‖ = 0. Thus, there exists δ1 > 0 such that

|t1/2 − 1| < δ1 ⇒ ‖t1/2ūt − ū‖ < δ.

In view of (2.15), (2.16) and (2.17), there exist T1 ∈ (0, 1) and T2 ∈ (1,∞) such that

J(T1/21 ūT1 ) > 0, J(T1/22 ūT2 ) < 0.

The rest of the proof is similar to the proof of [38, Lemma 2.13]. Indeed, we can obtain the desired conclusion
by using

Φ(t1/2ūt) ≤ Φ(ū) −
a(1 − θ)(1 − t2)2

4 ‖∇ū‖22 = m −
a(1 − θ)(1 − t2)2

4 ‖∇ū‖22 for all t > 0

and

ε := min{
a(1 − θ)(1 − T21)2

12 ‖∇ū‖22,
a(1 − θ)(1 − T22)2

12 ‖∇ū‖22, 1,
ϱδ
8 }

instead of [38, (2.40) and ε], respectively.

Proof of Theorem 1.3. In view of Lemmas 2.9, 2.14 and 2.15, there exists ū ∈M such that

Φ(ū) = m = inf
u∈H1(ℝ3)\{0}

max
t>0

Φ(t1/2ut), Φ󸀠(ū) = 0.

This shows that ū is a ground state solution of (1.1).

3 Proof of Theorem 1.2
In this section, we give the proof of Theorem 1.2. Without loss of generality, we consider that V(x) ̸≡ V∞.

Proposition 3.1 ([14]). Let X be a Banach space and let K ⊂ ℝ+ be an interval. We consider a family {Iλ}λ∈K of
C1-functionals on X of the form

Iλ(u) = A(u) − λB(u) for all λ ∈ K,

where B(u) ≥ 0 for all u ∈ X, and such that either A(u) → +∞ or B(u) → +∞ as ‖u‖ → ∞. We assume that
there are two points v1, v2 in X such that

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(v1), Iλ(v2)}, where Γ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2}.

Then, for almost every λ ∈ K, there is a bounded (PS)cλ sequence for Iλ, that is, there exists a sequence such that
(i) {un(λ)} is bounded in X,
(ii) Iλ(un(λ)) → cλ,
(iii) I󸀠λ(un(λ)) → 0 in X∗, where X∗ is the dual of X.
Moreover, cλ is nonincreasing and left continuous on λ ∈ [1/2, 1].



S. Chen, B. Zhang and X. Tang, Kirchhoff-type problems with convolution nonlinearity | 161

Lemma 3.2 ([12]). Assume that (V1), (V2) and (F1) hold. Let u be a critical point of Φλ in H1(ℝ3). Then we
have the following Pohoz̆ave type identity:

Pλ(u) :=
a
2 ‖∇u‖

2
2 +

1
2 ∫
ℝ3

[3V(x) + ∇V(x) ⋅ x]u2 dx + b2 ‖∇u‖
4
2 −

3 + α
2 λ ∫
ℝ3

(Iα ∗ F(u))F(u)dx = 0. (3.1)

We set Jλ(u) := 1
2 ⟨Φ
󸀠
λ(u), u⟩ + Pλ(u). Then

Jλ(u) = a‖∇u‖22 +
1
2 ∫
ℝ3

[4V(x) + ∇V(x) ⋅ x]u2 dx + b‖∇u‖42 −
λ
2 ∫
ℝ3

(Iα ∗ F(u))[f(u)u + (3 + α)F(u)]dx (3.2)

for λ ∈ [1/2, 1]. Correspondingly, we also let

J∞λ (u) = a‖∇u‖
2
2 + 2V∞‖u‖

2
2 + b‖∇u‖

4
2 −

λ
2 ∫
ℝ3

(Iα ∗ F(u))[f(u)u + (3 + α)F(u)]dx (3.3)

for λ ∈ [1/2, 1]. Set

M∞λ = {u ∈ H
1(ℝ3) \ {0} : J∞λ (u) = 0}, m∞λ = inf

u∈M∞
λ

Φ∞λ (u).

By Corollary 2.6, we have the following lemma.

Lemma 3.3. Assume that (F1) and (F3) hold. Then

Φ∞λ (u) ≥ Φ
∞
λ (t

1/2ut) +
1 − t4
4 J∞λ (u) +

a(1 − t2)2
4 ‖∇u‖22 for all u ∈ H1(ℝ3), t > 0. (3.4)

In view of Theorem 1.2, Φ∞1 = Φ∞ has a minimizer u∞ ̸= 0 onM∞1 =M
∞, i.e.,

u∞ ∈M∞1 , (Φ∞1 )
󸀠(u∞) = 0 and m∞1 = Φ

∞
1 (u
∞). (3.5)

Since (1.10) is autonomous, V ∈ C(ℝ3,ℝ) and V(x) ≤ V∞ but V(x) ̸≡ V∞, there exist x̄ ∈ ℝ3 and ̄r > 0 such
that

V∞ − V(x) > 0, |u∞(x)| > 0 for a.e. x, with |x − x̄| ≤ ̄r. (3.6)

Lemma 3.4. Assume that (V1), (V2) and (F1)–(F3) hold. Then
(i) there exists T > 0 independent of λ such that Φλ(T1/2(u∞)T) < 0 for all λ ∈ [1/2, 1];
(ii) there exists a positive constant κ0 independent of λ such that for all λ ∈ [1/2, 1],

cλ := inf
γ∈Γ

max
t∈[0,1]

Φλ(γ(t)) ≥ κ0 > max{Φλ(0), Φλ(T1/2(u∞)T)},

where
Γ = {γ ∈ C([0, 1], H1(ℝ3)) : γ(0) = 0, γ(1) = T1/2(u∞)T};

(iii) cλ and m∞λ are nonincreasing on λ ∈ [1/2, 1].

The proof of Lemma 3.4 is standard, so we omit it.

Lemma 3.5. Assume that (V1), (V2) and (F1)–(F3) hold. Then there exists λ̄ ∈ [1/2, 1) such that cλ < m∞λ for
λ ∈ (λ̄, 1].

Proof. It is easy to see that Φλ(t1/2(u∞)t) is continuous on t ∈ (0,∞). Hence, for any λ ∈ [1/2, 1), we can
choose tλ ∈ (0, T) such that Φλ(t1/2λ (u

∞)tλ ) = maxt∈(0,T] Φλ(t1/2(u∞)t). By (2.3) and (2.7), one has

(Iα ∗
F(t1/2λ u∞)

t(1−α)/2λ

)
F(t1/2λ u∞)

t(1−α)/2λ

≤ (Iα ∗
F(T1/2u∞)
T(1−α)/2

)
F(T1/2u∞)
T(1−α)/2

. (3.7)

Set

γ0(t) =
{
{
{

(tT)1/2(u∞)(tT) for t > 0,
0 for t = 0.
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Then γ0 ∈ Γ, defined by Lemma 3.4 (ii). Moreover,

Φλ(t1/2λ (u
∞)tλ ) = max

t∈[0,1]
Φλ(γ0(t)) ≥ cλ . (3.8)

Let
ζ0 := min{3 ̄r/8(1 + |x̄|), 1/4}. (3.9)

Then it follows from (3.6) and (3.9) that

|x − x̄| ≤
̄r
2 and s ∈ [1 − ζ0, 1 + ζ0] ⇒ |sx − x̄| ≤ ̄r. (3.10)

Let

λ̄ := max{12 , 1 −
(1 − ζ0)4mins∈[1−ζ0 ,1+ζ0] ∫ℝ3 [V∞ − V(sx)]|u

∞|2 dx
T3+α ∫ℝ3 (Iα ∗ F(T

1/2u∞))F(T1/2u∞)dx
,

1 −
a(1 − θ)ζ 20 ‖∇u∞‖

2
2

2T3+α ∫ℝ3 (Iα ∗ F(T
1/2u∞))F(T1/2u∞)dx

}. (3.11)

Then it follows from (3.6) and (3.10) that 1/2 ≤ λ̄ < 1. We have two cases to distinguish:

Case (i) tλ ∈ [1 − ζ0, 1 + ζ0]. By (1.13), (1.15), (3.4), (3.7)–(3.11) and Lemma 3.4 (iii), we have

m∞λ ≥ m
∞
1 = Φ

∞
1 (u
∞) ≥ Φ∞1 (t

1/2
λ (u
∞)tλ )

= Φλ(t1/2λ (u
∞)tλ ) −

1 − λ
2 t3+αλ ∫

ℝ3

(Iα ∗ F(t1/2λ u∞))F(t1/2λ u∞)dx +
t4λ
2 ∫
ℝ3

[V∞ − V(tλx)]|u∞|2 dx

≥ cλ −
1 − λ
2 T3+α ∫

ℝ3

(Iα ∗ F(T1/2u∞))F(T1/2u∞)dx +
(1 − ζ0)4

2 min
s∈[1−ζ0 ,1+ζ0]

∫
ℝ3

[V∞ − V(sx)] |u∞|2 dx

> cλ for all λ ∈ (λ̄, 1].

Case (ii) tλ ∈ (0, 1 − ζ0) ∪ (1 + ζ0, T]. Since V∞ ≥ V(x) for all x ∈ ℝ3, it follows from (1.13), (1.15), (3.4),
(3.5), (3.7), (3.8), (3.11) and Lemma 3.4 (iii) that

m∞λ ≥ m
∞
1 = Φ

∞
1 (u
∞) ≥ Φ∞1 (t

1/2
λ (u
∞)tλ ) +

a(1 − θ)(1 − t2λ)
2

4 ‖∇u∞‖22

= Φλ(t1/2λ (u
∞)tλ ) −

1 − λ
2 t3+αλ ∫

ℝ3

(Iα ∗ F(t1/2λ u∞))F(t1/2λ u∞)dx

+
t4λ
2 ∫
ℝ3

[V∞ − V(tλx)]|u∞|2 dx +
a(1 − θ)(1 − t2λ)

2

4 ‖∇u∞‖22

≥ cλ −
1 − λ
2 T3+α ∫

ℝ3

(Iα ∗ F(T1/2u∞))F(T1/2u∞)dx +
a(1 − θ)ζ 20

4 ‖∇u∞‖22

> cλ for all λ ∈ (λ̄, 1].

In both cases, we obtain cλ < m∞λ for λ ∈ (λ̄, 1].

Lemma 3.6. Assume that (V1), (V2) and (F1)–(F3) hold. Let {un} be a bounded (PS)cλ sequence for Φλ with
λ ∈ [1/2, 1]. Then there exist a subsequence of {un}, still denoted it by {un}, and u0 ∈ H1(ℝ3) such that
(i) A2

λ := limn→∞‖∇un‖22 exists, un ⇀ uλ in H1(ℝ3) and E󸀠λ(uλ) = 0;
(ii) wk ̸= 0 and (E∞λ )

󸀠(wk) = 0 for 1 ≤ k ≤ l;
(iii) we have

c +
bA4

λ
4 = Eλ(uλ) +

l
∑
k=1

E∞λ (w
k)

and

A2
λ = ‖∇uλ‖

2
2 +

l
∑
k=1
‖∇wk‖22, (3.12)
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where

Eλ(u) =
a + bA2

λ
2 ∫
ℝ3

|∇u|2 dx + 12 ∫
ℝ3

V(x)u2 dx − λ2 ∫
ℝ3

(Iα ∗ F(u))F(u)dx (3.13)

and

E∞λ (u) =
a + bA2

λ
2 ∫
ℝ3

|∇u|2 dx + V∞2 ∫
ℝ3

u2 dx − λ2 ∫
ℝ3

(Iα ∗ F(u))F(u)dx. (3.14)

We agree that in the case l = 0, the above holds without wk.

Lemma 3.7. Assume that (V1), (V2) and (F1)–(F3) hold. Then, for almost every λ ∈ (λ̄, 1], there exists uλ ∈
H1(ℝ3) \ {0} such that

Φ󸀠λ(uλ) = 0, Φλ(uλ) = cλ .

Proof. Lemma 3.4 implies that Φλ(u) satisfies the assumptions of Proposition 3.1, with X = H1(ℝ3) and
Iλ = Φλ. So, for almost every λ ∈ [1/2, 1], there exists a bounded sequence {un(λ)} ⊂ H1(ℝ3) (for simplicity,
we denote it by {un} instead of {un(λ)}) such that

Φλ(un) → cλ > 0, ‖Φ󸀠λ(un)‖ → 0.

By Lemma 3.6, there exist a subsequence of {un}, still denoted by {un}, and uλ ∈ H1(ℝ3) such that A2
λ :=

limn→∞‖∇un‖22 exists, un ⇀ uλ in H1(ℝ3) and E󸀠λ(uλ) = 0, and there exist l ∈ ℕ ∪ {0} and w1, . . . , wl ∈
H1(ℝ3) \ {0} such that (E∞λ )

󸀠(wk) = 0 for 1 ≤ k ≤ l,

cλ +
bA4

λ
4 = Eλ(uλ) +

l
∑
k=1

E∞λ (w
k)

and

A2
λ = ‖∇uλ‖

2
2 +

l
∑
k=1
‖∇wk‖22.

Since E󸀠λ(uλ) = 0, we have the following Pohoz̆aev identity:

P̃λ(uλ) :=
a + bA2

λ
2 ‖∇uλ‖

2
2 +

1
2 ∫
ℝ3

[3V(x) + ∇V(x) ⋅ x]u2λ dx −
3 + α
2 λ ∫
ℝ3

(Iα ∗ F(u))F(u)dx = 0. (3.15)

If case (i) of (V2) holds, then it follows from the Hardy inequality that

∫
ℝ3

∇V(x) ⋅ xu2 dx ≤ a2 ∫
ℝ3

u2

|x|2
dx ≤ 2a‖∇u‖22 for all u ∈ H1(ℝ3). (3.16)

If case (ii) of (V2) holds, then it follows from the Sobolev embedding inequality that

∫
ℝ3

∇V(x) ⋅ xu2 dx ≤ ( ∫
ℝ3

󵄨󵄨󵄨󵄨max{∇V(x) ⋅ x, 0}󵄨󵄨󵄨󵄨
3/2 dx)

2/3
( ∫
ℝ3

u6 dx)
1/3

≤
‖max{∇V(x) ⋅ x, 0}‖3/2

S
‖∇u‖22

≤ 2a‖∇u‖22 for all u ∈ H1(ℝ3), (3.17)

where S = infu∈H1(ℝ3)\{0}‖∇u‖22/‖u‖
2
6 = (

3
4 )

1/3π2. It follows from (2.4), (3.13), (3.15) and either of (3.16) and
(3.17) that

Eλ(uλ) = Eλ(uλ) −
1
4[

1
2 ⟨(Eλ)

󸀠(uλ), uλ⟩ + P̃λ(uλ)]

=
a + bA2

λ
4 ‖∇uλ‖

2
2 −

1
8 ∫
ℝ3

∇V(x) ⋅ xu2λ dx +
λ
8 ∫
ℝ3

(Iα ∗ F(uλ))[f(uλ)uλ + (α − 1)F(uλ)]dx

≥
bA2

λ
4 ‖∇uλ‖

2
2. (3.18)
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Since (E∞λ )
󸀠(wk) = 0, we have P̃∞λ (w

k) = 0. Thus, from (3.3), (3.12), (3.14) and (3.15), it follows that

0 = 12 ⟨(E
∞
λ )
󸀠(wk), wk⟩ + P̃∞λ (w

k)

= (a + bA2
λ)‖∇w

k‖22 + 2V∞‖w
k‖22 −

λ
2 ∫
ℝ3

(Iα ∗ F(wk))[f(wk)wk + (3 + α)F(wk)]dx

≥ J∞λ (w
k). (3.19)

Since wk ∈ H1(ℝ3) \ {0}, in view of Lemma 2.8, there exists tk > 0 such that t1/2k (w
k)tk ∈M

∞
λ . From (1.15),

(2.13), (3.3),(3.14) and (3.19), one has

E∞λ (w
k) = E∞λ (w

k) −
1
4[

1
2 ⟨(E
∞
λ )
󸀠(wk), wk⟩ + P̃∞λ (w

k)]

=
a + bA2

λ
4 ‖∇w

k‖22 +
λ
8 ∫
ℝ3

(Iα ∗ F(uλ))[f(uλ)uλ + (α − 1)F(uλ)]dx

=
bA2

λ
4 ‖∇w

k‖22 + Φ
∞
λ (w

k) −
1
4 J
∞
λ (w

k)

≥
bA2

λ
4 ‖∇w

k‖22 + Φ
∞
λ (t

1/2
k (w

k)tk ) −
t4k
4 J∞λ (w

k)

≥
bA2

λ
4 ‖∇w

k‖22 + m
∞
λ . (3.20)

It follows from (2.4), (3.12), (3.18) and (3.20) that

cλ +
bA4

λ
4 = Eλ(uλ) +

l
∑
k=1

E∞λ (w
k)

≥ lm∞λ +
bA2

λ
4 [‖∇uλ‖

2
2 +

l
∑
k=1
‖∇wk‖22]

≥ lm∞λ +
bA4

λ
4 for all λ ∈ (λ̄, 1],

which, together with Lemma 3.5, implies that l = 0 and Eλ(uλ) = cλ +
bA4

λ
4 . Hence, un → uλ in H1(ℝ3) and

Φλ(uλ) = cλ.

Lemma 3.8. Assume that (V1), (V2) and (F1)–(F3) hold. Then there exists ū ∈ H1(ℝ3) \ {0} such that

Φ󸀠(ū) = 0, Φ(ū) = c1 > 0. (3.21)

Proof. In view of Lemma 3.7, there exist two sequences {λn} ⊂ (λ̄, 1] and {uλn } ⊂ H1(ℝ3), denoted by {un},
such that

λn → 1, Φ󸀠λn (un) = 0, Φλn (un) = cλn . (3.22)

By Lemma 3.4 (iii), (1.13), (3.1), (3.22) and either of (3.16) and (3.17), one has

c1/2 ≥ cλn = Φλn (un) −
1

3 + αPλn (un)

=
1

2(3 + α){a(2 + α)‖∇un‖
2
2 + ∫
ℝ3

[αV(x) − ∇V(x) ⋅ x]u2n dx} +
b(1 + α)
4(3 + α) ‖∇un‖

4
2

≥
α

2(3 + α) ∫
ℝ3

V(x)u2n dx +
b(1 + α)
4(3 + α) ‖∇un‖

4
2.

This shows that {un} is bounded in H1(ℝ3). In view of the proof of Lemma 3.7, we can show that there exists
ū ∈ H1(ℝ3) \ {0} such that (3.21) holds.
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Proof of Theorem 1.2. Let

K := {u ∈ H1(ℝ3) \ {0} : Φ󸀠(u) = 0}, m̂ := inf
u∈K

Φ(u).

Then Lemma 3.8 shows thatK ̸= 0 and m̂ ≤ c1. For any u ∈ K, (2.8), (3.2) and Lemma 3.2 imply P(u) = 0. By
(3.16) or (3.17), we have Φ(u) = Φ(u) − 1

3P(u) > 0 for any u ∈ K, and so m̂ ≥ 0. Let {un} ⊂ K be such that

Φ󸀠(un) = 0, Φ(un) → m̂.

In view of Lemma 3.5, m̂ ≤ c1 < m∞1 . Arguing as in the proof of Lemma 3.8, we can prove that there exists
û ∈ H1(ℝ3) \ {0} such that

Φ󸀠(û) = 0, Φ(û) = m̂.

This shows that û ∈ H1(ℝ3) is a ground state solution of (1.1).

4 Proof of Theorem 1.5
In this section, we give the proof of Theorem 1.5. In view of (1.7), the energy functional corresponding to
(1.12) is defined in H1(ℝ3) by

Φ̂(u) = 12 ∫
ℝ3

[a|∇u|2 + u2]dx + b4( ∫
ℝ3

|∇u|2 dx)
2
−

1
2q2
∫
ℝ3

(Iα ∗ |u|q)|u|q dx.

From Lemma 3.2, if Φ̂󸀠(u) = 0, then u satisfies the following Pohoz̆aev type identity:

P̂(u) := a2 ‖∇u‖
2
2 +

3
2 ‖u‖

2
2 +

b
2 ‖∇u‖

4
2 −

3 + α
2q2
∫
ℝ3

(Iα ∗ |u|q)|u|q dx = 0. (4.1)

Proof of Theorem 1.5. Let v ∈ H1(ℝ3) be a solution to (1.12). Then

⟨Φ̂(v), v⟩ = a‖∇v‖22 + ‖v‖
2
2 + b‖∇v‖

4
2 −

1
q ∫
ℝ3

(Iα ∗ |v|q)|v|q dx = 0. (4.2)

By (4.1) and (4.2), one has

0 = P̂(v) − 3 + α2q ⟨Φ̂(v), v⟩ =
q − (3 + α)

2q a‖∇v‖22 +
3q − (3 + α)

2q ‖v‖22 +
q − (3 + α)

4q b‖∇v‖42. (4.3)

If 1 < q < 1 + α/3 or q ≥ 3 + α, then (4.3) implies v = 0. This completes the proof.
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