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Abstract: This paper concerns with detailed analysis of a reaction-diffusion host-pathogenmodel with space-
dependent parameters in a bounded domain. By considering the fact themobility of host individuals playing

a crucial role in disease transmission, we formulate the model by a system of degenerate reaction-diffusion

equations, where host individuals disperse at distinct rates and themobility of pathogen is ignored in the en-

vironment. We first establish the well-posedness of the model, including the global existence of solution and

the existence of the global compact attractor. The basic reproduction number is identified, and also character-

ized by some equivalent principal spectral conditions, which establishes the threshold dynamical result for

pathogen extinction and persistence. When the positive steady state is confirmed, we investigate the asymp-

totic profiles of positive steady state as host individuals disperse at small and large rates. Our result suggests

that small and large diffusion rate of hosts have a great impacts in formulating the spatial distribution of the

pathogen.

Keywords: Host-pathogen model, Distinct dispersal rates, Global attractor, Basic reproduction number, Uni-
form persistence, Asymptotic profiles
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1 Introduction
In recent years, the studies of some reaction-diffusion host-pathogen models have received much attentions,

as the investigation of these systems allow us to get better understanding the interactions between host and

pathogens and themechanisms of the disease spread. Let u1(x, t), u2(x, t) and u3(x, t) be the densities of sus-

ceptible hosts, infected hosts and pathogen particles at the spatial location x and time t. Laplacian operator

dΔ accounts for the host movement (d > 0 is the diffusion coefficient). In [6], under a one-dimensional and

unbounded domain, the authors considered the following model,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u1
∂t
= dΔu1 + r

(
1 −

u1 + u2
K

)
u1 − βu1u3, x ∈ R, t > 0,

∂u2
∂t
= dΔu2 + βu1u3 − αu2 − r

u1 + u2
K

u2, x ∈ R, t > 0,

∂u3
∂t
= λu2 − δu3, x ∈ R, t > 0.

(1.1)
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where r and K represent respectively the reproductive rate and the carrying capacity of the susceptible and

infected hosts; β and α are the transmission coefficient and disease-induced mortality rate; λ and δ are re-

spectively the pathogens production rate from infected hosts and the pathogens’ decay rate. All above men-

tioned coefficients in (1.1) are assumed to be positive constants. With the consideration of spatial spread of

pathogens, the authors in [6] investigated the existence problem of traveling wave solution.

In reality, the habitats where hosts live should be a spatially bounded domain. Wang et al. [29] took the

model (1.1) as a basis and extended it to amore generalmodel in bounded spatial domainΩ ∈ R
n with smooth

boundary ∂Ω, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1
∂t
= dΔu1 + r

(
1 −

u1 + u2
K(x)

)
u1 − β(x)u1u3, (x, t) ∈ Ω × (0,∞),

∂u2
∂t
= dΔu2 + β(x)u1u3 − αu2 − r

u1 + u2
K(x)

u2, (x, t) ∈ Ω × (0,∞),

∂u3
∂t
= λ(x)u2 − δu3 − β(x)(u1 + u2)u3, (x, t) ∈ Ω × (0,∞),

∂u1
∂n

=
∂u2
∂n

= 0, (x, t) ∈ ∂Ω × (0,∞),

(1.2)

where ∂u1
∂n
stands for the differentiation along the unit outward normal n to ∂Ω; β(x)(u1 + u2)u3 represents

the consumption of the pathogen due to the interaction with the hosts. Unlike in model (1.1), where param-

eters β, K, λ are constants, model (1.2) allows the space-dependent parameter functions, β(·), K(·) and λ(·),

which are used to obey the spatial heterogeneity arising from the variance in environmental conditions (for

example, temperature and humidity etc). Compared to model (1.1), the space-dependent functions β(x), K(x)

and λ(x) are assumed to be continuous and positive in Ω. Since the mobility of pathogen is ignored in the do-

main, the semiflow induced by solution lacks of compactness. The authors in [29] overcame this difficulty by

verifying the k-contracting condition. The basic reproduction number (BRN) is proved to be a threshold index

for the dynamics of (1.2), and defined by adopting the concept of next generation operator (NGO). Bifurcation

analysis for steady state solution are also carried out when space-dependent parameters are used.

Note that the susceptible and infected hosts in (1.1) and (1.2) share the same diffusion rate. Wu and Zou

[31] further generalized the model (1.2) with distinct diffusion rates d1 and d2,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u1
∂t
= d1Δu1 + γ(x) − μ(x)u1 − β(x)u1u3, (x, t) ∈ Ω × (0,∞),

∂u2
∂t
= d2Δu2 + β(x)u1u3 − υ(x)u2, (x, t) ∈ Ω × (0,∞),

∂u3
∂t
= α(x)u2 − δ(x)u3, (x, t) ∈ Ω × (0,∞),

∂u1
∂n

=
∂u2
∂n

= 0, (x, t) ∈ ∂Ω × (0,∞),

(1.3)

Here, d1 and d2 are not necessarily equal. The simplest growth term for susceptible host, γ(x) − μ(x)u1, is

used. As pointed in [31] that distinct dispersal rates for hosts brings difficulty in proving the boundedness of

the solution. The existence of global attractor needs appealing the general result in [8, Theorem 2.4.6] and

Arezelà-Ascoli Theorem, so that the the asymptotic smoothness of semiflow is used instead of weak compact-

ness by verifying the k-contraction condition. The authors studied the threshold dynamics of (1.3) and the

effects of the spatial heterogeneity on disease dynamics. Wu and Zou in [31] also explored the asymptotic

profiles of positive steady state for the case where d1 → 0 and d2 → 0.

Subsequently, inspired by the work [31], Shi et al. [23] revisited the model (1.2) by incorporating the hor-

izontal disease transmission. The authors in [23] established the threshold dynamics, and performed the

bifurcation analysis for steady state solution. Based on framework of [31], Wang and Wang [32] further ex-

tended the model (1.3) by adding the horizontal transmission term to (1.3). In [32], u1, u2 and u3 are used to

stand for respectively the density of susceptible, infected individuals and the concentration of vibrios in the

environment. The horizontal transmission is termed as direct person-to-person transmission route in cholera

dynamics. The complete analysis of (1.3) with horizontal transmission term demonstrated the threshold dy-

namics of (1.3) and the effect of the spatial heterogeneity on disease dynamics, and also revealed that ignoring

horizontal transmission will underestimate the risk of disease transmission.
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Our current work is also inspired by a series of works on diffusive models for disease dynamics in the

spatial heterogeneous environment. These models are in the form of reaction-diffusion susceptible-infected-

susceptible (SIS) equations in spatially bounded domain and the main concern are how the spatial hetero-

geneity and the diffusion affect the disease spread and control [1, 9, 10, 21, 31–33]. In an earlier article [1], the

authors studied a SIS model with frequency-dependent interaction,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= dSΔS −

β(x)SI

S + I
+ γ(x)I, (x, t) ∈ Ω × (0,∞),

∂I

∂t
= dIΔI +

β(x)SI

S + I
− γ(x)I, (x, t) ∈ Ω × (0,∞),

∂S

∂n
=

∂I

∂n
= 0, (x, t) ∈ ∂Ω × (0,∞),∫

Ω

(S(x, 0) + I(x, 0))dx ≡ N > 0,

(1.4)

where S(x, t) and I(x, t) represent respectively the density of susceptible and infected individuals. γ(x) and

β(x) are respectively the space-dependent recovery rate and disease transmission rate. dS and dI represent re-

spectively the diffusion rates of susceptible and infected individuals. The total number of human individuals

remains constant N. The main concern in the aspect of biological implication is: limiting the flow of suscep-

tible individuals (dS → 0) can eliminate the disease, provided that the disease is of low risk (i.e., β(·) < γ(·)

for x ∈ Ω). This pioneering work start up the investigation that how the spatial heterogeneity and the dif-

fusion affect the disease spread and control. Subsequently, the result that limiting the flow of the infected

individuals can not eliminate the disease (see in [21]) revealed that dS and dI play different role in disease

control. Motivated by meaningful and important aspect of spatial heterogeneity of environment and distinct

dispersal rates, Wu and Zou [33] further modified the model (1.4) by replacing the frequency-dependent in-

teraction with mass actionmechanisms. They showed that an additional condition on the total population is

needed for disease control if dS → 0. Additionally, disease can not be controlled when dS → 0 and the total

population accounts large, and inversely, disease disappears in certain area when dI → 0. In contrast with

[1, 21, 33], Li et al. [9, 10] analyzed an spatial SIS model with linear source and logistic source (which allows

varying total population). With small and large diffusion rates, both of the works revealed that disease can

not be controlled, which is not a good situation in disease control.

Based on the above mentioned works, we continue to explore how diffusion rates and the spatial hetero-

geneity affect the dynamics of (1.3) by incorporating the frequency-dependent interaction used in (1.4), and

thus, can be considered as a continuation of the work [1, 9, 21, 31–33]. We shall explore the following system,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u1
∂t
= d1Δu1 + b(x) − β1(x)

u1u2
u1 + u2

− β2(x)u1u3 − ζ (x)u1, (x, t) ∈ Ω × (0,∞),

∂u2
∂t
= d2Δu2 + β1(x)

u1u2
u1 + u2

+ β2(x)u1u3 − γ(x)u2, (x, t) ∈ Ω × (0,∞),

∂u3
∂t
= ϱ(x)u2 − δ(x)u3, (x, t) ∈ Ω × (0,∞),

∂u1
∂n

=
∂u2
∂n

= 0, (x, t) ∈ ∂Ω × (0,∞),

(1.5)

with the initial condition

ui(x, 0) = ui0(x), x ∈ Ω, i = 1, 2, 3, (1.6)

where ζ (x) and γ(x) represent the death rates of susceptible and infected host; b(x) is the recruitment rate;

βi(x)(i = 1, 2) represent the disease transmission rate; δ(x) is the pathogens’ decay rate; ϱ(x) is the pathogens’

production rate. By replacing the frequency-dependent interaction with mass action mechanisms (direct

person-to-person transmission route), model (1.5) reduced to the model in [32]. Even though (1.5) bears a

resemblance to that in [32], there is one major difference: frequency-dependent interaction β1(x)u1u2
u1+u2

assumes

bounded infection force, while unbounded infection mechanism for mass action term.

Note that when d1 = d2 = 0 and all parameters are space-independent, the reduced system of (1.5) is

the same as the model [24] with standard incidence function for the direct disease transmission and bilinear

incidence function for indirect disease transmission. It is mentioned in [24] that disease transmission within
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and without groups may be different. In this sense, it is natural to assume that the contact probability be-

tween a susceptible and an infected host is decreasing function of total host population (standard incidence

function) and the contact probability between a susceptible host and pathogen is a constant (bilinear inci-

dence function). Meanwhile, the model studied in [24] can also provide us a biological interpretation for our

model (1.5) that: 1) In Zika virus transmission, u1, u2 can respectively stands for uninfected individuals, in-

fected individuals, and u3 stands for the infected mosquitoes in the local landscape; 2) In H1N1 and seasonal

influenzas, u1, u2 represent respectively the uninfected and infected individuals, and u3 represents the con-

taminated environment such as classrooms, or other public places; 3) In the transmission of avian influenza,

u1, u2 can respectively stand for the uninfected migratory birds, infected migratory birds, and u3 stands for

infected domestic poultry. On the other hand, (1.5) can be used to describe the transmission of cholera in the

sense that u1, u2 and u3 stand for respectively the density of susceptible, infected individuals and the con-

centration of vibrios in the environment. However, it is well-known that those who recovered from cholera do

lose immunity. A realistic excuse to justify the hypothesis that infected individuals do not lose immunitymay

be that if we care about this model during one outbreak, then those who recovered are very likely to remain

immune throughout the outbreak.

We plan to proceed this paper as follows. Section 2 shall pay attention to the well-posedness of (1.5)

with (1.6) such as, the global existence and uniqueness and ultimate boundedness of solution of (1.5), the

asymptotic smoothness condition of semiflow, the existence of global compact attractor. In Section 3, we

identify the basic reproduction number, �0. We also establish that �0 can be equivalently characterized as
the principal spectral conditions. In section 4, with the�0, detailed analysis are carried out on the threshold
dynamics of (1.5), that is, �0 predicts whether or not the disease persist. In a critical case that �0 = 1, the
global asymptotic stability of disease free steady state is also addressed. Section 5 is spent on the dynamics of

(1.5) in homogeneous case.We addressed the existence of unique positive equilibrium and local stability. The

global attractivity of positive equilibriumwith additional condition is achieved by the technique of Lyapunov

function. Section 6 is devoted to exploring the asymptotic profiles of the positive steady state for the case that

d1 → 0, d1 → ∞, d2 → 0 and d2 → ∞. Finally, detailed conclusions are drawn and some discussion is

presented.

2 Well-posedness of the problem
The main aim of this section is to confirm that (1.5) has a global compact attractor. Throughout of the paper,

• X := C(Ω̄,R3), Y := C(Ω̄,R2), Z := C(Ω̄,R) are respectively the Banach space with the supremum norm

‖ ·‖, and their positive cone are denoted byX+ := C(Ω̄,R3+),Y
+ := C(Ω̄,R2+), Z

+ := C(Ω̄,R+), respectively.

•

G* := max
x∈Ω̄

G(·), G* = min
x∈Ω̄

G(·),

where G(·) = γ(·), δ(·), ϱ(·), ζ (·), β1(·), β2(·), respectively.

• Γ is the Green function of ∂u
∂t
= Δu in Ω with the Neumann boundary condition.

• A1(t), A2(t) : C(Ω̄,R) → C(Ω̄,R) are respectively the C0 semigroups of d1Δ − ζ (x) and d2Δ − γ(x) with

the Neumann boundary condition, i.e., for any φ ∈ C(Ω̄,R),

(A1(t)φ)(·) = e−ζ (·)t
∫
Ω

Γ(d1t, ·, y)φ(y)dy, (2.1)

and

(A2(t)φ)(·) = e−γ(·)t
∫
Ω

Γ(d2t, ·, y)φ(y)dy. (2.2)

We further, denote

(A3(t)φ)(x) = e−δ(x)tφ(x).
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According to [22, Section 7.1], A1(t), A2(t) : C(Ω̄,R)→ C(Ω̄,R), t > 0, are strong positive and compact. Hence,

for any φ ∈ X
+,

(A(t)φ)(·) := ((A1(t)φ)(·), (A2(t)φ)(·), (A3(t)φ)(·))
T =

⎛⎜⎝e−ζ (·)t
∫
Ω
Γ(d1t, ·, y)φ1(y)dy

e−γ(·)t
∫
Ω
Γ(d2t, ·, y)φ2(y)dy

e−δ(·)tφ3(·)

⎞⎟⎠ , t ≥ 0,
forms a C0 semigroup on X preserving X

+, namely,A(t)X+ ⊂ X
+, t ≥ 0 (see, for example, [19]).

Further, let

F(φ) := (F1(φ)(·), F2(φ)(·), F3(φ)(·)) =

⎛⎜⎝b(·) − β1(·)
φ1φ2
φ1+φ2

− β2(·)φ1φ3

β1(·)
φ1φ2
φ1+φ2

+ β2(·)φ1φ3

ϱ(·)φ2

⎞⎟⎠ .
By these settings, we can rewrite (1.5) as

u(t) = A(t)φ +

t∫
0

A(t − s)F(u(s))ds. (2.3)

We can easily check that

lim
h→0+

dist(φ + hF(φ),X+) = 0, ∀ φ ∈ X
+.

In fact, it is easy to verify that for any φ ∈ X
+ and small enough h ≥ 0,

φ + hF(φ) =

⎛⎜⎜⎝
φ1 + h

(
b(·) − β1(·)

φ1φ2
φ1+φ2

− β2(·)φ1φ3

)
φ2 + h

(
β1(·)

φ1φ2
φ1+φ2

+ β2(·)φ1φ3

)
φ3 + h

(
ϱ(·)φ2

)
⎞⎟⎟⎠

≥

⎛⎜⎝ φ1

[
1 − h

(
β*1

φ2
ϕ1+φ2

+ β*2φ3

)]
φ2

φ3

⎞⎟⎠ .
As just a consequence of [22, Corollary 4], we have

Lemma 2.1. For any ϕ ∈ X
+, (1.5) with (1.6) admits a unique nonnegative solution u(·, t) :=

(u1(·, t), u2(·, t), u3(·, t)) on Ω̄ × [0, tmax) with tmax ≤ ∞. Furthermore, u(·, t;ϕ) ∈ X
+, t ∈ [0, tmax).

In what follows, we shall confirm tmax = ∞ by verifying the boundedness of u(·, t) in Ω × (0, tmax).

2.1 Existence of the global solution

Theorem 2.1. For any ϕ ∈ X
+, (1.5) with (1.6) admits a unique nonnegative solution defined on Ω̄ × [0,∞).

Furthermore, the semiflow Υ(t) : X+ → X
+ defined by

Υ(t)ϕ = (u1(·, t;ϕ), u2(·, t;ϕ), u3(·, t;ϕ)), ∀(x, t) ∈ Ω̄ × [0,∞), (2.4)

is ultimately bounded.

Proof. We first prove that the boundedness of u1. From (1.5), u1(x, t) is governed by⎧⎨⎩
∂ū1
∂t
= d1Δū1 + b(·) − m(·)ū1, (x, t) ∈ Ω × (0,∞),

∂ū1
∂ν

= 0, (x, t) ∈ ∂Ω × (0,∞).
(2.5)
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By the comparison principle, we directly have

lim sup
t→∞

u1(·, t) ≤ lim
t→∞

ū1(·, t) = ū*1(·), uniformly for x ∈ Ω̄, (2.6)

where ū*1(·) is a unique global asymptotic stable steady state of (2.5) in C(Ω̄,R). It follows that

|| u1(·, t) ||≤ M0,

where M0 =|| ū
*
1(·) ||, independent of initial conditions.

Next, we verify that the solution u2 and u3 of (1.5) are ultimately bounded. For this purpose, we first

establish the uniform estimate in L1(Ω) × L1(Ω) and then pass it to the uniform estimate in C(Ω) × C(Ω).

• u(·, t) satisfies the L1 bounded estimate, i.e.,

lim sup
t→∞

(‖u1(·, t)‖L1 + ‖u2(·, t)‖L1 + ‖u3(·, t)‖L1 ) ≤M1,

whereM1 is a positive constant.

By (1.5), we have

d

dt
‖u1(·, t) + u2(·, t))‖L1 =

∫
Ω

b(·)dx −

∫
Ω

ζ (·)u1(·, t)dx −

∫
Ω

γ(·)u2(·, t)dx

≤ |Ω|b* − h‖u1(·, t) + u2(·, t)‖L1 ,

where h = min
x∈Ω̄

{ζ*, γ*} and |Ω| is the volume of Ω. Hence,

lim sup
t→∞

(‖u1(·, t)‖L1 + ‖u2(·, t)‖L1 ) ≤ M1, where M1 = |Ω|b*/h.

Further, we have

d

dt
‖u3(·, t)‖L1 ≤ ϱ*M1 − δ*‖u3(·, t)‖L1 .

It follows that

lim sup
t→∞

‖u3(·, t)‖L1 ≤ M2, where M2 = ϱ*M1/δ*.

Hence, by takingM1 = max{M1,M2}, the assertion directly follows.
• For k ≥ 0, u2 and u3 satisfies the L

2k bounded estimate, that is,

lim sup
t→∞

(‖u2(·, t)‖2k + ‖u3(·, t)‖2k) ≤ M2k , (2.7)

where M2k is a positive constant.

We shall prove (2.7) by induction. Obviously, k = 0 holds. Suppose that (2.7) holds for k−1. Then forM2k−1 > 0,

we have

lim sup
t→∞

(‖u2(·, t)‖2k−1 + ‖u3(·, t)‖2k−1) ≤ M2k−1 . (2.8)

We multiply u2 by u
2k−1
2 , and then integrate it over Ω,

1

2k
∂

∂t

∫
Ω

u2
k

2 dx ≤ d2

∫
Ω

u2
k−1
2 	u2dx +

∫
Ω

β2(·)u1u3u
2k−1
2 dx +

∫
Ω

β1(·)u
2k

2 dx −

∫
Ω

γ(·)u2
k

2 dx. (2.9)

Recall that

d2

∫
Ω

u2
k−1
2 	u2dx = −d2

∫
Ω

∇u2 ·∇u2
k−1
2 dx = −(2k − 1)d2

∫
Ω

(∇u2 ·∇u2)u
2k−2
2 dx = −

2k − 1

22k−2
d2

∫
Ω

|∇u2
k−1

2 |2dx.
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Hence, (2.9) becomes

1

2k
∂

∂t

∫
Ω

u2
k

2 dx ≤ −Dk

∫
Ω

|∇u2
k−1

2 |2dx +
∫
Ω

β2(·)u1u3u
2k−1
2 dx +

∫
Ω

β1(·)u
2k

2 dx −

∫
Ω

γ(·)u2
k

2 dx. (2.10)

where Dk =
2k−1
22k−2

d2.

By lim supt→∞ ‖u1(·, t)‖L1 ≤ M0, there is t0 > 0 such that for t ≥ t0,∫
Ω

β1(·)u
2k

2 dx ≤ β
*
1

∫
Ω

u2
k

2 dx (2.11)

and ∫
Ω

β2(·)u1u
2k−1
2 u3dx ≤ β

*
2(M0 + 1)

∫
Ω

u3u
2k−1
2 dx. (2.12)

Applying Young’s inequality: ab ≤ ϵap + 1q (ϵp)
− q

p bq, where a, b, ϵ > 0, 1 < p, q < ∞ and 1p +
1
q = 1. One can

estimate (2.12) by setting ϵ1 =
δ*

4β*2(M0+1)
, p = 2k and q = 2k/(2k − 1) as follows,

∫
Ω

u3u
2k−1
2 dx ≤

δ*
4β*2(M0 + 1)

∫
Ω

u2
k

3 dx + Cϵ1

∫
Ω

u2
k

2 dx, for t ≥ t0, where Cϵ1 =
2k − 1

2k
(2kϵ1)

− 1

2k−1 . (2.13)

Thus, (2.10) can be estimated by

1

2k
∂

∂t

∫
Ω

u2
k

2 dx ≤ −Dk

∫
Ω

|∇u2
k−1

2 |2dx + δ*
4

∫
Ω

u2
k

3 dx + Ck

∫
Ω

u2
k

2 dx, (2.14)

where Ck = β*1 + β
*
2(M0 + 1)Cϵ1 .

We multiply u3 by u
2k−1
3 , and then integrate it over Ω,

1

2k
∂

∂t

∫
Ω

u2
k

3 dx =

∫
Ω

ϱ(x)u2
k−1
3 u2dx −

∫
Ω

δ(x)u2
k

3 dx

≤ ϱ*
∫
Ω

u2
k−1
3 u2dx − δ*

∫
Ω

u2
k

3 dx. (2.15)

Again applying Young’s inequality (by setting ϵ2 =
δ*
4ϱ*
, p = 2k/(2k − 1) and q = 2k), we have

∫
Ω

u2
k−1
3 u2dx ≤

δ*
4ϱ*

∫
Ω

u2
k

3 dx + Cϵ2

∫
Ω

u2
k

2 dx, where Cϵ2 = ϵ1−2
k

2
(2k − 1)2

k−1

(2k)2
k

. (2.16)

Hence (2.15) becomes

1

2k
∂

∂t

∫
Ω

u2
k

3 dx ≤ −
3δ*
4

∫
Ω

u2
k

3 dx + ϱ
*Cϵ2

∫
Ω

u2
k

2 dx. (2.17)

Combined with (2.14) and (2.17), we obtain

1

2k
∂

∂t

∫
Ω

(u2
k

2 + u
2k

3 )dx ≤ −Dk

∫
Ω

|∇u2
k−1

2 |2dx + Ek

∫
Ω

u2
k

2 dx −
δ*
2

∫
Ω

u2
k

3 dx, for t ≥ t0, (2.18)

where Ek = Ck + ϱ
*Cϵ2 .

Applying interpolation inequality:

‖ξ‖22 ≤ ϵ‖∇ξ‖22 + Cϵ‖ξ‖21, where ϵ > 0, Cϵ > 0, ξ ∈ W1,2(Ω).
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Let ϵ3 = Dk/(2Ek), ξ = u2
k−1

2 , then

−Dk

∫
Ω

|∇u2
k−1

2 |2dx ≤ −2Ek

∫
Ω

u2
k

2 dx + 2EkCϵ3

⎛⎝∫
Ω

u2
k−1

2 dx

⎞⎠2 .
Thus, (2.18) becomes

1

2k
∂

∂t

∫
Ω

(u2
k

2 + u
2k

3 )dx ≤ −r*

∫
Ω

(u2
k

2 + u
2k

3 )dx + 2EkCϵ3

⎛⎝∫
Ω

u2
k−1

2 dx

⎞⎠2 , for t ≥ t0, (2.19)

where r* = min{Ek ,
δ*
2 }.

It then follows from (2.8) that lim supt→∞
∫
Ω

u2
k−1

2 dx ≤ M2
k−1

2k−1 , which in turn implies that

lim sup
t→∞

(‖u2(·, t)‖2k + ‖u3(·, t)‖2k) ≤ M2k , with M2k =
2k

√
2EkCϵ3

r*
M2k−1 .

Thus, according to continuous embedding Lq(Ω) ⊂ Lp(Ω), q ≥ p ≥ 1, we have

lim sup
t→∞

(‖u2(·, t)‖Lp + ‖u3(·, t)‖Lp ) ≤ Mp , (2.20)

where Mp > 0, independent of initial conditions. Denote by Ya , 0 ≤ a ≤ 1 the fractional power space. By [31,

Lemma 2.4], we obtain that Ya ⊂ C(Ω̄) by selecting p > n/2 and a ≥ n/(2p). Hence lim supt→∞ ‖u2(·, t)‖ ≤
M∞, where M∞ > 0. Further, lim supt→∞ ‖u3(·, t)‖ ≤ ϱ*M∞

δ*
. This proves the ultimate boundedness of the

solution of (1.5). The proof is cpmplete.

2.2 Asymptotic smoothness of Υ(t)
We refer the readers to consult [8, 36] for the definition of κ(·), the Kuratowski measure of noncompactness.

Lemma 2.2. The semigroup Υ(t) is a κ-contraction on X
+, that is, for any bounded set B ⊆ X

+,

κ(Υ(t)B) ≤ e−δ* tκ(B),

where δ* = minx∈Ω̄ δ(x).

Proof. For t ≥ 0, let Υ(t) = Υ1(t) + Υ2(t), where

Υ1(t)ϕ =

⎧⎨⎩u1(·, t;ϕ), u2(·, t;ϕ),

t∫
0

e−δ(·)(t−s)ϱ(·)u2(·, s;ϕ)ds

⎫⎬⎭ ,
and

Υ2(t)ϕ =
{
0, 0, e−δ(·)tu30(x)

}
.

By [31, Lemma 2.5], Υ1(t)B is precompact. Thus, we have κ(Υ1(t)B) = 0. We estimate Υ2(t) as∥∥Υ2(t)∥∥ = sup
ψ∈X

∥∥Υ2(t)ψ∥∥
X

‖ψ‖
X

≤ e−δ* t sup
ψ∈X

‖ψ‖
X

‖ψ‖
X

= e−δ* t .

Hence,

κ(Υ(t)B) ≤ κ(Υ1(t)B) + κ(Υ2(t)B) ≤ 0 +
∥∥Υ2(t)∥∥ κ(B) ≤ e−δ* tκ(B),

that is, Υ(t) is κ-contraction on X+. This completes the proof.

Theorem 2.2. (1.5) possesses a global compact attractor in X
+, denoted byA0.

Proof. By Theorem 2.1, the solution of (1.5) exists globally and Υ(t) is point dissipative (see Lemma 2.2).

Asymptotic smoothness condition of Υ(t) is implied by κ-contraction condition. Hence, by [8, Theorem 2.4.6],

system (1.5) possesses a global compact attractor, which attracts every bounded set in X+.
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3 Basic reproduction number
Obviously, (1.5) has a disease-free steady state E0 = (u

0
1(x), 0, 0), where u

0
1(x) =

b(x)
ζ (x)
and satisfies dΔu01(x) +

b(x)−m(x)u01(x) = 0, for x ∈ Ω and
∂u01(x)
∂ν

= 0, for x ∈ ∂Ω. The linearization of (1.5) at E0 leads to the following

cooperative system, ⎧⎪⎪⎨⎪⎪⎩
(

∂u2
∂t
∂u3
∂t

)
= B

(
u2

u3

)
, (x, t) ∈ Ω × (0,∞),

∂u2
∂n

= 0, (x, t) ∈ ∂Ω × (0,∞),

(3.1)

where

B =

(
d2Δ + β1(·) − γ(·) β2(·)u

0
1(·)

ϱ(·) −δ(·)

)
. (3.2)

Substituting (u2(·, t), u3(·, t)) := eλt(ϕ2(·), ϕ3(·)) into (3.1) gets⎧⎪⎪⎨⎪⎪⎩
λ

(
ϕ2

ϕ3

)
= B

(
ϕ2

ϕ3

)
, (x, t) ∈ Ω × (0,∞),

∂ϕ2
∂n

= 0, (x, t) ∈ ∂Ω × (0,∞).

(3.3)

We rewrite

B := B + F =

(
d2Δ + β1(·) − γ(·) 0

ϱ(·) −δ(·)

)
+

(
0 β2(·)u

0
1(·)

0 0

)
.

It is easy to see that both B and B are resolvent-positive operators [27]. Denote by T(t)(resp. T̃(t)) : Y → Y

the positive semigroup generated by B (resp. B). Since both B and B are cooperative for any x ∈ Ω, we get

that T(t)Y+ ⊆ Y+ (resp. T̃(t)Y+ ⊆ Y+). Throughout of the paper, we denote by s(Q) = sup{Reλ, λ ∈ σ(Q)} the
spectral bound of Q and r(Q) = sup{|λ|, λ ∈ σ(Q)}, the the spectral radius of Q.

Following the standard procedures in [27, 30], we define the NGO L as

L[ϕ](·) =

∞∫
0

F(·)T̃(t)ϕ(·)dt = F(·)

∞∫
0

T̃(t)ϕ(·)dt, ϕ ∈ Y, x ∈ Ω̄,

that is, within the infection period,L[ϕ](·) represents the total new infections distribution from initial distri-

bution ϕ. Then, the BRN �0 is defined as
�0 := r(L) (3.4)

The following result is a consequence of [27, 30].

Lemma 3.1. LetB and �0 be defined in (3.4) and (3.2), respectively. s(B) has the same sign as �0 − 1.

Proof. Due to the fact that B is resolvent-positive operator, we then have

(λI − B)−1ϕ =

∞∫
0

e−λt T̃(t)ϕdt, ∀ λ > s(B), ϕ ∈ X
+. (3.5)

Due to s(B) < 0, we can let λ = 0 in (3.5), leading to

−B−1ϕ =

∞∫
0

T̃(t)ϕdt, ∀ λ > s(B), ϕ ∈ X
+. (3.6)

That is,L = −FB−1. Further,B = B + F can be viewed as the perturbation of B. According to [27, Theorem 3.5],

s(B) has the same sign as r(−FB−1) − 1 = �0 − 1.
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For the convenience of forthcoming discussions, we next claim that�0 has relationship with other important
indicators: λ̃0 and η

0.

Lemma 3.2. Let �0 be defined by (3.4). Then we have

(i) �0 = 1/λ̃0, where λ̃0 is the principal eigenvalue of⎧⎪⎨⎪⎩
d2Δφ − γ(·)φ + λ̃

(
β1(·) +

β2(·)u
0
1(·)ϱ(·)

δ(·)

)
φ = 0, x ∈ Ω,

∂φ

∂ν
= 0, x ∈ ∂Ω;

(3.7)

(ii) �0 − 1 and s(B) have the same sign as η0, where η0 is the principal eigenvalue of⎧⎪⎨⎪⎩
d2Δϕ +

(
β1(·) +

β2(·)u
0
1(·)ϱ(·)

δ(·)
− γ(·)

)
ϕ = ηϕ, x ∈ Ω,

∂ϕ

∂ν
= 0, x ∈ ∂Ω.

(3.8)

Proof. We first prove (i). We rewrite

F =

(
β1(·) β2(·)u

0
1(·)

0 0

)
=

(
F11 F12

F21 F22

)
, B = diag(d2Δ, 0) − V ,

where

V =

(
γ(·) 0

−ϱ(·) δ(·)

)
=

(
V11 V12

V21 V22

)
.

As F21 = 0, F22 = 0, by [30, Theorem 3.3], we know that �0 = r(−B−1F) = r(−B−11 F2), where

B1 = d2Δ − V11 + V12V
−1
22V21 = d2Δ − γ(·) and F2 = F11 − F12V

−1
22V21 = β1(·) + β2u

0
1(·)ϱ(·)/δ(·).

Hence,

(−B−11 F2)φ = −(d2Δ − γ(·))
−1

(
β1(·) +

β2(·)u
0
1(·)ϱ(·)

δ(·)

)
φ.

Therefore, �0 satisfies

−

(
(d2Δ − γ(·))

−1

(
β1(·) +

β2(·)u
0
1(·)ϱ(·)

δ(·)

))
φ = �0φ, φ ∈ C2(Ω̄),

that is,

d2Δφ − γ(·)φ +

(
β1(·) +

β2(·)u
0
1(·)ϱ(·)

δ(·)

)
1

�0 φ = 0, φ ∈ C2(Ω̄). (3.9)

This proves (i).

We next prove (ii). In fact, eigenvalue problem (3.8) has a principle eigenvalue η0, associated with a

positive eigenfunction ϕ* on Ω, i.e.,⎧⎪⎨⎪⎩
d2Δϕ

* − γ(·)ϕ* +

(
β1(·) +

β2(·)u
0
1(·)ϱ(·)

δ(·)

)
ϕ* = η0ϕ*, x ∈ Ω,

∂ϕ*

∂ν
= 0, x ∈ ∂Ω.

(3.10)

We then multiply the first equation of (3.10) and (3.9) by φ and ϕ*, respectively, then integrate and subtract

the equation, obtaining (
1 −

1

�0

)∫
Ω

(
β1(·) +

β2(·)u
0
1(·)ϱ(·)

δ(·)

)
ϕ*φ = η0

∫
Ω

ϕ*φ.

Since both

∫
Ω

(
β1(x) +

β2(x)u
0
1(x)ϱ(x)

δ(x)

)
ϕ*Φ and

∫
Ω
ϕ*Φ are positive, we arrive at the conclusion that(

1 − 1
�0
)
and η0 have the same sign, i.e., �0 > 1 when η0 > 0 and �0 < 1 when η0 < 0. This proves (ii).
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Due to the assertion in (i) of Lemma 3.2 and variational formula,

�0 = 1
λ̃0
= sup

ϕ∈H1(Ω), ϕ≠0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
Ω

(
β1(·) +

β2(·)u
0
1(·)ϱ(·)

δ(·)

)
ϕ2dx

∫
Ω

(
d2 |∇ϕ|2 + γ(·)ϕ2

)
dx

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (3.11)

which indicate how �0 depends on the diffusion coefficient d2 (see also in [1, Theorem 2] and [31]).

Theorem 3.1. Let �0 be defined by (3.11). Then we have

(i) Fix d1 > 0, then �0 is decreasing with respect to d2, and satisfies

lim
d2→0

�0 = max
⎧⎨⎩
(
β1(·) +

β2(·)u
0
1(·)ϱ(·)

δ(·)

)
γ(·)

: x ∈ Ω̄

⎫⎬⎭ and lim
d2→∞

�0 =
∫
Ω

(
β1(·) +

β2(·)u
0
1(·)ϱ(·)

δ(·)

)
dx∫

Ω
γ(·)dx

.

(ii) Fix d2 > 0, then

lim
d1→0

�0 = �0,0 := sup
ϕ∈H1(Ω), ϕ≠0

⎧⎨⎩
∫
Ω
(β1(·) +

β2(·)ϱ(·)b(·)
δ(·)ζ (·)

)ϕ2dx∫
Ω

(
d2 |∇ϕ|2 + γ(·)ϕ2

)
dx

⎫⎬⎭
and

lim
d1→∞

�0 = �0,∞ := sup
ϕ∈H1(Ω), ϕ≠0

⎧⎪⎨⎪⎩
∫
Ω
(β1(·) +

β2(·)ϱ(·)
∫
Ω
b(·) dx

δ(·)
∫
Ω
ζ (·) dx

)ϕ2dx∫
Ω

(
d2 |∇ϕ|2 + γ(·)ϕ2

)
dx

⎫⎪⎬⎪⎭ .
(iii) If

∫
Ω

(
β1(·) +

β2(·)u
0
1(·)ϱ(·)

δ(·)

)
dx/

∫
Ω

γ(·)dx > 1, we have �0 > 1 for all d1, d2 > 0.

(iv) If

∫
Ω

(
β1(·) +

β2(·)u
0
1(·)ϱ(·)

δ(·)

)
dx/

∫
Ω

γ(·)dx < 1 and
(
β1(·) +

β2(·)u
0
1(·)ϱ(·)

δ(·)

)
/γ(·) > 1 for some x ∈ Ω̄, then

there exists d*2 ∈ (0,∞) such that �0 > 1 when d2 < d
*
2, and �0 < 1 when d2 > d

*
2.

The following statements come from [13, Theorem 1.1].

Remark 1. It is clear that the asymptotic behavior of the unique positive solution u01 with d1:

• u01(·)→ b(·)/ζ (·) in C1(Ω) as d1 → 0;

• u01(·)→
∫
Ω
b(·) dx/

∫
Ω
ζ (·) dx in C1(Ω) as d1 →∞.

Remark 2. Fix d2 > 0, η
0 of the eigenvalue problem (3.8) satisfies

• η0 → η00 as d1 → 0 ;

• η0 → η0∞ as d1 →∞,

where η00 and η0∞ are respectively the principal eigenvalue of (3.8) with u01(·) = b(·)/ζ (·), and the principal

eigenvalue of ⎧⎪⎨⎪⎩
d2Δϕ +

(
β1(·) +

β2(·)ϱ(·)
∫
Ω
b(x) dx

δ(·)
∫
Ω
ζ (·) dx

− γ(·)

)
ϕ = ηϕ, x ∈ Ω,

∂ϕ

∂ν
= 0, x ∈ ∂Ω.

(3.12)

Remark 3. �0,0 − 1 has the same sign as η00, and �0,∞ − 1 has the same sign as η0∞.

Theorem 3.2. If �0 ≥ 1 (or s(B) ≥ 0), s(B) is the principal eigenvalue of (3.3).



Jinliang Wang and Renhao Cui, Analysis of a diffusive host-pathogen model | 933

Proof. In fact, we see from (3.1) that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
u2(·, t, ϕ) = A2(t)ϕ2 +

t∫
0

A2(t − s)q(u2(·, s, ϕ), u3(·, s, ϕ))ds,

u3(·, t, ϕ) = A3(t)ϕ3 +

t∫
0

A3(t)(t − s)(ϱ(·)u2(·, s, ϕ))ds,

where q(u2, u3) = β1(·)u2 + β2(·)u
0
1(·)u3, and A1 and A2 are respectively defined in (2.1) and (2.2). We decom-

pose T(t) as the sum of T2(t) and T3(t), T(t) = T2(t) + T3(t), where

T2(t)ϕ = (0, A3(t)ϕ3), ϕ = (ϕ2, ϕ3) ∈ Y, (3.13)

T3(t)ϕ =

⎛⎝u2(·, t, ϕ),

t∫
0

A3(t)(t − s)[ϱ(·)u2(·, s, ϕ)]ds

⎞⎠ , ϕ = (ϕ2, ϕ3) ∈ Y.

By [31, Lemma 2.5], the compactness of T3(t) directly follows. Further,

sup
ϕ∈C(Ω̄,R2),‖ϕ‖≠0

‖T2(t)ϕ‖
‖ϕ‖ ≤ sup

ϕ∈C(Ω̄,R2),‖ϕ‖≠0

‖e−δ(·)tϕ3‖
‖ϕ‖ ≤ sup

ϕ∈C(Ω̄,R2),‖ϕ‖≠0

‖e−δ* tϕ3‖
‖ϕ‖ ≤ e−δ* t ,

that is, ‖T2(t)‖ ≤ e−δ* t.
Hence, for any bounded set S in Y,

κ(T(t)S) ≤ ‖T2(t)‖κ(S) ≤ e−δ* tκ(S), t > 0.

Thus, T(t) is a κ-contraction on Y, that is, the essential growth bound, ωess(Π(t)) ≤ −δ and the essential

spectral radius

re(Π(t)) ≤ e
−δ* t < 1, t > 0.

It is well-known that ω(T(t)), the exponential growth bound (defined by ω(T(t)) := limt→∞ ln ‖T(t)‖
t such

that
∥∥T(t)∥∥ ≤ Meω(T(t))t , for some M > 0), satisfies

ω(T(t)) = max{s(B), ωess(T(t))}.

With the assumption that s(B) ≥ 0, the spectral radius of T(t),

r(T(t)) = es(B)t ≥ 1, t > 0.

Consequently, re(T(t)) < r(T(t)). With the help of the generalized Krein-Rutman Theorem (see, for exam-

ple, [18]), we complete the proof.

The following result indicates that for a special case, s(B) is the principal eigenvalue of (3.3) without any

limitations.

Lemma 3.3. Suppose that δ(x) ≡ δ. s(B) is the principal eigenvalue of (3.3).

Proof. Let

Lλϕ = d2Δϕ +

(
β1(·) +

β2(·)u
0
1(·)ϱ(·)

λ + δ

)
ϕ − γ(·)ϕ, λ > −δ,

Denote C1 := minx∈Ω̄{β1(·)} and C2 := minx∈Ω̄{ϱ(·)β2(·)u01(·)}. Note that the eigenvalue problem⎧⎨⎩ ηφ(·) = d2Δφ(·) − γ(·)φ(·), x ∈ Ω
∂φ(x)

∂ν
= 0, x ∈ ∂Ω.

(3.14)
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admits one principal eigenvalue, η̂, (associated with a positive eigenvector φ� � 0). Denote by λ* the larger

root of

λ2 + (δ − C1 − η̂)λ − (C2 + δ(C1 + η̂)) = 0.

Then λ* = 12 [(η̂ − δ + C1) +
√
(δ + C1 + η̂)2 + 4C2] > −δ. Hence,

Lλ*φ
� = d2Δφ

� + β1(·)φ� + ϱ(·)β2(·)u
0
1(·)

λ + δ
φ� − γ(·)φ� ≥ (η̂ + C1 +

C2
λ* + δ

)φ� = λ*φ�.

According to [30, Theorem 2.3], the assertion directly follows. We complete the proof.

4 Threshold dynamics
We now study the threshold dynamics of model (1.5) as �0 ≤ 1 and �0 > 1.

Theorem 4.1. If �0 ≤ 1 (or s(B) ≤ 0), then E0 is globally asymptotically stable.

Proof. We divide the proof into two parts. One is �0 < 1, the other is �0 = 1. When �0 < 1, we know from
[30, Theorem 3.1] that E0 is locally asymptotically stable. We are mow in a position to consider the global

attractivity of E0. Fix ϵ0 > 0. By (2.6), there is t1 > 0 such that for all (x, t) ∈ Ω̄ × [t1,∞),

0 ≤ u1(·, t) ≤ u
0
1(·) + ϵ0.

Let (û2(·, t), û3(·, t)) is the solution of the following problem⎧⎪⎪⎨⎪⎪⎩
(

∂û2
∂t
∂û3
∂t

)
= Bϵ0

(
û2

û3

)
, (x, t) ∈ Ω̄ × [t1,∞),

∂û2
∂n

= 0, (x, t) ∈ Ω̄ × [t1,∞),

(4.1)

where

Bϵ0 =

(
d2Δ + β1(·) − γ(·) β2(·)(u

0
1(·) + ϵ0)

ϱ(·) −δ(·)

)
.

By the comparison principle (see, e.g. [16]), (u2(·, t), u3(·, t)) ≤ (û2(·, t), û3(·, t)) on Ω̄ × [t1,∞).

Let Tϵ0 (t) be the positive semigroup induced by Bϵ0 . We next aim to prove that the exponential growth

bound of Tε0 (t), ωϵ0 is negative. Let ωess(Tε0 (t)) := limt→∞
α(Tε0

(t))

t be the essential growth bound of Tε0 (t),

where α(·) is the measure of non-compactness. From Lemma 2.2, we have ωess(Tϵ0 ) ≤ −δ*. Recall that ωϵ0 =

max{s(Bϵ0 ), ωess(Tε0 (t))}. This allow us to conclude that ωϵ0 has the same sign as s(Bϵ0 ). From Lemma 3.2,

we directly obtain that s(Bϵ0 ) has the same sign to the principle eigenvalue ηϵ0 of⎧⎪⎨⎪⎩
d2Δφ − γ(·)φ +

(
β1(·) +

β2(·)(u
0
1(·) + ϵ0)ϱ(·)

δ(·)

)
φ = ηφ, x ∈ Ω,

∂φ

∂ν
= 0, x ∈ ∂Ω.

(4.2)

It follows from (ii) of Lemma 3.2,�0 < 1 and the continuous dependence of η0ϵ0 on ϵ0 that η0ϵ0 < 0 if ϵ0 is small.
Hence,ωϵ0 < 0. This together with

∥∥Tε0 (t)
∥∥ ≤ Meωϵ0

t , for someM > 0, imply that (û2(·, t), û3(·, t))→ (0, 0) as

t → ∞ uniformly for x ∈ Ω̄. Consequently, (u2(·, t), u3(·, t))→ (0, 0) as t → ∞ uniformly for x ∈ Ω̄. Further,

from (1.5), u1(·, t)→ u01(·) as t →∞uniformly for x ∈ Ω̄. This completes the first part.

When �0 = 1, the global asymptotic stability result of E0 needs to combine with the local stability and
global attractivity of E0 (see also in [3, 4, 31, 32]). We first confirm the local asymptotic stability of E0. Let ϵ > 0

be given. Choosing ρ > 0 such that for any u0 = (u10, u20, u30), we have || u0 − E0 ||≤ ρ.
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Let us introduce

Σ(x, t) :=
u1(·, t)

u01(·)
− 1 and τ(t) := max

x∈Ω̄
{Σ(·, t), 0}.

Hence, the first equation of (1.5) becomes

∂Σ

∂t
− d1ΔΣ − 2d1

∇u01(·) ·∇Σ

u01(·)
+

b(·)

u01(·)
Σ = −

β1(·)
u1u2
u1+u2

+ β2(·)u1u3

u01(x)
(4.3)

Solving (4.3) gives

Σ(·, t) = T̂(t)(t)Σ0 −

t∫
0

T̂(t)(t − s)
β1(·)

u1u2
u1+u2

+ β2(·)u1u3

u01(·)
ds, (4.4)

where Σ0 =
u10
u01
−1 and T̂(t) ≤Me−rt for some r,M > 0, is the positive semigroup inducedby d1Δ+2d1

∇u01(·)·∇
u01(·)

+

b(·)
u01(·)
. It follows that

τ(t) = max
x∈Ω̄

⎧⎨⎩T̂(t)Σ0 −

t∫
0

T̂(t − s)
β1(·)

u1u2
u1+u2

+ β2(·)u1u3

u01(x)
ds, 0

⎫⎬⎭
≤ max

x∈Ω̄

{
T̂(t)Σ0, 0

}
≤|| T̂(t)Σ0 ||

≤Me−rt‖ u10
u01(·)

− 1‖ ≤ ρMe−rt/u01,

(4.5)

where u01 = minx∈Ω̄{u01(·)}.
By a zero trick and the definition of T(t) (positive semigroup generated byB), we have

(
u2(·, t)

u3(·, t)

)
= T(t)

(
u20(·)

u30(·)

)
+

t∫
0

T(t − s)

⎛⎜⎝ β1(·)
u1(·,s)u2(·,s)
u1(·,s)+u2(·,s)

− β1(·)u2(·, s)

+β2(·)(u1(·, s) − u
0
1)u3(·, s)

0

⎞⎟⎠ds
≤ T(t)

(
u20(·)

u30(·)

)
+

t∫
0

T(t − s)

(
β*2(u1(·, s) − u

0
1(·))u3(·, s)

0

)
ds.

(4.6)

Under the condition that �0 = 1 (or s(B) = 0), we know that || T(t) ||≤ Mτ for t ≥ 0 and Mτ > 0. Hence, by

(4.6), we have

max{‖u2(·, t)‖, ‖u3(·, t)‖} ≤ Mτρ +Mτβ
*
2‖u01(·)‖

t∫
0

τ(s)‖u3(·, s)‖ds

≤ Mτρ +Mτβ
*
2‖u01(·)‖ ρM

u01

t∫
0

e−rs‖u3(·, s)‖ds (4.7)

= Mτρ + Lρ

t∫
0

e−rs‖u3(·, s)‖ds,

where L = Mτβ*2‖u01(·)‖M/u01. With the help of the Gronwall’s inequality, it is easy to get

‖u3(x, t)‖ ≤ Mτρe
Lρ/r . (4.8)

Further from (4.7) and (4.8), we know that ‖u2(x, t)‖ ≤ Mτρ + LρMτρe
Lρ/r/r. This together with the first

equation of system (1.5) and (4.8) imply that

∂u1
∂t
≥ d1Δu1 + b(·) − ζ (·)u1 − β

*
1u1 − β

*
2Mτρe

Lρ/ru1, (x, t) ∈ Ω × (0,∞).
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Thus, we consider the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ϑ

∂t
= d1Δϑ + b(·) − ζ (·)ϑ − β

*
1ϑ − β

*
2Mτρe

Lρ/rϑ, (x, t) ∈ Ω × (0,∞),

∂ϑ

∂n
= 0, (x, t) ∈ Ω × (0,∞),

ϑ(·, 0) = u10(·), x ∈ Ω.

(4.9)

Obviously, u1(·, t) ≥ ϑ(·, t), for all (x, t) ∈ Ω × (0,∞). Let ϑ̂(·, t) = ϑ(·, t) − ϑρ(·) and ϑρ(·) is the positive steady

state of (4.9). Hence, ϑ̂(·, t) satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ϑ̂

∂t
= d1Δϑ̂ − (ζ (·) + β

*
1 + β

*
2Mτρe

Lρ/r)ϑ̂, (x, t) ∈ Ω × (0,∞),

∂ϑ̂

∂n
= 0, (x, t) ∈ ∂Ω × (0,∞),

ϑ̂(·, 0) = u10(·) − ϑ
ρ(·), x ∈ Ω.

(4.10)

Solving (4.10) yields

ϑ̂(·, t) = A1(t)(u10(·) − ϑ
ρ(·)) −

t∫
0

A1(t − s)(β
*
1 + β

*
2Mτρe

Lρ/r)ϑ̂(·, s)ds.

where A1(t) is defined in (2.1) and satisfies ‖A1(t)‖ ≤ K0eζ* t for some constant K0. Hence,

‖ϑ̂(·, t)‖ ≤ K0eζ* t‖u10(·) − uρ
1(·)‖ +

t∫
0

K0e
ζ*(t−s)(β*1 + β

*
2Mτρe

Lρ/r)‖ϑ̂(·, s)‖ds.

Let L1 = K0(β
*
1 + β

*
2Mτρe

Lρ/r). This together with the Gronwall’s inequality imply that

‖ϑ̂(·, t)‖ = ‖ϑ(·, t) − ϑρ(·)‖ ≤ K0‖u10(·) − ϑρ(·)‖eL1 t+ζ* t .

Choose ρ > 0 small enough that L1 < −ζ*/2 and

‖ϑ(·, t) − ϑρ(·)‖ ≤ K0‖u10(·) − ϑρ(·)‖e−ζm t/2.

By a zero trick,

u1(·, t) − u
0
1(·) ≥ ϑ(·, t) − u

0
1(·) = ϑ̂(·, t) − ϑρ(·) + ϑρ(·) − u01(·)

≥ − K0‖u10(·) − ϑρ(·)‖e−ζm t/2 + ϑρ(·) − u01(·)
≥ − K0(‖u10(·) − u01(·)‖ + ‖u01(·) − ϑρ(·)‖) − ‖ϑρ(·) − u01(·)‖
≥ − K0ρ − (K0 + 1)‖ϑρ(·) − u01(·)‖.

(4.11)

From τ(t) ≤ ρMe−rt/u01, we directly have

u1(·, t) − u
0
1(·) = u01(·)

(
u1(·, t)

u01(·)
− 1

)
≤ ρM‖u01(·)‖/u01. (4.12)

Combined with (4.11) and (4.12), one can get

‖u1(·, t) − u01(·)‖ ≤ max{K0ρ + (K0 + 1)‖ϑρ(·) − u01(·)‖, ρM‖u01(·)‖/u01}. (4.13)

By choosing ρ sufficiently small, limρ→0 ϑρ(·) = u01(·), the inequalities (4.11) and (4.13) imply that

‖u1(·, t) − u01(·)‖, ‖u2(·, t)‖, ‖u3(·, t)‖ ≤ ε, for all t > 0,

where ε can be chosen as a small number. This proves the local stability of E0.
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Secondly, we confirm the global stability of E0. For any u0 ∈ X+, we set

∂X1 = {(u1, u2, u3) ∈ X
+ : u2 = u3 = 0},

and

σ(t; u0) := inf{c̃ ∈ R : u2(·, t) ≤ c̃ϕ2 and u3(·, t) ≤ c̃ϕ3}.
where (ϕ2, ϕ3) is the positive eigenfunction of s(B) = 0. Recall that (1.5) has a connected global compact

attractor in X+, denoted byA0 (see Theorem 2.2).

We claim that for any u0 ∈ A0, ω(u0) ∈ ∂X1. It is clear that for all t > 0, σ(t; u0) > 0 is strictly decreasing.

In fact, for t̃0 > 0, let

u2(·, t) = σ(̃t0; u0)ϕ2 and u3(·, t) = σ(̃t0; u0)ϕ3, for t > t̃0.

such that

(u2(·, t), u3(·, t)) ≥ (u2(·, t), u3(·, t)), for (x, t) ∈ Ω̄ × [̃t0,∞).

where (u2(x, t), u3(x, t)) satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u2
∂t
= d2Δu2 + β1(·)

u1u2
u1 + u2

+ β2(·)u1u3 − γ(·)u2, (x, t) ∈ Ω × [̃t0,∞),

∂u3
∂t
= ϱ(x)u2 − δ(x)u3, (x, t) ∈ Ω × [̃t0,∞),

∂u2
∂n

= 0, (x, t) ∈ ∂Ω × [̃t0,∞),

u2(·, t̃0) ≥ u2(·, t̃0), u3(·, t̃0) ≥ u3(·, t̃0), x ∈ Ω.

(4.14)

Furthermore, by (4.14) and comparison principle, one can see that

σ(t; u0)ϕ2 = u2(·, t) > u2(·, t) and σ(t; u0)ϕ3 = u3(·, t) > u3(·, t), for (x, t) ∈ Ω̄ × [̃t0,∞).

Since t̃0 is arbitrary, σ(t; u0) is strictly decreasing.

Next, we pay attention to the the semiflow Υ(t), generated by (1.5) (see Theorem 2.1). Let {̃tk} be a se-
quence with t̃k →∞, σ* = limt→∞ σ(t; u0) and v = (v1, v2, v3) ∈ ω(u0). We can conclude that

lim
t̃k→∞

Υ(t + t̃k)u0 = Υ(t) lim
t̃k→∞

Υ (̃tk)u0 = Υ(t)v.

This means that σ(t; v) = σ*. Repeating the previous arguments, σ(t; v) is strictly decreasing when v2 ≠ 0 or

v3 ≠ 0. This gives a contradiction. So, we have v2 = v3 = 0. When t →∞, we get (u2(·, t), u3(·, t))→ (0, 0). It

follows that u1(·, t)→ u01(·) eventually. This proves the second part. The proof is complete.

The following result indicates that (1.5) is uniformly persistent when �0 > 1. Before going into details, we set

X0 :=
{
ϕ(·) = (ϕ1, ϕ2, ϕ3) (·) ∈ X

+ : ϕ2(·) ≢ 0 and ϕ3(·) ≢ 0
}
,

∂X0 := X
+ \X0 =

{
ϕ(·) = (ϕ1, ϕ2, ϕ3) (·) ∈ X

+ : ϕ2(·) ≡ 0 or ϕ3(·) ≡ 0
}
.

and

M∂ := {ϕ ∈ ∂X0 : Υ(t)ϕ ∈ ∂X0, ∀t ≥ 0},
where Υ(t) is the semiflow generated by (1.5).

Theorem 4.2. If �0 > 1, then (1.5) is uniformly persistent, i.e., for any ϕ ∈ X
+ with ϕ2(·) ̸≡ 0, or ϕ3(·) ̸≡ 0,

there exists σ > 0,

lim inf
t→∞

ui(·, t) ≥ σ0, uniformly for x ∈ Ω̄. (4.15)

Moreover, (1.5) possesses at least one positive steady state.
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Proof. Theorem 4.2 is achieved by the following claims. The first two claims are the direct consequences as

those in [31, Theorem 3.10] with slight modifications. We present them here without proof.

Claim 1 Υ(t)X0 ⊆ X0 for all t ≥ 0.

Claim 2 ω(u0) = {E0}, for any u0 ∈ M∂, where ω(u0) is the ω limit set of u0.

Claim 3 lim supt→∞ ‖Υ(t)ϕ − E0‖ ≥ σ, ∀ϕ ∈ X0, where σ is a positive constant.

We prove Claim 3 by the way of contradiction. Assume to the contrary that for σ > 0, there exists t̄1 > 0

such that

u1(·, t, ϕ) ≥ u
0
1 − σ, u2(·, t;ϕ) < σ, u3(·, t;ϕ) < σ, ∀t ≥ t1.

Hence (u2(·, t;ϕ), u3(·, t;ϕ)) is the upper solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

∂ũ2
∂t

∂ũ3
∂t

)
= Bσ

(
ũ2

ũ3

)
, (x, t) ∈ Ω × [t̄1,∞),

∂ũ2
∂n

= 0, (x, t) ∈ ∂Ω × [t̄1,∞),

(4.16)

where

Bσ =

(
d2Δ + β1(x) − γ(x) β2(x)(u

0
1(x) − σ)

ϱ(x) −δ(x)

)
.

Combined with Lemma 3.2 and the continuous dependence of s(B) ≥ 0 on σ, choosing σ > 0 small enough

that s(Bσ) > 0, associated with positive eigenvalue function (ϕ
σ
2(·), ϕ

σ
3(·)). Choose ξ > 0 small enough that

(u2(·, t̄1;ϕ), u3(·, t̄1;ϕ) ≥ ξ (ϕ
σ
2(·), ϕ

σ
3(·)).

It is easy to see that for (ũ2(·, t̄1), ũ3(·, t̄1) = ξ (ϕσ
2(·), ϕ

σ
3(·)), (4.16) has a solution

(ũ2(·, t;ϕ), ũ3(·, t;ϕ) = ξes(Bσ)(t−t̄1)(ϕσ
2(·), ϕ

σ
3(·)), t > t̄1.

Since s(Bσ) > 0, u2(·, t;ϕ), u3(·, t;ϕ)→∞ as t →∞, a contradiction.

Similar to [25, Theorem 3] (see also in [31, Theorem 3.10]), let us define a distance function ρ(·) : X+ →
[0,∞) by

ρ(ϕ) = min{min
x∈Ω̄

ϕ2(·), min
x∈Ω̄

ϕ3(·)}, ϕ ∈ X
+.

we conclude that

lim inf
t→∞

u2(·, t, ϕ) ≥ σ1 and lim inf
t→∞

u3(·, t, ϕ) ≥ σ1, ∀ϕ ∈ X0.

Recall from Theorem 2.1 that there exist M∞ > 0 and t2 > 0 such that u2(·, t, ϕ), u3(·, t, ϕ) ≤ M∞, (x, t) ∈
Ω × [t2,∞). It then follows that⎧⎪⎨⎪⎩

∂u1
∂t
≥ d1	u1 + b* − (ζ

* + β*1M∞ + β
*
2M∞), (x, t) ∈ Ω × [t2,∞)

∂ũ1
∂n

= 0, (x, t) ∈ ∂Ω × [t2,∞),

Thus, there exists a constant σ2, lim inft→∞ u1(·, t, ϕ) ≥ σ2. Let σ0 = min{σ1, σ2}. The uniform persistence
is obtained. Further from [15, Theorem 4.7], (1.5) possesses at least one positive steady state. This completes

the proof.

5 Spatially homogeneous case
When

b(x) ≡ b, βi(x) ≡ βi , ζ (x) ≡ ζ , γ(x) ≡ γ, δ(x) ≡ δ, ϱ(x) ≡ ϱ,
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system (1.5) becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u1
∂t
= d1Δu1 + b − β1

u1u2
u1 + u2

− β2u1u3 − ζu1, (x, t) ∈ Ω × (0,∞),

∂u2
∂t
= d2Δu2 + β1

u1u2
u1 + u2

+ β2u1u3 − γu2, (x, t) ∈ Ω × (0,∞),

∂u3
∂t
= ϱu2 − δu3, (x, t) ∈ Ω × (0,∞),

(5.1)

subject to the same initial and boundary condition as in (1.5). Clearly, system (5.1) possesses a disease-free

equilibrium E0 = (u
0
1, 0, 0) with u01 := b/ζ . From (3.4), we have the concrete formula of �0,

[�0] = β1δ+β2ρu
0
1

γδ
. (5.2)

In this circumstance, Theorems 4.1 and 4.2 still hold for (5.1).

Theorem 5.1. If [�0] < 1, then E0 is globally asymptotically stable; while if [�0] > 1, then (5.1) is uniformly

persistent.

The positive equilibrium of (5.1) (whenever it exists) should satisfy

u*1 =

⎧⎨⎩
bγδ/(bϱβ2 + β1γδ), γ = ζ ;

−(bϱβ2 + β1γδ + γδζ − γ
2δ) +

√
(bϱβ2 + β1γδ + γδζ − γ2δ)2 + 4bγδϱβ2(γ − ζ )

2ϱβ2(γ − ζ )
, γ > ζ ,

u*2 =
b − ζu*1

γ
and u*3 =

(b − ζu*1)ϱ

γδ
.

To make u*2 > 0 and u*3 > 0, we need u*1 < b/ζ , which is equivalent with [�0] > 1. The equivalence is
obvious when γ = ζ . When γ > ζ , we rewrite u*1 < b/ζ as

−B +
√
B2 + 4AC

2A
<
b

ζ
,

where A = ϱβ2(γ − ζ ) > 0, B = bϱβ2 + β1γδ + γδζ − γ2δ and C = bγδ > 0. Isolating the square root and

squaring both sides gives B + 2Ab/ζ > 0 and

B
2 + 4AC < B2 +

4BAb

ζ
+
4A2b2

ζ 2
.

Simplifying the last inequality yieldsCζ 2 < Bbζ +Ab2.Wemake use of the expressions ofA,B,C and rewrite

the inequality as

bγδζ 2 < bζ (bϱβ2 + β1γδ + γδζ − γ
2δ) + b2ϱβ2(γ − ζ ).

By expanding and canceling, we obtain γδζ < bϱβ2 + β1δζ , which is the same as [�0] > 1. Furthermore,
coupling [�0] > 1 and γ > ζ implies B + 2Ab/ζ > 0. Thus, if [�0] > 1 and γ ≥ ζ , (5.1) possesses a unique

positive equilibrium.

Remark 4. Note that γ and ζ are the death rates of infected and susceptible host, respectively. Due to the

disease burden, it is realistic to assume that γ ≥ ζ . Combined with the analysis above, (5.1) possesses a unique

positive equilibrium.

Theorem 5.2. Suppose that γ ≥ ζ hold. If [�0] > 1, then unique positive equilibrium E*(5.1) = (u
*
1, u

*
2, u

*
3) is

locally asymptotically stable.

Proof. Linearizing system (5.1) at E*(5.1) gives

∂χ

∂t
= DΔχ(·, t) + Qχ(·, t),
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where χ = (u1, u2, u3), D = diag(d1, d2, 0) and

Q =

⎛⎜⎜⎜⎝
−ζ − β1

u*
2

2

(u*1+u
*
2)
2 − β2u

*
3 −β1

u*
2

1

(u*1+u
*
2)
2 −β2u

*
1

β1
u*
2

2

(u*1+u
*
2)
2 + β2u

*
3 β1

u*
2

1

(u*1+u
*
2)
2 − γ β2u

*
1

0 ϱ −δ

⎞⎟⎟⎟⎠ .
Hence, the characteristic equation of E*(5.1) is

λ3 + a1(l
2)λ2 + a2(l

2)λ + a3(l
2) = 0, (5.3)

where l is the wavenumber,

a1(l
2) := l2d1 + ζ + β2u

*
3 + β1

u*
2

2

(u*1 + u
*
2)
2
+ l2d2 +

β1u
*
1u
*2

2 + β2u
*
1u
*
3(u

*
1 + u

*
2)
2

u*2(u
*
1 + u

*
2)
2

+ δ,

a2(l
2) :=

(
l2d2 + β1

u*1u
*2

2

(u*1 + u
*
2)
2

)
δ +

(
β2u

*
3 + β1

u*
2

2

(u*1 + u
*
2)
2

)
β1

u*
2

1

(u*1 + u
*
2)
2

+

(
l2d1 + ζ + β2u

*
3 + β1

u*
2

2

(u*1 + u
*
2)
2

)(
l2d2 +

β1u
*
1u
*2

2 + β2u
*
1u
*
3(u

*
1 + u

*
2)
2

u*2(u
*
1 + u

*
2)
2

+ δ

)
,

and

a3(l
2) := (l2d1 + ζ )

(
l2d2 + β1

u*1u
*2

2

(u*1 + u
*
2)
2

)
δ + β1

u*
2

1

(u*1 + u
*
2)
2

(
β1

u*
2

2

(u*1 + u
*
2)
2
+ β2u

*
3

)
δ

+

(
l2d2 +

β1u
*
1u
*2

2 + β2u
*
1u
*
3(u

*
1 + u

*
2)
2

u*2(u
*
1 + u

*
2)
2

)(
β1

u*
2

2

(u*1 + u
*
2)
2
+ β2u

*
3

)
δ.

It then follows that a1(l
2) > 0, a2(l

2) > 0 and a3(l
2) > 0. Further, after elementary calculations, a1(l

2)a2(l
2)−

a3(l
2) > 0. Hence, the local stability of E*(5.1) directly follows from the Routh-Hurwitz criterion.

Theorem 5.3. Assume that (H1) : β1(u*2−u*1)2 ≤ 4ζu*1(u*1+u*2). If [�0] > 1, then E*(5.1) is globally asymptotically

stable.

Proof. Define

V(t) :=

∫
Ω

(u1 − u
*
1 ln u1 + u2 − u

*
2 ln u2 +

β2u
*
1u
*
3

ρu*2
(u3 − u

*
3 ln u3))dx,

Since

β1
u*1u

*
2

u*1 + u
*
2

+ β2u
*
1u
*
3 + ζu

*
1 = b, β1

u*1u
*
2

u*1 + u
*
2

+ β2u
*
1u
*
3 = γu*2 and ρu

*
2 = δu*3,

after elementary calculations, we can obtain

dV(t)

dt
= d1

∫
Ω

(
1 −

u*1
u1

)
Δu1dx + d2

∫
Ω

(
1 −

u*2
u2

)
Δu2dx

+

∫
Ω

(
−
ζ (u1 − u

*
1)
2

u1
−
β1u

*
2(u1 − u

*
1)
2

u1(u*1 + u
*
2)

+
β1(u1 − u

*
1)[u

*
2(u1 − u

*
1) − u

*
1(u2 − u

*
2)]

(u1 + u2)(u*1 + u
*
2)

)
dx

+

∫
Ω

(
β1(u2 − u

*
2)[u2r

*(u1 − u
*
1) − u

*
1(u2 − u

*
2)]

(u1 + u2)(u*1 + u
*
2)

)
dx

+ β2u
*
1u
*
3

∫
Ω

(
3 −

u*1
u1
−
u*2u1u3
u2u*1u

*
3

−
u2u

*
3

u*2u3

)
dx.
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By using u1 ≤ u1 + u2, we have

dV(t)

dt
≤

∫
Ω

(
−

β1
(u1 + u2)(u*1 + u

*
2)

)(
ζ (u*1 + u

*
2)

β1
(u1 − u

*
1)
2 − (u*2 − u

*
1)(u1 − u

*
1)(u2 − u

*
2) + u

*
1(u2 − u

*
2)
2

)
dx

+ β2u
*
1u
*
3

∫
Ω

(
3 −

u*1
u1
−
u*2u1u3
u2u*1u

*
3

−
u2u

*
3

u*2u3

)
dx.

By assumption (H1), we have⎛⎝√
ζ (u*1 + u

*
2)

β1
(u1 − u

*
1) −

√
u*1(u2 − u

*
2)

⎞⎠2 ≤ ζ (u*1 + u
*
2)

β1
(u1 −u

*
1)
2 − (u*2 −u

*
1)(u1 −u

*
1)(u2 −u

*
2)+u

*
1(u2 −u

*
2)
2.

Hence,

dV(t)

dt
≤

∫
Ω

(
−

β1
(u1 + u2)(u*1 + u

*
2)

)⎛⎝√
ζ (u*1 + u

*
2)

β1
(u1 − u

*
1) −

√
u*1(u2 − u

*
2)

⎞⎠2 dx ≤ 0.
Hence, the largest invariant subset {(u1, u2, u3) ∈ X+ :

dV(t)
dt

= 0} consists just one singleton {E*(5.1)}.
According to the LaSalle’s invariance principle, the global stability of E*(5.1) is confirmed. This completes the

proof.

Remark 5. In Theorem 5.3, (H1) is a technical condition such that the derivation of Lyapunov function is less

than zero. It is significant to establish the global asymptotic stability of endemic equilibrium by constructing

a suitable Lyapunov function in epidemiology. Our model (1.5) includes two types of infection: frequency de-

pendent and mass action, which leads to challenging issue in proving global asymptotic stability of endemic

equilibrium by Lyapunov function. Similar arguments can be found in (C1)-(C3) in the proof of Theorem 2.3 of

[24].

6 Asymptotic profiles of the positive steady state
Theorem4.2 indicates that when�0 > 1, (6.1) admits at least one positive steady state E*, which is the positive
solution of ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d1Δu1 + b(x) − β1(x)
u1u2

u1 + u2
− β2(x)u1u3 − ζ (x)u1 = 0, x ∈ Ω,

d2Δu2 + β1(x)
u1u2

u1 + u2
+ β2(x)u1u3 − γ(x)u2 = 0, x ∈ Ω,

ϱ(x)u2 − δ(x)u3 = 0, x ∈ Ω,
∂u1
∂ν

=
∂u2
∂ν

= 0, x ∈ ∂Ω.

(6.1)

This section is devoted to the investigation of the asymptotic profiles of E* for the cases that d1 → 0, d1 →
∞, d2 → 0 and d2 → ∞. As exploration of such problem can achieve better understanding the spatial

distribution of disease.

We begin with the preliminary estimates of solutions of (6.1).

Lemma 6.1. Let (u1, u2, u3) be any positive solution of (6.1). We then directly have

(i) For any d1, d2 > 0, we have the upper bound of u1:

u1(x) ≤
b*

ζ*
, ∀ x ∈ Ω; (6.2)

(ii) Fix d2 > 0, for any d1 > 0, we have the upper bound of u2 and lower bound of u1:

u2(x) ≤ C1, u1(x) ≥ C2, ∀ x ∈ Ω, (6.3)

where the positive constants Ci (i = 1, 2) do not depend on d1 > 0.
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Proof. (i) Set u1(x0) = maxx∈Ω
u1(x). By applying the maximum principle (see, e.g. [14, Proposition 2.2]) to

u1-equation of (6.1), we get

b(x0) − β1(x0)
u1(x0)u2(x0)

u1(x0) + u2(x0)
−
β2(x0)ϱ(x0)

δ(x0)
u1(x0)u2(x0) − ζ (x0)u1(x0) ≥ 0.

Thus, we know that

max
x∈Ω

u1(·) = u1(x0) ≤
b*

ζ*
,

this gives the upper bound of u1.

(ii) Making the sum of u1, u2 of (6.1) and integrating over Ω lead to

γ*

∫
Ω

u2 dx ≤

∫
Ω

ζu1 dx +

∫
Ω

γu2 dx =

∫
Ω

b dx ≤ b*|Ω|. (6.4)

Notice that u2 solves ⎧⎪⎨⎪⎩
Δu2 +

[
β1(·)u1

d2(u1 + u2)
+
β2(·)ϱ(·)

d2δ(·)
u1 −

γ(·)

d2

]
u2 = 0, x ∈ Ω,

∂u2
∂ν

= 0, x ∈ ∂Ω.

(6.5)

Fix d2 > 0, it follows from statement (i) that∣∣∣∣ β1(·)u1
(u1 + u2)d2

+
β2(·)ϱ(·)

d2δ(·)
u1 −

γ(·)

d2

∣∣∣∣ ≤ β*1
d2
+
β*2ϱ

*b*

d2δ*ζ*
+

γ*

d2
.

By using [20, Lemma 2.2] (see also [12]), we get a Harnack-type inequality of u2 as follows

max
Ω

u2 ≤ Cmin
Ω

u2. (6.6)

where C > 0 does not depend on d1. In what follows, we permit it changing from place to place.

Based on (6.4) and (6.6), we have

u2(·) ≤ Cmin
Ω

u2 ≤
C

| Ω |

∫
Ω

u2 dx ≤ C, for ∀x ∈ Ω. (6.7)

Set u1(x1) = minx∈Ω
u1(x). By applying the maximum principle, we have

b(x1) − β1(x1)
u1(x1)u2(x1)

u1(x1) + u2(x1)
−
β2(x1)ϱ(x1)

δ(x1)
u1(x1)u2(x1) − ζ (x1)u1(x1) ≤ 0.

From (6.7), we have

b* ≤

(
β*1 +

β*2ϱ
*C

δ*
+ ζ *

)
u1(x1).

Hence, we get the lower bound of u1.

Remark 6. Note that the statement (ii) hold for any d1 > 0 and d2 ≥ 1. Actually, we can get (6.6) for any d2 ≥ 1.

6.1 Profile as d1 → 0

In view of Theorems 3.1 and 4.2, (6.1) possesses at least a positive solution for sufficiently small d1 when

�0,0 > 1. This subsection is spent on exploring the asymptotic profile of the positive solution of (6.1) with
d1 → 0.
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Theorem 6.1. Fix d2 > 0, and let d1 → 0. If �0,0 > 1, then up to a subsequence of d1, every positive solution

(u1(·; d1), u2(·; d1), u3(·; d1)) of (6.1) satisfies

(u1(·; d1), u2(·; d1), u3(·; d1))→
(
Φu1 ,Φu2 ,

ρ

δ
Φu2

)
uniformly for x ∈ Ω,

where

Φu1 (·) =G(x·,Φu2 (·))

:=

[
bδ − (β1δ + β2ϱΦu2 + ζδ)Φu2 +

√
[bδ − (β1δ + β2ϱΦu2 + ζδ)Φu2 ]

2 + 4bδΦu2 (β2ϱΦu2 + ζδ)

]
2 (β2ϱΦu2 + ζδ)

,

and Φu2 is a positive solution to⎧⎪⎨⎪⎩
d2ΔΦu2 + β1(x)

G(x,Φu2 )Φu2

G(x,Φu2 ) + Φu2

+
β2(x)ϱ(x)

δ(x)
G(x,Φu2 )Φu2 − γ(x)Φu2 = 0, x ∈ Ω,

∂Φu2

∂ν
= 0, x ∈ ∂Ω.

(6.8)

Proof. We deal with the proof by two steps.

Step 1. Convergence of u2. Observe that u2 satisfies⎧⎪⎨⎪⎩
−d2Δu2 + γ(·)u2 = β1(·)

u1u2
u1 + u2

+
β2(·)ϱ(x)

δ(·)
u1u2, x ∈ Ω,

∂u2
∂ν

= 0, x ∈ ∂Ω.

(6.9)

From the estimates in Lemmma 6.1, we know that ∀ p > 1,∥∥∥∥β1(x) u1u2
u1 + u2

+
β2(x)ϱ(x)

δ(x)
u1u2

∥∥∥∥
Lp(Ω)

≤ C.

Combined with the standard Lp-estimate for elliptic equations and Sobolev embedding theorem (see, e.g.

[7]),

|| u2 ||C1+α(Ω)≤ C, for some 0 < α < 1.

From the third equation of (6.1), it is clear that

|| u3 ||C1+α(Ω)≤ C, for some 0 < α < 1.

Denoted by d1n the subsequence of d1 → 0, satisfying d1n → 0 as n → ∞. With this subsequence,

(u1n , u2n , u3n) := (u1(x; d1n), u2(x; d1n), u3(x; d1n)) of (6.1) with d1 = d1n satisfies

(u2n , u3n)→
(
Φu2 ,

ρ

δ
Φu2

)
uniformly for x ∈ Ω and n →∞, (6.10)

where Φu2 ∈ C1(Ω) and Φu2 ≥ 0. Taking into account of Harnack-type inequality of u2 (6.6), it is clear that

either Φu2 ≡ 0 on Ω or Φu2 > 0 on Ω. (6.11)

We next prove that Φu2 > 0 on Ω. Assume to the contrary that Φu2 ≡ 0 on Ω, i.e., as n →∞,

u2n → 0 uniformly on Ω. (6.12)

Choose 0 < ϵ < b*/β
*
1 small enough that

0 ≤ u2n(·) ≤ ϵ on Ω, for all large n.

Hence, u1n satisfies

−d1nΔu1n ≤ b(·) − ζ (·)u1n , x ∈ Ω,
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and

−d1nΔu1n ≥ b(·) − β
*
1ϵ −

β*ρ*

δ*
ϵu1n − ζ (·)u1n , x ∈ Ω,

respectively, with ∂u1n
∂ν
= 0, x ∈ ∂Ω. Fix sufficiently large n, denoted by Un and Vn respectively the unique

positive solution of the following two auxiliary systems:

−d1nΔU = b(·) − ζ (·)U, x ∈ Ω;
∂U

∂ν
= 0, x ∈ ∂Ω, (6.13)

and

−d1nΔV = b(·) − β*1ϵ −
β*ρ*

δ*
ϵV − ζ (·)V , x ∈ Ω;

∂V

∂ν
= 0, x ∈ ∂Ω. (6.14)

It follows from the super-subsolution argument that

Vn ≤ u1n ≤ Un on Ω. (6.15)

By applying the singular perturbation theory technique (see, e.g. [5, Lemma 2.4] or [13, Lemma 2.1]), we know

that as n →∞,

Un(x)→ b(·)

ζ (·)
and Vn(·)→ b(·) − β*1ϵ

β*ρ*

δ*
ϵ + ζ (·)

uniformly on Ω.

Hence,
b(·) − β*1ϵ
β*ρ*

δ*
ϵ + ζ (·)

≤ lim inf
n→∞ u1n(·) ≤ lim sup

n→∞
u1n(·) ≤

b(·)

ζ (·)
on Ω. (6.16)

Since ϵ is arbitrary, (6.16) further implies that

u1n(x)→ b(·)

ζ (·)
uniformly on Ω, as n →∞. (6.17)

We now pay attention to u2 equation of (6.1) with u2n:

−d2Δu2n = β1(·)
u1nu2n

u1n + u2n
+
β2(·)ϱ(·)

δ(·)
u1nu2n − γ(·)u2n , x ∈ Ω;

∂u2n
∂ν

= 0, x ∈ ∂Ω. (6.18)

For all n ≥ 1, define ũ2n :=
u2n

‖u2n‖L∞(Ω)
that ‖ũ2n‖L∞(Ω) = 1. In this setting, ũ2n satisfies

−d2Δũ2n =

[
β1(·)u1n
u1n + u2n

+
β2(·)ϱ(·)

δ(·)
u1n − γ(·)

]
ũ2n , x ∈ Ω;

∂ũ2n
∂ν

= 0, x ∈ ∂Ω. (6.19)

As above, with the aid of standard compactness argument, as n →∞,

ũ2n → ũ2 in C1(Ω),

where ũ2 ≥ 0 belongs to C
1(Ω), and satisfies ‖ũ2‖L∞(Ω) = 1. From (6.12) and (6.17), by sending n →∞ in (6.19),

it is clear that ũ2 satisfies

−d2Δũ2 =

[
β1(·) − γ(·) +

β2(·)ϱ(·)b(·)

δ(·)ζ (·)

]
ũ2, x ∈ Ω;

∂ũ2
∂ν

= 0, x ∈ ∂Ω.

From [20, Lemma 2.2] (see also [12]), it follows that the Harnack-type inequality of ũ2 remains true and then

ũ2 > 0 on Ω. Therefore, 0 is the principal eigenvalue of (3.8) with u
0
1(x) = b(x)/ζ (x). This contradicts with our

assumption that �0,0 > 1. Thus, Φu2 > 0 on Ω, which means that

u2n → Φu2 > 0 uniformly for x ∈ Ω. (6.20)

Step 2. Convergence of u1. From (6.1), we know that u1n solves:⎧⎪⎨⎪⎩
−d1nΔu1n = b(·) − β1(·)

u1nu2n
u1n + u2n

−
β2(·)ρ(·)

δ(·)
u1nu2n − ζ (·)u1n , x ∈ Ω,

∂u1n
∂ν

= 0, x ∈ ∂Ω.
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By (6.20), choose ϵ > 0 small enough that 0 < Φu2 − ϵ ≤ u2n ≤ Φu2 + ϵ on Ω, for all large n. Then,

b(·) − β1(·)
u1nu2n

u1n + u2n
−
β2(·)ρ(·)

δ(·)
u1nu2n − ζ (·)u1n ≤ b(·) − β1(·)

u1n(Φu2 − ϵ)

u1n + (Φu2 − ϵ)
−
β2(·)ϱ(·)

δ(·)
u1n(Φu2 − ϵ) − ζ (·)u1n

=
(hϵ
+(x,Φu2 ) − u1n)(u1n − h

ϵ
−(x,Φu2 ))

u1n + (Φu2 − ϵ)
,

where

hϵ
±(x,Φu2 ) =

⎧⎨⎩b(·) − (β1(·) +
β2(·)ϱ(·)

δ(·)
(u*2 − ϵ) + ζ (·))(u

*
2 − ϵ) ±D1

2
[ β2(·)ϱ(·)

δ(·)
(u*2 − ϵ) + ζ (·)

]
⎫⎬⎭

and D1 =
√
[b(·) − (β1(·) +

β2(·)ϱ(·)
δ(·)

(u*2 − ϵ) + ζ (·))(u
*
2 − ϵ)]

2 + 4b(u*2 − ϵ)(
β2(·)ϱ(·)

δ(·)
(u*2 − ϵ) + ζ (·)). Obviously,

hϵ
+(x,Φu2 ) > 0 and h

ϵ
−(x,Φu2 ) < 0 on Ω.

Consider the following problem⎧⎪⎨⎪⎩
−dnΔz =

(hϵ
+(x,Φu2 ) − z)(z − h

ϵ
−(x,Φu2 ))

(z + (Φu2 − ϵ))
, x ∈ Ω,

∂z

∂ν
= 0, x ∈ ∂Ω.

(6.21)

Then, for sufficiently large C > 0, (u1n , C) is a pair of sub-supersolution of (6.21) on Ω. Hence, (6.21) admits at

least one positive solution, zn, and zn satisfies u1n ≤ zn ≤ C on Ω. Further by the singular perturbation theory

technique,

zn → hϵ
+(x,Φu2 (x)) uniformly on Ω, as n →∞.

Hence,

lim sup
n→∞

u1n(x) ≤ h
ϵ
+(x,Φu2 (x)) uniformly on Ω. (6.22)

On the other hand,

b(·) − β1(·)
u1nu2n

u1n + u2n
−
β2(·)ϱ(·)

δ(·)
u1nu2n − ζ (·)u1n ≥ b(·) − β1(·)

u1n(Φu2 + ϵ)

u1n + (Φu2 + ϵ)
−
β2(·)ϱ(·)

δ(·)
u1n(Φu2 + ϵ) − ζ (·)u1n

=
(h+ϵ (x,Φu2 ) − u1n)(u1n − h

−
ϵ (x,Φu2 ))

u1n + (Φu2 + ϵ)
,

with

h±ϵ(x,Φu2 ) =

⎧⎨⎩b(·) − (β1(·) +
β2(·)ϱ(·)

δ(·)
(Φu2 + ϵ) + ζ (·))(Φu2 + ϵ) ±D2

2
[ β2(·)ϱ(·)

δ
(Φu2 + ϵ) + ζ (·)

]
⎫⎬⎭ ,

where D2 =
√
[b(·) − (β1(·) +

β2(·)ϱ(·)
δ(·)

(Φu2 + ϵ) + ζ (·))(Φu2 + ϵ)]
2 + 4b(Φu2 + ϵ)(

β2(·)ϱ(·)
δ(·)

(Φu2 + ϵ) + ζ (·)). By a

similar argument as before, we further have

lim inf
n→∞ u1n(x) ≥ h

+
ϵ (x,Φu2 (x)) uniformly on Ω. (6.23)

Since

lim
ϵ→0

hϵ
+(x,Φu2 ) = G(x,Φu2 (x)) = lim

ϵ→0
h+ϵ (x,Φu2 ),

then as n →∞,

u1n(x)→ G(x,Φu2 (x)) uniformly on Ω.

As a result, by (6.18), Φu2 satisfies (6.9). This proves Theorem 6.1.
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6.2 Profile as d2 → 0

This subsection is spent on exploring the asymptotic profile of the positive solution of (6.1) with d2 → 0. In

this case, because of mathematical difficulty, we only consider the limiting profile of positive solutions in 1-D

space. Without loss of generality, we take Ω = (0, 1).

Theorem 6.2. Assume that
{
x ∈ [0, 1] : δ(·)β1(·) + β2(·)ϱ(·)u

0
1(·) > δ(·)γ(·)

}
is non-empty. Fix d1 > 0, and let

d2 → 0, then every positive solution (u1(·; d2), u2(·; d2), u3(·; d2)) of (6.1) satisfies

(u1(·; d2), u2(·; d2), u3(·; d2))→
(
Ψu1 , Ψu2 ,

ρ

δ
Ψu2

)
uniformly on [0, 1],

where

Ψu2 (x) :=

(
(β1(·)δ(·) + β2(·)ρ(·)Ψu1 (·) − γ(·)δ(·))Ψu1 (·)

γ(·)δ(·) − β2(·)ρ(·)Ψu1 (·)

)
+

, (6.24)

and Ψu1 solves⎧⎨⎩ d1Ψ
′′
u1 + b(·) − β1(·)

Ψu1Ψu2

Ψu1 + Ψu2
−
β2(·)ρ(·)

δ(·)
Ψu1Ψu2 − ζ (·)Ψu1 = 0, x ∈ (0, 1),

Ψ ′
u1 (0) = Ψ ′

u1 (1) = 0.

Proof. From the estimats (6.2) and (6.4), together with the elliptic L1-estimate theory (see, e.g. [2] or [12,

Lemma 2.2]),

‖u1‖W1,q((0,1)) ≤ C, ∀ q > 0,

Choose p large enough, combined with the Sobolev embedding theorem, that

|| u1 ||Cα([0,1])≤ C for some 0 < α < 1.

Denoted by d2k the subsequence of d2 → 0, satisfying d2k → 0 as k → ∞. With this subsequence,

(u1k , u2k , u3k) := (u1(·; d2k), u2(·; d2k), u3(·; d2k)) of (6.1) with d2 = d2k satisfies u1k → Ψu1 in C([0, 1]) as

k →∞.

We note that u2k satisfies⎧⎨⎩ d2ku
′′
2k +

[
β1(·)

u1k
u1k + u2k

+
β2(·)ϱ(·)

δ(·)
u1k − γ(·)

]
u2k = 0, x ∈ (0, 1),

u′2k(0) = u′2k(1) = 0.
(6.25)

By a similar super-subsolution argument (see Theorem 6.1), we get

u2k → Ψu2 uniformly on [0, 1] as k →∞,

where Ψu2 is given by (6.24). Moreover, from the expression of Ψu2 , it is clear that Ψu1 solves (6.2). The proof

is complete.

6.3 Profile as d1 → ∞

In view of Theorems 3.1 and 4.2, (6.1) possesses at least a positive solution for sufficiently small d1 when

�0,∞ > 1. This subsection is spent on exploring the asymptotic profile of the positive solution of (6.1) with
d1 →∞.

Theorem 6.3. Assume that �0,∞ > 1. Fix d2 > 0, and let d1 → ∞, then every positive solution

(u1(·; d1), u2(·; d1), u3(·; d1)) of (6.1), up to a subsequence of d1, satisfies

(u1(·; d1), u2(·; d1), u3(·; d1))→
(
u∞1 , u

∞
2 ,

ρ

δ
u∞2

)
uniformly on Ω,
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where (u∞1 , u
∞
2 ) solves⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Ω

[
b(·) − ζ (·)u∞1 − γ(·)u

∞
2

]
dx = 0, x ∈ Ω,

−d2Δu
∞
2 = β1(·)

u∞1 u
∞
2

u∞1 + u
∞
2

+
β2(·)ϱ(·)

δ(·)
u∞1 u

∞
2 − γ(·)u

∞
2 , x ∈ Ω,

∂u∞2
∂ν

= 0, x ∈ ∂Ω,

(6.26)

and u∞1 is a positive constant and u∞2 > 0 on Ω.

Proof. Rewriting u1 equation of (6.1) as⎧⎪⎨⎪⎩
−Δu1 =

1

d1

[
b(·) −

β1(·)u1u2
u1 + u2

−
β2(·)ϱ(·)

δ(·)
u1u2 − ζ (·)u1

]
, x ∈ Ω,

∂u1
∂ν

= 0, x ∈ ∂Ω.

(6.27)

From the estimates of u1 and u2 in Lemma 6.1, we know that∥∥∥∥ 1d1
[
b(·) −

β1(·)u1u2
u1 + u2

−
β2(·)ϱ(·)

δ(·)
u1u2 − ζ (·)u1

]∥∥∥∥
Lp(Ω)

≤ C, ∀ p ≥ 1,

where C > 0 does not dependent on d1 ≥ 1. Combined with the standard Lp-estimate for elliptic equations

and Sobolev embedding theorem,

|| u1 ||C1+α(Ω)≤ C for some 0 < α < 1.

Denoted by d1i the subsequence of d1 → ∞, satisfying d1i → 0 as i → ∞. With this subsequence,

(u1i , u2i , u3i) := (u1(·; d1i), u2(·; d1i), u3(·; d1i)) of (6.1) with d1 = d1i satisfies u1i → u∞1 in C1(Ω) as i → ∞,

where u∞1 > 0 on Ω due to the estimate of u1. Moreover, u1∞ solves −Δu
∞
1 = 0, x ∈ Ω with homogeneous

Neumann boundary condition implies that u∞1 > 0 is a positive constant.

Similar arguments as before, as i →∞,

(u2i , u3i)→
(
u∞2 ,

ρ

δ
u∞2

)
in C1(Ω),

where u∞2 ∈ C1(Ω) and u∞2 ≥ 0 onΩ. Since theHarnack-type inequality of u2, then either u
∞
2 > 0 onΩ or u

∞
2 ≡

0 on Ω. Similar to the arguments in Section 6.1, we suppose that u∞2 ≡ 0 on Ω. Define ũ2i := u2i/‖u2i‖L∞(Ω)
that ‖ũ2i‖L∞(Ω) = 1 for all i ≥ 1, and ũ2i satisfies⎧⎪⎨⎪⎩

d2Δũ2i +

[
β1(·)

u1i
u1i + u2i

+
β2(·)ϱ(·)

δ(·)
u1i − γ(·)

]
ũ2i = 0, x ∈ Ω,

∂ũ2i
∂ν

= 0, x ∈ ∂Ω.

As a result, ũ2i → û∞2 in C1(Ω) as i →∞, where û∞2 ≥ 0 on Ω, ‖û∞2 ‖L∞(Ω) = 1. As u2i → 0 as i →∞, it follows

from a super-subsolution argument that u1i →
∫
Ω
b(x) dx/

∫
Ω
ζ (x) dx. Thus, û∞2 solves⎧⎪⎨⎪⎩

d2Δû
∞
2 +

[
β1(·) +

β2(·)ϱ(·)
∫
Ω
b(·) dx

δ(·)
∫
Ω
ζ (·) dx

− γ(·)

]
û∞2 = 0, x ∈ Ω,

∂û∞2
∂ν

= 0, x ∈ ∂Ω.

It can be seen that the Harnack-type inequality of û∞2 also remains true and then û
∞
2 > 0 on Ω. Consequently,

0 is the principal eigenvalue of (3.12), a contradiction with �0,∞ > 1. Hence, u∞2 > 0 satisfies (6.26). This

proves Theorem 6.3.
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6.4 Profile as d2 → ∞

This subsection is spent on exploring the asymptotic profile of the positive solution of (6.1) with d2 →∞.

Theorem 6.4. Assume that

∫
Ω

(
β1(·) +

β2(·)u
0
1(·)ϱ(·)

δ(·)

)
dx/

∫
Ω

γ(·)dx > 1. Fix d1 > 0, and let d2 → ∞, then

every positive solution (u1(·; d2), u2(·; d2), u3(·; d2)) of (6.1), up to a subsequence of d2, satisfies

(u1(·; d2), u2(·; d2), u3(·; d2))→
(
u1∞, u2∞,

ρ

δ
u2∞

)
uniformly on Ω,

where (u1∞, u2∞) solves⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−d1Δu1∞ = b(·) − β1(·)
u1∞u2∞

u1∞ + u2∞
−
β2(·)ϱ(·)

δ(·)
u1∞u2∞ − ζ (·)u1∞, x ∈ Ω,∫

Ω

[
b(·) − ζ (·)u1∞ − γ(·)u2∞

]
dx = 0, x ∈ Ω,

∂u1∞
∂ν

= 0, x ∈ ∂Ω,

(6.28)

and u2∞ is a positive constant and u1∞ > 0 on Ω.

Proof. From the discussion in Lemma 6.1 and Remark 6, it is clear that the estimats (6.6) and (6.7) hold for all

large d2, and C > 0 does not depend on d1 and d2 ≥ 1.

Denoted by d2j the subsequence of d2 → ∞, satisfying d2j → 0 as j → ∞. With this subsequence, com-

bined with the standard Lp-estimate for elliptic equations and Sobolev embedding theorem, (u1j , u2j , u3j) :=

(u1(·; d2j), u2(·; d2j), u3(·; d2j)) of (6.1) with d2 = d2j satisfies

(u1j , u2j , u3j)→
(
u1∞, u2∞,

ρ(·)

δ(·)
u2∞

)
in C1(Ω), as j →∞,

where u1∞ > 0 on Ω and u2∞ is a nonnegative constant.

We next show that u2∞ is a positive constant. By a similar argument as before, suppose that u2∞ ≡ 0. For
all j ≥ 1, define ũ2j := u2j/‖u2j‖L∞(Ω) that ‖ũ2j‖L∞(Ω) = 1, and ũ2j satisfies⎧⎪⎨⎪⎩

d2jΔũ2j +

[
β1(·)

u1j
u1j + u2j

+
β2(·)ϱ(·)

δ(·)
u1j − γ(·)

]
ũ2j = 0, x ∈ Ω,

∂ũ2j
∂ν

= 0, x ∈ ∂Ω.

(6.29)

Thus, if necessary, by passing to a further subsequence of d2j, one can get

ũ2j → 1 in C1(Ω), as j →∞. (6.30)

On the other hand, since u2j → 0 as j → ∞, it follows from a super-subsolution argument that u1j → u01 as

j →∞. Then, integrating (6.29) and sending j →∞, we have∫
Ω

[
β1(·) +

β2(·)ϱ(·)u
0
1(·)

δ(·)
− γ(·)

]
dx = 0,

a contradiction. Therefore, u2∞ is a positive constant, and (u1∞, u2∞) satisfies (6.28). The proof is complete.

7 Conclusion and Discussion
In current work, we explore the global dynamics and asymptotic profiles of a host-pathogen model in a spa-

tially bounded domain. We formulate the model by a reaction-diffusion system with space dependent pa-

rameters, where host individuals disperse at distinct rates and the mobility of pathogen is ignored. Complete
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analysis of the system allow us to investigate how large or small flows of hosts affect the spatial spread of

disease, and what is the role of spatial heterogeneity on disease transmission.

Wefirstly establish that the existence of global solution,which is achieved by extending the local solution

to a global one (see Lemma 2.1 and Theorem 2.1). To copewith the non-compactness of solution semiflow Υ(t),

we utilize the Kuratowskimeasure of noncompactness to verify the asymptotic smoothness condition. Hence,

by [8, Theorem 2.4.6], (1.5) possesses a global compact attractor in X+, denoted byA0 (see Theorem 2.2).

TheBRN,�0, is identified as the spectral radius ofNGO, andalso characterizedby someequivalent princi-
pal spectral conditions, which establishes the threshold dynamical result for pathogen extinction and persis-

tence (see Theorem4.1 and 4.2). Specifically,we demonstrate that how�0 depends on the diffusion coefficient
d1 for d1 → 0 and d1 → ∞ (see Theorem 3.1). We have also confirmed the global stability of E0 in a critical

case that �0 = 1. It should be pointed here that the method used in Theorem 4.1 can also be applied in Avian
influenza dynamicalmodel [28] and Ebola transmissionmodel [35], where the dynamic behaviors for the case

that�0 = 1 are still open. We left it as future investigation. In a homogeneous case and additional condition,
we explore the global attractivity of PSS (positive equilibrium) by the technique of Lyapunov function.

When �0 > 1, (1.5) possesses at lease one positive steady state. To achieve better understanding the
effects of the host’s movements on the spatial distribution of pathogen, we explore the asymptotic profiles

of positive steady state for the cases that d1 → 0, d1 → ∞, d2 → 0 and d2 → ∞. When d1 → 0, our

result (Theorem 6.1) demonstrate that host individuals distribute onΩ in a non-homogeneousway. Under the

assumption that 1-D space, Ω = (0, 1), and the condition that
{
x ∈ [0, 1] : δ(·)β1(·) + β2(·)ϱ(·)u01(·) > δ(·)γ(·)

}
is non-empty (of which locations can be termed as the favorite or not favorite sites for pathogens), we see

from Theorem 6.2 that the infected hosts will vanish in some place and distribute in the remaining place

(due to 6.24) and the susceptible hosts stay inhomogeneously on the whole habitat. When d1 → ∞ (d2 →
∞), susceptible (resp. infected) hosts distribute eventually over Ω, and infective (resp. susceptible) hosts

distribute on Ω in a non-homogeneous way (see Theorems 6.3 and Theorem 6.4). The condition in Theorem

6.4 that
∫
Ω
[β1(·) + β2(·)ϱ(·)u

0
1(·)/δ(·)]dx >

∫
Ω
γ(·)dx is usually termed as the favorable domain for pathogens

and also ensure the existence of the positive solution in Theorem 6.4). In summary, our result suggests that

slow or fast movement of host individuals have a great impacts on the spatial distribution of the pathogens,

which may help to design strategies for disease control and prevention.

On the other hand, our results on asymptotic profiles are established when positive steady state exists.

With the same arguments as those in [31, 32], u01(x) → b(x)/ζ (x) in C1(Ω) as d1 → 0 and η0 defined in 3.8

ensures that η0 < 0. It follows that�0 < 1 if d1 < d̃1, for some d̃1 > 0. This together with Theorem 4.1 indicate
that pathogens still can be eliminated with d1 → 0. Compared to the results in [31, 32], our results enrich

the dynamical results on the asymptotic profiles. In fact, our results also reveal that disease can not be

eliminated by fast movement of host individuals. It also remains an challenging problem to revisit Theorem

6.2 as d2 → 0 without spatial dimension limitations. In a homogeneous case, it also remains an interesting

problem to perform the bifurcation analysis on steady state solutions with specific bifurcation parameter.
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