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Abstract: This paper concerns with detailed analysis of a reaction-diffusion host-pathogen model with space-
dependent parameters in a bounded domain. By considering the fact the mobility of host individuals playing
a crucial role in disease transmission, we formulate the model by a system of degenerate reaction-diffusion
equations, where host individuals disperse at distinct rates and the mobility of pathogen is ignored in the en-
vironment. We first establish the well-posedness of the model, including the global existence of solution and
the existence of the global compact attractor. The basic reproduction number is identified, and also character-
ized by some equivalent principal spectral conditions, which establishes the threshold dynamical result for
pathogen extinction and persistence. When the positive steady state is confirmed, we investigate the asymp-
totic profiles of positive steady state as host individuals disperse at small and large rates. Our result suggests
that small and large diffusion rate of hosts have a great impacts in formulating the spatial distribution of the
pathogen.

Keywords: Host-pathogen model, Distinct dispersal rates, Global attractor, Basic reproduction number, Uni-
form persistence, Asymptotic profiles

MSC: 35K57, 92A15, 37N25, 35B40

1 Introduction

In recent years, the studies of some reaction-diffusion host-pathogen models have received much attentions,
as the investigation of these systems allow us to get better understanding the interactions between host and
pathogens and the mechanisms of the disease spread. Let u1(x, t), u>(x, t) and us(x, t) be the densities of sus-
ceptible hosts, infected hosts and pathogen particles at the spatial location x and time t. Laplacian operator
dA accounts for the host movement (d > 0 is the diffusion coefficient). In [6], under a one-dimensional and
unbounded domain, the authors considered the following model,

ou Ui +u

aat1=dAu1+r<l— 1K Z)ul—ﬁu1u3, xeR, t>0,

% = dAu, + Buqus —auz—rul;;uzuz, X€eR, t>0, 1.1)
%wluz—&ug, xeR, t>0.
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where r and K represent respectively the reproductive rate and the carrying capacity of the susceptible and
infected hosts; f and a are the transmission coefficient and disease-induced mortality rate; A and § are re-
spectively the pathogens production rate from infected hosts and the pathogens’ decay rate. All above men-
tioned coefficients in (1.1) are assumed to be positive constants. With the consideration of spatial spread of
pathogens, the authors in [6] investigated the existence problem of traveling wave solution.

In reality, the habitats where hosts live should be a spatially bounded domain. Wang et al. [29] took the
model (1.1) as a basis and extended it to a more general model in bounded spatial domain Q € R" with smooth
boundary 00,

ouy _ Ut B -

=S¢ = dAur+r (1 K00 ) up - Buqusz,  (x,t) € 2x(0, 00),

ouy Ui+ Uy

—= =dAuy + B(X)uqus —auy —r us, X, t) € Qx(0,c0),

a"t 2 ﬁ() 1U3 2 K&x) 2 (x, 0 x ( ) 1.2)
52 =AUz - Sus - BEI(us + uus, (6, ) € 2% (0, ),

au1 _ auz _

SL-S2- 0, (x,t) € 02 x (0, o0),

where % stands for the differentiation along the unit outward normal n to 0Q; B(x)(u; + u2)us represents

the consumption of the pathogen due to the interaction with the hosts. Unlike in model (1.1), where param-
eters B8, K, A are constants, model (1.2) allows the space-dependent parameter functions, 8(-), K(-) and A(-),
which are used to obey the spatial heterogeneity arising from the variance in environmental conditions (for
example, temperature and humidity etc). Compared to model (1.1), the space-dependent functions B(x), K(x)
and A(x) are assumed to be continuous and positive in Q. Since the mobility of pathogen is ignored in the do-
main, the semiflow induced by solution lacks of compactness. The authors in [29] overcame this difficulty by
verifying the k-contracting condition. The basic reproduction number (BRN) is proved to be a threshold index
for the dynamics of (1.2), and defined by adopting the concept of next generation operator (NGO). Bifurcation
analysis for steady state solution are also carried out when space-dependent parameters are used.

Note that the susceptible and infected hosts in (1.1) and (1.2) share the same diffusion rate. Wu and Zou
[31] further generalized the model (1.2) with distinct diffusion rates d; and d>,

0

% = d1Auy +y(x) - p(uq - Buius, (x,t) € Qx(0, o0),

% = dyAu; + f(Juruz - v(ua, (x, 8) € 2 x(0, o), (13)
% = a(x)uz — 5(X)U3, (X, t) € Qx (0, °°)’ '
ouq _ ouy _ )

Ay oy, (x, ) € 902 x (0, o),

Here, d; and d, are not necessarily equal. The simplest growth term for susceptible host, y(x) - u(x)us, is
used. As pointed in [31] that distinct dispersal rates for hosts brings difficulty in proving the boundedness of
the solution. The existence of global attractor needs appealing the general result in [8, Theorem 2.4.6] and
Arezela-Ascoli Theorem, so that the the asymptotic smoothness of semiflow is used instead of weak compact-
ness by verifying the k-contraction condition. The authors studied the threshold dynamics of (1.3) and the
effects of the spatial heterogeneity on disease dynamics. Wu and Zou in [31] also explored the asymptotic
profiles of positive steady state for the case where d; — 0 and d, — O.

Subsequently, inspired by the work [31], Shi et al. [23] revisited the model (1.2) by incorporating the hor-
izontal disease transmission. The authors in [23] established the threshold dynamics, and performed the
bifurcation analysis for steady state solution. Based on framework of [31], Wang and Wang [32] further ex-
tended the model (1.3) by adding the horizontal transmission term to (1.3). In [32], uy, u, and us are used to
stand for respectively the density of susceptible, infected individuals and the concentration of vibrios in the
environment. The horizontal transmission is termed as direct person-to-person transmission route in cholera
dynamics. The complete analysis of (1.3) with horizontal transmission term demonstrated the threshold dy-
namics of (1.3) and the effect of the spatial heterogeneity on disease dynamics, and also revealed that ignoring
horizontal transmission will underestimate the risk of disease transmission.
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Our current work is also inspired by a series of works on diffusive models for disease dynamics in the
spatial heterogeneous environment. These models are in the form of reaction-diffusion susceptible-infected-
susceptible (SIS) equations in spatially bounded domain and the main concern are how the spatial hetero-
geneity and the diffusion affect the disease spread and control [1, 9, 10, 21, 31-33]. In an earlier article [1], the
authors studied a SIS model with frequency-dependent interaction,

% _ dgAS - ﬁs(’i)s[’ YOI (60 € 2x(0,00),

‘;I = d;AL+ ﬁ(")‘? —yWI, (x,t) € Q (0, 00),

i % 0, (6, ) € 90 x (0, o), (1.4)
/ES(X, 0)+I(x,0)dx=N>0,

0]

where S(x, t) and I(x, t) represent respectively the density of susceptible and infected individuals. y(x) and
B(x) are respectively the space-dependent recovery rate and disease transmission rate. ds and d; represent re-
spectively the diffusion rates of susceptible and infected individuals. The total number of human individuals
remains constant N. The main concern in the aspect of biological implication is: limiting the flow of suscep-
tible individuals (ds — 0) can eliminate the disease, provided that the disease is of low risk (i.e., B(-) < y(-)
for x € Q). This pioneering work start up the investigation that how the spatial heterogeneity and the dif-
fusion affect the disease spread and control. Subsequently, the result that limiting the flow of the infected
individuals can not eliminate the disease (see in [21]) revealed that ds and d; play different role in disease
control. Motivated by meaningful and important aspect of spatial heterogeneity of environment and distinct
dispersal rates, Wu and Zou [33] further modified the model (1.4) by replacing the frequency-dependent in-
teraction with mass action mechanisms. They showed that an additional condition on the total population is
needed for disease control if dg — 0. Additionally, disease can not be controlled when ds — 0 and the total
population accounts large, and inversely, disease disappears in certain area when d; — 0. In contrast with
[1, 21, 33], Li et al. [9, 10] analyzed an spatial SIS model with linear source and logistic source (which allows
varying total population). With small and large diffusion rates, both of the works revealed that disease can
not be controlled, which is not a good situation in disease control.

Based on the above mentioned works, we continue to explore how diffusion rates and the spatial hetero-
geneity affect the dynamics of (1.3) by incorporating the frequency-dependent interaction used in (1.4), and
thus, can be considered as a continuation of the work [1, 9, 21, 31-33]. We shall explore the following system,

0
SE = didus +b(x) - ﬁ (x) e = B0~ (ur, (6,0 € 2x(0,00),
0
St = daliz + 100 +ﬁz(X)u1u3 - y0uz, (x, ) € 2% (0, ), s
%~ o - s, (x,0) € 2 (0,),
au1 _ 6u2 _
e P (x, ) € 02 % (0, =),
with the initial condition
ui(x,0) = ujp(x), x€ Q, i=1,2,3, (1.6)

where {(x) and y(x) represent the death rates of susceptible and infected host; b(x) is the recruitment rate;
Bi(x)(i = 1, 2) represent the disease transmission rate; 6(x) is the pathogens’ decay rate; p(x) is the pathogens’
production rate. By replacing the frequency-dependent interaction with mass action mechanisms (direct
person-to-person transmission route), model (1.5) reduced to the model in [32]. Even though (1.5) bears a
resemblance to that in [32], there is one major difference: frequency-dependent interaction ﬁl&’l‘)# assumes
bounded infection force, while unbounded infection mechanism for mass action term.

Note that when d; = d, = 0 and all parameters are space-independent, the reduced system of (1.5) is
the same as the model [24] with standard incidence function for the direct disease transmission and bilinear
incidence function for indirect disease transmission. It is mentioned in [24] that disease transmission within



DE GRUYTER Jinliang Wang and Renhao Cui, Analysis of a diffusive host-pathogen model =— 925

and without groups may be different. In this sense, it is natural to assume that the contact probability be-
tween a susceptible and an infected host is decreasing function of total host population (standard incidence
function) and the contact probability between a susceptible host and pathogen is a constant (bilinear inci-
dence function). Meanwhile, the model studied in [24] can also provide us a biological interpretation for our
model (1.5) that: 1) In Zika virus transmission, uy, u, can respectively stands for uninfected individuals, in-
fected individuals, and u3 stands for the infected mosquitoes in the local landscape; 2) In HIN1 and seasonal
influenzas, uq, u; represent respectively the uninfected and infected individuals, and u3 represents the con-
taminated environment such as classrooms, or other public places; 3) In the transmission of avian influenza,
uy, U can respectively stand for the uninfected migratory birds, infected migratory birds, and u5 stands for
infected domestic poultry. On the other hand, (1.5) can be used to describe the transmission of cholera in the
sense that uq, u, and us stand for respectively the density of susceptible, infected individuals and the con-
centration of vibrios in the environment. However, it is well-known that those who recovered from cholera do
lose immunity. A realistic excuse to justify the hypothesis that infected individuals do not lose immunity may
be that if we care about this model during one outbreak, then those who recovered are very likely to remain
immune throughout the outbreak.

We plan to proceed this paper as follows. Section 2 shall pay attention to the well-posedness of (1.5)
with (1.6) such as, the global existence and uniqueness and ultimate boundedness of solution of (1.5), the
asymptotic smoothness condition of semiflow, the existence of global compact attractor. In Section 3, we
identify the basic reproduction number, %y. We also establish that R can be equivalently characterized as
the principal spectral conditions. In section 4, with the Ry, detailed analysis are carried out on the threshold
dynamics of (1.5), that is, R predicts whether or not the disease persist. In a critical case that Ry = 1, the
global asymptotic stability of disease free steady state is also addressed. Section 5 is spent on the dynamics of
(1.5) in homogeneous case. We addressed the existence of unique positive equilibrium and local stability. The
global attractivity of positive equilibrium with additional condition is achieved by the technique of Lyapunov
function. Section 6 is devoted to exploring the asymptotic profiles of the positive steady state for the case that
dy — 0,d; — oo,dy — 0and d, — oo. Finally, detailed conclusions are drawn and some discussion is
presented.

2 Well-posedness of the problem

The main aim of this section is to confirm that (1.5) has a global compact attractor. Throughout of the paper,
e X:=C(Q,R3),Y := CQ,R?), Z := C(Q, R) are respectively the Banach space with the supremum norm
|| - ||, and their positive cone are denoted by X* := C(Q, R3), Y* := C(Q, R2), Z* := C(Q, R.), respectively.

G = max G(-), G« = min G(-),
xe xXeQ
where G() = y(-), 8(), 0(-), ¢(-), B1(-), B2 ("), respectively.
e ['isthe Green function of % = Au in Q with the Neumann boundary condition.
o Ai(t), Ay(t) : C(Q,R) — C(Q, R) are respectively the Co semigroups of d1A — {(x) and d,A - y(x) with
the Neumann boundary condition, i.e., for any ¢ € C(Q, R),

(A1 (Op)() = e CO" / I(dit, -, y)p(y)dy, 1)
Q
and
(Ax(Op)() = et / I(dst, -, y)p(y)dy. 22)
Q

We further, denote
(A3(DP)(x) = e *Wgp(x).
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According to [22, Section 7.1], A1 (¢), A>(8) : C(Q, R) — C(Q, R), t > 0, are strong positive and compact. Hence,
forany ¢ € X*,

eSOt [ I(dit, -, y)p1(y)dy
AOP)) = (A1(OP)C), A2(09)(), (A3 (D)) = [ et [ T S 200y [ (=0
e *os()

forms a Cy semigroup on X preserving X*, namely, A(t)X" c X", t > 0 (see, for example, [19]).
Further, let

b() - Bl(')% -B2()p193

F(p) := (F1(@)(), F2(p)(-), F5(9)()) = B1() qﬁlfgz +B2(Np193

o2

By these settings, we can rewrite (1.5) as

t
u() = A(Dp + / At - $)F(u(s))ds. 23)
0

We can easily check that
hlin(; dist(p + hF(p),X*) =0, V¢ € X",
.

In fact, it is easy to verify that for any ¢ € X" and small enough h > 0,

o141 (6O - B1O) 2L - (VP15 )
02+ h (L)L + B()p193)
@3 +h (0()p2)

o1 [1-h (B 52, + Boos)]
P2
P3

¢ + hF(p)

v

As just a consequence of [22, Corollary 4], we have

Lemma2.l. For any ¢ <€ X', (1.5) with (1.6) admits a unique nonnegative solution u(-,t) :=
(wr(, £, ua(, 1), usz(-, 1)) on Q x [0, tmax) With tmax < oo. Furthermore, u(-, t; ) € X*, t € [0, tmax).

In what follows, we shall confirm tmax = oo by verifying the boundedness of u(:, t) in Q x (0, tmax)-

2.1 Existence of the global solution

Theorem 2.1. For any ¢ € X*, (1.5) with (1.6) admits a unique nonnegative solution defined on Q x [0, o).
Furthermore, the semiflow Y(t) : X* — X* defined by

Y(O)p = ui(, 6 9), ua(, 68), usC, 65 9)), Vix, ) € 2 %[0, 00), (2.4)

is ultimately bounded.

Proof. We first prove that the boundedness of u;. From (1.5), u1(x, t) is governed by

o
2 (25)

{ - d14iy + b(-) -m()iq, (x,t) € Qx(0, 00),
ov

=0, (x, t) € 02 x (0, o0).
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By the comparison principle, we directly have

limsupu;(, t) < tli}m it1(-, t) = @11 (-), uniformly for x € Q, (2.6)
t—oo R

where i1 (+) is a unique global asymptotic stable steady state of (2.5) in C(Q, R). It follows that
Il us(, ¢) lls Mo,

where My =| it} (-) ||, independent of initial conditions.

Next, we verify that the solution u, and us3 of (1.5) are ultimately bounded. For this purpose, we first
establish the uniform estimate in L*(Q) x L1(Q) and then pass it to the uniform estimate in C(Q) x C(Q).
u(-, t) satisfies the L' bounded estimate, i.e.,

limsup([|ua (-, )||px + Jua(, Ol + [Juz (-, O|g1) < My,
t—oo

where M is a positive constant.
By (1.5), we have

G 0w, 0l = [ bOd= [ Ot Odx= [y, vax
Q

0 o
<[Q[b" - hllus (-, ) + uz(, B g,

where h = min{{x, y=} and |Q| is the volume of Q. Hence,
xXeQ
limsup(|ju1 (-, O] + [uz(, Ol|1) < My, where My = [Q[b’/h.
t—roo
Further, we have

d *
gl Ol <@ Mi = 8«[lus(, O

It follows that
limsup ||u3(:, )||;: < My, where M, = "M /68x.
t—ro0

Hence, by taking M; = max{M;, M, }, the assertion directly follows.
k
For k > 0, u, and us satisfies the L? bounded estimate, that is,

limsup ([luz(:, Ol + [[us(, Olo) < My, @7)
t—oo

where M, is a positive constant.
We shall prove (2.7) by induction. Obviously, k = 0 holds. Suppose that (2.7) holds for k- 1. Then for M5«-1 > 0,
we have

lilgsgp (Iluz (s Ollger + [z, Ol 1) € Myer. (2.8)

We multiply u; by u%k‘l, and then integrate it over Q,
10

2k ot

u%kdxs dz/u%k’lAuzdx+/,Bz(-)ulugu%k’ldx+/ﬁl(-)uﬁkdx—/y(-)uﬁkdx. (2.9)
0 Q 0 Q Q

Recall that

k _ _
d, / u%k'lAuzdx =-d, / vu; - Vu%k’ldx =-2K-1)d, /(Vuz . Vuz)uﬁk'zdx = —%dz / \Vu%k ' |dx.
Q Q 0 Q
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Hence, (2.9) becomes

%% u%kdxs—Dk/\Vu§k71|2dx+/ﬁz(-)u1u3u%k’1dx+/Bl(-)uﬁkdx—/y(-)uﬁkdx. (2.10)
0 Q Q

Q Q

where Dy, = 22k ld,.
By lim sup;_,, ||u1(-, £)||;2 < Mo, there is ¢y > O such that for ¢ > ¢o,

/51(‘)u%kdx sﬁ]/u%kdx (2.11)
0 0
and . .
/ﬁz(-)uluﬁ Lysdx < ﬁ;(MO + 1)/u3u§ “dx. (2.12)
Q 0

1_

Applying Young’s inequality: ab < ed? + 1(€p)’%bq wherea, b,e > 0,1 < p, g < cand 1717 + 1. One can

o P = 2K and g = 2¥/(2¥ - 1) as follows,

L)

estimate (2.12) by setting €; = i (M a

/u uzk_ldx < B / uzkdx +C /uzkdx for t > ty, where Ce, = 2k-1
. 3U2 = 4B;(MO+1) 3 €1 2 ) = 10> €1 k
Q Q Q

€) Fi.  (13)

Thus, (2.10) can be estimated by

10

5K 3¢ u%kdxs—Dk/Wuz | dx+§/u§kdx+ck/u%kdx, (2.14)

4
0 o) 0 0

where Cy = B + B5 (Mo + 1)Ce, .
k
We multiply us by u% -1, and then integrate it over Q,

%% u%kdx= /g(x)u%k_luzdx—/6(x)u%kdx
0 0 Q
sg*/ugk’luzdx—&/u%kdx. (2.15)
Q

Again applying Young’s inequality (by setting €, = %, p =2%/(2% - 1) and g = 2¥), we have

12k 2% - )zk-1

k_ 6* k k
/u% Lupdx < Tg*/u% dx + Ce, /u% dx, where C¢, = €3 297 (2.16)
0 Q Q
Hence (2.15) becomes
lkai/ xs = 20 /u%kd)HQ*Ce2 /u%kdx. (2.17)
Q Q 0
Combined with (2.14) and (2.17), we obtain
ok Jk-1 5 ok O ok
2’< 5t /(u + U3 )dxs—Dk/\Vuz | dx+Ek/u2 dx—j/u3 dx, fort > tg, (2.18)
0 0 0

where E;, = Ci + 0" Ce, .
Applying interpolation inequality:

€113 < €||VE||3 + Ce||€]|3, where e >0, Ce >0, & € WH2(Q).
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k-1
Letes = Dk/(ZEk), { = u% , then

zk—l 2 Zk 2)(—1
-Dy [ |[Vuy |“dx <-2Ej | uj dx + 2E;Ce, u; dx
0 0 Q

Thus, (2.18) becomes
2

%% /(u%k + u%k)dx < —TIx /(u%k + u%k)dx +2E;Ce, /u%kildx , for t=>tg, (2.19)
0 0 Q

where r+ = min{Ey, & }.
It then follows from (2.8) that lim sup,_. ., f u%kildx <M %Z:i, which in turn implies that
Q

limsup (||u2(-, t)sz + |\u3(-, t)”zk) < Mzk, with Mzk = 2 %
t—oo *

Mzkfl .
Thus, according to continuous embedding LY(Q) c LP(Q), g = p > 1, we have
lim sup(||uz (-, O)z» + [[us (-, O)]|zp) < Mp, (2.20)
t—ro0

where My > 0, independent of initial conditions. Denote by Y4, O < a < 1 the fractional power space. By [31,
Lemma 2.4], we obtain that Y, C C(Q) by selecting p > n/2 and a > n/(2p). Hence limsup,_, .. [|[u>(-, )| <
Moo, where Mo > 0. Further, limsup,_, ., |us(-, t)|| < %. This proves the ultimate boundedness of the
solution of (1.5). The proof is cpmplete. O

2.2 Asymptotic smoothness of Y(t)

We refer the readers to consult [8, 36] for the definition of k(-), the Kuratowski measure of noncompactness.

Lemma 2.2. The semigroup Y(t) is a k-contraction on X, that is, for any bounded set B C X",
k(Y(OB) < e *k(B),

where 8+ = min, 5 6(x).

Proof. Fort=>0,let Y(t) = Y,(t) + Y,(t), where

t
V106 = d i, 6500, usC, 5 9), / e 00E5) oYy (-, 55 p)ds b
0

and
v2(0¢ = {0,0, e uso(0)}
By [31, Lemma 2.5], Y;(t)B is precompact. Thus, we have k(Y (t)B) = 0. We estimate Y,(t) as

Y (t
HYZ(t)H - sup H 2( N’Hx < e sup 1%l - o0t
pex  Ylix pex 1Pllx
Hence,
k(Y()B) < k(Y1 (t)B) + k(Y (t)B) < 0 + || Y2(t)|| k(B) < e O t(B),
that is, Y(t) is k-contraction on X*. This completes the proof. O

Theorem 2.2. (1.5) possesses a global compact attractor in X*, denoted by Ay.

Proof. By Theorem 2.1, the solution of (1.5) exists globally and Y(¢) is point dissipative (see Lemma 2.2).
Asymptotic smoothness condition of Y(t) is implied by x-contraction condition. Hence, by [8, Theorem 2.4.6],
system (1.5) possesses a global compact attractor, which attracts every bounded set in X*. O
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3 Basic reproduction number

Obviously, (1.5) has a disease-free steady state Eq = (u?(x), 0, 0), where u?(x) = % and satisfies dAu?(x) +

b(x)-m(x)ud(x) = 0, for x € Qand a”;éx) =0, for x € 00. The linearization of (1.5) at Eq leads to the following
cooperative system,
ou "
) -3 . (x,0) € 2x(0,00),
o us (EX))
AU _ (x, £) € 92 x (0, o)
an ’ ’ ’ ’
where
oA+ B1() - y()  Ba(Dul()
B = . 3.2
( o() ~5() 62
Substituting (u>(-, t), us(-, t)) := (¢, (), P3(-)) into (3.1) gets
Al 2 )-8 2 ), wocoxom)
@3 3 (3.3)
0py _
W_O’ (x,t) € 02 x (0, o).
We rewrite

. _ [ A+Bi()-y() O 0 Ba()ul()
B:=B+F ( o(") —6(-)>+<0 o )

It is easy to see that both B and B are resolvent-positive operators [27]. Denote by T(t)(resp. T(t)) : Y — Y
the positive semigroup generated by B (resp. B). Since both B and B are cooperative for any x € Q, we get
that T(t)Y, C Y, (resp. T(t)Y+ C Y.). Throughout of the paper, we denote by s(Q) = sup{ReA, A € d(Q)} the
spectral bound of Q and r(Q) = sup{|A|, A € d(Q)}, the the spectral radius of Q.

Following the standard procedures in [27, 30], we define the NGO £ as

L[PI0) = / FOTOP()AE = F() / TOp()dt, deY, xe,
0 0

that is, within the infection period, £[¢](-) represents the total new infections distribution from initial distri-
bution ¢. Then, the BRN R is defined as
Ro :=r(L) (34)

The following result is a consequence of [27, 30].
Lemma 3.1. Let B and R be defined in (3.4) and (3.2), respectively. s(B) has the same sign as Ry — 1.

Proof. Due to the fact that B is resolvent-positive operator, we then have
(AI-B) ¢ - / e MT(Bdt, v A > s(B), € X*. (35)
0
Due to s(B) < 0, we can let A = 0 in (3.5), leading to
Blp-= / T(Opdt, ¥ A > s(B), ¢ € X (3:6)
0

Thatis, £ = —-FB~. Further, B = B+ F can be viewed as the perturbation of B. According to [27, Theorem 3.5],
s(B) has the same sign as r(-FB™1) -1 = ®¢ - 1. O
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For the convenience of forthcoming discussions, we next claim that ¢ has relationship with other important
indicators: Ay and n°.

Lemma 3.2. Let Ry be defined by (3.4). Then we have
(i) Ro = 1/Ao, where Aq is the principal eigenvalue of

dyAp - y()p + A <ﬁ1(') + ﬂZ()u(l)()Q()> =0, xcQ,
5 6() 3.7)
9% _ 0, X € 0Q;
ov
(ii) Ro — 1 and s(B) have the same sign as n°, where n° is the principal eigenvalue of
. 0 . .
drp+ (ﬁl(-)  Balhatol) —y(-)) o-np, xeo, "
99 =0, x €0Q.
ov
Proof. We first prove (i). We rewrite
| B B(S() \ [ Fu Fa o ~
F = ( o o ) = ( Fy Fyp ),B— diag(d,A,0) -V,
where
V= Y(') 0 _ V11 V12 .
-o(-) 6() Vi Vo
As F»; = 0, F»; = 0, by [30, Theorem 3.3], we know that R = r(-B"F) = r(-B;'F,), where
By = dyA- Vi1 + Vi3Vi3 Vo = dyA-y()and Fy = Fyy — F13Vay Vo = B1() + Boud(e(-)/8(:).
Hence, .
B - -y (paty+ OO0
Therefore, R, satisfies
- ((dzA Ly (ﬁl(-) + ’32“;?())9“)) 0 - Rop, 0 € CX(Q),
that is, .
dyAp - y()p + (ﬁl(') + M) iqo -0, ¢ € C3(Q). 3.9)
6(+) Ro
This proves (i).

We next prove (ii). In fact, eigenvalue problem (3.8) has a principle eigenvalue 1°, associated with a
positive eigenfunction ¢” on Q, i.e.,

. 0 . . * *
dAp" -y + (/31(-) . %ﬂ))g()) & =04’ xeQ,

%=O, x € 0Q.
ov

We then multiply the first equation of (3.10) and (3.9) by ¢ and ¢, respectively, then integrate and subtract

the equation, obtaining
1 ' Bo(uf(o()\ ,« o [ .
(1—%0)5 (ﬁ1(-)+#)¢ o= Q/d) Q.

. B2()ul (x)o(x)
Since both / (ﬁl(x)+ W
oy

(3.10)

> (;b*db and fQ (;b*(D are positive, we arrive at the conclusion that

(1 - ER%)) and n° have the same sign, i.e., Ry > 1 when ° > 0 and Ry < 1 when n° < 0. This proves (ii).  [J
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Due to the assertion in (i) of Lemma 3.2 and variational formula,

(- .
1 ) , (3.11)
Ao HEHL(Q), p#0 / (dz |V¢|2 +)/(-)(;b2) dx
Q

Ro =

which indicate how R depends on the diffusion coefficient d, (see also in [1, Theorem 2] and [31]).

Theorem 3.1. Let Ry be defined by (3.11). Then we have
(i) Fix dq > 0, then Ry is decreasing with respect to d,, and satisfies

Ouie) B2()ui(De()
Ba() + U0 ] Jo (B1() + 200 ) dx
lim 8‘Eo=max{( o) ) :x€Qp and lim R = Q( o) )

d,—0 y() dy—oo Joy()dx

(ii) Fixd, > 0, then

o JoBa0) + B80T dx
lim Ry = RNo,0 := sup
d;—0 peH' (@), p70 | [, (dz Ve +y(~)¢2> dx
and
Jo(Br() + BERO L B0 g2
‘ 50) [ ¢ dx
lim Rp = Ro,e0 := sup
di—soo PEH(Q), p#0 f_() (d2 |V¢‘2 +J/()¢2) dx

. O . .
(iti) If ! (Bl(') + %) dx/ ! J()dx > 1, we have Ro > 1 for all dy, dy > 0.

(iv) If! <B1(')+ W) dx/Q/y(~)dx < 1and (Bl(-)+ %) /y(:) > 1 for some x € Q, then

there exists d, € (0, o) such that R > 1 when d, < d5, and Ry < 1 when d, > d.

The following statements come from [13, Theorem 1.1].

Remark 1. It is clear that the asymptotic behavior of the unique positive solution u§ with d :
o u() = b(-)/{()in CH(Q) as di — 0;
o uf()— [,b()dx/ [, ¢()dxin C'(Q) as dy — oo.

Remark 2. Fixd, > 0, n° of the eigenvalue problem (3.8) satisfies
e n°—=ndasd, —»0;
e n°—=n%asd; — oo,

where 19 and 1%, are respectively the principal eigenvalue of (3.8) with u$(-) = b(-)/{(-), and the principal
eigenvalue of

5, Ba0le() fpb)dx > -
dyAd + (Bl( )+ 50) fQ {()dx yO) ) =n¢, xcq, (3.12)
% -0, xeoQ.

Remark 3. R — 1 has the same sign as 13, and Ro .. — 1 has the same sign as n%.

Theorem 3.2. If Ry > 1 (or s(B) = 0), s(B) is the principal eigenvalue of (3.3).
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Proof. In fact, we see from (3.1) that

t

(e, £, ) = As (O + / A5t - $)q(r( 5, 0), s, s, B)ds,

0
t

(s, ) = As (D5 + / A0t - ) (Ul 5, P))ds,

(0]

where q(u, u3) = B1(Juy + B2(Duf(-)us, and A; and A, are respectively defined in (2.1) and (2.2). We decom-
pose T(t) as the sum of T>(t) and T5(t), T(t) = T, (t) + T5(t), where

T2()¢p = (0, A3(O3), ¢ = (¢2,P3) €Y, (.13)

t
T3(t)¢ = (MZ(" t’ ¢)’ /AB(t)(t - S)[Q(')”Z('s S, ¢)]d5) ’ ¢ = (¢2’ ¢3) S Y.
0

By [31, Lemma 2.5], the compactness of T3(t) directly follows. Further,

-6()t -6+t
wp  IDOOL o 1l 1l e

$EC(Q,R2),||¢]|#0 il _¢€C(D,R2),II¢H#O 11l _d)eC(Q,RZ),Hg{)H#O ¢l

that is, || T2 (t)|| < e,
Hence, for any bounded set Sin Y,

K(T()S) < || T2 (O)||x(S) < e ¥ k(S), t>o0.

Thus, T(t) is a k-contraction on Y, that is, the essential growth bound, wess(I1(t)) < -6 and the essential
spectral radius
re(fI(t)) < et <1, t>0.

In | T@®)]|
t

It is well-known that w(T(t)), the exponential growth bound (defined by w(T(t)) := lim;_ oo such

that || T(¢)| < Me® T for some M > 0), satisfies
w(T(t)) = max{s(B), wess(T(t))}.
With the assumption that s(B) = 0, the spectral radius of T(¢),
1(T(@) = &Pt 5 1, t>o0.

Consequently, re(T(t)) < r(T(t)). With the help of the generalized Krein-Rutman Theorem (see, for exam-
ple, [18]), we complete the proof. O

The following result indicates that for a special case, s(B) is the principal eigenvalue of (3.3) without any
limitations.

Lemma 3.3. Suppose that §(x) = 8. s(B) is the principal eigenvalue of (3.3).

Proof. Let

. O . .
L = daagp+ (110 2RO ) gy, 2>,

Denote C; := min,5{B1(-)} and C; := minxeo{g(-)ﬁz(-)uﬁ’(-)}. Note that the eigenvalue problem

3.14
aL(X) =0, x € 0Q. G14)

{ ne() = dAp(-) -y (), xeQ
ov
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admits one principal eigenvalue, 7, (associated with a positive eigenvector ¢° > 0). Denote by A" the larger
root of
AZ +(6—C1 —fl)A—(Cz +6(C1 +fl)) =0.

Then A" = 3[( - 6 + C1) + /(6 + C1 + )2 + 4C,] > -8. Hence,

0
C *
Leg® = dag® + e + QB o502 gy v 2 C2 00 < 1g.
According to [30, Theorem 2.3], the assertion directly follows. We complete the proof. O

4 Threshold dynamics

We now study the threshold dynamics of model (1.5) as % < 1 and g > 1.
Theorem 4.1. If R < 1 (or s(B) < 0), then E, is globally asymptotically stable.

Proof. We divide the proof into two parts. One is 2y < 1, the other is Ry = 1. When R < 1, we know from
[30, Theorem 3.1] that Ej is locally asymptotically stable. We are mow in a position to consider the global
attractivity of Eq. Fix € > 0. By (2.6), there is t; > 0 such that for all (x, t) € Q x [t;, o0),

0<ui(,t) < uld() + €.

Let (it (-, t), ti3(+, t)) is the solution of the following problem

£ )= (2

"”2 _o0, o, ) € Dx[t1, o),

=> :>

) ’ (X,t)eQX[tl,oo),

(4.1)

where

g _ [ AR -y ()W) + o)
N (") -65(-) ‘

By the comparison principle (see, e.g. [16]), (u>(:, £), uz(+, t)) < (i12(+, t), U3(-, £)) on Q x [t1, o0).

Let T¢,(t) be the positive semigroup induced by Be,. We next aim to prove that the exponential growth
bound of Tg,(t), we, is negative. Let wess(Te, (1)) = lim;_ oo a(T“’(O) be the essential growth bound of T, (t),
where a(-) is the measure of non-compactness. From Lemma 2.2, we have wess(Te,) < —6+. Recall that we, =
max{s(Be,), Wess(Te,(t))}. This allow us to conclude that w¢, has the same sign as s(Be,). From Lemma 3.2,
we directly obtain that s(B¢,) has the same sign to the principle eigenvalue ¢, of

. 0 . .
dr0p - y()gp + (ﬁl(-) - £200A0 + cole )) o=np, xeQ,

ago =0, x € 0Q.
ov

(4.2)

It follows from (ii) of Lemma 3.2, R}y < 1 and the continuous dependence of r[eo on €g that er < Qif g issmall.
Hence, we, < 0. This together with || Te, (£)|| < Me“=o", for some M > 0, imply that (&1, (:, ), @13(:, £)) — (0, 0) as
t — oo uniformly for x € Q. Consequently, (u> (-, t), u3(-, t)) — (0, 0) as t — oo uniformly for x € Q. Further,
from (1.5), u1 (-, t) — u9(-) as t — oo uniformly for x € Q. This completes the first part.

When £y = 1, the global asymptotic stability result of Ey needs to combine with the local stability and
global attractivity of E (see also in [3, 4, 31, 32]). We first confirm the local asymptotic stability of Eq. Lete > 0
be given. Choosing p > 0 such that for any ug = (u19, U290, U30), We have || ug — Eo |I< p.
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Let us introduce

) — ul(" t)
Toud0)

Hence, the first equation of (1.5) becomes

2(x, t

-1 and 7(f) := max{2(-, t), 0}.
xeQ

X vul() vz b() ﬁ1(') s+ Ba(Juqus
- d1AL - 2d; —2 + = LA (4.3)
ot ! U0 uo() u9(x)
Solving (4.3) gives
/ it 1 B (Duqu
2@6=N0®%—/Tmﬁ—gm(“”%£A)13®, (4.4)
2 uy
where Lo = %191 and T(t) < Me ™" forsome r, M > 0, is the positive semigroup induced by d1A+2d; vuy (())V +
b0) 1t follows that
uf(-)
/ SL uu
0 = max { 705y - [ 191 0m B g o
xXeQ o 1(X)
< max {7030, 0} <1 703 | “)
xeQ
<Me || 220 _ 1) < pMe " /uO,
” u(l)(.) H P =21
where u = min, 5 {u(-)}.
By a zero trick and the definition of T(t) (positive semigroup generated by B), we have
) ui9u2(,8) _po(. .
uy (-, ) uso() / B0y ot ~ P12l s)
- () e [TE=9 | Ol - wusts) | ds
us(-, t) uso(-) 0
0 (4.6)

t
. u20() Bo(ua (-, s) —uY(Dus(:, 8)
_N0<3d)>./ﬂt9< . )&

Under the condition that 3y = 1 (or s(B) = 0), we know that || T(t) ||< M. for t > 0 and M > 0. Hence, by
(4.6), we have

max{||us(-, )], lus(:, O} < Mep + M |[ul(-)]| / 7(s)|lus (-, s)l|ds
t
< Mep + Mef3 )1 2t [ € st )]s @)
71 O

t
— Mep+Ip / e us(-, 8)]|ds,

where L = M5 ||[ud(-)|M/uS. With the help of the Gronwall’s inequality, it is easy to get
llus(x, t)]| < preZp/’. (4.8)

Further from (4.7) and (4.8), we know that ||ux(x, t)]| = Mp + prTpefp/ "[r. This together with the first
equation of system (1.5) and (4.8) imply that

UL s dyduy + b0 - (O - i - By Mepe ", (x,0) € 0 (0, o0).
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Thus, we consider the system

ZZ — 4,49+ ()~ {09 B0 - BaMepe®!"9,  (x, ) € 2% (0, 09),
% =0, (x,t) € 2x(0, 00), (4.9)
3,0) = w100, ve,

Obviously, uq(+, t) = 9(-, t), for all (x, t) € Q x (0, o). Let 5(-, t) = 9(-, t) — 9°(-) and 9°(-) is the positive steady
state of (4.9). Hence, 9(-, t) satisfies

37? = d1 A8 - ({() + By + ByMepe®M3,  (x, 1) € Qx (0, ),
-0, (X, 6) € 90 x (0, o0), (4.10)
9(-,0) = uso(-) - 9°(), x e Q.

Solving (4.10) yields

t
9, 0 = A1(Ou10() - () - / A1(t - $)(By + BoMrpe?MS(:, s)ds.
0
where A4(t) is defined in (2.1) and satisfies ||A1(t)| < Ko e%! for some constant K. Hence,
t —_
19C, )] < Koes™Juro(-) - ()]| + / Koe®"9(B} + B> Mcpe™M)||9(., s)|ds.
0

Let L, = Ko(B] + B;Mrpezf’/ "). This together with the Gronwall’s inequality imply that
18C, O = 19, ) = O]l < Kolluro(-) - 9 ()[R,
Choose p > 0 small enough that L; < —{+/2 and
I8¢, 6 = 9 ()] < Koluro() = & ()l 2.
By a zero trick,

up (-, ) = u9() 2 9C, £) ~uf() = 9C, ) - () + P () - ud()
- Kollu10(-) = 9 C)[le”5"2 + 9°() — ud()

v

(4.11)
> = Ko(|lu1o(-) = uf ()| + [ () = ) = |9°() - uS ()|
> - Kop - (Ko + 1)[|9°() - u§ ()]
From 7(t) < pMe ™" /u9, we directly have
w3, B - 100) = u() (“;g'(’,)” - 1) < PO /. (4.12)
1
Combined with (4.11) and (4.12), one can get
s G-, 6) = ud ()| < max{Kop + (Ko + 1)[|9°(-) - uS()[|, pM|[u§()[|/ud}. (4.13)

By choosing p sufficiently small, lim,_,o 9°(-) = u9(-), the inequalities (4.11) and (4.13) imply that
Jur G, 6) = u§ O, [lua G, O, lus (-, O] < &, forallt >0,

where ¢ can be chosen as a small number. This proves the local stability of Ej.
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Secondly, we confirm the global stability of Eq. For any u, € X,, we set
6X1 = {(ul, u, u3) S X+ P Uy =U3 = 0},

and
o(t; up) :=inf{c € R : up(-, t) < c¢p and us(-, t) < cp3}.

where (¢, ¢3) is the positive eigenfunction of s(B) = 0. Recall that (1.5) has a connected global compact
attractor in X*, denoted by Ag (see Theorem 2.2).

We claim that for any ug € Ao, w(up) € 0X;. Itis clear that forall t > 0, a(t; ug) > O is strictly decreasing.
In fact, for ty > 0, let

(-, 8) = alto; ug)¢, and us(-, t) = o(to; uop)gs, fort > to.

such that
(ﬁz('y t)9 H3(" t)) 2 (uz(" t)’ u3(" t))’ for (X; t) € Q X [?O’ oo)'

where (u>(x, t), us(x, t)) satisfies

o B - B - ~
S =+ O O YO, (6,0 0.
us _ - — I
6‘37 = o) - 6(X)us, (x, 8) € 2 x[to, =), (4.14)
% =0, (X’ t) eaQX[?O,N),
H2("2:0) 2 u2('9?O)’ ﬂf}(',?O) 2 u3("?0)’ x e Q.

Furthermore, by (4.14) and comparison principle, one can see that
o(t; uo)pz = Ua (-, ) > Uy (-, ) and o(t; uo)ps = us(-, £) > us(-, 1), for (x, ) € 2 x[fo, o).

Since ¢, is arbitrary, o(t; uo) is strictly decreasing.
Next, we pay attention to the the semiflow Y(t), generated by (1.5) (see Theorem 2.1). Let {¢,} be a se-
quence with £, — oo, 0 = lim¢_.. 0(t; ug) and v = (v1, v, v3) € w(up). We can conclude that

lim Y(t +?k)u0 =Y(t) lim Y(?k)uo =Y(t)v.

ty—roo ty—roo

This means that o(t; v) = o«. Repeating the previous arguments, o(t; v) is strictly decreasing when v, # 0 or
v3 # 0. This gives a contradiction. So, we have v, = v3 = 0. When t — oo, we get (u» (-, t), uz(-, t)) — (0, 0). It
follows that u; (-, t) — u9(-) eventually. This proves the second part. The proof is complete.

O

The following result indicates that (1.5) is uniformly persistent when % > 1. Before going into details, we set
Xo := {¢() = (@1, b2, $3) () € X" : $2(-¥=0 and ¢5(-y=0},
0Xg := X"\ Xo = {¢() = (h1, P2, 93) () € X" : ¢1() =0 or ¢3(-) =0} .

and
Ma = {(l) S aXO : Y(t)¢ c ()Xo,vt > 0},

where Y(t) is the semiflow generated by (1.5).

Theorem 4.2. If Ry > 1, then (1.5) is uniformly persistent, i.e., for any ¢ € X* with ¢,(-)/= 0, or ¢3(-)/= 0,
there exists g > 0,
litm inf u;(+, t) > 69, uniformly for x € Q. (4.15)
—00

Moreover, (1.5) possesses at least one positive steady state.
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Proof. Theorem 4.2 is achieved by the following claims. The first two claims are the direct consequences as
those in [31, Theorem 3.10] with slight modifications. We present them here without proof.

Claim1 Y(t)Xg C X forall t = 0.

Claim 2 w(ug) = {Eo}, for any uy € My, where w(ug) is the w limit set of uy.

Claim 3 limsup;_,., [|Y(©)¢p — Eo|| = 0, V¢ € X, where o is a positive constant.

We prove Claim 3 by the way of contradiction. Assume to the contrary that for ¢ > 0, there exists {; > 0
such that

ui(, @) 2 ul - 0, uz(, ) < 0, us(, ) < 0, Ve 2 .

Hence (ux(-, t; ), us(-, t; ¢)) is the upper solution of

oily
( a?“f; ) =BG( 2 ) s (X, t)EQX[Z’l,oo),
ot 3 (4.16)

=2 =0, (x,t) € 0Q x [t1, 00),

3

=t

where

B, ( oA+ B100 -y B0 - 0) ) .

o(x) -6(x)

Combined with Lemma 3.2 and the continuous dependence of s(B) > 0 on g, choosing ¢ > 0 small enough
that s(Bg) > 0, associated with positive eigenvalue function (¢9(-), $J(-)). Choose & > 0 small enough that

Uz (-, 15 @), us(, t15 @) = E(PS (), Pp35()).
It is easy to see that for (15 (-, 1), @3(-, £1) = &(P5(), $5(+)), (4.16) has a solution
(@12, & B), 30, & ) = E5PED(BI(), pI(), ¢> Ey.

Since s(Bg) > 0, uz(, t; @), us(:, t; ) — oo as t — oo, a contradiction.
Similar to [25, Theorem 3] (see also in [31, Theorem 3.10]), let us define a distance function p(-) : X* —
[0, o) by
p(¢) = min{min ¢,(-), min ¢3())}, p € X".
xeQ XeQ

we conclude that
lign infu,(-, t, ) = 01 and litminfu3(-, t,) 201, Vo € Xo.
—> 00 — 00

Recall from Theorem 2.1 that there exist Moo > 0 and t; > O such that u,(-, t, ), us(:, t, ) < Moo, (x,t) €
Q x [t,, o). It then follows that

aa“tl >di AUy + be — (" + fiMes + B3Ms), (X, 1) € Q x[t, 00)
a
% -0, (x,t) € 0Q2 x [t;, 00),

Thus, there exists a constant o5, liminf; . u;(:, ¢, ) = 05. Let 09 = min{o1, 0, }. The uniform persistence
is obtained. Further from [15, Theorem 4.7], (1.5) possesses at least one positive steady state. This completes
the proof. O

5 Spatially homogeneous case

When
b(x)=b, BiX)=Bi, ()=, yx) =y, 6(x)=6,0x) =p,
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system (1.5) becomes

ouy =diAus +b - f1 il - Bauruz —Qur,  (x,t) € 2x(0, o),

aat Uy + uUp

2 g0, +B1 L + Bauguz - yus, (x, ) € 2x(0, 00), (5.1)
aat Uy +up

% = u, - bus, (x,t) € 2x(0, 00),

subject to the same initial and boundary condition as in (1.5). Clearly, system (5.1) possesses a disease-free
equilibrium Eq = (19, 0, 0) with u$ := b/{. From (3.4), we have the concrete formula of Ry,

[Ro] = B 5;!’;%? . (5.2)
In this circumstance, Theorems 4.1 and 4.2 still hold for (5.1).

Theorem 5.1. If [Rg] < 1, then Ej is globally asymptotically stable; while if [%q] > 1, then (5.1) is uniformly
persistent.

The positive equilibrium of (5.1) (whenever it exists) should satisfy

. byé/(bop> + B1y9), e
up = —(boBa + 1y +y8¢ - y*6) + \/(boPa + P1y8 + y8{ — y26) + 4bySoBs(y - {) )
20B>(y - 4) ’ ’

Uy = %andug = u’;/%ﬂg

To make u, > 0 and uj > 0, we need uj < b/{, which is equivalent with [®o] > 1. The equivalence is
obvious when y = {. When y > {, we rewrite u; < b/{ as

-B+ VB2 + 4AC < b
2A ¢’

where A = pB,(y = {) > 0, B = boB, + B1y6 + y6{ - y?6 and C = bys > 0. Isolating the square root and
squaring both sides gives B + 2Ab/{ > 0 and

4BAb | 4A’D?

¢ g2
Simplifying the last inequality yields C{? < Bb{ + Ab%. We make use of the expressions of A, B, C and rewrite
the inequality as

B2 + 4AC < B? +

by8{* < b{(boB> + 1y8 +y8( —y*8) + b*pPa(y - ().

By expanding and canceling, we obtain y§{ < bgf, + f16{, which is the same as [®o] > 1. Furthermore,
coupling [Ro] > 1 and y > ¢ implies B + 2Ab/{ > 0. Thus, if [Ro] > 1 and y = {, (5.1) possesses a unique
positive equilibrium.

Remark 4. Note that y and { are the death rates of infected and susceptible host, respectively. Due to the
disease burden, it is realistic to assume that y > {. Combined with the analysis above, (5.1) possesses a unique
positive equilibrium.

Theorem 5.2. Suppose that y > { hold. If [Ro] > 1, then unique positive equilibrium E25.1) = (U, u5,u3) is
locally asymptotically stable.

Proof. Linearizing system (5.1) at E(; ,) gives

% = DAY(, )+ Qx(, ),
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where y = (uy, uz, u3), D = diag(dy, d», 0) and

%2 %2
* *
-¢-p1 (u{izu;)z - Baus -B1 (u{ilu;)z -Bouy
Q = lf2 * u*2 _ *
.Blm + Baus ﬁlm y By
0 0 -6

Hence, the characteristic equation of Ezs.n is
B +a (A + a;(P)A +as(1?) =0, (5.3)
where [ is the wavenumber,

+12d +ﬁ1“1“2 +52”1“3(“1+“2) +6,
(u + 2)2 uy(uy +u3)?

az(lz) (lzdz ﬁ (uul+uli)> (BZMB +ﬁ1 " Tru )2> ﬁl (u fu )2
1 2 2 2

5 « uzz ) ﬁlulu; + Boutus (U] +uy)?
+ Idl+(+,82u3+[31m °d, + = > +6 ],
1T U

uy (U] +u5)?

al(lz) = lzdl +(+ﬁ2113 +ﬁ1

and

a3(12)==(12d1+c)<12d2+ﬂ 3”3> Byt <B1 y Bzu§>5

(u] +u3)? (uj + 112)2 (uj + u2)2
5 ,Bluluz + Baujus(u] + u5)? *2 «
<l d, + S+ u)? ) <ﬁ1 W+ u)? +Bzu3> é.

It then follows that a1 (I?) > 0, a»(1?) > 0 and a3(1?) > 0. Further, after elementary calculations, a; (I?)a,(I%) -
as(I?) > 0. Hence, the local stability of EESJ) directly follows from the Routh-Hurwitz criterion. O

Theorem 5.3. Assumethat (H1) : B (u5-u)? < 4u}(uy+u5). If[Ro] > 1,thenE25.1) is globally asymptotically
stable.

Proof. Define

V(t) := /(u1 —uilnug +up; —u5lnu, + szu%(ug - ug In u3z))dx,

2
Q

Since

* ok

* *
uluz *  * * u F— * * *
B1— + +Bugus +Quy = b, By + + Baujus = yu, and pu, = dus,
u; +u
17U 17U
after elementary calculations, we can obtain

av(e) u; U
dat —d1/<1—u—1 Auldx+d2/ 1—u—2 Au,rdx
Q Q

+/ (_ Clur —uy)*  Bruy(us —uy)? | Baun — up)luy(us —uy) - uj (uz - uZ)]) dx

up up(ug +u3) (ug +ux)(uj +uj)

0
+/ (Bl(uz —u5)uar (uy — up) —ui(up - u})]) dx

(ug +ux)(u] +uj)

* * *
* uq UruqUs Urus
+ﬁ2u1u3/(3_7_ * . *x L x dX'
Q

Ui upuju;  uus
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By using u; < uj + u, we have

avi _ / < By ) (((u1 - u;)(ul —u1)? = (uy - up)(uy - up)(us - uy) + ui(us - u;)z) dx

dt C(ug + uy)(uj +uj) B1

* * *
* u u,uqu uu
+ﬁ2u1u3/(3——1— 21 3——3>dx.
o

* * *
uq u2u1u3 Uu,us

By assumption (H1), we have

2
(1/ Lﬁﬁj uz)(m -uy) - \/;I(uz - uE)) < 7(0111; 42) ()2 =t — ) utg 1)z = )+ ) iz — )

Hence,

(ug Fu) W+ u) B1

2
dggf) < / ( B1 ) §luy + uz)(ul -uj) - \/ui’;(u2 ~uy) | dxso.
0

Hence, the largest invariant subset {(uq, uz, u3) € X : d‘;—gn = 0} consists just one singleton {E25.1)}-
According to the LaSalle’s invariance principle, the global stability of EES.I) is confirmed. This completes the

proof. O

Remark 5. In Theorem 5.3, (H1) is a technical condition such that the derivation of Lyapunov function is less
than zero. It is significant to establish the global asymptotic stability of endemic equilibrium by constructing
a suitable Lyapunov function in epidemiology. Our model (1.5) includes two types of infection: frequency de-
pendent and mass action, which leads to challenging issue in proving global asymptotic stability of endemic
equilibrium by Lyapunov function. Similar arguments can be found in (C1)-(C3) in the proof of Theorem 2.3 of
[24].

6 Asymptotic profiles of the positive steady state

Theorem 4.2 indicates that when Ry > 1, (6.1) admits at least one positive steady state E", which is the positive
solution of

diAusy + b(x) - B1(x) ullllfflz - Bo(uiuz - {(Ju; =0, x€Q,
ujiur
d,Auy + B1(x + Br(X)uqusz - y(x)uy =0, x e,
2Au; Bl()u1+u2 Bo(X)uyus - y(x)u 1)
o(X)uy - 6(x)us =0, xeQ,
au1 _ auz _
v "o " 0, X € 0Q.

This section is devoted to the investigation of the asymptotic profiles of E” for the cases that d; — 0, d; —
oo, dy — O and d; — oo. As exploration of such problem can achieve better understanding the spatial
distribution of disease.

We begin with the preliminary estimates of solutions of (6.1).

Lemma 6.1. Let (uq, uy, uz) be any positive solution of (6.1). We then directly have
(i) Foranydy,d, > 0, we have the upper bound of u:
b7*
¢’

(ii) Fix d, > 0, for any di > 0, we have the upper bound of u, and lower bound of u:

ui(x) < VxeQ; (6.2)

U, (x) < C1, u1(x)=Cy, VvxeQ, (6.3)

where the positive constants C; (i = 1, 2) do not depend on d; > O.
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Proof. (i) Set u1(xo) = max, g u1(x). By applying the maximum principle (see, e.g. [14, Proposition 2.2]) to

u-equation of (6.1), we get

b(xo) - B (xo) ui(xo)uz(xo)  Balxo)o(xo)

11 (x0) + 1> (x0) 5(x0) u1 (xo)uz(xo) = {(xo)u1(xo) = 0.
Thus, we know that

max us(+) = ui(xo) <

b
xeQ (* ’

this gives the upper bound of u;.
(ii) Making the sum of uy, u, of (6.1) and integrating over Q lead to

y*/uzdxs/(uldx+/yu2dx=/bdxsb*\m. (6.4)
Q o) 0 o

Notice that u; solves

B1(uy B2(o(-) y()
Auz + [dz(lh +Uy) i dy6(+) R X
auz

W=0’ x € 0Q.

}uz =0, xecQ,
(6.5)

Fix d, > 0, it follows from statement (i) that

BiOw |, p2el) ()

ﬁ] ﬁZQ b y
(ul uZ)dZ d25() d2

a6l dy

By using [20, Lemma 2.2] (see also [12]), we get a Harnack-type inequality of u, as follows

max u, < Cminu,. (6.6)
0 0

where C > 0 does not depend on d. In what follows, we permit it changing from place to place.
Based on (6.4) and (6.6), we have

uy(+) < Cminu, <
0

|(C2| /uz dx < C, forvx € Q. (6.7)
Q

Set u;(x1) = min_g u; (x). By applying the maximum principle, we have
b(xy) - By (ry) 1 0U2000) _ Balxi)o(xs)

CARTCH 50c0) uq (x1)uz(xq) = ¢0xq)us(x1) < 0.

From (6.7), we have

De < (ﬁ;+ﬁ29 C

5 +(*> u1(x1).

Hence, we get the lower bound of u;. O

Remark 6. Note that the statement (ii) hold for any d, > 0 and d; > 1. Actually, we can get (6.6) for any d; > 1.

6.1 Profileasd;, — 0

In view of Theorems 3.1 and 4.2, (6.1) possesses at least a positive solution for sufficiently small d; when
Ro,0 > 1. This subsection is spent on exploring the asymptotic profile of the positive solution of (6.1) with
d1 — 0.
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Theorem 6.1. Fixd, > 0, and let dy — 0.If Ro,0 > 1, then up to a subsequence of d1, every positive solution
(u1 (5 dy), ua (5 dq), us(+; dy)) of (6.1) satisfies
(u1(-5dy), ua(-5dy), us(-;dq)) — ((Dul, Dy,, %CDuZ) uniformly for x € Q,
where
Dy, (1) =G(x+, Dy, (1))

b6~ (B16 + B20Pu, + {8) Du, + \/[b6 - (B16 + B0Du, + (8) DuI* + 4bEDu, (BaoPu, + )
2 (B20®Du, +(6) ’

and @y, is a positive solution to

G(x, Du,)Du, B2(x)o(x) _ _
GO, D) + Doy, — B0 G0 Pur)Pu; =y Pu =0, x € 9, (6.8)

=0, X € 0Q.

drADy, + B1(x)

0Dy,
ov

Proof. We deal with the proof by two steps.
Step 1. Convergence of u,. Observe that u, satisfies

~dyAuy +y(uz = B1(+) ulf1+u1212 + ﬁzgz%(x)muz, x € Q, 69)

=0, x € 0Q.

ouy
ov

From the estimates in Lemmma 6.1, we know thatVp > 1,

<C.
Lr(Q)

1U2

Hﬁl(x) Uil +ﬁ2(X)Q(X)u

Uy + Uy 6(x)

Combined with the standard LP-estimate for elliptic equations and Sobolev embedding theorem (see, e.g.

(7,

U2 llgriaggys C, for some 0 < a < 1.

From the third equation of (6.1), it is clear that
w3 lgriaggy= C, forsome0 < a < 1.

Denoted by d;, the subsequence of d; — 0, satisfying di, — 0 as n — oo. With this subsequence,
(Uin, Uan, U3n) := (U1 (X5 d1n), U2 (X; d1n), u3(x; d1n)) of (6.1) with d; = dyp satisfies

(Uzn, Usn) — (CDuz, %(Duz) uniformly for x € Q and n — oo, (6.10)
where @, € C(Q) and @y, = 0. Taking into account of Harnack-type inequality of u, (6.6), it is clear that
either @, = 0 on Q or @y, > 0 on Q. (6.11)
We next prove that @,, > 0 on Q. Assume to the contrary that @,, = 0 on Q, i.e.,as n — oo,
U>n — O uniformly on Q. (6.12)
Choose O < € < b«/f] small enough that
0 < uy,(-) < eon Q, for all large n.

Hence, uq, satisfies
—dypAuqy < b(-) - ((')uln: xeQ,
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and

~dinAuiy 2 b(-) - Bre - BTi)euln -¢{(uin, x € Q,

respectively, with ‘)g‘% = 0, x € 0Q. Fix sufficiently large n, denoted by U, and V, respectively the unique
positive solution of the following two auxiliary systems:

-dmAU=bO—(OU,er;%g=0,xeaﬂ, (6.13)
and o,
—d1,AV = b(") - me—ﬁﬁ£v OV, x € 0 % -0, x € 0Q. (6.14)

It follows from the super-subsolution argument that
Vi <upn<Upon Q. (6.15)

By applying the singular perturbation theory technique (see, e.g. [5, Lemma 2.4] or [13, Lemma 2.1]), we know
thatas n — oo,

Un(x) — b() and Vu() — M uniformly on Q.

) Brle+ ()
Hence, .
ﬁl?(:) ~Pae < hmmful,,( ) < limsup ui,(-) < Q on Q. (6.16)
Tfje + (( 2 n— n—oo {( )
Since ¢ is arbitrary, (6.16) further implies that
Ui (x) — (8 uniformly on Q, as n — oo. (6.17)
We now pay attention to u, equation of (6.1) with u,:
_ UinUon ﬁz( Jo() (. . Oupn _
drAuzn = B1 ()uln vy T8y Winkan Y(Juzn, x € O 5, =0 xeon. (6.18)
Forall n = 1, define uy, := Huz"u\% that [|itzp|;~(q) = 1. In this setting, u;, satisfies
_ Br(Juin , Bal: )Q() ol . Oy, _
drAusy, - uzn 50 M y() | uzn, x € Q; 5 - 0, x € 00. (6.19)

As above, with the aid of standard compactness argument, as n — oo,
ﬂzH — ﬁz in Cl(ﬁ),

where 11, > 0 belongs to C*(Q), and satisfies ||u, | 1~(q) = 1. From (6.12) and (6.17), by sending n — o= in (6.19),
it is clear that u, satisfies
()o()b(:) | ~ ou

Uy, Xx€Q; —=2=0, xedQ.

~d)Auy = |B1() - y() + 22 v

6(-)¢C)

From [20, Lemma 2.2] (see also [12]), it follows that the Harnack-type inequality of u, remains true and then
u, > 0 on Q. Therefore, 0 is the principal eigenvalue of (3.8) with u9(x) = b(x)/{(x). This contradicts with our
assumption that Ry o > 1. Thus, @y, > 0 on Q, which means that

Usp — Dy, > 0 uniformly for x € Q. (6.20)

Step 2. Convergence of u; . From (6.1), we know that u1, solves:

dipditsy = b) - pr() 2 B2y (O, xe 0

OUin _ 0, x € 0Q.

ov
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By (6.20), choose € > 0 small enough that 0 < @y, — € < Uy, < Dy, + € on Q, for all large n. Then,

b() ﬁ () UinU2n BZ(.)p(.)ulnuZn _ C(')uln < b() _Bl(') U1n(®uz - €) _ BZ(')Q(') uln((puz _ €) _ ((')uln

Uin + U2n 6() in + (Pu, — €) 6()
_ (G, 01 it G, Duy)
Uin + (Pu, - €)
where
Ko, ) - 4 O B0+ BI04~ 9 + €0 ~ )+ By
2[B580s; - )+ ¢0)]

and Dy = /[6() = (B1() + 2080w} — ) + (w5 - 12 + 4w - )50 (w5 - €) + (). Obviously,

hé(x, @y,) > 0and hé(x, @y,) <0on Q.

Consider the following problem

(h (x, @u,) - 2)(z - hE(x, Dy,))
(z + (Du, - €)) » Xel (6.21)
=0, x € 00.

—dnAz

0z
ov

Then, for sufficiently large C > 0, (u1,, C) is a pair of sub-supersolution of (6.21) on Q. Hence, (6.21) admits at
least one positive solution, zn, and z, satisfies u1, < zn < C on Q. Further by the singular perturbation theory
technique,

zn — h$(x, @y, (x)) uniformly on Q, as n — oo.

Hence,
lim sup uq,(x) < hS(x, @y, (x)) uniformly on Q. (6.22)

n—yoo

On the other hand,

b() - ) mtzn B0y, s = by - o) 2P P00y (@, 4 €) - gy

_ (he(x, Puy) — urn)(Uin - he(x, <Du2))
Uip + (Du, +€)

with

X b() = (B1() + E58O (@, + €) + {()(Du, + €) £ D
hE‘(X’ (Duz) = )
2B @y, +€) +4()]

where Dy = /() - (B1() + B8O (@, + €) + ()@, + )2 + 4b(Dy, + ) ESEO @y, +€) + (). By a

similar argument as before, we further have
liminf u1,(x) = hi(x, @y, (x)) uniformly on Q. (6.23)
n—oo

Since
hm hf—(x, (I)uz) = G(Xy (I)uz (X)) = hm h;r(x’ q)llz);
€—0 e—0

thenas n — oo,
u1n(x) = G(x, @y,(x)) uniformly on Q.

As a result, by (6.18), @y, satisfies (6.9). This proves Theorem 6.1. O
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6.2 Profileasd, — 0

This subsection is spent on exploring the asymptotic profile of the positive solution of (6.1) with d, — 0. In
this case, because of mathematical difficulty, we only consider the limiting profile of positive solutions in 1-D
space. Without loss of generality, we take Q = (0, 1).

Theorem 6.2. Assume that {x € [0, 1] : 6(-)B1(:) + B2(Do()ul() > 8(-)y(-)} is non-empty. Fix d, > 0, and let
d> — 0, then every positive solution (u1(-; d>), u>(+; d>), us(-; d,)) of (6.1) satisfies

(u1(+5 d2), ua(s; da), us(-; dz)) — (lI,llla Y, %)‘I’uz) uniformly on [0, 1],

where

((B10B0) + BapO) ()~ YIS ¥y )
P ( Y060) ~ B20p (W () ) (629

and ¥y, solves

{ ar v, + b6 - i)t - B2 v, gw <0, xe 0.0,

¥, (0) = ¥y, (1) = 0.

Proof. From the estimats (6.2) and (6.4), together with the elliptic L!-estimate theory (see, e.g. [2] or [12,
Lemma 2.2]),
lutllwraqo,1) = €, Vg >0,

Choose p large enough, combined with the Sobolev embedding theorem, that
Il u1 llgago,17)< C for some 0 < a < 1.

Denoted by d,, the subsequence of d, — 0, satisfying d,;, — 0 as k — oo. With this subsequence,
(U1 Uags Usi) = (W1 (5 dag), ua (5 dag), us (5 day)) of (6.1) with dy = dy satisfies uq, — Wi, in C([0, 1]) as
k — oo.

We note that u,; satisfies

Uqg + Upg 6(-) (6.25)

u . .
{ itz + {Bl(') e, Pl Jol )ulk -y()|ux=0, xec(0,1),
Uy (0) = uy (1) = 0.
By a similar super-subsolution argument (see Theorem 6.1), we get
Uy — Py, uniformly on [0, 1] as k — oo,

where ¥y, is given by (6.24). Moreover, from the expression of ¥y, , it is clear that ¥, solves (6.2). The proof
is complete. O

6.3 Profileas d; — oo

In view of Theorems 3.1 and 4.2, (6.1) possesses at least a positive solution for sufficiently small d; when
o, > 1. This subsection is spent on exploring the asymptotic profile of the positive solution of (6.1) with
d1 — 00,

Theorem 6.3. Assume that Ry, > 1. Fix d > 0, and let di — oo, then every positive solution
(u1(-;dq), us (-5 dq), uz(+; dq1)) of (6.1), up to a subsequence of d1, satisfies

(u1(5d), ua(3 o), us(5dn) = (uf, w5, Bus”) uniformly on @,
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where (u7”, u3’) solves

/ [b() - COuT - y(uST] dx = 0, xeo,

0

_ oo _p oy UTUT  PBa()0() o o N oo (6.26)
dyAu3 = B ( )UT T + 50) utuy -y, xeQ,

ou3 =0, X €00,
ov

and uf’ is a positive constant and u$® > 0 on Q.

Proof. Rewriting u; equation of (6.1) as

B1(uiua  Ba()e()
up +up 8()

=0, x € 0Q.

1
_Aul = dil |:b(.) —
ouy
ov

Uiy — ((-)ul} , X€eQ,
(6.27)

From the estimates of u; and u, in Lemma 6.1, we know that

Hdll [b(-) AOws _p2000),, (')“1]

Up + Uz 6(-)

<C, Vp=1,
Lr(Q)

where C > 0 does not dependent on d; > 1. Combined with the standard LP-estimate for elliptic equations
and Sobolev embedding theorem,

I'u1 lgreagy= C for some 0 < a < 1.

Denoted by d;; the subsequence of d; — oo, satisfying d;; — 0 asi — oo. With this subsequence,
(Ungs Uzj, uzg) = (U1(+; dqy), uz (5 dvy), us (5 dyy)) of (6.1) with dy = dy; satisfies uy; — u5” in CH(Q) as i — oo,
where u$® > 0 on Q due to the estimate of u;. Moreover, uj., solves —Au$> = 0, x € Q with homogeneous
Neumann boundary condition implies that u7” > 0 is a positive constant.

Similar arguments as before, as i — oo,

(i u5) = (45, 5us”) in C'(@),

where u$® € C1(Q)and u5® > 0 on Q. Since the Harnack-type inequality of u,, then either u5* > 0 on Q or us® =
0 on Q. Similar to the arguments in Section 6.1, we suppose that u$® = 0 on Q. Define fi,; := uy;/||u| 1=(Q)
that [|it;|p~(q) = 1 for alli > 1, and &i,; satisfies

dy Aty + [ﬁl(.)unu‘:iuzl' + ﬁzg().g)(')uu —J/(')] ,;=0, xeQ,

Olli _ 0, x € 00.

ov

As aresult, it,; — 015 in C}(Q) as i — oo, where 15" > 0 on Q, 105 ~() = 1. AS up; — 0 as i — oo, it follows
from a super-subsolution argument that uy; — [, b(x)dx/ [, ¢(x) dx. Thus, @15’ solves

o) [~ b()d
dADS + {ﬁl(') N ﬁz;zg(f) f("(_)(dl . —y(-)} 15 =0, xeQ,
. 0
ouy _ 0, x € 0Q.
ov

It can be seen that the Harnack-type inequality of &i5° also remains true and then 2i5° > 0 on Q. Consequently,
0 is the principal eigenvalue of (3.12), a contradiction with Ry .. > 1. Hence, u5® > 0 satisfies (6.26). This
proves Theorem 6.3. O
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6.4 Profileas d, — oo

This subsection is spent on exploring the asymptotic profile of the positive solution of (6.1) with d, — oo.
. 0 . .

Theorem 6.4. Assume that / (ﬁl(-) + %

every positive solution (u1(-; d>), u>(+; d»), uz(+; d)) of (6.1), up to a subsequence of d,, satisfies

)dx/ /y(-)dx > 1. Fixd; > 0, and let d, — oo, then
0

(u1(5 dz), ua (5 d2), us(+; dz)) — (u1oo, U2oos %uzw) uniformly on Q,

where (U100, Uzoo) SOlVES

Mty = b() - By () M=t B0 e, xe o,

Uloo + Ugeo 6(-)
/ [B() - {Ot1en — Y Ntizea]dx = 0, xeQ, (6.28)
Q
ag;“‘ =0, X €0Q,

and u5.. is a positive constant and u1.. > 0 on Q.

Proof. From the discussion in Lemma 6.1 and RemarKk 6, it is clear that the estimats (6.6) and (6.7) hold for all
large d,, and C > 0 does not depend on d; and d> > 1.

Denoted by d,; the subsequence of d, — oo, satisfying d,; — 0 as j — oo. With this subsequence, com-
bined with the standard L?-estimate for elliptic equations and Sobolev embedding theorem, (u 1j> Uj, U3 ]-) =
(U1 (5 daj), uz (-5 daj), us(+5 dyy)) of (6.1) with d, = d,; satisfies

(ulj’ uzj’ u3j) — (uloo’ Uloos %HLX;) in Cl(ﬁ)’ asj — 00,

where uq., > 0 on Q and u,.. is a nonnegative constant.
We next show that u,.. is a positive constant. By a similar argument as before, suppose that 1., = 0. For
allj > 1, define @iy; := uyj/||uyjl 1=(q) that [|itj]|1~(q) = 1, and iiy; satisfies

oyt + [ﬁl(-) wy ﬁz(')g(')uu _y(.)} fi,;=0, xeQ,

o Ujgj + Upj 5() (629)
Oty _ 0, X € 0Q.
ov
Thus, if necessary, by passing to a further subsequence of d,;, one can get
i1 in C'(Q), as j— oo. (6.30)

On the other hand, since u,; — 0 as j — oo, it follows from a super-subsolution argument that u;; — uf as
j — oo. Then, integrating (6.29) and sending j — oo, we have

. . O .
/ [ﬁﬂ-h%—y(-) =0,
0]

a contradiction. Therefore, u-.. is a positive constant, and (1., Ur..) satisfies (6.28). The proof is complete.
O

7 Conclusion and Discussion

In current work, we explore the global dynamics and asymptotic profiles of a host-pathogen model in a spa-
tially bounded domain. We formulate the model by a reaction-diffusion system with space dependent pa-
rameters, where host individuals disperse at distinct rates and the mobility of pathogen is ignored. Complete
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analysis of the system allow us to investigate how large or small flows of hosts affect the spatial spread of
disease, and what is the role of spatial heterogeneity on disease transmission.

We firstly establish that the existence of global solution, which is achieved by extending the local solution
to a global one (see Lemma 2.1 and Theorem 2.1). To cope with the non-compactness of solution semiflow Y(t),
we utilize the Kuratowski measure of noncompactness to verify the asymptotic smoothness condition. Hence,
by [8, Theorem 2.4.6], (1.5) possesses a global compact attractor in X*, denoted by .Aq (see Theorem 2.2).

The BRN, Ry, is identified as the spectral radius of NGO, and also characterized by some equivalent princi-
pal spectral conditions, which establishes the threshold dynamical result for pathogen extinction and persis-
tence (see Theorem 4.1 and 4.2). Specifically, we demonstrate that how g depends on the diffusion coefficient
dy for d; — 0 and d; — oo (see Theorem 3.1). We have also confirmed the global stability of E, in a critical
case that ®y = 1. It should be pointed here that the method used in Theorem 4.1 can also be applied in Avian
influenza dynamical model [28] and Ebola transmission model [35], where the dynamic behaviors for the case
that ¢ = 1 are still open. We left it as future investigation. In a homogeneous case and additional condition,
we explore the global attractivity of PSS (positive equilibrium) by the technique of Lyapunov function.

When Ry > 1, (1.5) possesses at lease one positive steady state. To achieve better understanding the
effects of the host’s movements on the spatial distribution of pathogen, we explore the asymptotic profiles
of positive steady state for the cases that d; — 0, d; — oo, d, — 0 and d, — oo. When d; — O, our
result (Theorem 6.1) demonstrate that host individuals distribute on Q in a non-homogeneous way. Under the
assumption that 1-D space, Q = (0, 1), and the condition that {x € [0, 1] : 6(-)B1(") +B2(o()ul() > 8¢y}
is non-empty (of which locations can be termed as the favorite or not favorite sites for pathogens), we see
from Theorem 6.2 that the infected hosts will vanish in some place and distribute in the remaining place
(due to 6.24) and the susceptible hosts stay inhomogeneously on the whole habitat. When d; — oo (d, —
o), susceptible (resp. infected) hosts distribute eventually over Q, and infective (resp. susceptible) hosts
distribute on Q in a non-homogeneous way (see Theorems 6.3 and Theorem 6.4). The condition in Theorem
6.4 that | olB1() + B2(e(Hud(-)/6()]dx > /, o y(-)dx is usually termed as the favorable domain for pathogens
and also ensure the existence of the positive solution in Theorem 6.4). In summary, our result suggests that
slow or fast movement of host individuals have a great impacts on the spatial distribution of the pathogens,
which may help to design strategies for disease control and prevention.

On the other hand, our results on asymptotic profiles are established when positive steady state exists.
With the same arguments as those in [31, 32], u(x) — b(x)/¢{(x) in C*(Q) as d; — 0 and 1° defined in 3.8
ensures that n° < 0. It follows that Ry < 1if d; < d,, for some d; > 0. This together with Theorem 4.1 indicate
that pathogens still can be eliminated with d; — 0. Compared to the results in [31, 32], our results enrich
the dynamical results on the asymptotic profiles. In fact, our results also reveal that disease can not be
eliminated by fast movement of host individuals. It also remains an challenging problem to revisit Theorem
6.2 as d, — 0 without spatial dimension limitations. In a homogeneous case, it also remains an interesting
problem to perform the bifurcation analysis on steady state solutions with specific bifurcation parameter.
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