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Abstract: The Keller-Segel-Stokes system
nt + u ·∇n = ∆n −∇ · (n∇c) + ρn − µnα ,
ct + u ·∇c = ∆c − c + n,
ut = ∆u +∇P − n∇Λ, ∇ · u = 0,

(*)

is considered in a bounded domain Ω ⊂ R3 with smooth boundary, with parameters ρ ≥ 0, µ > 0 and α > 1,
and with a given gravitational potential Λ ∈ W2,∞(Ω).

It is shown that in this general setting, when posed under no-�ux boundary conditions for n and c and ho-
mogeneous Dirichlet boundary conditions for u, and for any suitably regular initial data, an associated initial
value problem possesses at least one globally de�ned solution in an appropriate generalized sense. Since it
is well-known that in the absence of absorption, already the corresponding �uid-free subsystem with u ≡ 0
and µ = 0 admits some solutions blowing up in �nite time, this particularly indicates that any power-type
superlinear degradation of the form in (*) goes along with some signi�cant regularizing e�ect.
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1 Introduction
The damping role of logistic sources in classical Keller-Segel systems. Chemotaxis, the biased move-
ment of individuals corresponding to concentration gradients of a chemical signal, is known to be a mech-
anism of great signi�cance for pattern formation in numerous biological contexts. Concentrating on cross-
di�usion and signal production through cells as the main ingredients of a corresponding feedback loop, the
apparently most prominent mathematical description of essential aspects within such processes is achieved
by the classical Keller-Segel model ([8]) in its minimal version, as given by{

nt = ∆n −∇ · (n∇c),
ct = ∆c − c + n.

(1.1)
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Indeed, several studies have revealed a distinct ability of this system to describe spontaneous aggregation in
two- and higher-dimensional settings; for instance, it is well-known that the homogeneous Neumann prob-
lem associated with (1.1) in balls Ω ⊂ RN possesses some solutions blowing up in �nite time when either
N ≥ 3, or when N = 2 and the total mass of cells is large ([5], [27]).

In cases when the respective application contexts involve large time scales, model re�nements which appro-
priately account for proliferation and death of cells seem in order. Yet leaving further coupling unaddressed,
Keller-Segel-growth systems of the form{

nt = ∆n −∇ · (n∇c) + ρn − µnα ,
ct = ∆c − c + n,

(1.2)

provide modi�cations of (1.1) which incorporate such mechanisms through the inclusion of standard logistic
proliferation terms, and hence in amanner quite common in biomathematicalmodeling. Mathematically, the
introduction of such logistic e�ects can rule out the possibility of unboundedness phenomena in the style of
those known to occur for (1.1); indeed, in the most prototypical framework related to the choice α = 2, cor-
responding Neumann-type initial-boundary value problems admit bounded smooth solutions for essentially
arbitrary initial data if either the spatial dimension N satis�es N = 2 and µ is any positive number ([13]), or
N ≥ 3 and µ ≥ µ0 with some suitably large µ0 = µ0(ρ, Ω) > 0 ([25]; cf. also [7], [34], [35] and the references
therein for some more studies concerned with global classical solvability of (1.2)).

Further �ndings in the literature, however, indicate that also the presence of weaker degradation terms may
go alongwith signi�cant relaxation e�ects in comparisonwith (1.1): For instance, in the weakly quadratic ab-
sorption case when in (1.2) we have α = 2, N ≥ 3 and µ ∈ (0, µ0), after all some global solutions can be seen
to exist within a natural weak solution concept ([11]). By resorting to some yet weaker notions of solvability,
global solutions could more recently also be constructed for systems merely containing certain subquadratic
degradation terms, where �rst steps in this direction required that α ≥ 2 − 1

N when N ≥ 2 ([20], [21]), and
where subsequent approaches successively facilitated extensions to the wider ranges α > 2N+4

N+4 ([32]) and
α > min{2N+4N+4 , 2 − 2

N } ([36]); very recently, a framework generalized solvability was designed which allows
for the construction of global solutions even in quite arbitrary superlinearly dampened logistic-type Keller-
Segel systems, including the choice of arbitrary α > 1 in (1.2) whenever N ≥ 2 ([33]). It might be noted that
in general it seems indeed appropriate to suitably relax requirements on regularity of “solutions" to (1.2), as
some caveats assert the occurrence of blow-up, with respect to spatial L∞ norms of n, in parabolic-elliptic
variants of (1.2): It is known, for example, that such explosions occur in the variant of (1.2) in which the re-
spective second equation is replaced with 0 = ∆c− c+ n when α < 7

6 for N ∈ {3, 4}, or α < 1+ 1
2(N−1) for N ≥ 5

([30]; see also [3], [17], [26] for several precedents in this direction).

Keller-Segel-�uid systems involving logistic degradation. The object of the present study is the Keller-
Segel-Stokes system 

nt + u ·∇n = ∆n −∇ · (n∇c) + ρn − µnα , x ∈ Ω, t > 0,
ct + u ·∇c = ∆c − c + n, x ∈ Ω, t > 0,
ut = ∆u +∇P − n∇Λ, ∇ · u = 0, x ∈ Ω, t > 0,

(1.3)

which quite in general can be viewed as an extension of (1.2) that accounts for interaction of proliferating and
chemotacticallymigrating populationswith liquid environments through transport andbuoyancy in the style
of the modeling approach in [19]. More speci�cally, this system can, in particular, be used to model e�ects of
chemotaxis onprocesses of coral fertilization, as addressed in [9] and [10] in the context of a relatedparabolic-
elliptic chemotaxis system involving a given solenoidal �uid �eld. Indeed, in [9] and [10] the chemotactically
directed motion of spermatozoids toward eggs is described in the framework of a two-component model ac-
counting for transport through a prescribed �uid, with a focus on the question how far taxis may a�ect the
reactionmechanism, in that particular context corresponding to the choice ρ = 0 and hence to a merely sink-
type reaction term of the form −µnα, by in�uencing the total fertilization rate, as measured by the quantity∫
Ω n(x, t)dx. The model (1.3) now extends this by considering the �uid �eld as an additional unknown, the
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evolution ofwhich is governed by the incompressible Stokes system forced by the population density variable
due to buoyancy in a given external gravitational potential Λ.

Due to an accordingly increased mathematical complexity, systems of the form (1.3) seem much less thor-
oughly understood than associated chemotaxis-only counterparts; in particular, the literature in this direc-
tion seems limited to the case α = 2of quadratic degradation: A result on global existence ofweak solutions to
a no-�ux/no-�ux/Dirichlet initial-boundary value therefor in two-dimensional bounded domains was estab-
lished in [1] when ρ = 0, and in [15] it was seen that actually global bounded classical solutions can be found,
even in a corresponding variant of (1.3) involving the full Navier-Stokes equations rather than its Stokes sim-
pli�cation, and for arbitrary ρ ≥ 0. The three-dimensional version of (1.3) with α = 2 is known to possess
global bounded smooth solutions in convex domains whenever µ > 23 ([16]), whereas for arbitrary µ > 0
at least some global generalized solutions exist, again even a corresponding Navier-Stokes framework ([31]).
No existence result, however, seems available for any chemotaxis-(Navier-)Stokes systems of the form (1.3)
which involves subquadratic degradation in that α < 2.

Main results. In order to address this apparently open solvability question in the context of a prototypically
simple initial-boundary value problem for (1.3), we shall subsequently consider

nt + u ·∇n = ∆n −∇ · (n∇c) + ρn − µnα , x ∈ Ω, t > 0,
ct + u ·∇c = ∆c − c + n, x ∈ Ω, t > 0,
ut = ∆u +∇P − n∇Λ, ∇ · u = 0, x ∈ Ω, t > 0,
∂n
∂ν =

∂c
∂ν = 0, u = 0, x ∈ ∂Ω, t > 0,

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω,

(1.4)

in a bounded domain Ω ⊂ R3 with smooth boundary, with parameters ρ ≥ 0, µ > 0 and α > 1, and with a
given gravitational potential Λ ∈ W2,∞(Ω).

Throughout our analysis, we shall assume that the initial data therein are such that
n0 ∈ C0(Ω) is nonnegative, that
c0 ∈ W1,∞(Ω) is nonnegative, and that
u0 ∈ D(Aϑ) with some ϑ ∈ (34 , 1),

(1.5)

where A denotes the realization of the Stokes operator in the solenoidal subspace L2σ(Ω) = {φ ∈ L2(Ω)|∇ ·φ =
0} of L2(Ω).

In this framework, we shall see that also in this considerably more complex setting than the �uid-free one in
(1.2), actually any α > 1 is su�cient to ensure global existence of certain solutions:

Theorem 1.1. Let Ω ⊂ R3 be a bounded domain with smooth boundary, and suppose that ρ ≥ 0, µ > 0 and

α > 1, (1.6)

and that Λ ∈ W2,∞(Ω). Then for any choice of (n0, c0, u0) ful�lling (1.5), the problem (1.4) possesses at least
one global generalized solution (n, c, u) in the sense of De�nition 2.5 below.

Main ideas and key steps. In view of the circumstance that for small values of α > 1 we apparently can
only expect quite poor a priori information on solution regularity, a major challenge, newly arising in the
analysis of (1.4) when compared to that of (1.2), will especially be linked to the question how far regularity
features of the taxis gradient may be in�uenced by the considered �uid interaction. Unlike in the associated
unperturbed case with u ≡ 0 in which some strong spatio-temporal Lq precompactness properties of ∇c
can be derived solely from temporally uniform L1 bounds for n on the basis of rather standard regularization
features in the corresponding semilinear heat equation solved by c (see, e.g., [33, Lemma 5.1]), in the present
situation a corresponding argument evidently needs to appropriately cope with the additional appearance
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of the nonlinear convective term −u · ∇c in the second equation from (1.4). The core of our analysis will
thus consist in making adequate use of some basic integrability properties of the �uid velocity �eld, as quite
directly resulting from L1 boundedness of n thanks to standard smoothing properties of the Stokes semigroup
(Lemma 2.3), in order to derive certain compactness features of c and especially ∇c, where by referring to
certain strong Lp topologies inter alia ensure a.e. pointwise convergence along some sequences of solutions to
suitably regularized problems (cf. (2.1) and Lemma 5.1). A key step toward thiswill be accomplished in Lemma
3.7, in which an argument based onmaximal Sobolev regularity in inhomogeneous linear heat equations will
be applied to a variant of (−∆ + 1)−

1
2+δc for suitably small δ = δ(α) > 0, and where said basic regularity

features of n and u will be used to estimate correspondingly arising inhomogeneities through an appropriate
interpolation inequality, to be prepared in Lemma 3.6. In the context of a suitablyweak solution concept quite
closely paralleling that pursued in the �uid-free counterpart in [33], this pointwise convergence property will
form an essential ingredient in an adequate limit process, to be performed in Lemma 5.2.

2 Preliminaries

2.1 Appropriate solutions and basic properties thereof

As a conveniently regularized variant of (1.4), for ε ∈ (0, 1) we shall subsequently consider the approximate
problem 

nεt + uε ·∇nε = ∆nε −∇ · (nε∇cε) + ρnε − µnαε , x ∈ Ω, t > 0,
cεt + uε ·∇cε = ∆cε − cε + nε

1+εnε , x ∈ Ω, t > 0,
uεt = ∆uε +∇Pε − nε∇Λ, x ∈ Ω, t > 0,
∂nε
∂ν = ∂cε

∂ν = 0, uε = 0, x ∈ ∂Ω, t > 0,
nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ Ω,

(2.1)

that according to a well-established construction on the basis of the contraction mapping principle can be
seen to admit local-in-time smooth solutions which, due to boundedness of 0 ≤ n 7→ n

1+εn for each ε ∈ (0, 1),
can actually be extended so as to become global classical solutions (cf., e.g., [29] and [23] for details in closely
related situations):

Lemma 2.1. Let ε ∈ (0, 1). Then there exist uniquely determined functions
nε ∈ C0(Ω × [0,∞)) ∩ C2,1(Ω × (0,∞)),
cε ∈

⋂
q>3 C

0([0,∞);W1,q(Ω)) ∩ C2,1(Ω × (0,∞)) and
uε ∈ C0([0,∞);D(Aϑ)) ∩ C2,1(Ω × (0,∞))

such that nε ≥ 0 and cε ≥ 0 in Ω × (0,∞), and that (2.1) is satis�ed in the classical sense with some Pε ∈
C1,0(Ω × (0,∞)).

The following basic and essentially well-known properties of these solutions are due to the presence of the
degradation term in the �rst equation of (2.1).

Lemma 2.2. Let α > 1. Then∫
Ω

nε(·, t) ≤ m := max
{∫
Ω

n0 ,
( ρ
µ

) 1
α−1 |Ω|

}
for all t > 0 and ε ∈ (0, 1), (2.2)

and moreover
T∫

0

∫
Ω

nαε ≤
(1 + ρT) · m

µ for all T > 0 and ε ∈ (0, 1). (2.3)
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Proof. By integration of the �rst equation in (2.1) we see that

d
dt

∫
Ω

nε = ρ
∫
Ω

nε − µ
∫
Ω

nαε for all t > 0, (2.4)

so that since
∫
Ω n

α
ε ≥ |Ω|1−α

{∫
Ω nε

}α
for all t > 0 by the Hölder inequality, (2.2) readily follows through a

straightforward ODE comparison argument. Thereupon, a direct time integration in (2.4) shows that

∫
Ω

nε(·, T) + µ
T∫

0

∫
Ω

nαε ≤
∫
Ω

n0 + ρ
T∫

0

∫
Ω

nε ≤
∫
Ω

n0 + ρTm for all T > 0

and hence establishes (2.3).

Through a standard argument based on well-known smoothing properties of the Stokes semigroup, the L1

boundedness feature expressed in (2.2) can readily be seen to entail the following (cf. also [22, Lemma 2.5]
and [29, Corollary 3.4]).

Lemma 2.3. Let α > 1, and let δ ∈ (0, 32 ) and T > 0. Then there exists C(δ, T) > 0 such that

‖uε(·, t)‖L3−δ(Ω) ≤ C(δ, T) for all t ∈ (0, T) and any ε ∈ (0, 1) (2.5)

and
‖∇uε(·, t)‖L 3

2 −δ(Ω)
≤ C(δ, T) for all t ∈ (0, T) and each ε ∈ (0, 1). (2.6)

2.2 A generalized notion of solvability

In this section, we quite closely follow the approach in [33] to develop a generalized solution concept suitable
for our purposes. Thiswill be based on the following observation onhowproducts of the formϕ(n)ψ(c) evolve
in time, along suitably smooth trajectories either of (2.1) for ε ∈ (0, 1), or of the original problem (1.4) – the
existence of the latter being formally presupposed here only.

Lemma 2.4. Let ϕ, ψ and Φ belong to C2([0,∞)) with ϕ ≥ 0, ψ > 0, ϕ′′ > 0 and Φ′ =
√
ϕ′′ on [0,∞), and

suppose that ε ∈ [0, 1) and T ∈ (0,∞], and that n ∈ C2,1(Ω × (0, T)), c ∈ C2,1(Ω × (0, T)), u ∈ C2,1(Ω ×
(0, T);R3) and P ∈ C1,0(Ω × (0, T)) are such that n ≥ 0 and c ≥ 0 and that (2.1) holds in Ω × (0, T). Then for
arbitrary φ ∈ C∞(Ω × (0, T)),∫

Ω

∂t
{
ϕ(n)ψ(c)

}
· φ

= −
∫
Ω

∣∣∣∣∇(Φ(n)√ψ(c)) + { ϕ′(n)√
ϕ′′(n)

· ψ
′(c)√
ψ(c)

− 1
2Φ(n)

ψ′(c)√
ψ(c)

− 1
2n
√
ϕ′′(n)

√
ψ(c)

}
·∇c

∣∣∣∣2 · φ
−
∫
Ω

{
ϕ(n)ψ′′(c) − ϕ

′2(n)
ϕ′′(n) ·

ψ′2(c)
ψ(c) −

1
4n

2ϕ′′(n)ψ(c)
}
· |∇c|2φ

−
∫
Ω

ϕ′(n)√
ϕ′′(n)

√
ψ(c)∇

(
Φ(n)

√
ψ(c)

)
·∇φ

+
∫
Ω

{
nϕ′(n)ψ(c) − ϕ(n)ψ′(c) + 1

2
Φ(n)ϕ′(n)√

ϕ′′(n)
ψ′(c)

}
∇c ·∇φ +

∫
Ω

ϕ(n)ψ(c)u ·∇φ

+
∫
Ω

{
(ρn − µnα)ϕ′(n)ψ(c) − cϕ(n)ψ′(c) + n

1 + εn ϕ(n)ψ
′(c)
}
· φ. (2.7)
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Proof. This result can be proved by quite a trivial modi�cation of that from Lemma 3.1 in [33].

On the basis of a formal evaluation of (2.7) for ε = 0, we can thereby extend the solution concept speci�ed
in [33] to the present case involving �uid interaction in a straightforward manner (cf. also [24] and [12] for
related precedents).

De�nition 2.5. Let 
n ∈ Lαloc(Ω × [0,∞)),
c ∈ L1loc([0,∞);W1,1(Ω)) and
u ∈ L1loc([0,∞);W1,1

0 (Ω;R3))

(2.8)

be such that n ≥ 0, c ≥ 0 and∇ ·u = 0 a.e. in Ω×(0,∞). Then we will call (n, c, u) a global generalized solution
of (1.4) if ∫

Ω

n(·, t) ≤
∫
Ω

n0 + ρ
t∫

0

∫
Ω

n − µ
t∫

0

∫
Ω

nα for a.e. t > 0 (2.9)

and

−
∞∫
0

∫
Ω

cφt −
∫
Ω

c0φ(·, 0) = −
∞∫
0

∫
Ω

∇c ·∇φ −
∞∫
0

∫
Ω

cφ +
∞∫
0

∫
Ω

nφ +
∞∫
0

∫
Ω

cu ·∇φ (2.10)

for all φ ∈ C∞0 (Ω × [0,∞)), if

−
∞∫
0

∫
Ω

u · φt −
∫
Ω

u0 · φ(·, 0) = −
∞∫
0

∫
Ω

∇u ·∇φ −
∞∫
0

∫
Ω

nφ ·∇Λ (2.11)

for all φ ∈ C∞0 (Ω × [0,∞)) ful�lling∇ · φ = 0 in Ω × (0,∞), and if moreover one can �nd functions ϕ, ψ and Φ
which belong to C2([0,∞)) and satisfy

ϕ′ < 0, ψ > 0 and ϕ′′ > 0 on [0,∞) (2.12)

as well as
Φ′ =

√
ϕ′′ on [0,∞), (2.13)

such that {
ϕ(n)ψ′′(c) − ϕ

′2(n)
ϕ′′(n) ·

ψ′2(c)
ψ(c) −

1
4n

2ϕ′′(n)ψ(c)
}
|∇c|2, nϕ′(n)ψ(c)|∇c|,

ϕ(n)ψ′(c)|∇c|, Φ(n)ϕ′(n)√
ϕ′′(n)

ψ′(c)|∇c| and ϕ(n)ψ(c)|u| as well as

nαϕ′(n)ψ(c), cϕ(n)ψ′(c) and nϕ(n)ψ′(c) belong to L1loc(Ω × [0,∞)), (2.14)

that
Φ(n)

√
ψ(c) ∈ L2loc([0,∞);W1,2(Ω)), (2.15)

and that

−
∞∫
0

∫
Ω

ϕ(n)ψ(c)φt −
∫
Ω

ϕ(n0)ψ(c0)φ(·, 0)

≤ −
∞∫
0

∫
Ω

∣∣∣∣∇(Φ(n)√ψ(c)) + { ϕ′(n)√
ϕ′′(n)

· ψ
′(c)√
ψ(c)

− 1
2Φ(n)

ψ′(c)√
ψ(c)

− 1
2n
√
ϕ′′(n) ·

√
ψ(c)

}
∇c
∣∣∣∣2φ

−
∞∫
0

∫
Ω

{
ϕ(n)ψ′′(c) − ϕ

′2(n)
ϕ′′(n) ·

ψ′2(c)
ψ(c) −

1
4n

2ϕ′′(n)ψ(c)
}
· |∇c|2φ
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−
∞∫
0

∫
Ω

ϕ′(n)√
ϕ′′(n)

√
ψ(c)∇

(
Φ(n)

√
ψ(c)

)
·∇φ

+
∞∫
0

∫
Ω

{
nϕ′(n)ψ(c) − ϕ(n)ψ′(c) + 1

2
Φ(n)ϕ′(n)√

ϕ′′(n)
ψ′(c)

}
∇c ·∇φ

+
∞∫
0

∫
Ω

ϕ(n)ψ(c)u ·∇φ

+
∞∫
0

∫
Ω

{
(ρn − µnα)ϕ′(n)ψ(c) − cϕ(n)ψ′(c) + nϕ(n)ψ′(c)

}
· φ (2.16)

for each nonnegative φ ∈ C∞0 (Ω × [0,∞)).

Remark. Similar to a corresponding comment made in [33] for the associated �uid-free counterpart, quite
simple adaptation of the arguments detailed in [12, Lemma 2.5] and [28, Lemma 2.1] shows that this concept
is indeed consistent with that of classical solvability in the sense that if n0 ∈ C0(Ω), c0 ∈ C0(Ω) an u0 ∈
C0(Ω;R3) are such that u0|∂Ω = 0, and if 0 ≤ n ∈ C0(Ω × [0,∞)) ∩ C2,1(Ω × (0,∞)), 0 ≤ c ∈ C0(Ω × [0,∞)) ∩
C2,1(Ω × (0,∞)) and u ∈ C0(Ω × [0,∞);R3) ∩ C2,1(Ω × (0,∞);R3) are such that (n, c, u) forms a global
generalized solution of (1.4) in the above sense, then there exists P ∈ C1,0(Ω × (0,∞)) such that (n, c, u, p) in
fact solves (1.4) in the classical sense.

3 A strong precompactness feature of cε
Next approaching the core of our analysis, in this sectionwe intend to derive a strong precompactness feature
of cε with respect to the norm in L1((0, T);W1,1(Ω)) for arbitrary T > 0 (see Lemma 3.9), which will play a
key role not only in the course of a suitable limit process in the second equation of (2.1), but also in the �nal
veri�cation of the supersolution property in Lemma 5.2.

Our �rst step in this direction results from a standard testing procedure applied to the second equation from
(2.1), which thanks to the space-time integrability property in (2.3) yields the following.

Lemma 3.1. Let α > 1 and

p(α) :=
{

3α
5−2α if α < 5

2 ,
+∞ if α ≥ 5

2 .
(3.1)

Then for each T > 0 and any p ∈ (1,∞) ful�lling p ≤ p(α) there exists C(p, T) > 0 such that∫
Ω

cpε (·, t) ≤ C(p, T) for all t ∈ (0, T) and ε ∈ (0, 1) (3.2)

and
T∫

0

∫
Ω

cp−2ε |∇cε|2 ≤ C(p, T) for all ε ∈ (0, 1). (3.3)

Proof. Since∇ · uε = 0, from the second equation in (2.1) we obtain that

1
p
d
dt

∫
Ω

cpε + (p − 1)
∫
Ω

cp−2ε |∇cε|2 +
∫
Ω

cpε =
∫
Ω

nεcp−1ε for all t > 0, (3.4)
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where by the Hölder inequality, writing fε(t) :=
∫
Ω n

α
ε (·, t) for t > 0 and ε ∈ (0, 1) we see that∫

Ω

nεcp−1ε ≤ f
1
α
ε (t) ·

{∫
Ω

c
(p−1)α
α−1
ε

} α−1
α

= f
1
α
ε (t)‖c

p
2
ε ‖

2(p−1)
p

L
2(p−1)α
p(α−1) (Ω)

for all t > 0. (3.5)

Here since our assumption on p warrants that if α < 5
2 then

2(p − 1)α
p(α − 1) = 2α

α − 1 ·
(
1 − 1

p

)
≤ 2α
α − 1 ·

(
1 − 5 − 2α

3α

)
= 10

3 ,

and that thus in both cases α < 5
2 and α ≥ 5

2 we have 2(p−1)α
p(α−1) < 6, we may invoke the Gagliardo-Nirenberg

inequality to �nd C1 = C1(p) > 0 such that

‖c
p
2
ε ‖

2(p−1)
p

L
2(p−1)α
p(α−1) (Ω)

≤ C1‖∇c
p
2
ε ‖

3(p−α)
pα

L2(Ω)‖c
p
2
ε ‖

(2p+1)α−3p
pα

L2(Ω) + C1‖c
p
2
ε ‖

2(p−1)
p

L2(Ω) for all t > 0 and ε ∈ (0, 1),

noting that the latter conclusion is trivially valid when 2(p−1)α
p(α−1) ≤ 2, that is, when p ≤ α. Again due to the

inequality p ≤ p(α), we next see that if α < 5
2 then herein

3(p − α)
pα = 3

α ·
(
1 − αp

)
≤ 3α ·

(
1 − α

3α
5−2α

)
= 2(α − 1)

α < 2,

so that regardless of the size of α we have 3(p−α)
pα < 2. Accordingly, Young’s inequality applies so as to yield

C2 = C2(p) > 0 such that

f
1
α
ε (t)‖c

p
2
ε ‖

2(p−1)
p

L
2(p−1)α
p(α−1) (Ω)

≤ 2(p − 1)
p2 ‖∇c

p
2
ε ‖

2
L2(Ω) + C2f

2p
(2p+3)α−3p
ε (t)‖c

p
2
ε ‖

2· (2p+1)α−3p(2p+3)α−3p
L2(Ω)

+C1f
1
α
ε (t)‖c

p
2
ε ‖

2(p−1)
p

L2(Ω)

= p − 1
2

∫
Ω

cp−2ε |∇cε|2 + C2f
2p

(2p+3)α−3p
ε (t) ·

{∫
Ω

cpε
} (2p+1)α−3p

(2p+3)α−3p

+C1f
1
α
ε (t) ·

{∫
Ω

cpε
} p−1

p

for all t > 0 and ε ∈ (0, 1),

whence combining (3.5) with (3.4) shows that yε(t) :=
∫
Ω c

p
ε (·, t), t ≥ 0, ε ∈ (0, 1), and gε(t) :=

p−1
2
∫
Ω c

p−2
ε (·, t)|∇cε(·, t)|2, t > 0, ε ∈ (0, 1), satisfy

1
p y

′
ε(t) + gε(t) ≤ C2f

2p
(2p+3)α−3p
ε (t)y

(2p+1)α−3p
(2p+3)α−3p
ε (t) + C1f

1
α
ε (t)y

p−1
p
ε (t) for all t > 0 and ε ∈ (0, 1). (3.6)

Only at this point, we now take full advantage of the condition p ≤ p(α), which namely ensures that

1 − (2p + 3)α − 3p
2p = (5 − 2α)p − 3α

2p ≤ 0

and thus 2p
(2p+3)α−3p ≤ 1. Since furthermore, clearly,

(2p + 1)α − 3p
(2p + 3)α − 3p < 1 and p − 1

p < 1,

several applications of Young’s inequality enable us to see that (3.6) actually entails the inequality

1
p y

′
ε(t) + gε(t) ≤ (C1 + C2) · (fε(t) + 1) · (yε(t) + 1) for all t > 0 and ε ∈ (0, 1), (3.7)
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which by nonnegativity of gε �rstly implies that

yε(t) + 1 ≤
(
yε(0) + 1

)
· ep(C1+C2)

∫ t
0 (fε(s)+1)ds for all t > 0 and ε ∈ (0, 1).

As a consequence of Lemma2.2, this shows that supε∈(0,1) supt∈(0,T)(yε(t)+1) is �nite for all T > 0,whereupon
a direct integration in (3.7) reveals that therefore also supε∈(0,1)

∫ T
0 gε(s)ds < ∞ for all T > 0. By de�nition of

(yε)ε∈(0,1) and (gε)ε∈(0,1), both (3.2) and (3.3) have thereby been established.

A straightforward interpolation turns (3.2) and (3.3) into the following.

Lemma 3.2. Let α ∈ (1, 52 ) and p
(α) be as in (3.1), and let q ∈ (p(α), 3p(α)]. Then for all T > 0 there exists

C(q, T) > 0 such that
T∫

0

‖cε(·, t)‖
2p(α)q

3(q−p(α))
Lq(Ω) dt ≤ C(q, T) for all ε ∈ (0, 1). (3.8)

Proof. We abbreviate p := p(α) and observe that then our assumption on q guarantees that 2q
p ≤ 6 and 2q

p > 2,
so that an application of the Gagliardo-Nirenberg inequality yields C1 = C1(q) > 0 such that

‖φ‖
4q

3(q−p)

L
2q
p (Ω)

≤ C1‖∇φ‖2L2(Ω)‖φ‖
2(3p−q)
3(q−p)
L2(Ω) + C1‖φ‖

4q
3(q−p)
L2(Ω) for all φ ∈ W1,2(Ω).

Therefore,

T∫
0

‖cε(·, t)‖
2pq

3(q−p)
Lq(Ω)dt =

T∫
0

‖c
p
2
ε (·, t)‖

4q
3(q−p)

L
2q
p (Ω)

dt

≤ C1
T∫

0

‖∇c
p
2
ε (·, t)‖2L2(Ω)‖c

p
2
ε (·, t)‖

2(3p−q)
3(q−p)
L2(Ω) dt + C1

T∫
0

‖c
p
2
ε (·, t)‖

4q
3(q−p)
L2(Ω)dt

= p2C1
4

T∫
0

{∫
Ω

cp−2ε (·, t)|∇cε(·, t)|2
}
·
{∫
Ω

cpε (·, t)
} 3p−q

3(q−p)
dt

+C1
T∫

0

{∫
Ω

cpε (·, t)
} 2q

3(q−p)
dt

≤ p2C1
4 ·

{
sup
t∈(0,T)

∫
Ω

cpε (·, t)
} 3p−q

3(q−p)
·
T∫

0

∫
Ω

cp−2ε |∇cε|2

+C1T ·
{

sup
t∈(0,T)

∫
Ω

cpε (·, t)
} 2q

3(q−p)
for all T > 0 and ε ∈ (0, 1),

whence the claim immediately results from Lemma 3.1.

Again by interpolation, in light of Lemma 3.2 the estimate (3.3) moreover entails some weight-free spatio-
temporal Lq-estimate involving an exponent q > 1:

Lemma 3.3. Let α > 1. Then for all T > 0 there exists C(T) > 0 such that

T∫
0

∫
Ω

|∇cε|
5
4 ≤ C(T) for all ε ∈ (0, 1). (3.9)

Proof. If α ≥ 10
7 and hence in (3.1) we have p(α) ≥ 2, the claim immediately follows upon invoking Lemma 3.1

with p := 2.
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If α < 10
7 andhence p(α) < 2, however, Lemma3.1 andLemma3.2 ensure that given T > 0we canpick C1(T) > 0

and C2(T) > 0 such that
T∫

0

∫
Ω

cp
(α)−2
ε |∇cε|2 ≤ C1(T) for all ε ∈ (0, 1) (3.10)

and
T∫

0

∫
Ω

c
5p(α)
3

ε ≤ C2(T) for all ε ∈ (0, 1). (3.11)

According to Young’s inequality, this implies that for any such T,

T∫
0

∫
Ω

|∇cε|
5p(α)

p(α)+3 =
T∫

0

∫
Ω

{
cp

(α)−2
ε |∇cε|2

} 5p(α)

2(p(α)+3) · c
5p(α)(2−p(α))
2(p(α)+3)

ε

≤
T∫

0

∫
Ω

cp
(α)−2
ε |∇cε|2 +

T∫
0

∫
Ω

c
5p(α)
3

ε

≤ C1(T) + C2(T) for all ε ∈ (0, 1),

so that (3.9) results also in this case, because

5p(α)

p(α) + 3
= 5
1 + 3

p(α)
≥ 5
1 + 3 = 5

4

due to the inequality p(α) > 1.

In conjunction with the information on �uid integrability from Lemma 2.3, the weighted gradient estimate in
(3.3) can be seen to furthermore entail that the nonlinear convection term in the second equation from (2.1)
admits the following estimate which, as we underline here, involves some superlinear summability power
with respect to spatial integration, but only some possibly small positive integrability exponent in time.

Lemma 3.4. Let α > 1. Then there exist p > 1 and λ > 0 with the property that for all T > 0 one can �nd
C(T) > 0 such that

T∫
0

‖uε(·, t) ·∇cε(·, t)‖λLp(Ω)dt ≤ C(T) for all ε ∈ (0, 1). (3.12)

Proof. We�rst consider the casewhen α < 10
7 , inwhichwith p(α) taken from (3.1) we observe that then p(α) > α

and p(α) < 2. Moreover, since 2−p(α) < p(α) due to the fact that p(α) > 1, it is possible to �x δ > 0 small enough
such that besides

δ < 1
6 , (3.13)

we can achieve that

q := 3(1 + 2δ)(2 − p(α))
1 − 6δ (3.14)

satis�es
q ≤ 3p(α) (3.15)

and
δ(2 − p(α))
2 − δ ≤ 2p(α)q

3(q − p(α))+
. (3.16)

A �rst application of the Hölder inequality thereupon shows that for all T > 0 and ε ∈ (0, 1),

T∫
0

‖uε(·, t) ·∇cε(·, t)‖δL1+δ(Ω)dt ≤
T∫

0

‖uε(·, t)‖δ
L
3(1+δ)(1+2δ)

1+4δ (Ω)
‖∇cε(·, t)‖δ

L
3(1+2δ)

2 (Ω)
dt
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≤ C1(T)
T∫

0

‖∇cε(·, t)‖δ
L
3(1+2δ)

2 (Ω)
dt, (3.17)

where

C1(T) := sup
ε∈(0,1)

sup
t∈(0,T)

‖uε(·, t)‖δ
L
3(1+δ)(1+2δ)

1+4δ (Ω)

is �nite according to Lemma 2.3, because

3(1 + δ)(1 + 2δ)
1 + 4δ = 3(1 + 3δ + 2δ2)

1 + 4δ < 3(1 + 3δ + δ)
1 + 4δ = 3

due to the inequality δ < 1
2 implied by (3.13).

Next, making full use of (3.13) we employ the Hölder inequality for a second time to see that the integrand on
the right of (3.17) can be estimated according to

‖∇cε‖δ
L
3(1+2δ)

2 (Ω)
=

{∫
Ω

|∇cε|
3(1+2δ)

2

} 2δ
3(1+2δ)

=
{∫
Ω

(cp
(α)−2
ε |∇cε|2)

3(1+2δ)
4 · c

3(1+2δ)(2−p(α))
4

ε

} 2δ
3(1+2δ)

≤
{∫
Ω

cp
(α)−2
ε |∇cε|2

} δ
2

·
{∫
Ω

c
3(1+2δ)(2−p(α))

1−6δ
ε

} δ(1−6δ)
6(1+2δ)

=
{∫
Ω

cp
(α)−2
ε |∇cε|2

} δ
2

· ‖cε‖
δ(2−p(α))

2
Lq(Ω) for all t > 0 and ε ∈ (0, 1),

because p(α) < 2. Thanks to the fact that δ < 2, a �nal application of the Hölder inequality therefore shows
that as a consequence of (3.17), for all T > 0 and ε ∈ (0, 1) we have

T∫
0

‖uε(·, t) ·∇cε(·, t)‖δL1+δ(Ω)dt ≤ C1(T)
T∫

0

{∫
Ω

cp
(α)−2
ε (·, t)|∇cε(·, t)|2

} δ
2

· ‖cε(·, t)‖
δ(2−p(α))

2
Lq(Ω)

≤ C1(T) ·
{ T∫

0

∫
Ω

cp
(α)−2
ε |∇cε|2

} δ
2

·
{ T∫

0

‖cε(·, t)‖
δ(2−p(α))

2−δ
Lq(Ω) dt

} 2−δ
2

.

For any such α, the conclusion thus follows upon observing that

sup
ε∈(0,1)

T∫
0

∫
Ω

cp
(α)−2
ε |∇cε|2 < ∞

due to Lemma 3.1, and that if q > p(α) then

sup
ε∈(0,1)

T∫
0

‖cε(·, t)‖
δ(2−p(α))

2−δ
Lq(Ω) dt < ∞

thanks to (3.15), (3.16) and Lemma 3.2, whereas if q ≤ p(α) then even

sup
ε∈(0,1)

sup
t∈(0,T)

‖cε(·, t)‖Lq(Ω) < ∞ for all T > 0

by Lemma 3.1 and, e.g., Young’s inequality.
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If α ≥ 10
7 , however, then in (3.1) we have p(α) ≥ 2, so that Lemma 3.1 entails that

C2(T) := sup
ε∈(0,1)

T∫
0

∫
Ω

|∇cε|2 < ∞ for all T > 0,

while from Lemma 2.3 we know that

C3(T) := sup
ε∈(0,1)

sup
t∈(0,T)

‖uε(·, t)‖L 5
2 (Ω)

< ∞ for all T > 0.

By means of the Hölder inequality we can thus estimate

T∫
0

‖uε(·, t) ·∇cε(·, t)‖2
L
10
9 (Ω)

dt ≤
T∫

0

‖uε(·, t)‖2
L
5
2 (Ω)
‖∇cε(·, t)‖2L2(Ω)dt

≤ C2(T)C23(T) for all T > 0 and ε ∈ (0, 1),

from which the claim directly follows in this case.

Apart from that, when rewritten in the form uε ·∇cε = ∇ · (cεuε) the convection term addressed above enjoys
a further regularity property, now in a re�exive Lebesgue setting with regard to both the space and the time
variable.

Lemma 3.5. If α > 1, then there exists p > 1 such that to each T > 0 there corresponds some C(T) > 0 satisfying

T∫
0

∫
Ω

|cεuε|p ≤ C(T) for all ε ∈ (0, 1). (3.18)

Proof. We �x δ > 0 small such that
δ < 1

2 , (3.19)

and that
(1 + δ)(1 + 6δ)

2(1 + 2δ) ≤ 1, (3.20)

and let q := 3(1+2δ)
2 . Then (3.19) ensures that, as in Lemma 3.4,

3(1 + δ)(1 + 2δ)
1 + 4δ < 3,

so that Lemma 2.3 applies so as to warrant that for each T > 0,

C1(T) := sup
ε∈(0,1)

sup
t∈(0,T)

‖uε(·, t)‖
L
3(1+δ)(1+2δ)

1+4δ (Ω)
< ∞. (3.21)

Apart from that, using Lemma 3.1 we see that if q ≤ p(α), with p(α) taken from (3.1), then also

C2(T) := sup
ε∈(0,1)

sup
t∈(0,T)

‖cε(·, t)‖Lq(Ω) < ∞ for all T > 0, (3.22)

whereas if q > p(α), and hence necessarily α < 5
2 , then Lemma 3.2 asserts that

C3(T) := sup
ε∈(0,1)

T∫
0

‖cε(·, t)‖1+δLq(Ω)dt < ∞ for all T > 0, (3.23)

because then due to the fact that p(α) > 1, (3.19) ensures that

q <
3 · (1 + 2 · 12 )

2 = 3 < 3p(α),
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and because our restriction (3.20) guarantees that

(1 + δ) · 3(q − p
(α))

2p(α)q
= 3(1 + δ)

2 ·
( 1
p(α)

− 1
q

)
< 3(1 + δ)

2 ·
(
1 − 1

q

)
= (1 + δ)(1 + 6δ)

2(1 + 2δ) ≤ 1

and thus 1 + δ ≤ 2p(α)q
3(q−p(α)) . Now since the Hölder inequality implies that according to our choice of q we have

T∫
0

∫
Ω

|cεuε|1+δ ≤
T∫

0

‖cε(·, t)‖1+δLq(Ω)‖uε(·, t)‖
1+δ
L
3(1+δ)(1+2δ)

1+4δ (Ω)
dt for all T > 0 and ε ∈ (0, 1),

in the case q ≤ p(α) we may use the de�nitions of (C1(T))T>0 and (C2(T))T>0 in (3.21) and (3.22) to see that

T∫
0

∫
Ω

|cεuε|1+δ ≤ C1+δ1 (T)C1+δ2 (T) · T for all T > 0 and ε ∈ (0, 1),

while if q > p(α) then on the basis of (3.21) and (3.23) we can estimate
T∫

0

∫
Ω

|cεuε|1+δ ≤ C1+δ1 (T)C3(T) for all T > 0 and ε ∈ (0, 1),

and thus conclude on letting p := 1 + δ.

In order to prepare an appropriate exploitation of the latter two lemmata, let us state the following interpo-
lation inequality in which, as throughout the remainder of this section, given p > 1 we let B = Bp denote the
realization of −∆ + 1 under homogeneous Neumann boundary conditions in Lp(Ω).

Lemma 3.6. Let p > 1 and δ ∈ (0, 12 ). Then for all η ∈ (0, 12 ) there exists C = C(p, δ, η) > 0 such that

‖B−
1
2+δ∇ · φ‖Lp(Ω) ≤ C‖∇ · φ‖

2δ+2η
1+2η
Lp(Ω)‖φ‖

1−2δ
1+2η
Lp(Ω) for all φ ∈ C1(Ω;R3) such that φ · ν|∂Ω = 0. (3.24)

Proof. According to Theorem 14.1 in [2], let us �rst pick C1 = C1(p, δ, η) > 0 such that

‖B−
1
2+δψ‖Lp(Ω) ≤ C1‖ψ‖

2δ+2η
1+2η
Lp(Ω)‖B

− 1
2−ηψ‖

1−2δ
1+2η
Lp(Ω) for all ψ ∈ C0(Ω), (3.25)

and observe that due to the topological equivalence of D(B
1
2−η) to W1−2η,p(Ω) ([6, Theorem 1.6.1]) and the

continuity of the embeddings W1,p(Ω) ↪→ W1−2η,p(Ω) and D(B
1
2−η) ↪→ D(B−

1
2−η), by relying on a Poincaré

inequality we can choose C2 = C2(p, η) > 0 and C3 = C3(p, η) > 0 such that

‖B
1
2−ηψ‖Lp(Ω) ≤ C2‖∇ψ‖Lp(Ω) for all ψ ∈ W1,p(Ω) such that

∫
Ω

ψ = 0 (3.26)

and
‖B−

1
2−ηψ‖Lp(Ω) ≤ C3‖B

1
2−ηψ‖Lp(Ω) for all ψ ∈ W1,p(Ω). (3.27)

We moreover recall that the Helmholtz projection acts as a bounded operator on Lp(Ω;R3) ([14]), whence we
can �x C4 = C4(p) > 0 ful�lling

‖Pψ‖Lp(Ω) ≤ C4‖ψ‖Lp(Ω) for all ψ ∈ Lp(Ω;R3). (3.28)

Consequently, given φ ∈ C1(Ω;R3) we can �nd ρ ∈ W1,p(Ω) such that
∫
Ω ρ = 0 and φ = Pφ +∇ρ, where∇ ·

(Pφ) = 0 inD′(Ω) ([14]). Therefore, taking any φ ∈ C1(Ω;R3) with φ ·ν|∂Ω = 0 and an arbitrary ψ ∈ C∞0 (Ω) we
see that since B andall its fractional powers are self-adjoint in L2(Ω), and since evidently

∫
∂Ω(φ·ν)B

− 1
2−ηψ = 0

and
∫
Ω Pφ ·∇(B−

1
2−ηψ) = 0 as well as

∫
∂Ω ρ

∂
∂ν (B

− 1
2−ηψ) = 0, we see that∫

Ω

(B−
1
2−η∇ · φ) · ψ =

∫
Ω

(∇ · φ) · B−
1
2−ηψ
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= −
∫
Ω

φ ·∇(B−
1
2−ηψ)

= −
∫
Ω

∇ρ ·∇(B−
1
2−ηψ)

=
∫
Ω

ρ∆(B−
1
2−ηψ)

=
∫
Ω

ρ · (−B + 1)(B−
1
2−ηψ)

= −
∫
Ω

ρ · B
1
2−ηψ +

∫
Ω

ρ · B−
1
2−ηψ

= −
∫
Ω

B
1
2−ηρ · ψ +

∫
Ω

B−
1
2−ηρ · ψ

≤ ‖B
1
2−ηρ‖Lp(Ω)‖ψ‖L

p
p−1 (Ω)

+ ‖B−
1
2−ηρ‖Lp(Ω)‖ψ‖L

p
p−1 (Ω)

by the Hölder inequality, so that thanks to (3.27), (3.26) and (3.28),

‖B−
1
2−η∇ · φ‖Lp(Ω) = sup

ψ∈C∞0 (Ω)
‖ψ‖

L
p
p−1 (Ω)

≤1

∫
Ω

(B−
1
2−η∇ · φ) · ψ

≤ ‖B
1
2−ηρ‖Lp(Ω) + ‖B

− 1
2−ηρ‖Lp(Ω)

≤ (1 + C3)‖B
1
2−ηρ‖Lp(Ω)

≤ C2(1 + C3)‖∇ρ‖Lp(Ω)
= C2(1 + C3)‖φ − Pφ‖Lp(Ω)
≤ C2(1 + C3)(1 + C4)‖φ‖Lp(Ω).

In view of (3.25), this shows that for any such φ we have

‖B−
1
2+δ∇ · φ‖Lp(Ω) ≤ C1‖∇ · φ‖

2δ+2η
1+2η
Lp(Ω)‖B

− 1
2−η∇ · φ‖

1−2δ
1+2η
Lp(Ω)

≤ C1‖∇ · φ‖
2δ+2η
1+2η
Lp(Ω) ·

{
C2(1 + C3)(1 + C4)

} 1−2δ
1+2η ‖φ‖

1−2δ
1+2η
Lp(Ω),

and that thus (3.24) holds with an obvious choice of C(p, δ, η).

We can thereby accomplish themain step of our analysis in this section by combining Lemma 3.4 and Lemma
3.5 to achieve the following estimate of cε in a space which is compactly embedded intoW1,1(Ω).

Lemma 3.7. If α > 1, then there exist p > 1 and δ > 0 such that for any choice of τ > 0 and T > τ one can �x
C(τ, T) > 0 satisfying

T∫
τ

∫
Ω

|B
1
2+δcε|p ≤ C(τ, T) for all ε ∈ (0, 1). (3.29)

Proof. We �rst invoke Lemma 3.4 and Lemma 3.5 to �x p0 > 1 and λ ∈ (0, 2) with the property that for all
T > 0 we can �nd C1(T) > 0 and C2(T) > 0 ful�lling

T∫
0

‖uε(·, t) ·∇cε(·, t)‖λLp0 (Ω)dt ≤ C1(T) for all ε ∈ (0, 1) (3.30)
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and
T∫

0

∫
Ω

|cεuε|p0 ≤ C2(T) for all ε ∈ (0, 1), (3.31)

and we then pick p > 1 such that

p < p0, p ≤ p(α) and p ≤ α, (3.32)

which is possible since p(α) > 1 and α > 1. We thereafter use that 4p − 2λ > 4 · 1 − 2 · 2 = 0 and (1 − 2δ)pλ −
[λ − (4p − 2λ)δ] · p0 → (p − p0)λ < 0 as δ ↘ 0 in choosing some suitably small δ > 0 such that

δ < 1
2 and δ < λ

4p − 2λ , (3.33)

and such that moreover
(1 − 2δ)pλ

λ − (4p − 2λ)δ ≤ p0, (3.34)

where the last inequality in (3.33) warrants that the operator B−
1
2+δ is bounded in Lp(Ω), whence with some

C3 > 0 we have
‖B−

1
2+δφ‖pLp(Ω) ≤ C3‖φ‖

p
Lp(Ω) for all φ ∈ Lp(Ω). (3.35)

Next, we invoke standard maximal Sobolev regularity theory in Lp(Ω) ([4]) to �x C4 > 0 such that whenever
T > 0, w ∈ C2,1(Ω × [0, T]) and f ∈ C0(Ω × [0, T]) are such that

wt = ∆w − w + f (x, t), x ∈ Ω, t ∈ (0, T),
∂w
∂ν = 0, x ∈ ∂Ω, t ∈ (0, T),
w(x, 0) = 0, x ∈ Ω,

we have
T∫

0

∫
Ω

|Bw|p ≤ C4
T∫

0

∫
Ω

|f |p . (3.36)

We now let τ > 0 and T > 0 be given and take any nondecreasing cut-o� function ζ ∈ C∞([0,∞)) such that
ζ ≡ 0 in [0, τ2 ] and ζ ≡ 1 in [τ, ∞), and observe that then for each ε ∈ (0, 1),

wε(·, t) := ζ (t) · B−
1
2+δcε(·, t), t ∈ [0, T],

de�nes a function wε on Ω × [0, T] which since cε(·, t) ∈ D(B) for all t > 0, and since B−
1
2+δ maps D(B) into

itself, belongs to C2,1(Ω × [0, T]) and satis�es ∂wε
∂ν = 0 on ∂Ω ×(0, T) as well as wε(·, 0) ≡ 0 in Ω. Furthermore,

using (2.1) we see that

wεt = ζ (t)B−
1
2+δcεt + ζ ′(t)B−

1
2+δcε

= ζ (t)B−
1
2+δ
{
− Bcε +

nε
1 + εnε

−∇ · (cεuε)
}
+ ζ ′(t)B−

1
2+δcε

= −Bwε + ζ (t)B−
1
2+δ nε

1 + εnε
− ζ (t)B−

1
2+δ∇ · (cεuε) + ζ ′(t)B−

1
2+δcε in Ω × (0, T),

so that (3.36) applies so as to warrant that

T∫
0

∫
Ω

ζ p(t)|B
1
2+δcε|p =

T∫
0

∫
Ω

|Bwε|p

≤ C4
T∫

0

∫
Ω

∣∣∣ζ (t)B− 1
2+δ nε

1 + εnε
− ζ (t)B−

1
2+δ∇ · (cεuε) + ζ ′(t)B−

1
2+δcε

∣∣∣p
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≤ 3pC4
T∫

0

∫
Ω

∣∣∣B− 1
2+δ nε

1 + εnε

∣∣∣p

+3pC4
T∫

0

∫
Ω

∣∣∣B− 1
2+δ∇ · (cεuε)

∣∣∣p

+3pC4‖ζ ′‖pL∞((0,T))

T∫
0

∫
Ω

|B−
1
2+δcε|p for all ε ∈ (0, 1), (3.37)

because 0 ≤ ζ ≤ 1. Here by (3.35), Young’s inequality and the third restriction in (3.32),

T∫
0

∫
Ω

∣∣∣B− 1
2+δ nε

1 + εnε

∣∣∣p ≤ C3
T∫

0

∫
Ω

∣∣∣ nε
1 + εnε

∣∣∣p

≤ C3
T∫

0

∫
Ω

npε

≤ C3
T∫

0

∫
Ω

nαε + C3|Ω|T for all ε ∈ (0, 1), (3.38)

whereas (3.35) together with Young’s inequality and the second requirement in (3.32) shows that

T∫
0

∫
Ω

|B−
1
2+δcε|p ≤ C3

T∫
0

∫
Ω

cpε

≤ C3
T∫

0

∫
Ω

cp
(α)

ε + C3|Ω|T

≤ C3T · sup
t∈(0,T)

∫
Ω

cp
(α)

ε (·, t) + C3|Ω|T for all ε ∈ (0, 1). (3.39)

Apart from that, applying Lemma 3.6 to η := δ < 1
2 we obtain C5 > 0 such that for all ε ∈ (0, 1),

T∫
0

∫
Ω

∣∣∣B− 1
2+δ∇ · (cεuε)

∣∣∣p ≤ C5 T∫
0

∥∥∥∇ · (cε(·, t)uε(·, t))∥∥∥ 4pδ
1+2δ

Lp(Ω)
‖cε(·, t)uε(·, t)‖

(1−2δ)p
1+2δ
Lp(Ω) dt,

so that relying on the identity∇ · (cεuε) = uε ·∇cε, on the fact that 4pδ
1+2δ < λ by the second condition in (3.33),

and on (3.34), we may twice again employ Young’s inequality to see that

T∫
0

∫
Ω

∣∣∣B− 1
2+δ∇ · (cεuε)

∣∣∣p ≤ C5
T∫

0

∥∥∥uε(·, t) ·∇cε(·, t)∥∥∥λ
Lp(Ω)

dt + C5
T∫

0

‖cε(·, t)uε(·, t)‖
(1−2δ)pλ
λ−(4p−2λ)δ
Lp(Ω) dt

≤ C5
T∫

0

∥∥∥uε(·, t) ·∇cε(·, t)∥∥∥λ
Lp(Ω)

dt

+C5
T∫

0

‖cε(·, t)uε(·, t)‖p0Lp(Ω)dt + C5T for all ε ∈ (0, 1).

Since the �rst restriction in (3.32) ensures that due to the Hölder inequality we have

‖φ‖Lp(Ω) ≤ |Ω|
p0−p
p0p ‖φ‖Lp0 (Ω) for all φ ∈ Lp0 (Ω),
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along with (3.30) and (3.31) this implies that for all ε ∈ (0, 1),

T∫
0

∫
Ω

∣∣∣B− 1
2+δ∇ · (cεuε)

∣∣∣p ≤ C5|Ω|
(p0−p)λ
p0p

T∫
0

∥∥∥uε(·, t) ·∇cε(·, t)∥∥∥λ
Lp0 (Ω)

dt

+C5|Ω|
p0−p
p

T∫
0

‖cε(·, t)uε(·, t)‖p0Lp0 (Ω)dt + C5T

≤ C6(T) := C1(T)C5|Ω|
(p0−p)λ
p0p + C2(T)C5|Ω|

p0−p
p + C5T,

so that from (3.37)-(3.39) we infer that

T∫
0

∫
Ω

ζ p(t)|B
1
2+δcε|p ≤ 3pC4 ·

{
C3C7(T) + C3|Ω|T

}
+3pC4C6(T)
+3pC4 ·

{
C3C8(T) + C3|Ω|T

}
· ‖ζ ′‖pL∞((0,T)) for all ε ∈ (0, 1),

where

C7(T) := sup
ε∈(0,1)

T∫
0

∫
Ω

nαε and C8(T) := sup
ε∈(0,1)

sup
t∈(0,T)

∫
Ω

cp
(α)

ε (·, t)

are both �nite due to Lemma 2.2 and Lemma 3.1. It remains to recall that ζ ≡ 1 on [τ, T] to conclude (3.29)
from this upon an evident choice of C(τ, T).

In preparation of anAubin-Lions type argument, we supplement the above by some information on regularity
of time derivatives.

Lemma 3.8. Let α > 1. Then there exists an integer m ≥ 3 such that for all T > 0 one can �nd C(T) > 0 ful�lling

T∫
0

‖cεt(·, t)‖(Wm,2
0 (Ω))*dt ≤ C(T) for all ε ∈ (0, 1). (3.40)

Proof. We let p > 1 be as provided by Lemma 3.5 and take m ∈ {3, 4, ...} such that m ≥ 6−p
2p , which ensures

thatWm,2
0 (Ω) is continuously embedded into bothW2,∞(Ω) andW1, p

p−1 (Ω), and that thus there exist positive
constants C1, C2 and C3 such that ‖∆ψ‖L∞(Ω) ≤ C1‖ψ‖Wm,2(Ω), ‖ψ‖L∞(Ω) ≤ C2‖ψ‖Wm,2(Ω) and ‖∇ψ‖L

p
p−1 (Ω)

≤
C3‖ψ‖Wm,2(Ω) for all ψ ∈ C∞0 (Ω). Given any such ψ and an arbitrary t > 0, on the basis of (2.1) we can therefore
estimate ∣∣∣∣ ∫

Ω

cεt(·, t)ψ
∣∣∣∣ =

∣∣∣∣ ∫
Ω

cε∆ψ −
∫
Ω

cεψ +
∫
Ω

nε
1 + εnε

ψ +
∫
Ω

cεuε ·∇ψ
∣∣∣∣

≤ ‖cε‖L1(Ω)‖∆ψ‖L∞(Ω) + ‖cε‖L1(Ω)‖ψ‖L∞(Ω) + ‖nε‖L1(Ω)‖ψ‖L∞(Ω)
+‖cεuε‖Lp(Ω)‖∇ψ‖L

p
p−1 (Ω)

≤
{
(C1 + C2)‖cε‖L1(Ω) + C2‖nε‖L1(Ω) + C3‖cεuε‖Lp(Ω)

}
‖ψ‖Wm,2(Ω)

for ε ∈ (0, 1). Therefore,

T∫
0

‖cεt(·, t)‖(Wm,2
0 (Ω))*dt ≤ (C1 + C2)T · sup

t∈(0,T)
‖cε(·, t)‖L1(Ω) + C2T · sup

t∈(0,T)
‖nε(·, t)‖L1(Ω)
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+C3
T∫

0

‖cε(·, t)uε(·, t)‖Lp(Ω)dt for all T > 0 and ε ∈ (0, 1),

so that the claim results from Lemma 3.1, Lemma 2.2 and Lemma 3.5.

We can thereby derive the main result of this section in quite a straightforward manner from Lemma 3.7:

Lemma 3.9. Let α > 1. Then for all T > 0,

(cε)ε∈(0,1) is relatively compact with respect to the strong topology in L1((0, T);W1,1(Ω)). (3.41)

Proof. According to Lemma 3.7, we can �nd p > 1 and δ > 0 such that

(cε)ε∈(0,1) is bounded in Lp((0, T);D(B
1
2+δ
p ) for all T > 0,

whereas Lemma 3.8 provides an integer m ≥ 3 with the property that

(cεt)ε∈(0,1) is bounded in L1
(
(0, T); (Wm,2

0 (Ω))*
)

for all T > 0.

Since D(B
1
2+δ
p ) is continuously embedded into W1,p(Ω) ([6, Theorem 1.6.1]), an Aubin-Lions lemma ([18]) be-

comes applicable so as to guarantee that for all T > 0,

(cε)ε∈(0,1) is relatively compact with respect to the strong topology in Lp((0, T);W1,p(Ω)).

As p ≥ 1, this clearly entails (3.41).

4 Compactness properties of
(
(nε + 1)−pe−κcε

)
ε∈(0,1) for p > 0 and

large κ
This section is devoted to an essentially straightforward adaptation of the reasoning from [33, Section 6],
pursuing the goal to derive relative compactness of

(
(nε + 1)−pe−κcε

)
ε∈(0,1) with respect to both the weak

topology in L2((0, T);W1,2(Ω)) and the strong topology in L2(Ω × (0, T)) for arbitrary T > 0, each p > 0 and
any suitably large κ > 0. This will be achieved on the basis of Lemma 2.4, in which we will choose ϕ and ψ as
speci�ed and described in the following statement imported from [33, Lemma 6.1].

Lemma 4.1. Let p > 0 and κ > 0, and de�ne

ϕ(s) := (s + 1)−p , Φ(s) := −2
√
p + 1
p (s + 1)−

p
2 and ψ(s) := e−κs , s ≥ 0, s ≥ 0. (4.1)

Then
Φ′(s) =

√
ϕ′′(s) for all s ≥ 0, (4.2)

and for any s ≥ 0 and s ≥ 0 we have

ϕ′(s)√
ϕ′′(s)

· ψ
′(s)√
ψ(s)

− 1
2Φ(s)

ψ′(s)√
ψ(s)

− 1
2 s
√
ϕ′′(s) ·

√
ψ(s) = −

2κ + p(p + 1) s
s+1

2
√
p(p + 1)

(s + 1)−
p
2 e−

κs
2 (4.3)

and

ϕ(s)ψ′′(s) − ϕ
′2(s)
ϕ′′(s) ·

ψ′2(s)
ψ(s) −

1
4 s

2ϕ′′(s)ψ(s) =
4κ2 − p(p + 1)2 s2

(s+1)2

4(p + 1) (s + 1)−pe−κs (4.4)

as well as
ϕ′(s)√
ϕ′′(s)

√
ψ(s) = − p√

p(p + 1)
(s + 1)−

p
2 e−

κs
2 (4.5)

and
sϕ′(s)ψ(s) − ϕ(s)ψ′(s) + 1

2
Φ(s)ϕ′(s)√
ϕ′′(s)

ψ′(s) = −ps(s + 1)−p−1e−κs . (4.6)



Z. Xiang et al., Global solvability in a three-dimensional Keller-Segel-Stokes system | 725

When substantiated according to the latter choices, for ε ∈ (0, 1) Lemma 2.4 indeed takes the following form.

Corollary 4.2. Let p > 0 and κ > 0. Then whenever φ ∈ C∞(Ω × (0,∞)),∫
Ω

∂t
{
(nε + 1)−pe−κcε

}
· φ

= −4(p + 1)p

∫
Ω

∣∣∣∣∇{(nε + 1)− p2 e− κcε2 } + 2κ + p(p + 1) nε
nε+1

4(p + 1) (nε + 1)−
p
2 e−

κcε
2 ∇cε

∣∣∣∣2φ
−
∫
Ω

4κ2 − p(p + 1)2 n2ε
(nε+1)2

4(p + 1) (nε + 1)−pe−κcε |∇cε|2φ

−2
∫
Ω

(nε + 1)−
p
2 e−

κcε
2 ∇
{
(nε + 1)−

p
2 e−

κcε
2

}
·∇φ

−p
∫
Ω

nε(nε + 1)−p−1e−κcε∇cε ·∇φ

+
∫
Ω

(nε + 1)−pe−κcεuε ·∇φ

−p
∫
Ω

(nε + 1)−p−1(ρnε − µnαε )e−κcεφ

+κ
∫
Ω

(nε + 1)−pcεe−κcεφ − κ
∫
Ω

nε
1 + εnε

(nε + 1)−pe−κcεφ (4.7)

for all t > 0 and ε ∈ (0, 1).

Proof. We only need to combine Lemma 2.4 with Lemma 4.1.

Using that the factor 4κ2 − p(p + 1)2 n2ε
(nε+1)2 appearing in the second integrand on the right-hand side of (4.7)

has a uniform positive lower bound whenever κ2 > p(p+1)2
4 , the following can readily be derived from the

latter.

Lemma 4.3. If p > 0 and κ > 0 satisfy

κ >
√p · (p + 1)

2 , (4.8)

then for all T > 0 there exists C = C(T, p, κ) > 0 such that

T∫
0

∫
Ω

∣∣∣∣∇{(nε + 1)− p2 e− κcε2 }∣∣∣∣2 ≤ C for all ε ∈ (0, 1) (4.9)

and
T∫

0

∫
Ω

(nε + 1)−pe−κcε |∇cε|2 ≤ C for all ε ∈ (0, 1). (4.10)

Proof. Upon choosing φ ≡ 1 in Corollary 4.2, on the basis of Lemma 2.2 this can be seen by copying almost
word by word the proof of Lemma 6.3 in [33].

In a straightforward manner, this also entails some time regularity feature of said coupled quantities:
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Lemma 4.4. Let p > 0 and κ >
√p·(p+1)

2 . Then for all T > 0 there exists C = C(T, p, κ,m) > 0 such that

T∫
0

∥∥∥∥∂t{(nε(·, t) + 1)−pe−κcε(·,t)}∥∥∥∥
(W2,2(Ω))*

dt ≤ C for all ε ∈ (0, 1). (4.11)

Proof. For ε ∈ (0, 1), we abbreviate aε := ∇
{
(nε +1)−

p
2 e−

κcε
2

}
and bε := (nε +1)−

p
2 e−

κcε
2 ∇vε for ε ∈ (0, 1). An

application of Corollary 4.2 to φ(x, t) := ζ (x), (x, t) ∈ Ω × (0,∞), for �xed ζ ∈ C∞(Ω), then shows that if we

let C1 = C1(p, κ) := 8(p+1)
p ·

(
2κ+p(p+1)
4(p+1)

)2
+ 4κ2+p(p+1)

4(p+1) , then∣∣∣∣ ∫
Ω

∂t
{
(nε + 1)−pe−κcε

}
· ζ
∣∣∣∣

=

∣∣∣∣∣ − 4(p + 1)
p

∫
Ω

∣∣∣∣aε + 2κ + p(p + 1) nε
nε+1

4(p + 1) bε
∣∣∣∣2ζ

−
∫
Ω

4κ2 − p(p + 1)2 n2ε
(nε+1)2

4(p + 1) |bε|2ζ

−2
∫
Ω

(nε + 1)−
p
2 e−

κcε
2 aε ·∇ζ

−p
∫
Ω

nε(nε + 1)−
p
2 −1e−

κcε
2 bε ·∇ζ

−p
∫
Ω

(nε + 1)−p−1(ρnε − µnαε )e−κcε ζ

+
∫
Ω

(nε + 1)−pe−κcεuε ·∇ζ

+κ
∫
Ω

(nε + 1)−pcεe−κcε ζ − κ
∫
Ω

nε
1 + εnε

(nε + 1)−pe−κcε ζ

∣∣∣∣∣
≤ 8(p + 1)

p ·
{∫
Ω

|aε|2
}
· ‖ζ‖L∞(Ω) + c5 ·

{∫
Ω

|bε|2
}
· ‖ζ‖L∞(Ω)

+2 ·
{∫
Ω

|aε|2
} 1

2

· ‖∇ζ‖L2(Ω) + p ·
{∫
Ω

|bε|2
}
· ‖∇ζ‖L2(Ω)

+pρ ·
{∫
Ω

nε
}
· ‖ζ‖L∞(Ω) + pµ ·

{∫
Ω

nαε
}
· ‖ζ‖L∞(Ω) +

{∫
Ω

|uε|2
}
· ‖∇ζ‖L2(Ω)

+ |Ω|e ‖ζ‖L∞(Ω) + κ ·
{∫
Ω

nε
}
· ‖ζ‖L∞(Ω) (4.12)

for all t > 0 and ε ∈ (0, 1), because nε
nε+1 ≤ 1, (nε + 1)

−1 ≤ 1, e−κcε ≤ 1 and κvεe−κcε ≤ 1
e in Ω × (0,∞). Since

from Lemma 4.3, Lemma 2.2 and 2.3 we know that for all T > 0 we have

sup
ε∈(0,1)

{ T∫
0

∫
Ω

|aε|2 +
T∫

0

∫
Ω

|bε|2 +
T∫

0

∫
Ω

nαε +
T∫

0

∫
Ω

|uε|2
}
< ∞, (4.13)

and since W2,2(Ω) is continuously embedded into L∞(Ω), from (4.12) we readily conclude (4.11 upon taking
the supremum over all ζ ∈ C∞(Ω) ful�lling ‖ζ‖W2,2(Ω) ≤ 1, and then integrating over t ∈ (0, T) for �xed
T > 0.
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In consequence, we infer the following.

Corollary 4.5. Suppose that p > 0 and κ >
√p(p+1)

2 . Then for all T > 0,
(
(nε + 1)−pe−κcε

)
ε∈(0,1) is relatively

compact in L2((0, T);W1,2(Ω)) with respect to the weak topology, and relatively compact in L2(Ω × (0, T)) with
respect to the strong topology.

Proof. This can be derived from Lemma 4.3 and Lemma 4.4 by verbatim copying a corresponding argument
detailed in [33, Lemma 7.1].

5 Passing to the limit. Proof of Theorem 1.1
Thanks to the boundedness and compactness features obtained so far, we are now in the position to construct
a limit triple which satis�es the second and the third sub-problem in (1.4) in the spirit of De�nition 2.5.

Lemma 5.1. Let α > 1. Then there exist (εj)j∈N ⊂ (0, 1) and functions
n ∈ Lαloc(Ω × [0,∞)),
c ∈ L1loc([0,∞);W1,1(Ω)) and
u ∈ L1loc([0,∞);W1,1

0 (Ω);R3))

(5.1)

such that εj ↘ 0 as j →∞, that n ≥ 0, c ≥ 0 and∇ · u = 0 a.e. in Ω × (0,∞), that

nε → n in L1loc(Ω × [0,∞)) and a.e. in Ω × (0,∞), (5.2)

cε → c in L1loc(Ω × [0,∞)) and a.e. in Ω × (0,∞), (5.3)

∇cε → ∇c in L1loc(Ω × [0,∞)) and a.e. in Ω × (0,∞) as well as (5.4)

uε ⇀ u in L1loc([0,∞);W1,1(Ω)) (5.5)

as ε = εj ↘ 0, and such that (2.9) holds, that (2.10) is satis�ed for all φ ∈ C∞0 (Ω × [0,∞)), and that (2.11) is
ful�lled for each φ ∈ C∞0 (Ω × [0,∞);R3) such that∇ · φ = 0.

Proof. We �x any p > 0 and κ >
√p(p+1)

2 , and let wε := (nε + 1)−pe−κcε for ε ∈ (0, 1). In view of Lemma 3.9
and Corollary 4.5, we can then �nd (εj)j∈N ⊂ (0, 1) and nonnegative functions w an c on Ω × (0,∞) such that
εj ↘ 0 as j →∞, and that as ε = εj ↘ 0 we have (5.3), (5.4) as well as

wε → w a.e. in Ω × (0,∞).

Therefore,

nε = (eκcεwε)−
1
p − 1→ n := (eκcw)−

1
p − 1 a.e. in Ω × (0,∞) as ε = εj ↘ 0.

Recalling that (2.3) implies uniform integrability of (nε)ε∈(0,1) over Ω × (0, T) for each T > 0, we obtain (5.2)
as a consequence of the Vitali convergence theorem, while (5.5) directly results from Lemma 2.3, and while
the inclusions in (5.1) follow from the boundedness properties in (3.41), (2.5), (2.6) and (2.3) when combined
with (5.2)-(5.5) and Fatou’s lemma.

Apart from that, taking a null set N ⊂ (0,∞) such that in accordance with (5.2) and the Tonelli theorem
we have nε(·, t)→ n(·, t) a.e. in Ω for all t ∈ (0,∞) \ N as ε = εj ↘ 0 and hence∫

Ω

n(·, t) ≤ lim inf
ε=εj↘0

∫
Ω

nε(·, t) for all t ∈ (0,∞) \ N, (5.6)

in the identity ∫
Ω

nε(·, t) + µ
t∫

0

∫
Ω

nαε =
∫
Ω

n0 + ρ
t∫

0

∫
Ω

nε ,
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valid for all t > 0 and ε ∈ (0, 1) due to (2.1), we may again employ (5.2) along with Fatou’s lemma to infer that
the inequality in (2.9) indeed holds for each t ∈ (0,∞) \ N.

Finally, given φ ∈ C∞0 (Ω × [0,∞)) we see from the second equation in (2.1) that

−
∞∫
0

∫
Ω

cεφt −
∫
Ω

c0φ(·, 0)

= −
∞∫
0

∫
Ω

∇cε ·∇φ −
∞∫
0

∫
Ω

cεφ +
∞∫
0

∫
Ω

nε
1 + nε

φ +
∞∫
0

∫
Ω

cεuε ·∇φ (5.7)

for all ε ∈ (0, 1), where clearly, by (5.3) and (5.4),

∞∫
0

∫
Ω

cεφt →
∞∫
0

∫
Ω

cφt ,
∞∫
0

∫
Ω

∇cε ·∇φ →
∞∫
0

∫
Ω

∇c ·∇φ and
∞∫
0

∫
Ω

cεφ →
∞∫
0

∫
Ω

cφ

as ε = εj ↘ 0. Furthermore, once more due to (5.2) we infer from the Vitali convergence theorem that also
nε

1+εnε → n in L1loc(Ω × [0,∞)) and thus

∞∫
0

∫
Ω

nε
1 + εnε

φ →
∞∫
0

∫
Ω

nφ

as ε = εj ↘ 0, whereas Lemma 3.5 entails

∞∫
0

∫
Ω

cεuε ·∇φ →
∞∫
0

∫
Ω

cu ·∇φ

as ε = εj ↘ 0. The identity in (2.10) thus results from (5.7), and that in (2.11) can be veri�ed in quite a similar
way by relying on (5.2) and (5.5).

Quite in the style of Lemma 8.2 in [33], we can now verify the remaining parts of De�nition 2.5 by making use
of Corollary 4.2 and the convergence properties gathered in Lemma 5.1:

Lemma 5.2. Let α > 1, and given p > 0 and κ >
√p(p+1)

2 , let ϕ,Φ and ψ be as accordingly de�ned by (4.1).
Then (2.12)-(2.14) are satis�ed, and (2.16) holds for any nonnegative φ ∈ C∞0 (Ω × [0,∞)).

Proof. For �xed T > 0, Lemma 4.3 implies that(
(nε + 1)−

p
2 e−

κcε
2

)
ε∈(0,1)

is bounded in L2((0, T);W1,2(Ω)),

and that both(
(nε + 1)−

p
2 e−

κcε
2 ∇cε

)
ε∈(0,1)

and
(
nε(nε + 1)−

p
2 −1e−

κcε
2 ∇cε

)
ε∈(0,1)

are bounded in L2(Ω × (0, T)).

In view of Lemma 5.1 and Egorov’s theorem, this implies that as ε = εj ↘ 0,

∇
{
(nε + 1)−

p
2 e−

κcε
2

}
⇀ ∇

{
(n + 1)−

p
2 e−

κc
2

}
in L2(Ω × (0, T)), (5.8)

and that
(nε + 1)−

p
2 e−

κcε
2 ∇cε ⇀ (n + 1)−

p
2 e−

κc
2 ∇c in L2(Ω × (0, T)) (5.9)

and
nε(nε + 1)−

p
2 −1e−

κcε
2 ∇cε ⇀ n(n + 1)−

p
2 −1e−

κc
2 ∇c in L2(Ω × (0, T)), (5.10)
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from which it follows that

∇
{
(nε + 1)−

p
2 e−

κcε
2

}
+
2κ + p(p + 1) nε

nε+1
4(p + 1) (nε + 1)−

p
2 e−

κcε
2 ∇cε

⇀ ∇
{
(n + 1)−

p
2 e−

κc
2

}
+
2κ + p(p + 1) n

n+1
4(p + 1) (n + 1)−

p
2 e−

κc
2 ∇c in L2(Ω × (0, T)) (5.11)

and that, since

(nε + 1)−
p
2 e−

κcε
2 → (n + 1)−

p
2 e−

κc
2 in L2(Ω × (0, T)) as ε = εj ↘ 0 (5.12)

by the dominated convergence theorem, also

nε(nε + 1)−p−1e−κcε∇cε ⇀ n(n + 1)−p−1e−κc∇c in L1(Ω × (0, T)) (5.13)

and

(nε + 1)−
p
2 e−

κcε
2 ∇
{
(nε + 1)−

p
2 e−

κcε
2

}
⇀ (n + 1)−

p
2 e−

κc
2 ∇
{
(n + 1)−

p
2 e−

κc
2

}
in L1(Ω × (0, T)) (5.14)

as ε = εj ↘ 0. Since
(
(nε + 1)−p−1(ρnε − µnαε )e−κcε

)
ε∈(0,1)

can readily be seen to be uniformly integrable over

Ω × (0, T) according to (2.3), the Vitali convergence theorem ensures that furthermore

(nε + 1)−p−1(ρnε − µnαε )e−κcε → (n + 1)−p−1(ρn − µnα)e−κc in L1(Ω × (0, T)), (5.15)

while, quite similarly,

(nε + 1)−pcεe−κcε → (n + 1)−pce−κc in L1(Ω × (0, T)) as ε = εj ↘ 0 (5.16)

and
nε

1 + εnε
(nε + 1)−pe−κcε → n(n + 1)−pe−κc in L1(Ω × (0, T)) as ε = εj ↘ 0, (5.17)

as well as
(nε + 1)−pe−κcεuε ⇀ (n + 1)−pe−κcu in L1(Ω × (0, T)) as ε = εj ↘ 0 (5.18)

due to (5.5).

Now letting ϕ,Φ and ψ be as in (4.1), we see that the properties in (2.12) and (2.13) are obvious, and that
(2.14), (2.15) are immediate from (5.8)-(5.17). Moreover, given any nonnegative φ ∈ C∞0 (Ω × [0,∞)), in the
corresponding identity from Corollary 4.2, upon a time integration implying that to see that

4(p + 1)
p

∞∫
0

∫
Ω

∣∣∣∣∇{(nε + 1)− p2 e− κcε2 } + 2κ + p(p + 1) nε
nε+1

4(p + 1) (nε + 1)−
p
2 e−

κcε
2 ∇cε

∣∣∣∣2φ
+
∞∫
0

∫
Ω

4κ2 − p(p + 1)2 n2ε
(nε+1)2

4(p + 1) (nε + 1)−pe−κcε |∇cε|2φ

=
∞∫
0

∫
Ω

(nε + 1)−pe−κcεφt +
∫
Ω

(n0 + 1)−pe−κc0φ(·, 0)

−2
∞∫
0

∫
Ω

(nε + 1)−
p
2 e−

κcε
2 ∇
{
(nε + 1)−

p
2 e−

κcε
2

}
·∇φ

−p
∞∫
0

∫
Ω

nε(nε + 1)−p−1e−κcε∇cε ·∇φ

+
∞∫
0

∫
Ω

(nε + 1)−pe−κcεuε ·∇φ − p
∞∫
0

∫
Ω

(nε + 1)−p−1(ρnε − µnαε )e−κcεφ
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+κ
∞∫
0

∫
Ω

(nε + 1)−pcεe−κcεφ + κ
∞∫
0

∫
Ω

nε
1 + εnε

(nε + 1)−pe−κcεφ for all ε ∈ (0, 1),

we may once again rely on our hypothesis κ >
√p(p+1)

2 to infer that since thus 4κ2 − p(p + 1)2 n2ε
(nε+1)2 is non-

negative for all ε ∈ (0, 1), from Lemma 5.1 and Fatou’s lemma we obtain that

∞∫
0

∫
Ω

4κ2 − p(p + 1)2 n2
(n+1)2

4(p + 1) (n + 1)−pe−κc|∇c|2φ

≤ lim inf
ε=εj↘0

∞∫
0

∫
Ω

4κ2 − p(p + 1)2 n2ε
(nε+1)2

4(p + 1) (nε + 1)−pe−κcε |∇cε|2φ.

Along with (5.11) and a standard argument based on lower semicontinuity property of L2 norms with respect
to weak convergence, due to (5.13)-(5.18) this can readily be veri�ed to entail (2.16).

We can thereby complete the derivation of our main results:

Proof of Theorem 1.1. The claim follows by combining Lemma 5.1 with Lemma 5.2.
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