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Abstract: In this paper, we study the existence of peaked traveling wave solution of the generalized yu-Novikov
equation with nonlocal cubic and quadratic nonlinearities. The equation is a u-version of a linear combina-
tion of the Novikov equation and Camassa-Hom equation. It is found that the equation admits single peaked
traveling wave solutions.
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1 Introduction

We consider the following partial differential equation
my + ki (u?my + 3uuxm) + ko(2muy + umy) = 0, (1.1)

where u(t, x) is a function of time ¢ and a single spatial variable x, and

m:=pu(u) - uxx, p@):= [ u(t,x)dx,
/

with S = R/Z which denotes the unit circle on R?. Equation (1.1) can be reduced as u-Novikov equation [39]
Mg + ulmy + 3uuym = 0, m = u(u) — uxx, (1.2

for k; = 1 and k, = 0, and the u-Camassa-Holm equation [28]
Me+2muy + umy =0, m = u(u) - Uxx, (1.3)

for ky = 0 and k; = 1, respectively.
It is known that the Camassa-Holm equation of the following form [2, 20]

Me+2MuUy + UMy =0, M = U — Uxx, (1.4)

was proposed as a model for the unidirectional propagation of the shallow water waves over a flat bottom
(see also [14, 25]), with u(x, t) representing the height of the water’s free surface in terms of non-dimensional
variables. The Camassa-Holm equation (1.4) is completely integrable with a bi-Hamiltonian structure and an
infinite number of conservation laws [2, 20], and can be solved by the inverse scattering method [5, 6, 30].
It is of interest to note that the Camassa-Holm equation (1.4) can also be derived by tri-Hamitonian duality
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from the Korteweg-de Vries equation (a number of additional examples of dual integrable systems derived
applying the method of tri-Hamitonian duality can be found in [21, 42]). The Camassa-Holm equation (1.4)
has two remarkable features: existence of peakon and multi-peakons [1-3] and breaking waves, i.e., the wave
profile remains bounded while its slope becomes unbounded in finite time [7, 8, 10-12, 33]. Those peaked
solitons were proved to be orbitally stable in the energy space [15, 16] and to be asymptotically stable un-
der the Camassa-Holm flow [38] (see also [26, 27] for other equations). It is worth noting that solutions of
this type are not mere abstractizations: the peakons replicate a feature that is characteristic for the waves of
great height-waves of largest amplitude that are exact solutions of the governing equations for irrotational
water waves [9, 13, 48]. Geometrically, the Camassa-Holm equation (1.4) describes the geodesic flows on the
Bott-Virasoro group [37, 47] and on the diffeomorphism group of the unit circle under H' metric [29], respec-
tively. The Camassa-Holm equation (1.4) also arises from a non-stretching invariant planar curve flow in the
centro-equiaffine geometry [4, 41]. Well-posedness and wave breaking of the Camassa-Holm equation (1.4)
were studied extensively, and many interesting results have been obtained, see [7, 10-12, 33], for example.
The pu-Camassa-Holm equation (1.3) was originally proposed as the model for the evolution of rotators in lig-
uid crystals with an external magnetic field and self interatction [28]. It is interesting to note that this equa-
tion is integrable in the sense that it admits the Lax-pair and bi-Hamiltonian structure, and also describes a
geodesic flow on the diffeomorphism group of S with H¥(S) metric (which is equivalent to H'(S) metric). Its
integrability, well-posedness, blow-up and peakons were discussed in [19, 28].

It is observed that all nonlinear terms in the Camassa-Holm equation (1.4) are quadratic. In contrast to
the integrable modified Korteweg-de Vries equation with a cubic nonlinearity, it is of great interest to find
integrable Camassa-Holm type equations with cubic or higher-order nonlinearity admitting peakon solitons.
Recently, two integrable Camassa-Holm type equtions with cubic nonlinearities have been appeared in liter-
ature. One was introduced by Olver and Rosenau [42](called the modified Camassa-Holm equation, see also
[18, 21]) by using the tri-Hamiltonian duality approach, which takes the form

me + [ —uP)mly =0, m=u-Uxx. (1.5)

It was shown that the modified Camassa-Holm equation is integrable with the Lax-pair and the bi-
Hamiltonian structure. It has single and multi-peaked traveling waves with a different character than of the
Camassa-Holm equation (1.4) [22], and it also has new features of blow-up criterion and wave breaking mech-
anism. The issue of the stability of peakons for the modified Camassa-Holm equation were investigated in
[46]. Like u-Camassa-Holm equation (1.3), u-version of the modified Camassa-Holm equation

me + [Quu(u) - up)mly =0, m = pu(u) - uxx (1.6)

was introduced in [44]. Its integrability, wave breaking, existence of peaked traveling waves and their stability
were discussed in [34, 44]. The second one is the Novikov equation

me +w2my +3uuxm =0, m=uU-— Uxy, 1.7)

which is integrable with the Lax pair [40]. A matrix Lax pair reprsentation to the Novikov equation was
founded in [23]. It is also noticed that the Novikov equation admits a bi-Hamiltonian structure [23]. Exis-
tence of peaked solitons and multi-peakons for Novikov equation were obtained in [24, 40]. Orbital stability
of the peaked solitons to the Novikov equation were discussed in [35]. The u-Novikov equation (1.2), regarded
as a u-version of the Novikov equation, was introduced first in [39]. The existence of its single peakons was
established in [39].

More recently, the following generalized u-Camassa-Holm equation

my + k1 (Qu(wu - u)m)x + ko(Qmuy +umy) =0, m= u(u) — uxx (1.8)

was proposed in [45] as a u-version of the generalized Camassa-Holm equation with quadradic and cubic
nonlinearities

me + ki((W? = u2)m)x + ko(2muy + umy) =0, M= u - Uxx (1.9)
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which was derived by Fokas [18] from the hydrodynamical wave, and can also obtained using the approach
of tri-Hamiltonian duality [21, 42] to the bi-Hamiltonian Gardner equation

Up + Unxx + kqulux + kouuy = 0. (1.10)

Note that the Lax pair of equation (1.9) was obtained in [43]. It was shown in [45] that a scale limit of equation
(1.8) yields the following integrable equation

Vot — k1Vivxx + ko (vvxx + %v,z() =0, (1.11)
which describes asymptotic dynamics of a short capillarty-gravity wave [17], where v(t, x) denotes the fluid
velocity on the surface. Notably, the generalized u-Camassa-Holm equation (1.8) can be regarded as the inte-
grable model that, in a sense, lies midway between equation (1.9) and its limiting version equation (1.11). It
has been known that the generalized u-Camassa-Holm equation (1.8) is formally integrable in the sense that
it admits Lax formulation and bi-Hamiltonian form [45].

The existence of periodic peakons is of interest for nonlinear integrable equations because they are rel-
atively new solitary waves (for most models the solitary waves are quite smooth). Applying the method of
tri-Hamiltonian duality[21, 42] to the bi-Hamiltonian representation of the Korteweg-de Vries (KdV), mod-
ified Korteweg-de Vries (mKdV), and Gardner equation, the resulting dual systems, such as Camassa-Holm
equation (1.4), the modified Camassa-Holm equation (1.5), and the generalized Camassa-Holm equation (1.9),
exhibit nonlinear dispersion, and, in most cases, admit a remarkable variety of non-smooth soliton-like solu-
tions, including peakons, compactons, tipons, rampons, mesaons, and so on [32]. It is known that Camassa-
Holm equation (1.4), the modified Camassa-Holm equation (1.5), Novikov equation (1.7), and the generalized
Camassa-Holm equation (1.9) [2, 22, 36, 40, 43] admit single peakons of the form

u(t, x) = c(x - ct) = ae <t (1.12)

where the amplitude a is given by ¢, v/3¢/2,+/c, and

-3k, +34/k2 + Ecky
2 3 with k3 + gckl > 0(ky #0),

4k,

for the Camassa-Holm equation, the modified Camassa-Holm equation, Novikov equation, and the general-
ized Camassa-Holm equation, respectively. Their corresponding periodic peakons take the form

cosh(x - ct - [x - ct] - })

cosh(1) ’ (L13)

u(t,x) =@pclx-ct)=a

where the amplitude a is also given by c, v/3¢ cosh(%)/ 1+2 coshz(%), V¢, and

-3k, cosh(})  31/k3 cosh?(3) + $k1c(1 + 2 cosh?(3))
2k;(1 + 2 cosh’(3))

with 1. 4 1
k3 coshz(i) + §klc(l +2 coshz(z)) 2 0,

for the Camassa-Holm equation, the modified Camassa-Holm equation, Novikov equation, and the general-
ized Camassa-Holm equation, respectively.

It is worth noting that the periodic peakons of the u-integrable equation are of a manifestly different
character. For example, in [28, 31, 39, 44], the authors showed that the y-Camassa-Holm equatioin (1.3), u-
Novikov equation (1.2), modified u-Camassa-Holm equation (1.6), and generalized p-Camassa Holm equation
(1.8) admit periodic peakons of the following form

u(t, x) = @clx - ct) = ap(x - ct), (1.14)
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where
= 1 2 23 _l l
go(x)—2<x +24), xe[ 515 (1.15)

and ¢ is extended periodically to the real line, the constant a takes value 12¢c 12\5, ZT‘/?" and

13 13
-13k; + 1/169k3 + 1200ck,
ok with 169k2 + 1200ck; = 0,
1

respectively, for the u-Camassa-Holm equation, u-Novikov equation, modified u-Camassa-Holm equation,
and generalized yu-Camassa-Holm equation.

Motivated by the recent work [28, 44, 45], the aim of this paper is to investigate the existence of periodic
peaked solution of the generalized u-Novikov equation (1.1). Indeed, in Section 2, we give a short review on
the notion of a strong and weak solution of the generalized u-Novikov equation (1.1) and then show that
equation (1.1) admits the periodic peakon, which is given by (1.15) with a replaced by

-6k, +6,/k2 + 4ckq
2 (1.16)

13k

where the wave speed c satisfies k3 + 4ck; = 0.

2 Peaked Traveling Waves

We first introduce the initial value problem of Equation (1.1) on the unit circle S, that is

me + ky(W2my + 3uwem) + ko Qmuy + umy) =0, t>0, xeR,
u(0,x) = up(x), m:=p)-uxw, xekR, 1)
u(t,x+1)=u(t,x), t=0, xecR.

We then formalize the notion of a strong (or classical) and weak solutions of the Equation (1.1) used through-
out this paper.

Definition 2.1. Ifu € C([0, T), H5(S)) n C1([0, T), H"1(S)) with s > % and some T > O satisfies (2.1), then u
is called a strong solution on [0, T). If u is a strong solution on [0, T) for every T > 0, then it is called a global
strong solution.

Note that the inverse operator (u — 02)! can be obtained by convolution with the corresponding Green’s
function, so that

u=@u-09) "' m=g*m, 2.2)

where g is given by [28]

2
gx) = % (x -[x] - %) + g (2.3)

Here [x] denote the greatest integer for x ¢ [—%, %]. Its derivative at x = O can be assigned to zero, so one has
(31]

gx(x) := { 0, x=0 .4)

1
x-35, 0<x<1.
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Plugging the formula for m := u(u) — uxx in terms of u into Equation (1.1) results in the following fully
nonlinear partial differential equation:

2 3. 32y-1 2 2\, 1. o103
Ue + ky |u-ux + E(y 0%)  Ox (y(u)u +uux) + E(;1 Oyx) (ux)} (2.5)
+ky [uux +(u - 0P oxup(u) + ;ui)} -
The formulation (2.5) allows us to define the notion of a weak solutions as follows.

Definition 2.2. Given the initial data ug € W3(S), the function u € L=([0, T); WY3(S)) is said to be a weak
solution to (2.1) if it satisfies the following identity:

T

//[ul/)t+k1 (%u3l/1x 58x* (}l(u)u +uux)1/) (g*ux)l/)>

0 S
+ky <%u2¢x - gx * Quuu) + %u,%)l/))} dxdt + / uo()Y(0, x)dx = 0,
S

for any smooth test function (t, x) € CZ°([0, T) x S). If u is a weak solution on [0, T) for every T > O, then it is
called a global weak solution.

Our main theorem is in the following.

Theorem 2.1. For any c = - 4k , Equation (1.1) admits the peaked periodic-one traveling wave solution u. =
¢c(&), & = x — ct, where ¢(&) is given by

2
1 1 23 11
¢c(f) =a |:2 (5— 2) + 24:| e {—5» E] s (2.6)
where the amplitude
—6’(2 + 6\ / k2 + 4Ck1
13k2 , ki#0
a= 1 2.7
12c¢
ﬁkz’ kl = O’ k2 _T/- 0

and ¢ (&) is extended periodically to the real line with period one.

Proof. Inspired by the forms of periodic peakons for the u-CH equation [28](See also [44, 45]), we assume that
the peaked periodic traveling wave of Equation (1.1) is given by

2
uc(t,x) =a [; (f—[{]—%) +§z] .

According to Definition 2.2 it is found that uc(t, x) satisfies the following equation

p T T T
Z =//uc,t1/)dxdt+kl//uguc,xl/)dxdt+%kl//gx*(,u(u,;)ug+ucu§,x)L/)dxdt
j=1 0 0 S 0 S

T T
ik / / g%l )pdxdt + K, / / uette xpdxdt
0 S 0 'S

T
s / / & * Qulucduc + 2uZ Jpdxdt =0, 2.8)
0 S
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for some T > 0 and every test function (¢, x) € CZ([0, T) x S). For any x € S, one finds that

ct 1
H(uc)=a/ {; <x—ct+;)2+§z} dx+a/ [; (X—Ct—;)2+§z:| dx = a.
0 ct

To evaluate I;,j = 1, - -+ , 6, we need to consider two cases: (i) x > ct, and (ii) x < ct.
For x > ct, we have

4 2
s (3 (- 1) L 2B (e L), 520
ulucluz +ucuzx=a <4 ({ 2) * (.{ 2) +576)’
5 5 (1 1\° 23 1\’ 529 1
Hellcyx = @ (4(*2) 563 +576(‘f'2)>’
2 3
12 _ 23 (,_1 23 2 (Y 23 (.1
Zy(uC)uC"'EuC,X_a <2 <§ 2) +12) and uCuC’x—a (2 (‘f 2) +24 (5 2>>'

On the other hand,

3
Eklgx * (F(HC)UE + Ucu%,x)

4 2

B SV T L O P T O (- I (VR e B | 23 (0 b tv_e L) 4329
—2k1a /(x y-[x-yl 2) (4(y ct-[y-ct] 2) +12<y ct-y-ct] 2> +576>dy

S

ct 4 2
—Eka3 x-y-3) (3 Ccte X NEES e+t 22 d
-2 y=3){z ¥ 2 12\ 2 576 |

0

2
23 1 529
+T(y—Ct—§) +576>dy
2B (e 1) 020
12\ 2) "576 )Y
5 3
1 23 1 487 1
5‘5) _74(‘5_5) " 1920 <5_2>>’
1 3. 15 [(1 1\? 23 1\’
_ * = _ _ — — — I - — — — P
skig (uzx) 54 /(2 (x y-I[x-yl 2) +24> ((y ct-[y-ctl 2) )dy
S

+;k1a3j(; <x—y—;>z+§z> ((y—ct—2>3> dy
+§k1a3x/1<; (X—y+§)2+§z> ((y—ct—;f) dy
( )
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and
15
ngX * <2y(uc)uc + Euc,x>
2
et [ evie - SN (3 (vt L) .23
= koa /(x y=lx-yl 2) <2 (y ct-[y-ct 2) +12>dy
S
i 1\ (3 1\* 23
_ 2 vy _ = 2 _ -t =2
=koa /(x y 2) (2 (y ct+2> +12>dy
0
T 1\ (3 1\? 23
2 p— _— J— — PE—— —_
+k2a/(x y 2) (2 (y ct 2) +12>dy
ct
; 1\ (3 1\? 23
2 — —_ —_ — [ — —_
+kaa /(X y+z) (2 (y ct 2) +1z>dy
X
[ 1 1\° 1 1
e (33169
It follows that

T

I - / / ue pdxdt = —ca /T / (5- %) Y(x, Hdxdt,
0 S

0 S

Iz:kla}jg/(i <€_;>5 23 (5_1>3 ggz ({‘)) (x, Hdxdt,
I3=k1a3/T/<_490 ({_;)5_2('5_;)3 149827O <§_>>¢(x,t)dxdt,
I, = kia® //( 4%< >5+6}m<§-;>>¢(x,t)dxdt,

T

Is = kzaz// (; <§_ ;)3 N % (5- ;)) Y(x, Hdxdt,
Ig = kra? // ( ( )3 ({— )) Y(x, t)dxdt.

Plugging above expressions into (2.8), we deduce that for any (¢, x) € C°([0, T) x S)

il _// (g—f) (%Zkl +§k2a—c> W(t, x)dxdt.

A similar computation yields for x < ct that

4 2
2 2 _3(3 1 23 1 229
HUue +ucug,x = a <4 (5+2> 12 (“z) +576>’
uer-a (L(ee 1) 2B (,,1),529 (1
cUex = 4 2 24 2 576 2 ’
P 3
12 _ 23 1 23 - : = >
2u(ucluc + Sucx = a <2 <{+2> +12),ucuc,x—a (2 (§+2) * 54 (€+2)),
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and

3
3 . 5 9 23 1 487 1
s (MOuouE + e ) = o’ (40 2 _ZZ(£+§> +nno(£+2))’
1 5
§k1g* (ug,x) =k a® <— <
1 > 1
kagx* (zﬂ(uc)uc + Zug x) = kza2 ( 3 (‘f+ ) 3 (‘f*’ 2)) .

This allows us to evaluate

4 T
N // (.{+ %) (—ac+ %Zkla ) Y(t, x)dxdt,
0 S
3
A IS () K

_% (5+;)3+é (€+ ;)) Y(x, )dxdt.

A
+
N
0\
Y
O
/N
A
+
v
\_/

Hence we arrive at

p T
169 13
ZII' = //a <§+ 2> (mkla2 + ﬁkza c> Y(t, x)dxdt.
0 S

Since ¥(t, x) is an arbitrary, both cases imply that the parameter a fulfills the equation

169, 5 13 _
mkla +ﬁk2a—c—0.
Clearly, its solutions are given by which gives (2.7). Thus the theorem is proved. O
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