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Abstract: In this paper, we study the existence of peaked travelingwave solution of the generalized µ-Novikov
equation with nonlocal cubic and quadratic nonlinearities. The equation is a µ-version of a linear combina-
tion of the Novikov equation and Camassa-Hom equation. It is found that the equation admits single peaked
traveling wave solutions.
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1 Introduction
We consider the following partial di�erential equation

mt + k1(u2mx + 3uuxm) + k2(2mux + umx) = 0, (1.1)

where u(t, x) is a function of time t and a single spatial variable x, and

m := µ(u) − uxx , µ(u) :=
∫
S

u(t, x)dx,

with S = R/Z which denotes the unit circle on R2. Equation (1.1) can be reduced as µ-Novikov equation [39]

mt + u2mx + 3uuxm = 0, m = µ(u) − uxx , (1.2)

for k1 = 1 and k2 = 0, and the µ-Camassa-Holm equation [28]

mt + 2mux + umx = 0, m = µ(u) − uxx , (1.3)

for k1 = 0 and k2 = 1, respectively.
It is known that the Camassa-Holm equation of the following form [2, 20]

mt + 2mux + umx = 0, m = u − uxx , (1.4)

was proposed as a model for the unidirectional propagation of the shallow water waves over a �at bottom
(see also [14, 25]), with u(x, t) representing the height of the water’s free surface in terms of non-dimensional
variables. The Camassa-Holm equation (1.4) is completely integrable with a bi-Hamiltonian structure and an
in�nite number of conservation laws [2, 20], and can be solved by the inverse scattering method [5, 6, 30].
It is of interest to note that the Camassa-Holm equation (1.4) can also be derived by tri-Hamitonian duality
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from the Korteweg-de Vries equation (a number of additional examples of dual integrable systems derived
applying the method of tri-Hamitonian duality can be found in [21, 42]). The Camassa-Holm equation (1.4)
has two remarkable features: existence of peakon andmulti-peakons [1–3] and breaking waves, i.e., the wave
pro�le remains bounded while its slope becomes unbounded in �nite time [7, 8, 10–12, 33]. Those peaked
solitons were proved to be orbitally stable in the energy space [15, 16] and to be asymptotically stable un-
der the Camassa-Holm �ow [38] (see also [26, 27] for other equations). It is worth noting that solutions of
this type are not mere abstractizations: the peakons replicate a feature that is characteristic for the waves of
great height-waves of largest amplitude that are exact solutions of the governing equations for irrotational
water waves [9, 13, 48]. Geometrically, the Camassa-Holm equation (1.4) describes the geodesic �ows on the
Bott-Virasoro group [37, 47] and on the di�eomorphism group of the unit circle under H1 metric [29], respec-
tively. The Camassa-Holm equation (1.4) also arises from a non-stretching invariant planar curve �ow in the
centro-equia�ne geometry [4, 41]. Well-posedness and wave breaking of the Camassa-Holm equation (1.4)
were studied extensively, and many interesting results have been obtained, see [7, 10–12, 33], for example.
The µ-Camassa-Holm equation (1.3) was originally proposed as the model for the evolution of rotators in liq-
uid crystals with an external magnetic �eld and self interatction [28]. It is interesting to note that this equa-
tion is integrable in the sense that it admits the Lax-pair and bi-Hamiltonian structure, and also describes a
geodesic �ow on the di�eomorphism group of S with Hµ(S) metric (which is equivalent to H1(S) metric). Its
integrability, well-posedness, blow-up and peakons were discussed in [19, 28].

It is observed that all nonlinear terms in the Camassa-Holm equation (1.4) are quadratic. In contrast to
the integrable modi�ed Korteweg-de Vries equation with a cubic nonlinearity, it is of great interest to �nd
integrable Camassa-Holm type equations with cubic or higher-order nonlinearity admitting peakon solitons.
Recently, two integrable Camassa-Holm type equtions with cubic nonlinearities have been appeared in liter-
ature. One was introduced by Olver and Rosenau [42](called the modi�ed Camassa-Holm equation, see also
[18, 21]) by using the tri-Hamiltonian duality approach, which takes the form

mt + [(u2 − u2x)m]x = 0, m = u − uxx . (1.5)

It was shown that the modi�ed Camassa-Holm equation is integrable with the Lax-pair and the bi-
Hamiltonian structure. It has single and multi-peaked traveling waves with a di�erent character than of the
Camassa-Holm equation (1.4) [22], and it also has new features of blow-up criterion andwave breakingmech-
anism. The issue of the stability of peakons for the modi�ed Camassa-Holm equation were investigated in
[46]. Like µ-Camassa-Holm equation (1.3), µ-version of the modi�ed Camassa-Holm equation

mt + [(2uµ(u) − u2x)m]x = 0, m = µ(u) − uxx (1.6)

was introduced in [44]. Its integrability, wave breaking, existence of peaked travelingwaves and their stability
were discussed in [34, 44]. The second one is the Novikov equation

mt + u2mx + 3uuxm = 0, m = u − uxx , (1.7)

which is integrable with the Lax pair [40]. A matrix Lax pair reprsentation to the Novikov equation was
founded in [23]. It is also noticed that the Novikov equation admits a bi-Hamiltonian structure [23]. Exis-
tence of peaked solitons and multi-peakons for Novikov equation were obtained in [24, 40]. Orbital stability
of the peaked solitons to the Novikov equationwere discussed in [35]. The µ-Novikov equation (1.2), regarded
as a µ-version of the Novikov equation, was introduced �rst in [39]. The existence of its single peakons was
established in [39].

More recently, the following generalized µ-Camassa-Holm equation

mt + k1((2µ(u)u − u2x)m)x + k2(2mux + umx) = 0, m = µ(u) − uxx (1.8)

was proposed in [45] as a µ-version of the generalized Camassa-Holm equation with quadradic and cubic
nonlinearities

mt + k1((u2 − u2x)m)x + k2(2mux + umx) = 0, m = u − uxx (1.9)
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which was derived by Fokas [18] from the hydrodynamical wave, and can also obtained using the approach
of tri-Hamiltonian duality [21, 42] to the bi-Hamiltonian Gardner equation

ut + uxxx + k1u2ux + k2uux = 0. (1.10)

Note that the Lax pair of equation (1.9) was obtained in [43]. It was shown in [45] that a scale limit of equation
(1.8) yields the following integrable equation

vxt − k1v2xvxx + k2
(
vvxx +

1
2 v

2
x

)
= 0, (1.11)

which describes asymptotic dynamics of a short capillarty-gravity wave [17], where v(t, x) denotes the �uid
velocity on the surface. Notably, the generalized µ-Camassa-Holm equation (1.8) can be regarded as the inte-
grable model that, in a sense, lies midway between equation (1.9) and its limiting version equation (1.11). It
has been known that the generalized µ-Camassa-Holm equation (1.8) is formally integrable in the sense that
it admits Lax formulation and bi-Hamiltonian form [45].

The existence of periodic peakons is of interest for nonlinear integrable equations because they are rel-
atively new solitary waves (for most models the solitary waves are quite smooth). Applying the method of
tri-Hamiltonian duality[21, 42] to the bi-Hamiltonian representation of the Korteweg-de Vries (KdV), mod-
i�ed Korteweg-de Vries (mKdV), and Gardner equation, the resulting dual systems, such as Camassa-Holm
equation (1.4), themodi�ed Camassa-Holm equation (1.5), and the generalized Camassa-Holm equation (1.9),
exhibit nonlinear dispersion, and, inmost cases, admit a remarkable variety of non-smooth soliton-like solu-
tions, including peakons, compactons, tipons, rampons, mesaons, and so on [32]. It is known that Camassa-
Holm equation (1.4), the modi�ed Camassa-Holm equation (1.5), Novikov equation (1.7), and the generalized
Camassa-Holm equation (1.9) [2, 22, 36, 40, 43] admit single peakons of the form

u(t, x) = φc(x − ct) = ae−|x−ct|, (1.12)

where the amplitude a is given by c,
√
3c/2,

√
c, and

−3k2 ± 3
√
k22 +

8
3 ck1

4k1
with k22 +

8
3 ck1 ≥ 0(k1 ≠ 0),

for the Camassa-Holm equation, the modi�ed Camassa-Holm equation, Novikov equation, and the general-
ized Camassa-Holm equation, respectively. Their corresponding periodic peakons take the form

u(t, x) = φc(x − ct) = a
cosh(x − ct − [x − ct] − 1

2 )
cosh(12 )

, (1.13)

where the amplitude a is also given by c,
√
3c cosh(12 )/

√
(1 + 2 cosh2(12 ),

√
c, and

−3k2 cosh(12 ) ± 3
√
k22 cosh

2(12 ) +
4
3 k1c(1 + 2 cosh

2(12 ))

2k1(1 + 2 cosh2(12 ))

with
k22 cosh2(

1
2) +

4
3 k1c(1 + 2 cosh

2(12)) ≥ 0,

for the Camassa-Holm equation, the modi�ed Camassa-Holm equation, Novikov equation, and the general-
ized Camassa-Holm equation, respectively.

It is worth noting that the periodic peakons of the µ-integrable equation are of a manifestly di�erent
character. For example, in [28, 31, 39, 44], the authors showed that the µ-Camassa-Holm equatioin (1.3), µ-
Novikov equation (1.2), modi�ed µ-Camassa-Holm equation (1.6), and generalized µ-CamassaHolm equation
(1.8) admit periodic peakons of the following form

u(t, x) = φc(x − ct) = aφ(x − ct), (1.14)
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where

φ(x) = 1
2

(
x2 + 23

24

)
, x ∈

[
−12 ,

1
2

]
, (1.15)

and φ is extended periodically to the real line, the constant a takes value 12c
13 ,12

√
c

13 , 2
√
3c
5 and

−13k2 ±
√
169k22 + 1200ck1
50k1

with 169k2x + 1200ck1 ≥ 0,

respectively, for the µ-Camassa-Holm equation, µ-Novikov equation, modi�ed µ-Camassa-Holm equation,
and generalized µ-Camassa-Holm equation.

Motivated by the recent work [28, 44, 45], the aim of this paper is to investigate the existence of periodic
peaked solution of the generalized µ-Novikov equation (1.1). Indeed, in Section 2, we give a short review on
the notion of a strong and weak solution of the generalized µ-Novikov equation (1.1) and then show that
equation (1.1) admits the periodic peakon, which is given by (1.15) with a replaced by

−6k2 ± 6
√
k22 + 4ck1

13k1
(1.16)

where the wave speed c satis�es k22 + 4ck1 ≥ 0.

2 Peaked Traveling Waves
We �rst introduce the initial value problem of Equation (1.1) on the unit circle S, that is

mt + k1(u2mx + 3uuxm) + k2(2mux + umx) = 0, t > 0, x ∈ R,
u(0, x) = u0(x), m := µ(u) − uxx , x ∈ R,
u(t, x + 1) = u(t, x), t ≥ 0, x ∈ R.

(2.1)

We then formalize the notion of a strong (or classical) and weak solutions of the Equation (1.1) used through-
out this paper.

De�nition 2.1. If u ∈ C([0, T), Hs(S)) ∩ C1([0, T), Hs−1(S)) with s > 5
2 and some T > 0 satis�es (2.1), then u

is called a strong solution on [0, T). If u is a strong solution on [0, T) for every T > 0, then it is called a global
strong solution.

Note that the inverse operator (µ − ∂2x)−1 can be obtained by convolution with the corresponding Green’s
function, so that

u = (µ − ∂2x)−1m = g * m, (2.2)

where g is given by [28]

g(x) := 1
2

(
x − [x] − 1

2

)2
+ 23
24 . (2.3)

Here [x] denote the greatest integer for x ∈ [−12 ,
1
2 ]. Its derivative at x = 0 can be assigned to zero, so one has

[31]

gx(x) :=
{

0, x = 0
x − 1

2 , 0 < x < 1.
(2.4)
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Plugging the formula for m := µ(u) − uxx in terms of u into Equation (1.1) results in the following fully
nonlinear partial di�erential equation:

ut + k1
[
u2ux +

3
2(µ − ∂

2
x)−1∂x

(
µ(u)u2 + uu2x

)
+ 1
2(µ − ∂

2
x)−1

(
u3x
)]

(2.5)

+k2
[
uux + (µ − ∂2x)−1∂x(2uµ(u) +

1
2u

2
x)
]
= 0.

The formulation (2.5) allows us to de�ne the notion of a weak solutions as follows.

De�nition 2.2. Given the initial data u0 ∈ W1,3(S), the function u ∈ L∞([0, T);W1,3(S)) is said to be a weak
solution to (2.1) if it satis�es the following identity:

T∫
0

∫
S

[
uψt + k1

(
1
3u

3ψx −
3
2 gx *

(
µ(u)u2 + uu2x

)
ψ − 1

2(g * u
3
x)ψ
)

+k2
(
1
2u

2ψx − gx * (2uµ(u) +
1
2u

2
x)ψ
)]

dxdt +
∫
S

u0(x)ψ(0, x)dx = 0,

for any smooth test function ψ(t, x) ∈ C∞c ([0, T) × S). If u is a weak solution on [0, T) for every T > 0, then it is
called a global weak solution.

Our main theorem is in the following.

Theorem 2.1. For any c ≥ − k22
4k1 , Equation (1.1) admits the peaked periodic-one traveling wave solution uc =

ϕc(ξ ), ξ = x − ct, where ϕc(ξ ) is given by

ϕc(ξ ) = a
[
1
2

(
ξ − 1

2

)2
+ 23
24

]
, ξ ∈

[
−12 ,

1
2

]
, (2.6)

where the amplitude

a =


−6k2 ± 6

√
k22 + 4ck1

13k1
, k1 ≠ 0

12c
13k2

, k1 = 0, k2 ≠ 0

(2.7)

and ϕc(ξ ) is extended periodically to the real line with period one.

Proof. Inspired by the forms of periodic peakons for the µ-CH equation [28](See also [44, 45]), we assume that
the peaked periodic traveling wave of Equation (1.1) is given by

uc(t, x) = a
[
1
2

(
ξ − [ξ ] − 1

2

)2
+ 23
24

]
.

According to De�nition 2.2 it is found that uc(t, x) satis�es the following equation

6∑
j=1

Ij :=
T∫

0

∫
S

uc,tψdxdt + k1
T∫

0

∫
S

u2cuc,xψdxdt +
3
2 k1

T∫
0

∫
S

gx * (µ(uc)u2c + ucu2c,x)ψdxdt

+ 1
2 k1

T∫
0

∫
S

g * (u3c,x)ψdxdt + k2
T∫

0

∫
S

ucuc,xψdxdt

+ k2
T∫

0

∫
S

gx * (2µ(uc)uc +
1
2u

2
c,x)ψdxdt = 0, (2.8)
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for some T > 0 and every test function ψ(t, x) ∈ C∞c ([0, T) × S). For any x ∈ S, one �nds that

µ(uc) = a
ct∫
0

[
1
2

(
x − ct + 1

2

)2
+ 23
24

]
dx + a

1∫
ct

[
1
2

(
x − ct − 1

2

)2
+ 23
24

]
dx = a.

To evaluate Ij , j = 1, · · · , 6, we need to consider two cases: (i) x > ct, and (ii) x ≤ ct.
For x > ct, we have

µ(uc)u2c + ucu2c,x = a3
(
3
4

(
ξ − 1

2

)4
+ 23
12

(
ξ − 1

2

)2
+ 529
576

)
,

u2cuc,x = a3
(
1
4

(
ξ − 1

2

)5
+ 23
24

(
ξ − 1

2

)3
+ 529
576

(
ξ − 1

2

))
,

2µ(uc)uc +
1
2u

2
c,x = a2

(
3
2

(
ξ − 1

2

)2
+ 23
12

)
and ucuc,x = a2

(
1
2

(
ξ − 1

2

)3
+ 23
24

(
ξ − 1

2

))
.

On the other hand,

3
2 k1gx *

(
µ(uc)u2c + ucu2c,x

)
= 3
2 k1a

3
∫
S

(
x − y − [x − y] − 1

2

)(
3
4

(
y − ct − [y − ct] − 1

2

)4
+ 23
12

(
y − ct − [y − ct] − 1

2

)2
+ 529
576

)
dy

= 3
2 k1a

3
ct∫
0

(
x − y − 1

2

)(
3
4

(
y − ct + 1

2

)4
+ 23
12

(
y − ct + 1

2

)2
+ 529
576

)
dy

+ 3
2 k1a

3
x∫

ct

(
x − y − 1

2

)(
3
4

(
y − ct − 1

2

)4
+ 23
12

(
y − ct − 1

2

)2
+ 529
576

)
dy

+ 3
2 k1a

3
1∫
x

(
x − y + 1

2

)(
3
4

(
y − ct − 1

2

)4
+ 23
12

(
y − ct − 1

2

)2
+ 529
576

)
dy

= k1a3
(
− 9
40

(
ξ − 1

2

)5
− 23
24

(
ξ − 1

2

)3
+ 487
1920

(
ξ − 1

2

))
,

1
2 k1g * (u

3
c,x) =

1
2a

3
∫
S

(
1
2

(
x − y − [x − y] − 1

2

)2
+ 23
24

)((
y − ct − [y − ct] − 1

2

)3
)
dy

= 1
2 k1a

3
ct∫
0

(
1
2

(
x − y − 1

2

)2
+ 23
24

)((
y − ct + 1

2

)3
)
dy

+ 1
2 k1a

3
x∫

ct

(
1
2

(
x − y − 1

2

)2
+ 23
24

)((
y − ct − 1

2

)3
)
dy

+ 1
2 k1a

3
1∫
x

(
1
2

(
x − y + 1

2

)2
+ 23
24

)((
y − ct − 1

2

)3
)
dy

= k1a3
(
− 1
40

(
ξ − 1

2

)5
+ 1
640

(
ξ − 1

2

))
,
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and

k2gx *
(
2µ(uc)uc +

1
2u

2
c,x

)
= k2a2

∫
S

(
x − y − [x − y] − 1

2

)(
3
2

(
y − ct − [y − ct] − 1

2

)2
+ 23
12

)
dy

= k2a2
ct∫
0

(
x − y − 1

2

)(
3
2

(
y − ct + 1

2

)2
+ 23
12

)
dy

+ k2a2
x∫

ct

(
x − y − 1

2

)(
3
2

(
y − ct − 1

2

)2
+ 23
12

)
dy

+ k2a2
1∫
x

(
x − y + 1

2

)(
3
2

(
y − ct − 1

2

)2
+ 23
12

)
dy

= k2a2
(
−12

(
ξ − 1

2

)3
+ 1
8

(
ξ − 1

2

))
.

It follows that

I1 =
T∫

0

∫
S

uc,tψdxdt = −ca
T∫

0

∫
S

(
ξ − 1

2

)
ψ(x, t)dxdt,

I2 = k1a3
T∫

0

∫
S

(
1
4

(
ξ − 1

2

)5
+ 23
24

(
ξ − 1

2

)3
+ 529
576

(
ξ − 1

2

))
ψ(x, t)dxdt,

I3 = k1a3
T∫

0

∫
S

(
− 9
40

(
ξ − 1

2

)5
− 23
24

(
ξ − 1

2

)3
+ 487
1920

(
ξ − 1

2

))
ψ(x, t)dxdt,

I4 = k1a3
T∫

0

∫
S

(
− 1
40

(
ξ − 1

2

)5
+ 1
640

(
ξ − 1

2

))
ψ(x, t)dxdt,

I5 = k2a2
T∫

0

∫
S

(
1
2

(
ξ − 1

2

)3
+ 23
24

(
ξ − 1

2

))
ψ(x, t)dxdt,

I6 = k2a2
T∫

0

∫
S

(
−12

(
ξ − 1

2

)3
+ 1
8

(
ξ − 1

2

))
ψ(x, t)dxdt.

Plugging above expressions into (2.8), we deduce that for any ψ(t, x) ∈ C∞c ([0, T) × S)

6∑
j=1

Ij =
T∫

0

∫
S

a
(
ξ − 1

2

)(
169
144 k1a

2 + 13
12 k2a − c

)
ψ(t, x)dxdt.

A similar computation yields for x ≤ ct that

µ(uc)u2c + ucu2c,x = a3
(
3
4

(
ξ + 1

2

)4
+ 23
12

(
ξ + 1

2

)2
+ 529
576

)
,

u2cuc,x = a3
(
1
4

(
ξ + 1

2

)5
+ 23
24

(
ξ + 1

2

)3
+ 529
576

(
ξ + 1

2

))
,

2µ(uc)uc +
1
2u

2
c,x = a2

(
3
2

(
ξ + 1

2

)2
+ 23
12

)
, ucuc,x = a2

(
1
2

(
ξ + 1

2

)3
+ 23
24

(
ξ + 1

2

))
,
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and

3
2 k1gx *

(
µ(uc)u2c + ucu2c,x

)
= k1a3

(
− 9
40

(
ξ + 1

2

)5
− 23
24

(
ξ + 1

2

)3
+ 487
1920

(
ξ + 1

2

))
,

1
2 k1g * (u

3
c,x) = k1a3

(
− 1
40

(
ξ + 1

2

)5
+ 1
640

(
ξ + 1

2

))
,

k2gx *
(
2µ(uc)uc +

1
2u

2
c,x

)
= k2a2

(
−12

(
ξ + 1

2

)3
+ 1
8

(
ξ + 1

2

))
.

This allows us to evaluate

4∑
j=1

Ij =
T∫

0

∫
S

(
ξ + 1

2

)(
−ac + 169

144 k1a
3
)
ψ(t, x)dxdt,

I5 = k2a2
T∫

0

∫
S

(
1
2

(
ξ + 1

2

)3
+ 23
24

(
ξ + 1

2

))
ψ(x, t)dxdt,

I6 = k2a2
T∫

0

∫
S

(
−12

(
ξ + 1

2

)3
+ 1
8

(
ξ + 1

2

))
ψ(x, t)dxdt.

Hence we arrive at

6∑
j=1

Ij =
T∫

0

∫
S

a
(
ξ + 1

2

)(
169
144 k1a

2 + 13
12 k2a − c

)
ψ(t, x)dxdt.

Since ψ(t, x) is an arbitrary, both cases imply that the parameter a ful�lls the equation

169
144 k1a

2 + 13
12 k2a − c = 0.

Clearly, its solutions are given by which gives (2.7). Thus the theorem is proved.
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