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Abstract: We consider an elliptic variational-hemivariational inequality P in a re�exive Banach space, gov-
erned by a set of constraints K, a nonlinear operator A, and an element f . We associate to this inequality a
sequence {Pn}of variational-hemivariational inequalities such that, for each n ∈ N, inequalityPn is obtained
by perturbing the data K and A and, moreover, it contains an additional term governed by a small parameter
εn. The unique solvability ofP and, for each n ∈ N, the solvability of its perturbed versionPn, are guaranteed
by an existence and uniqueness result obtained in literature. Denote by u the solution of Problem P and, for
each n ∈ N, let un be a solution of Problem Pn. The main result of this paper states the strong convergence
of un → u in X, as n → ∞. We show that the main result extends a number of results previously obtained
in the study of Problem P. Finally, we illustrate the use of our abstract results in the study of a mathematical
model which describes the contact of an elastic body with a rigid-deformable foundation and provide the
corresponding mechanical interpretations.

Keywords: variational-hemivariational inequality, penalty operator, Mosco convergence, internal approxi-
mation, Tykhonov well-posedness, contact problem

MSC: 47J20; 49J40; 49J45; 35M86; 74M10; 74M15

1 Introduction
Variational-hemivariational inequalities represent a special class of inequalities which arise in the study of
nonsmooth boundary value problems. They are governed by both convex functions and locally Lipschitz
functions, which could be nonconvex. For this reason, their study requires prerequisites on both convex and
nonsmooth analysis. Variational-hemivariational inequalities have been introduced by Panagiotopoulos [24]
in the context of applications in engineering problems. Later, they have been studied in a large number of
papers, including the books [21, 23]. The mathematical literature concerning variational-hemivariational in-
equalities grew up rapidly in the last decade, motivated by important applications in Physics, Mechanics
and Engineering Sciences. A recent reference is the book [27] which provides the state of the art in the �eld,
together with relevant applications in Contact Mechanics.

Recently, a considerable e�ort was done to the study of variational-hemivariational inequalities in the
functional framework that we describe below andwe assume everywhere in this paper. Consider a real re�ex-
ive Banach space X and denote by 〈·, ·〉 the duality pairing between X and its dual X*. Let K ⊂ X, A : X → X*,
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φ : X ×X → R, j : X → R and f ∈ X*. We assume that j is a locally Lipschitz function andwe denote by j0(u; v)
the generalized directional derivative of j at the point u in the direction v. Then, the inequality problem taken
into consideration is the following.

Problem P. Find an element u ∈ K such that

〈Au, v − u〉 + φ(u, v) − φ(u, u) + j0(u; v − u) ≥ 〈f , v − u〉 ∀ v ∈ K. (1.1)

A short survey of some results concerning Problem P is the following. First, its unique solvability was proved
in [19] and, under slightly weaker assumptions, in [27]. The dependence of the solution with respect to the
data, including the set K and the element f , was proved in [34, 37], under di�erent assumptions. These results
have been completed in [34] and [15] by considering an associate optimal control problem and an evolution
inequality problem, respectively. Results on the well-posedness of Problem P in the sense of Tykhonov have
been obtained in [31]. There, given a sequence of positive numbers {εn}, the following perturbation of Prob-
lem P was considered, for each n ∈ N.

Problem Pεn . Find an element un ∈ K such that

〈Aun , v − un〉 + φ(un , v) − φ(un , un) + j0(un; v − un) + εn‖v − un‖X ≥ 〈f , v − un〉 ∀ v ∈ K. (1.2)

Note that the solution of Problem P is solution of the perturbed problem Pεn . Nevertheless, the solution of
Problem Pεn could fail to be unique. Denote by un a solution of Problem Pεn , for each n ∈ N. Then, under
appropriate assumptions, it was proved in [31] that the sequence {un}, called approximating sequence, con-
verges to u in X. This property represents the main ingredient for the well-posedness of Problem P in the
sense of Tykhonov, introduced in the study of variational inequalities in [17, 18] and extended to a particular
class of hemivariational inequalities in [8]. References in the �eld include [1, 13, 14, 16, 29, 30, 35].

Other convergence results concerning Problem P are related to the penalty method. Given a sequence of
positive numbers {λn} and a penalty operator G : X → X*, the classical penalty method consists to replace
Problem P by a sequence of problems {Pλn} which, for every n ∈ N, can be formulated as follows.

Problem Pλn . Find an element un ∈ X such that

〈Aun , v − un〉 + 1
λn
〈Gun , v − un〉 + φ(un , v) − φ(un , un) + j0(un; v − un) ≥ 〈f , v − un〉 ∀ v ∈ X. (1.3)

Note that Problem Pλn is formally obtained from Problem P by removing the constraint u ∈ K and in-
cluding a penalty term governed by a parameter λn > 0 and an operator G : X → X*. Penalty methods have
been used in [6, 7, 26] and [19, 27, 28] as an approximation tool to treat constraints in variational inequalities
and variational-hemivariational inequalities, respectively. In particular, the existence of a unique solution to
Problem Pλn together with its convergence to the solution of Problem P as λn → 0 was proved in [19, 27]. An
extension of this convergence result was obtained in [33] where the operator G in (1.3) was replaced by an
operator Gn : X → X*, which depends on n.

Another type of convergence results for the variational-hemivariational inequality (1.1) arise from its nu-
merical analysis and, more precisely, from its numerical approximation. Given a sequence {Kn}, an approxi-
mation of Problem P is stated as follows.

Problem PKn . Find an element un ∈ Kn such that

〈Aun , v − un〉 + φ(un , v) − φ(un , un) + j0(un; v − un) ≥ 〈f , v − un〉 ∀ v ∈ Kn . (1.4)

Note that in various applications Kn = Xn ∩ K where Xn is a �nite-dimensional space constructed with the
�nite element method. We refer the reader to [11, 12] for convergence results related to internal numerical ap-
proximations, and [9] for both internal and external numerical approximations of such inequalities. A com-
prehensive reference on the numerical analysis of Problem P can be found in the survey paper [10].

The aim of this paper is threefold. The �rst one is to construct a sequence of Problems {Pn} and to show
that for each n ∈ N, Problem Pn has at least a solution un which convergences to the solution u of Problem
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P, as n → ∞. Our main result on this matter is Theorem 2 which states an existence and convergence result.
Our second aim is to show that Theorem 2 can be used to recover various convergence results in the study
of Problems Pεn , Pλn , PKn described above. To this end, we use the theorem with a particular choice of sets,
operators and parameters. Finally, our third aim is to illustrate the use of our abstract result in the study of a
frictional contact problem and to provide the corresponding mechanical interpretations. The novelty of our
paper arises from the generality of our main result which uni�es various convergence results in the study of
Problem P and provides a new and nonstandard mathematical tool in the variational analysis of frictional
contact problems with elastic materials.

The rest of the manuscript is structured as follows. In Section 2 we introduce some preliminary material,
then we recall the existence and uniqueness result obtained in [19, 27]. In Section 3 we state and prove our
main result, Theorem 2. Its proof is based on arguments of compactness, monotonicity, pseudomonotonicity,
lower semicontinuity, combined with the properties of the Clarke subdi�erential. In Section 4 we deduce
some consequences of Theorem 2 that we present in a form of relevant particular cases. Finally, in Section 5
we illustrate the use of our abstract results in the analysis of a mathematical model of contact.

2 Preliminaries
We start with some notation and preliminaries and send the reader to [2, 3, 21, 22, 32] for more details on the
material presented below in this section. We use ‖ · ‖X and ‖ · ‖X* for the norm on the spaces X and X*, and
0X, 0X* for the zero element of X and X*, respectively. We also use the notation X*w for the space X* endowed
with the weak* topology. All the limits, upper and lower limits below are considered as n →∞, even if we do
not mention it explicitly. The symbols “⇀" and “→" denote the weak and the strong convergence in various
spaces which will be speci�ed.

For multivalued and singlevalued operators de�ned on X we recall the following de�nitions.

De�nition 1. A multivalued operator T : X → 2X* is said to be pseudomonotone if:

(a) For every u ∈ X, the set Tu ⊂ X* is nonempty, closed and convex.

(b) T is upper semicontinuous (u.s.c.) from each �nite dimensional subspace of X into X*w.

(c) For any sequences {un} ⊂ X and {u*n} ⊂ X* such that un → u weakly in X, u*n ∈ Tun for all n ∈ N and
lim sup 〈u*n , un − u〉 ≤ 0, we have that for every v ∈ X there exists u*(v) ∈ Tu such that

〈u*(v), u − v〉 ≤ lim inf 〈u*n , un − v〉.

De�nition 2. A multivalued operator T : X → 2X* is said to be generalized pseudomonotone if for any se-
quences {un} ⊂ X and {u*n} ⊂ X* such that un → u weakly in X, u*n ∈ Tun for all n ∈ N, u*n → u* in X*w and
lim sup 〈u*n , un − u〉 ≤ 0, we have u* ∈ Tu and

lim 〈u*n , un〉 = 〈u*, u〉.

De�nition 3. An singlevalued operator A : X → X* is said to be:
(a)monotone, if for all u, v ∈ X, we have 〈Au − Av, u − v〉 ≥ 0;
(b) strongly monotone, if there exists mA > 0 such that

〈Au − Av, u − v〉 ≥ mA‖u − v‖2
X for all u, v ∈ X;

(c) bounded, if A maps bounded sets of X into bounded sets of X*;
(d) pseudomonotone, if it is bounded and un → u weakly in X with

lim sup 〈Aun , un − u〉 ≤ 0

imply lim inf 〈Aun , un − v〉 ≥ 〈Au, u − v〉 for all v ∈ X;
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(e) demicontinuous, if un → u in X implies Aun → Au weakly in X*.

It is well known that if T : X → 2X* is a pseudomonotone operator then T is generalized pseudomonotone.
Moreover, it can be proved that if A : X → X* is a pseudomonotone operator in the sense of De�nition 3(d)
then its multivalued extension de�ned as X 3 u → {Au} ∈ 2X* is pseudomonotone in the sense of De�nition
1. In addition, the following results hold.

Proposition 1. a) If the operator A : X → X* is bounded, demicontinuous and monotone, then A is pseu-
domonotone.

b) If A, B : X → X* are pseudomonotone operators, then the sum A + B : X → X* is pseudomonotone.

For real valued functions de�ned on X we recall the following de�nitions.

De�nition 4. A function j : X → R is said to be locally Lipschitz if for every x ∈ X, there exists Ux a neighbor-
hood of x and a constant Lx > 0 such that |j(y) − j(z)| ≤ Lx‖y − z‖X for all y, z ∈ Ux. For such functions the
generalized (Clarke) directional derivative of j at the point x ∈ X in the direction v ∈ X is de�ned by

j0(x; v) = lim sup
y→x, λ↓0

j(y + λv) − j(y)
λ .

The generalized gradient (Clarke subdi�erential) of j at x is a subset of the dual space X* given by

∂j(x) = { ζ ∈ X* : j0(x; v) ≥ 〈ζ , v〉 ∀ v ∈ X }.

The function j is said to be regular (in the sense of Clarke) at the point x ∈ X if for all v ∈ X the one-sided
directional derivative j′(x; v) exists and j0(x; v) = j′(x; v).

We shall use the following properties of the generalized directional derivative and the generalized gradient.

Proposition 2. Assume that j : X → R is a locally Lipschitz function. Then the following hold:

a) For every x ∈ X, the function X 3 v 7→ j0(x; v) ∈ R is positively homogeneous and subadditive, i.e.,
j0(x; λv) = λj0(x; v) for all λ ≥ 0, v ∈ X and j0(x; v1 + v2) ≤ j0(x; v1) + j0(x; v2) for all v1, v2 ∈ X, respectively.

b) For every v ∈ X, we have j0(x; v) = max { 〈ξ , v〉 : ξ ∈ ∂j(x) }.

c) For every x ∈ X, the gradient ∂j(x) is a nonempty, convex, and compact subset of X*w which is bounded
by the Lipschitz constant Lx > 0 of j near x.

We proceed with some miscellaneous de�nitions and results.

De�nition 5. Let {Kn} be a sequence of nonempty subsets of V and K̃ a nonempty subset of X. We say that the
sequence {Kn} converges to K̃ in the sense of Mosco if the following conditions hold.

(a) For every v ∈ K̃, there exists a sequence {vn} ⊂ X such that vn ∈ Kn for each n ∈ N and vn → v in X.

(b) For each sequence {vn} such that vn ∈ Kn for each n ∈ N and vn ⇀ v in X, we have v ∈ K̃.

Below in this paper we shall use the notation Kn M−→ K̃ for the convergence in the sense of Mosco de�ned
above.

Proposition 3. Let C be a nonempty closed convex subset of X, C* a nonempty closed convex and bounded
subset of X*w, φ : X → R a proper, convex lower semicontinuous function and let y be arbitrary element of C.
Assume that, for each x ∈ C, there exists x*(x) ∈ C* such that

〈x*(x), x − y〉 ≥ φ(y) − φ(x).
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Then, there exists y* ∈ C* such that

〈y*, x − y〉 ≥ φ(y) − φ(x) ∀ x ∈ C.

For the proof of Proposition 3 we refer to [5].

De�nition 6. An operator P : X → X* is said to be a penalty operator of the set K ⊂ X if P is bounded,
demicontinuous, monotone and K = {x ∈ X | Px = 0X*}.

Note that the penalty operator always exists. Indeed, we recall that any re�exive Banach space X can be
always considered as equivalently renormed strictly convex space and, therefore, the dualitymap J : X → 2X* ,
de�ned by

Jx = { x* ∈ X* : 〈x*, x〉 = ‖x‖2
X = ‖x*‖2

X* } for all x ∈ X

is a single-valued operator. Then, as proved in [4, 36], the following result holds.

Proposition 4. Let K be a nonempty closed and convex subset of X, J : X → X* the duality map, I : X → X the
identity map on X, and P̃K : X → K the projection operator on K. Then PK = J(I − P̃K) : X → X* is a penalty
operator of K.

We end this section with an existence and uniqueness result concerning the variational-hemivariational in-
equality (1.1) and, to this end, we consider the following assumptions on the data.

K is nonempty, closed and convex subset of X. (2.1)

{
A : X → X* is pseudomonotone and
strongly monotone with constant mA > 0.

(2.2)



φ : X × X → R is such that

(a) φ(η, ·) : X → R is convex and lower semicontinuous,

for all η ∈ X.

(b) there exists αφ ≥ 0 such that

φ(η1, v2) − φ(η1, v1) + φ(η2, v1) − φ(η2, v2)

≤ αφ‖η1 − η2‖X ‖v1 − v2‖X for all η1, η2, v1, v2 ∈ X.

(2.3)



j : X → R is such that

(a) j is locally Lipschitz.

(b) ‖ξ‖X* ≤ c0 + c1 ‖v‖X for all v ∈ X, ξ ∈ ∂j(v),
with c0, c1 ≥ 0.

(c) there exists αj ≥ 0 such that

j0(v1; v2 − v1) + j0(v2; v1 − v2) ≤ αj ‖v1 − v2‖2
X

for all v1, v2 ∈ X.

(2.4)

αφ + αj < mA . (2.5)

f ∈ X*. (2.6)

It can be proved that for a locally Lipschitz function j : X → R, hypothesis (2.4)(c) is equivalent to the
so-called relaxed monotonicity condition see, e.g., [20]. Note also that if j : X → R is a convex function, then
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(2.4)(c) holds with αj = 0, since it reduces to the monotonicity of the (convex) subdi�erential. Examples of
functions which satisfy condition (2.4)(c) have been provided in [10, 19, 20], for instance.

The unique solvability of the variational-hemivariational inequality (1.1) is given by the following result.

Theorem 1. Assume (2.1)–(2.6). Then, inequality (1.1) has a unique solution u ∈ K.

For the Proof of Theorem 1 we refer the reader to Theorem 18 in [19] and Remark 13 in [27].

3 An existence and convergence result
In this section we state and prove our main existence and convergence result, Theorem 2. To this end, we
consider a family of subsets {Kn} of X, a family of operators {Gn} de�ned on X with values in X* and two
sequences {λn}, {εn} ⊂ R. Then, for each n ∈ N, we consider the following problem.

Problem Pn. Find un ∈ Kn such that

〈Aun , v − un〉 + 1
λn
〈Gnun , v − un〉 + φ(un , v) − φ(un , un) + j0(un; v − un) + εn‖v − un‖X ≥ 〈f , v − un〉 ∀ v ∈ Kn .

(3.1)

In the study of Problem Pn we assume that for each n ∈ N, the following hold.

Kn is a nonempty closed convex subset of X. (3.2)

Gn : X → X* is a bounded demicontinuous monotone operator. (3.3)

λn > 0. (3.4)

εn ≥ 0. (3.5)

K ⊂ Kn . (3.6)

〈Gnu, v − u〉 ≤ 0 ∀ u ∈ Kn , v ∈ K. (3.7)

Moreover, we assume that the following conditions are satis�ed.

There exists a set K̃ ⊂ X such that Kn M−→ K̃ as n →∞. (3.8)



There exists an operator G : X → X* and
a sequence {cn} ⊂ R such that

(a) ‖Gnu − Gu‖X* ≤ cn(1 + ‖u‖X) ∀ u ∈ Kn , n ∈ N.
(b) cn → 0 as n →∞.
(c) G is a bounded demicontinuous monotone operator.
(d) 〈Gu, v − u〉 ≤ 0 ∀ u ∈ K̃, v ∈ K.
(e) One of the two conditions below holds.

(i) K̃ = X and u ∈ X, Gu = 0X* ⇒ u ∈ K.
(ii) u ∈ K̃, 〈Gu, v − u〉 = 0 for all v ∈ K⇒ u ∈ K.

(3.9)

 For each u ∈ K there exists cφ(u) ≥ 0 such that

φ(u, v1) − φ(u, v2) ≤ cφ(u)‖v1 − v2‖X ∀ v1, v2 ∈ X.
(3.10)

λn → 0 as n →∞. (3.11)
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εn → 0 as n →∞. (3.12)

Our main result in this section is the following.

Theorem 2. Assume (2.2)–(2.6) and (3.2)–(3.5). Then, the following statements hold.
a) For each n ∈ N, there exists at least one solution un ∈ Kn to ProblemPn. Moreover, the solution is unique

if εn = 0.

b) If, in addition, (2.1) and (3.6)–(3.12) hold, u is the solution of Problem P and {un} ⊂ X is a sequence
such that un is a solution of Problem Pn, for each n ∈ N, then un → u in X.

Proof. a) Let n ∈ N. Assumptions (3.3), (3.4) and Proposition 1 a) imply that the operator 1
λn Gn : X → X*

is pseudomonotone. Therefore (2.2) and Proposition 1 b) show that the operator An : X → X* de�ned by
An = A + 1

λn Gn is pseudomonotone, too. Moreover, since Gn is monotone and λn > 0, using assumption (2.2),
again, we deduce that An is strongly monotone with constant mA. We conclude from above that the operator
An satis�es condition (2.2). On the other hand, recall that the set Kn satis�es condition (3.2). It follows from
above that we are in a position to use Theorem 1 with Kn and An instead of K and A, respectively. In this way
we deduce the existence of a unique element un ∈ Kn such that

〈Aun , v − un〉 + 1
λn
〈Gnun , v − un〉 + φ(un , v) − φ(un , un) + j0(un; v − un) ≥ 〈f , v − un〉 ∀ v ∈ Kn . (3.13)

This proves the unique solvability of Problem Pn in the case when εn = 0. Next, for εn > 0, it follows that the
solution un of (3.13) satis�es inequality (3.1), too. This proves the existence of at least one solution to Problem
Pn.

b) Let n ∈ N. We start by considering the auxiliary problem of �nding an element ũn ∈ Kn such that

〈Aũn , v − ũn〉 + 1
λn
〈Gn ũn , v − ũn〉 + φ(u, v) − φ(u, ũn) + j0(ũn; v − ũn) ≥ 〈f , v − ũn〉 ∀ v ∈ Kn . (3.14)

Note that the variational-hemivariational inequality (3.14) is similar to the variational-hemivariational
inequality (3.13), the di�erence arising in the fact that in (3.14) the �rst argument of φ is the solution u of
Problem P. The existence of a unique solution to inequality (3.14) follows from Theorem 1, by using the same
arguments as those used in the proof of unique solvability of inequality (3.13). Next, we divide the rest of the
proof into four steps.

i) We claim that there is an element ũ ∈ K̃ and a subsequence of {ũn}, still denoted by {ũn}, such that ũn ⇀ ũ
in X, as n →∞.

To prove the claim, we establish the boundedness of the sequence {ũn} in X. Let n ∈ N and let u0 be a
given element in K. We use assumption (3.6) to deduce that

〈Aũn , ũn − u0〉 ≤
1
λn
〈Gn ũn , u0 − ũn〉 + φ(u, u0) − φ(u, ũn) + j0(ũn; u0 − ũn) + 〈f , ũn − u0〉.

Then, by the strong monotonicity of the operator A we obtain

mA ‖ũn − u0‖2
X ≤ 〈Au0, u0 − ũn〉 + 1

λn
〈Gn ũn , u0 − ũn〉 + φ(u, u0) − φ(u, ũn) + j0(ũn; u0 − ũn) + 〈f , ũn − u0〉.

(3.15)

Next, assumptions (3.4) and (3.7) imply that

1
λn
〈Gn ũn , u0 − ũn〉 ≤ 0 (3.16)

and assumption (3.10) yields
φ(u, u0) − φ(u, ũn) ≤ cφ(u)‖ũn − u0‖X . (3.17)
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On the other hand, we write

j0(ũn; u0 − ũn) = j0(ũn; u0 − ũn) + j0(u0; ũn − u0) − j0(u0; ũn − u0)

≤ j0(ũn; u0 − ũn) + j0(u0; ũn − u0) + |j0(u0; ũn − u0)|,

then we use assumption (2.4)(b) and Proposition 2 b) to see that

j0(ũn; u0 − ũn) ≤ αj‖ũn − u0‖2
X + (c0 + c1‖u0‖X)‖ũn − u0‖X . (3.18)

And, obviously,
〈Au0, u0 − ũn〉 + 〈f , ũn − u0〉 ≤ ‖f − Au0‖X*‖ũn − u0‖X . (3.19)

Next, we combine inequalities (3.15)–(3.19) to �nd that

(mA − αj)‖ũn − u0‖X ≤ cφ(u) + c0 + c1‖u0‖X + ‖f − Au0‖X* .

We now use condition (2.5) and the above inequality to deduce that {ũn} is a bounded sequence in X. There-
fore, by the re�exivity of X, there exists an element ũ ∈ X and a subsequence of {ũn}, still denoted by {ũn},
such that ũn ⇀ ũ in X. Recall that ũn ∈ Kn for each n ∈ N. Then, assumption (3.8) and De�nition 5 imply
that ũ ∈ K̃.

ii) Next, we claim that ũ is the solution to Problem P, i.e., ũ = u.

To prove this claim we use assumption (3.8) and consider an element v ∈ K̃ together with a sequence
{vn} ⊂ X such that vn ∈ Kn for every n ∈ N and vn → v in X as n → ∞. We now use inequality (3.14) with
v = vn and assumptions (2.2), (3.10), (2.4)(b) to see that

1
λn
〈Gn ũn , ũn − vn〉 ≤ 〈Aũn − Avn , vn − ũn〉 + φ(u, vn) − φ(u, ũn)

+j0(ũn; vn − ũn) + 〈f , ũn − vn〉 + 〈Avn , vn − ũn〉

≤ φ(u, vn) − φ(u, ũn) + j0(ũn; vn − ũn) + 〈f − Avn , ũn − vn〉

≤ cφ(u)‖ũn − vn‖X + (c0 + c1‖ũn‖X)‖ũn − vn‖X + ‖f − Avn‖X*‖ũn − vn‖X

≤ (cφ(u) + c0 + c1‖ũn‖X + ‖f − Avn‖X* )‖ũn − vn‖X .

Then, due to the convergence vn → v in X, the boundedness of sequence {ũn} and the boundedness of the
operator A, we deduce that there exists a constant D > 0 which does not depend on n such that

〈Gn ũn , ũn − vn〉 ≤ λnD.

Passing to the upper limit in above inequality and using assumption (3.11) we have

lim sup 〈Gn ũn , ũn − vn〉 ≤ 0. (3.20)

On the other hand, we write

〈Gũn , ũn − v〉 = 〈Gũn , ũn − vn〉 + 〈Gũn , vn − v〉
= 〈Gũn − Gn ũn , ũn − vn〉 + 〈Gn ũn , ũn − vn〉 + 〈Gũn , vn − v〉
≤ ‖Gũn − Gn ũn‖X*‖ũn − vn‖X + 〈Gn ũn , ũn − vn〉 + 〈Gũn , vn − v〉

and, using asumption (3.9)(a) we deduce that

〈Gũn , ũn − v〉 (3.21)
≤ cn(1 + ‖ũn‖X)‖ũn − vn‖X + 〈Gn ũn , ũn − vn〉 + 〈Gũn , vn − v〉.
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We now use hypotheses (3.9)(b), (c), the boundedness of sequence {ũn} and the convergence vn → v in X to
see that

lim
[
cn(1 + ‖ũn‖X)‖ũn − vn‖X

]
= 0, (3.22)

lim 〈Gũn , vn − v〉 = 0. (3.23)

Next, we pass to upper limit in inequality (3.21) and use (3.20), (3.22) and (3.23) to �nd that

lim sup 〈Gũn , ũn − v〉 ≤ 0. (3.24)

Taking now v = ũ ∈ K̃ in (3.24) we deduce that lim sup 〈Gũn , ũn − ũ〉 ≤ 0. Recall assumption (3.9)(c) which
guarantees that the operator G : X → X* is pseudomonotone. Hence, using the pseudomonotonicity of G we
deduce that

〈Gũ, ũ − v〉 ≤ lim inf 〈Gũn , ũn − v〉. (3.25)

We now combine inequalities (3.24) and (3.25) to see that

〈Gũ, ũ − v〉 ≤ 0. (3.26)

Recall that this inequality is valid for any v ∈ K̃.
Assume that condition (3.9)(e)(i) is satis�ed. Then, inequality (3.26) implies that 〈Gũ, ũ − v〉 ≤ 0 for all

v ∈ X, which yields Gũ = 0X* and, therefore, ũ ∈ K. Assume now that condition (3.9)(e)(ii) is satis�ed. Then,
by assumptions (3.6) and (3.8) it is easy to see that K ⊂ K̃ and, therefore, using (3.26) we obtain that

〈Gũ, ũ − v〉 ≤ 0 ∀ v ∈ K.

On the other hand, from the assumption (3.9)(d) we have

〈Gũ, v − ũ〉 ≤ 0 ∀ v ∈ K.

The last two inequalities imply that 〈Gũ, v − ũ〉 = 0 for all v ∈ K and, using (3.9) (e)(ii), we infer that ũ ∈ K.
We conclude from above that, either (3.9)(e)(i) or (3.9)(e)(ii) holds, we have

ũ ∈ K. (3.27)

Let n ∈ N. Then, using (3.6) and inequality (3.14), we �nd that

〈Aũn , v − ũn〉 + 1
λn
〈Gn ũn , v − ũn〉 + j0(ũn; v − ũn) − 〈f , v − ũn〉 (3.28)

≥ φ(u, ũn) − φ(u, v) ∀ v ∈ K.

Next, using Proposition 2 b) we deduce that for each v ∈ K there exists an element ωn(ũn , v) ∈ ∂j(ũn) such
that j0(ũn; v − ũn) = 〈ωn(ũn , v), v − ũn〉, and, therefore, inequality (3.28) yields

〈Aũn + 1
λn
Gn ũn + ωn(ũn , v) − f , v − ũn〉 ≥ φ(u, ũn) − φ(u, v) (3.29)

for all v ∈ K. Recall that Proposition 2 c) guarantees the set

C* = {Aũn + 1
λn
Gn ũn + ξn − f : ξn ∈ ∂j(ũn)} (3.30)

is nonempty closed convex and bounded in X*w. Then, assumption (2.3)(a) allows us to use Proposition 3
with C = K and C* de�ned by (3.30), x = v and y = ũn. In this way we �nd that there exists an element
ωn(ũn) ∈ ∂j(ũn) which does not depend on v such that

〈Aũn + 1
λn
Gn ũn + ωn(ũn) − f , v − ũn〉 ≥ φ(u, ũn) − φ(u, v) ∀ v ∈ K.
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Therefore, assumptions (3.4) and (3.7) yield

〈Aũn + ωn(ũn), ũn − v〉 ≤ φ(u, v) − φ(u, ũn) − 〈f , v − ũn〉 ∀ v ∈ K. (3.31)

We now use the regularity (3.27) to take v = ũ in (3.31). Then we pass to the upper limit in the resulting
inequality, use the convergence ũn ⇀ ũ in X and the lower semicontinuity of φ with respect to its second
argument to infer that

lim sup 〈Aũn + ωn(ũn), ũn − ũ〉 ≤ 0. (3.32)

Due to the assumption (2.4)(b), the boundedness of the sequence {ũn} and the boundedness of the operator
A, guaranteed by assumption (2.2), it follows that the sequence {Aũn+ωn(ũn)} is bounded in X*. This implies
that there exists a subsequence of the sequence {Aũn + ωn(ũn)}, still denoted by{Aũn + ωn(ũn)}, and an
element θ ∈ X* such that

Aũn + ωn(ũn) ⇀ θ in X*w . (3.33)

Moreover, as proved in [19, Lemma 20], we know that themultivalued operator A+∂j : X → 2X* is generalized
pseudomonotone. Exploiting now De�nition 2 and the ingredients {ũn} ⊂ X, {Aũn + ξn(ũn)} ⊂ X*, ũn ⇀ ũ
in X, Aũn + ωn(ũn) ∈ Aũn + ∂j(ũn), (3.33) and (3.32), we deduce that θ ∈ Aũ + ∂j(ũ) and

〈Aũn + ωn(ũn), ũn〉 → 〈θ, ũ〉. (3.34)

On the other hand, (3.33) implies that

〈Aũn + ωn(ũn), ũ〉 → 〈θ, ũ〉. (3.35)

We now combine the convergences (3.34) and (3.35) to �nd that

〈Aũn + ωn(ũn), ũn − ũ〉 → 0. (3.36)

Note that the inclusion θ ∈ Aũ + ∂j(ũ) implies that there exists ω(ũ) ∈ ∂j(ũ) such that

θ = Aũ + ω(ũ). (3.37)

Consider now an element v ∈ K. We write

〈Aũn + ωn(ũn), ũn − v〉 = 〈Aũn + ωn(ũn), ũn − ũ〉 + 〈Aũn + ωn(ũn), ũ − v〉,

then we use (3.36), (3.34) and (3.37) to see that

lim 〈Aũn + ωn(ũn), ũn − v〉 = 〈Aũ + ω(ũ), ũ − v〉.

Then, by passing to upper limit in (3.31) and using assumption (2.3)(a) we have

〈Aũ + ω(ũ), ũ − v〉 ≤ φ(u, v) − φ(u, ũ) − 〈f , v − ũ〉

or, equivalently,
〈f , v − ũ〉 ≤ 〈Aũ, v − ũ〉 + φ(u, v) − φ(u, ũ) + 〈ω(ũ), v − ũ〉. (3.38)

On the other hand, the de�nition of the Clarke subdi�erential yields

〈ω(ũ), v − ũ〉 ≤ j0(ũ; v − ũ). (3.39)

Then, combining (3.38) and (3.39) we deduce that

〈f , v − ũ〉 ≤ 〈Aũ, v − ũ〉 + φ(u, v) − φ(u, ũ) + j0(ũ; v − ũ). (3.40)

Finally, we use (3.27) and (3.40) to see that ũ is a solution to ProblemP and, by the uniqueness of the solution
we have that ũ = u, as claimed.
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iii) We now prove the convergence of the whole sequence {ũn} to u.

A careful analysis of the proof in step ii) reveals that every subsequence of {ũn}which converges weakly
in X has the same weak limit u. Moreover, we recall that the sequence {ũn} is bounded in X. Therefore, using
a standard argument we deduce that the whole sequence {ũn} converges weakly in X to u, as n → ∞. This
shows that all the statements in step ii) are valid for the whole sequence {ũn}. In particular, (3.36) combined
with equality ũ = u shows that

〈Aũn + ωn(ũn), ũn − u〉 → 0. (3.41)

Let n ∈ N and let ω(u) ∈ ∂j(u). We have

〈ω(u), ũn − u〉 ≤ j0(u; ũn − u), 〈ωn(ũn), u − ũn〉 ≤ j0(ũn; u − ũn),

which imply that
〈ω(u), ũn − u〉 + 〈ωn(ũn), u − ũn〉 ≤ j0(u; ũn − u) + j0(ũn; u − ũn).

We now use assumption (2.4)(c) to see that

−αj‖ũn − u‖2
X ≤ 〈ω(u), u − ũn〉 + 〈ωn(ũn), ũn − u〉. (3.42)

On the other hand, assumption (2.2) yields

mA‖ũn − u‖2
X ≤ 〈Aũn − Au, ũn − u〉. (3.43)

We now add the inequalities (3.42) and (3.43) to deduce that

(mA − αj)‖ũn − u‖2
X ≤ 〈Aũn + ωn(ũn), ũn − u〉 + 〈Au + ω(u), u − ũn〉.

Next, we use the convergences (3.41), ũn ⇀ u in X as well as the smallness assumption (2.5) to �nd that

‖ũn − u‖X → 0, (3.44)

which show that ũn → u in X as n →∞, as claimed.

iv) In the �nal step of the proof we prove that un → u in X, as n →∞.

Let n ∈ N. We test with v = ũn in (3.1) and v = un in (3.14), then we add the resulting inequalities to see
that

〈Aun − Aũn , un − ũn〉

≤ 1
λn
〈Gn ũn − Gnun , un − ũn〉 + φ(un , ũn) − φ(un , un) + φ(u, un) − φ(u, ũn)

+j0(un; ũn − un) + j0(ũn; un − ũn) + εn‖ũn − un‖X .

Next, using assumptions (3.3), (2.3)(b), (2.4)(c), we deduce that

〈Aun − Aũn , un − ũn〉 ≤ αφ‖un − u‖X‖ũn − un‖X
+αj‖ũn − un‖2

X + εn‖ũn − un‖X

and, therefore, the strong monotonicity of the opeator A yields

(mA − αj)‖ũn − un‖X ≤ αφ‖un − u‖X + εn . (3.45)

We now write
αφ‖un − u‖X ≤ αφ‖un − ũn‖X + αφ‖ũn − u‖X

and substitute this inequality in (3.45) to deduce that

(mA − αφ − αj)‖ũn − un‖X ≤ αφ‖ũn − u‖X + εn .
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Then, using the smallness assumption (2.5) we obtain that

‖ũn − un‖X ≤
αφ

mA − αφ − αj
‖ũn − u‖X + εn

mA − αφ − αj
.

This inequality, the convergence (3.44) and assumption (3.12) imply that

‖ũn − un‖X → 0. (3.46)

Finally, writing ‖un − u‖X ≤ ‖un − ũn‖X + ‖ũn − u‖X and using the convergences (3.44), (3.46) we deduce that
un → u in X which concludes the proof. �

4 Relevant particular cases
In this sectionwe present some relevant particular cases inwhich Theorem 2 can be applied. In particular, we
show that using a convenient choice of sets, operators and parameters, Problem Pn reduces successively to
Problems Pεn , Pλn PKn described in the Introduction. Then, we use Theorem 2 to recover various convergence
results previously obtained in the study of these problems. Everywhere in this section we assume that (2.2)–
(2.6) hold and we denote by u the solution of Problem P obtained in Theorem 1. We start by considering the
following assumptions.

K̃ is a nonempty closed convex subset of X. (4.1)

K ⊂ K̃. (4.2)

Kn ⊂ K̃ for each n ∈ N. (4.3)

Kn M−→ K as n →∞. (4.4)

Kn M−→ K̃ as n →∞. (4.5)

G : X → X* is a penalty operator for K. (4.6)

fn ∈ X* for each n ∈ N. (4.7)

fn → f in X*. (4.8)

We are now in a position to introduce some relevant consequences of Theorem 2.

a) A �rst penalty method. Our �rst particular case is when Kn = X and Gn = G for each n ∈ N, G being a
penalty operator of K. In this case Theorem 2 leads to the following result.

Corollary 1. Assume (2.1)–(2.6), (3.4), (3.5), (3.10)–(3.12) and (4.6). Then, the following statements hold.
a) For each n ∈ N, there exists un ∈ X such that

〈Aun , v − un〉 + 1
λn
〈Gun , v − un〉 + φ(un , v) − φ(un , un) (4.9)

+ j0(un; v − un) + εn‖v − un‖X ≥ 〈f , v − un〉 ∀ v ∈ X.

Moreover, the solution is unique if εn = 0.

b) If {un} ⊂ X is a sequence such that un is a solution of (4.9), for each n ∈ N, then un → u in X.

Proof. Since Kn = X it follows that conditions (3.2), (3.6), (3.8) are satis�ed with K̃ = X. Moreover, since Gn = G
and (4.6) holds, it follows that conditions (3.3), (3.7), (3.9) hold, too, with K̃ = X and cn = 0. Corollary 1 is now
a direct consequence of Theorem 2. �
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Note that in the case when εn = 0 inequality (4.9) reduces to inequality (1.3), used in the classical penalty
method for variational-hemivariational inequalities. Therefore, Corollary 1 provides the unique solvability of
Problem Pλn , for each n ∈ N, and the convergence of the sequence of solutions to the solution of Problem P.
This result was obtained in [19], in the particular case when φ(u, v) = φ(u) and extented in [25] in the case
when φ depends on both u and v.

b) A second penalty method. Our second particular case is when Kn = K̃ where K̃ is a given set which
satis�es condition (4.1) and Gn = G for each n ∈ N, G being a penalty operator of K. In this case Theorem 2
leads to the following result.

Corollary 2. Assume (2.1)–(2.6), (3.4), (3.5), (3.9)(e)(ii), (3.10)–(3.12), (4.1), (4.2) and (4.6). Then, the fol-
lowing statements hold.

a) For each n ∈ N, there exists un ∈ K̃ such that

〈Aun , v − un〉 + 1
λn
〈Gun , v − un〉 + φ(un , v) − φ(un , un) (4.10)

+ j0(un; v − un) + εn‖v − un‖X ≥ 〈f , v − un〉 ∀ v ∈ K̃.

Moreover, the solution is unique if εn = 0.

b) If {un} ⊂ X is a sequence such that un is a solution of (4.10), for each n ∈ N, then un → u in X.

Proof. Since Kn = K̃ and (4.1), (4.2) hold, it follows that conditions (3.2), (3.6), (3.8) are satis�ed. Moreover,
since Gn = G and (3.9)(e)(ii), (4.6) hold, it follows that conditions (3.3), (3.7), (3.9) are satis�ed with cn = 0.
Corollary 1 is now a direct consequence of Theorem 2. �

Note that in the case when εn = 0 inequality (4.10) reduces to inequality

un ∈ K̃, 〈Aun , v − un〉 + 1
λn
〈Gun , v − un〉 (4.11)

+ φ(un , v) − φ(un , un) + j0(un; v − un) ≥ 〈f , v − un〉 ∀ v ∈ K̃.

A brief comparison between inequalities (1.1) and (4.11) shows that (4.11) is obtained from (1.1) by replacing
the set K with the set K̃ and the operator A with the operator A + 1

λn G, in which λn is a penalty parameter.
For this reason we refer to (4.11) as a penalty problem of (1.1). Corollary 2 establishes the link between the
solutions of these problems and, at the best of our knowledge, it represents a new result. Roughly speaking,
it shows that, in the limit when n → ∞, a partial relaxation of the set of constraints can be compensated by
a perturbation of the nonlinear operator which governs Problem P.

c) A continuous dependence result. Our third particular case is when Kn M−→ K, Gn vanishes and f is re-
placed by fn. In this case Theorem 2 leads to the following result.

Corollary 3. Assume (2.1)–(2.6), (3.2), (3.6), (3.10), (4.4), (4.7) and (4.8). Then, for each n ∈ N, there exists
a unique element un ∈ Kn such that

〈Aun , v − un〉 + φ(un , v) − φ(un , un) (4.12)

+ j0(un; v − un) ≥ 〈fn , v − un〉 ∀ v ∈ Kn .

Moreover, un → u in X.

Proof. The existence of a unique solution to inequality (4.12) is a direct consequence of Theorem 1. Let n ∈ N.
Then, using (4.12) it is easy to see that

〈Aun , v − un〉 + φ(un , v) − φ(un , un)

+j0(un; v − un) + 〈f − fn , v − un〉 ≥ 〈f , v − un〉 ∀ v ∈ Kn .
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and, denoting εn = ‖f − fn‖X* , it follows that

〈Aun , v − un〉 + φ(un , v) − φ(un , un) (4.13)

+ j0(un; v − un) + εn‖v − un‖X ≥ 〈f , v − un〉 ∀ v ∈ Kn .

On the other hand, since (4.4) holds it follows that condition (3.8) is satis�ed with K̃ = K. Moreover, since Gn
vanishes, it follows that conditions (3.3), (3.7), (3.9) hold, with Gv = 0X* for all v ∈ X and cn = 0. In addition,
assumption (4.8) implies that (3.12) holds, too. We are now in a position to use Theorem 2 b) with λn = 1

n , for
instance, to deduce the convergence un → u in X, which concludes the proof. �

Note that Corollary 3 represents a continuous dependence result of the solution to ProblemPwith respect
to the set K and the element f . Similar convergence results have been obtained in [34, 37], under di�erent
assumptions on functions and operators.

d) A Tykhonov well-posedness result. Our fourth particular case is when Kn = K and Gn vanishes. In this
case Theorem 2 leads to the following result in the study of Problem Pεn described in the Introduction.

Corollary 4. Assume (2.1)–(2.6), (3.5), (3.10) and (3.12). Then, the following statements hold.
a) For each n ∈ N, there exists an element un ∈ K such that (1.2) holds.

b) If {un} ⊂ X is a sequence such that un is a solution of Problem Pn, for each n ∈ N, then un → u in X.

The proof of Corollary 4 is based on arguments similar to those presented above and, therefore, we skip it. We
restrict ourselves to note that an elementary proof can be used to obtain the convergence result in Corollary
4, without assumption (3.10). The details can be found in [31]. Finally, using the de�nitions in [29, 31] we
remark that Theorem 1 combined with Corollary 4 provides the well-posedness of Problem P in the sense of
Tykhonov.

e) An existence, uniqueness and convergence result. We end this section with an existence, uniqueness
and convergence result which completes our analysis of Problem P and has some interest in its own. To this
end we assume in what follows that (2.1), (3.2) and (4.1) hold. Let J : X → X* be the duality map, I : X → X
the identity map on X, PK : X → K the projection operator on K, PK̃ : X → K̃ the projection operator on K̃
and, for each n ∈ N let PKn : X → Kn be the projection operator on Kn. Consider the operators P, P̃, Pn, G,
Gn, both de�ned on X with values in X*, given by equalities

P = J(I − PK), P̃ = J(I − PK̃), Pn = J(I − PKn ), (4.14)

G = P + P̃, Gn = P + Pn . (4.15)

We use these notation to state and prove the following result.

Corollary 5. Assume (2.1)–(2.6), (3.2), (3.4), (3.6), (3.10), (3.11) and (4.1), (4.3) and (4.5). Then, for each
n ∈ N, there exists a unique element un ∈ Kn such that

〈Aun , v − un〉 + 1
λn
〈Gnun , v − un〉 + φ(un , v) − φ(un , un) (4.16)

+ j0(un; v − un) ≥ 〈f , v − un〉 ∀ v ∈ Kn .

Moreover, un → u in X.

Proof.Recall that Proposition 4 guarantees that P, P̃ and Pn are penalty operators of K, K̃ and Kn, respectively.
This implies that these operators are boundeddemicontinuous andmonotone. Therefore, so are the operators
G andGn de�nedby (4.15). This shows that conditions (3.3) and (3.9)(c) are satis�ed. The existence of a unique
solution of inequality (4.16) results from Theorem 2 with εn = 0.
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Assume now that u ∈ Kn, v ∈ K and recall assumption (3.6) which states that K ⊂ Kn. This implies that
Pv = 0X* , Pnv = 0X* and, therefore, (4.15) yields

〈Gnu, v − u〉 = 〈Pu, v − u〉 + 〈Pnu, v − u〉

= 〈Pu − Pv, v − u〉 + 〈Pnu − Pnv, v − u〉.

We now use the monotonicity of the operators P and Pn to see that 〈Gnu, v − u〉 ≤ 0 which implies that
condition (3.7) is satis�ed.A similar argument basedonassumption (4.2), guaranteedby (3.6) and (4.3), shows
that condition (3.9)(d) holds, too.

Let n ∈ N and u ∈ Kn. Then it follows that PKnu = u and, since (4.3) guarantees that Kn ⊂ K̃, we deduce
that PK̃u = u, too. We now use (4.15) and (4.14) to see that

Gnu − Gu = Pnu − P̃u = J(u − PKnu) − J(u − PK̃u) = J(0X) − J(0X) = 0X* .

It follows from here that condition (3.9)(a) holds with cn = 0. This implies that condition (3.9)(b) is satis�ed,
too.

Assume now that u ∈ K̃ is such that

〈Gu, v − u〉 = 0 ∀ v ∈ K. (4.17)

Then, since K ⊂ Kn ⊂ K̃ we have that Pv = P̃v = 0X* for all v ∈ K and, therefore, (4.15) yields

〈Gu, v − u〉 = 〈Pu − Pv, v − u〉 + 〈P̃u − P̃v, v − u〉 ∀ v ∈ K. (4.18)

We now combine (4.17) and (4.18) to deduce that

〈Pu − Pv, v − u〉 + 〈P̃u − P̃v, v − u〉 = 0 ∀ v ∈ K. (4.19)

On the other hand, using the monotonicity of the operators P and P̃ we have

〈Pu − Pv, v − u〉 ≤ 0, 〈P̃u − P̃v, v − u〉 ≤ 0 ∀ v ∈ K. (4.20)

We now use (4.19), (4.20) and the elementary implication

a ≤ 0, b ≤ 0, a + b = 0 =⇒ a = b = 0 (4.21)

to deduce that

〈Pu − Pv, v − u〉 = 0 ∀ v ∈ K,

which implies that

〈Pu, u − v〉 = 0 ∀ v ∈ K.

We now take v = PKu in the previous equality and use the de�nition (4.14) of the operator P and the properties
of the duality mapping J to see that

〈J(u − PKu), u − PKu〉 = ‖u − PKu‖2
X = 0.

This implies that u ∈ K and, therefore, condition (3.9)(e) holds.
We conclude from above that conditions (3.7), (3.9) are satis�ed, the later with cn = 0.Moreover, we recall

assumption (4.5), which implies (3.8). Therefore, we are in a position to apply Theorem 2 with εn = 0 in order
to conclude the proof. �
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5 A frictional contact problem
In this section we apply our abstract results in Section 3 in the study of a frictional contact problemwith nor-
mal compliance and unilateral constraint. To this endwe consider a bounded domain Ω ⊂ Rd (d = 2, 3) with
smooth boundary Γ composed of three sets Γ1, Γ2 and Γ3 with the mutually disjoint relatively open sets Γ1,
Γ2 and Γ3, such that meas (Γ1) > 0. We use boldface letters for vectors and tensors, such as the outward unit
normal on Γ, denoted by ν. A typical point in Rd is denoted by x = (xi). The indices i, j run between 1 and
d and the index that follows a comma indicates a partial derivative with respect to the corresponding com-
ponent of the spatial variable x. Moreover, the indices ν and τ represent normal components and tangential
parts of vectors and tensors. We denote by Sd the space of second order symmetric tensors on Rd. The zero
element, the canonical inner product and the Euclidean norm on Rd and Sd will be denoted by 0, “ · ” and
‖ · ‖, respectively. Then, the classical formulation of the contact problem we consider in this section is the
following.
ProblemQ. Find a displacement �eld u : Ω → Rd, a stress �eld σ : Ω → Sd and an interface function ξν : Γ3 →
R such that

σ = Fε(u) in Ω, (5.1)

Div σ + f 0 = 0 in Ω, (5.2)

u = 0 on Γ1, (5.3)

σν = f 2 on Γ2, (5.4)

uν ≤ k, σν + ξν ≤ 0,
(uν − k)(σν + ξν) = 0,
ξν ∈ ∂jν(uν)

 on Γ3, (5.5)

‖στ‖ ≤ Fb(uν), −στ = Fb(uν) uτ‖uτ‖
if uτ ≠ 0 on Γ3. (5.6)

Problem Q describes the equilibrium of an elastic body acted upon by body forces and surface tractions, in
frictional contact with a foundation made of a rigid body covered by a layer made of elastic material, say
asperities. It was already considered in [27] and, therefore we skip themechanical assumptions which lead to
thismodel.We restrict ourselves to the following short description of the equations and boundary conditions.
First, equation (5.1) represents the elastic constitutive law in which F is the elasticity operator, assumed to
be nonlinear, and ε(u) represents the linearized strain tensor. Equation (5.2) is the equilibrium equation in
which f 0 denotes the density of body forces. Conditions (5.3) and (5.4) are the displacement and traction
conditions, respectively, in which f 2 represents the density of surface tractions. Condition (5.5) is the contact
conditions in which k ≥ 0 is a given bound and ∂jν is the Clarke subdi�erential of a given function jν. Finally,
(5.5) represents a version of the Coulomb’s law of dry friction in which Fb denotes the friction bound.
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In the study of Problem Q we consider the following assumptions on the data.

F : Ω × Sd → Sd is such that
(a) there exists LF > 0 such that

‖F(x, ε1) − F(x, ε2)‖ ≤ LF‖ε1 − ε2‖
for all ε1, ε2 ∈ Sd , a.e. x ∈ Ω,

(b) there exists mF > 0 such that
(F(x, ε1) − F(x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖2

for all ε1, ε2 ∈ Sd , a.e. x ∈ Ω,
(c) F(·, ε) is measurable on Ω for all ε ∈ Sd ,
(d) F(x, 0) = 0 for a.e. x ∈ Ω.

(5.7)



jν : Γ3 ×R→ R is such that

(a) jν(·, r) is measurable on Γ3 for all r ∈ R and there
exists ē ∈ L2(Γ3) such that jν(·, ē(·)) ∈ L1(Γ3),

(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3,

(c) |∂jν(x, r)| ≤ c̄0 + c̄1 |r| for a.e. x ∈ Γ3,
for all r ∈ R with c̄0, c̄1 ≥ 0,

(d) j0ν (x, r1; r2 − r1) + j0ν (x, r2; r1 − r2) ≤ αjν |r1 − r2|2

for a.e. x ∈ Γ3, for all r1, r2 ∈ R with αjν ≥ 0,

(e) either jν(x, ·) or − jν(x, ·) is regular on R for a.e. x ∈ Γ3.

(5.8)



Fb : Γ3 ×R→ R is such that
(a) there exists LFb > 0 such that

|Fb(x, r1) − Fb(x, r2)| ≤ LFb |r1 − r2|
for all r1, r2 ∈ R, a.e. x ∈ Γ3,

(b) Fb(·, r) is measurable on Γ3 for all r ∈ R,
(c) Fb(x, r) = 0 for all r ≤ 0, Fb(x, r) ≥ 0 for all r > 0,

a.e. x ∈ Γ3.

(5.9)

(
LFb + αjν

)
‖γ‖2 < mF . (5.10)

f 0 ∈ L
2(Ω)d , f 2 ∈ L

2(Γ2)d . (5.11)

k ≥ 0. (5.12)

Next, we use the space V de�ned by

V = { v ∈ H1(Ω)d : v = 0 a.e. on Γ1 }, (5.13)

which is real Hilbert space with the canonical inner product

(v, u)V =
∫
Ω

ε(u) · ε(v) dx,

and the associated norm ‖ · ‖V . Here and below, for every v ∈ V we use the notation

ε(v) = (εij(v)), εij(u) = 1
2 (ui,j + uj,i), vν = v · ν, vτ = v − vνν.
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We also use V* for the dual of V, 〈·, ·〉 for the duality pairing between V and V* and ‖γ‖ for the norm of the
trace operator γ : V → L2(Γ3)d. We denote by K the set of admissible displacement �elds de�ned by

K = { v ∈ V : vν ≤ k a.e. on Γ3 } (5.14)

and, �nally, we introduce the following notation.

A : V → V*,〈Au, v〉 =
∫
Ω

Fε(u) · ε(v) §, (5.15)

φ : V × V → R,φ(u, v) =
∫
Γ3

Fb(uν) ‖vτ‖ dΓ , (5.16)

j : V → R,j(v) =
∫
Γ3

jν(vν) dΓ , (5.17)

f ∈ V*,〈f , v〉 =
∫
Ω

f 0 · v dx +
∫
Γ2

f 2 · v dΓ (5.18)

for all u, v ∈ V. It can be proved that the function j is locally Lipschitz. Therefore, as usual, we shall use the
notation j0(u; v) for the generalized directional derivative of j at u in the direction v.

The variational formulation of Problem Q, obtained by a standard procedure, is as follows.

Problem QV . Find a displacement �eld u ∈ K such that

〈Au, v − u〉 + φ(u, v) − φ(u, u) + j0(u; v − u) ≥ 〈f , v − u〉 ∀ v ∈ K. (5.19)

Next, for each n ∈ N we consider the following contact problem.

Problem Qn. Find a displacement �eld un : Ω → Rd, a stress �eld σn : Ω → Sd and an interface function
ξnν : Γ3 → R such that

σn = Fε(un) in Ω, (5.20)

Div σn + f 0n = 0 in Ω, (5.21)

un = 0 on Γ1, (5.22)

σnν = f 2n on Γ2, (5.23)

unν ≤ kn , σnν + 1
λn pν(unν − gn) + ξnν ≤ 0,

(unν − kn)(σnν + 1
λn pν(unν − gn) + ξnν) = 0,

ξnν ∈ ∂jν(unν)

 on Γ3, (5.24)

‖σnτ‖ ≤ Fb(unν), −σnτ = Fb(unν) unτ‖unτ‖
if unτ ≠ 0 on Γ3. (5.25)

The di�erence between Problems Qn and Q is twofold. First, in Problem Qn the densities of body forces f 0
and surface tractions f 2 as well as the bound k have been replaced by their perturbation f 0n, f 2n and kn,
respectively. Second, the boundary contact condition (5.5) has been replaced by the contact boundary condi-
tion (5.24) in which λn > 0 is a deformability coe�cient, pν is a normal compliance function and gn is a given
gap. This condition still models the contact with a rigid foundation covered by a layer of deformable mate-
rial. Nevertheless, the thickness of this material changed (since k was replaced by kn) as well as its elastic
response (since the additional term 1

λn pν(unν − gn) was introduced in this condition).
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In the study of Problem Qn we consider the following assumptions.

pν : Γ3 ×R→ R+ is such that
(a) there exists Lpν > 0 such that
|pν(x, r1) − pν(x, r2)| ≤ Lpν |r1 − r2|

for all r1, r2 ∈ R, a.e. x ∈ Γ3,
(b) (pν(x, r1) − pν(x, r2)) (r1 − r2) ≥ 0

for all r1, r2 ∈ R, a.e. x ∈ Γ3,
(c) pν(·, r) is measurable on Γ3 for all r ∈ R,
(d) pν(x, r) = 0 if and only if r ≤ 0, a.e. x ∈ Γ3.

(5.26)

f 0n ∈ L
2(Ω)d , f 2n ∈ L

2(Γ2)d . (5.27)

f 0n → f in L2(Ω)d , f 2n → f 2 in L2(Γ2)d . (5.28)

kn ≥ gn ≥ k, λn > 0. (5.29)

k̃ ∈ R, kn → k̃, gn → k, λn → 0. (5.30)

Moreover, we introduce the notation

Kn = { v ∈ V : vν ≤ kn a.e. on Γ3 }, (5.31)

Gn : V → V*, 〈Gnu, v〉 =
∫
Γ3

pν(uν − gn)vν dΓ , (5.32)

f n ∈ V*, 〈f n , v〉 =
∫
Ω

f 0n · v dx +
∫
Γ2

f 2n · v dΓ (5.33)

for all u, v ∈ V.

The variational formulation of Problem Qn is as follows.

Problem QVn . Find a displacement �eld un ∈ Kn such that

〈Aun , v − un〉 + 1
λn
〈Gnun , v − un) + φ(un , v) − φ(un , un) (5.34)

+ j0(un; v − un) ≥ 〈f n , v − un〉 ∀ v ∈ Kn .

Our main resut in this section is the following existence, uniqueness and convergence result.

Theorem 3. Assume (5.7)–(5.12), (5.26)–(5.30). Then, the following statements hold.

a) There exists a unique solution u ∈ K to Problem QV . Moreover, for each n ∈ N, there exists a unique
solution un ∈ Kn to Problem QVn .

b) The solution un of Problem QVn converges to the solution u of Problem QV , i.e., un → u in V, as n →∞.

Proof. a) The unique solvability of Problem QV corresponds to Theorem 109 in [27] and, for this reason, we
do not provide its proof. We restrict ourselves to mention that it represents a direct consequence of Theorem
1. The unique solvability of Problem QVn follows from Theorem 2 a). Indeed, Problem QVn is a special case of
Problem Pn in which εn = 0.

b) Let n ∈ N. We use inequality (5.34) to see that

〈Aun , v − un〉 + 1
λn
〈Gnun , v − un) + φ(un , v) − φ(un , un) (5.35)

+ j0(un; v − un) + 〈f − f n , v − un〉 ≥ 〈f , v − un〉 ∀ v ∈ Kn .
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and, using the notation εn = ‖f n − f‖V* , we deduce that un is a solution of the following inequality problem.

Problem Q̃Vn . Find a displacement un ∈ Kn such that

〈Aun , v − un〉 + 1
λn
〈Gnun , v − un) + φ(un , v) − φ(un , un) (5.36)

+j0(un; v − un) + εn‖v − un‖V ≥ 〈f , v − un〉 ∀ v ∈ Kn .

Our aim inwhat follows is to use Theorem 2 b) in the particular casewhen problemsP andPn are given by
problemsQV and Q̃Vn , respectively. To this end, we need to check, point by point, the validity of the conditions
in this theorem. Note that part of the conditions are obviously satis�ed such as conditions (3.2), (3.4)–(3.6),
for instance, and part of them have been veri�ed in the proof of the �rst part of this theorem. The details can
be found in [27, Ch. 8], as already mentioned. Therefore, in order to avoid repetition we focus in what follows
on the conditions (3.7), (3.8), (3.9), (3.10) and, to this end, we introduce the following additional notations.

K̃ = { v ∈ V : vν ≤ k̃ a.e. on Γ3 }, (5.37)

G : V → V*, 〈Gu, v〉 =
∫
Γ3

pν(uν − k)vν dΓ (5.38)

for all u, v ∈ V.
Let n ∈ N and let u ∈ Kn, v ∈ K. We write

pν(uν − gn)(vν − uν) = pν(uν − gn)(vν − k) + pν(uν − gn)(k − uν)

and, using the properties of the function pν combined with inequalities kn ≥ gn ≥ k we deduce that

pν(uν − gn)(vν − uν) ≤ 0 a.e. on Γ3.

This implies that 〈Gnu, v − u〉 ≤ 0 and, therefore condition (3.7) is satis�ed.
Assume now that k̃ > 0. Then, using the de�nitions (5.31) and (5.37) we deduce that Kn = kn

k̃
K̃ which

implies that Kn M−→ K̃. Indeed, if v ∈ K̃ and vn = kn
k̃
v, then the sequence {vn} satis�es condition (a) in

De�nition 5. Note also that condition (b) in De�nition 5 follows from a standard measure theory argument.
If k̃ = 0 we arrive to the same conclusions, by using the sequence {vn} de�ned by vn = v for all n ∈ N. This
implies that, in any case, condition (3.8) is satis�ed.

We now check the validity of condition (3.9) for the operators (5.32) and (5.38). Let u, v ∈ V. Using
(5.26)(a), inequality gn ≥ k and the properties of the trace operator we have

|〈Gnu − Gu, v〉| ≤
∫
Γ3

|(pν(uν − gn) − pν(uν − k))vν| dΓ

≤ Lpν (gn − k)
∫
Γ3

|vν| dΓ ≤ L0(gn − k)‖v‖V

where L0 is a positive constant. This proves that ‖Gnu − Gu‖V* ≤ L0(gn − k) and, therefore, condition (3.9)(a)
holds with

cn = L0(gn − k). (5.39)

Using now the convergence gn → k in (5.30) we �nd that (3.9)(b) holds, too. Next, condition (3.9)(c) follows
from standard arguments, based on the properties of the function pν and the trace operator.

Consider now two elements u ∈ K̃ and v ∈ K. We write

pν(uν − k)(vν − uν) = pν(uν − k)(vν − k) + pν(uν − k)(k − uν),

then we use (5.26) and inequality k̃ ≥ k, guaranteed by assumptions (5.29) and (5.30), to deduce that

pν(uν − k)(vν − uν) ≤ 0 a.e. on Γ3.
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This implies that 〈Gu, v − u〉 ≤ 0 and, therefore condition (3.9)(d) is satis�ed.
Assume now that 〈Gu, v − u〉 = 0. Then,∫

Γ3

pν(uν − k)(vν − k) dΓ +
∫
Γ3

pν(uν − k)(k − uν) dΓ = 0. (5.40)

On the other hand, note that the properties of the function pν imply that

pν(uν − k)(vν − k) ≤ 0, pν(uν − k)(k − uν) ≤ 0 a.e. on Γ3

and, therefore, ∫
Γ3

pν(uν − k)(vν − k) dΓ ≤ 0,
∫
Γ3

pν(uν − k)(k − uν) dΓ ≤ 0. (5.41)

We now use (5.40), (5.41) and implication (4.21) to see that∫
Γ3

pν(uν − k)(k − uν) dΓ = 0.

Therefore, since the integrand is negative, we deduce that

pν(uν − k)uν = 0 a.e. on Γ3.

This equality combined with assumption (5.26)(d) implies that uν ≤ k a.e. on Γ3. Thus, u ∈ K and, therefore,
condition (3.9)(e) is satis�ed.

Finally, let u, v1, v2 ∈ V. We use de�nition (5.16) and assumption (5.9) to see that

φ(u, v1) − φ(u, v2) ≤
∫
Γ3

Fb(uν) ‖v1τ − v2τ‖ dΓ ≤ LFb‖γ‖
2‖u‖V‖v1 − v2‖V ,

which shows that condition (3.10) holds with cφ(u) = LFb‖γ‖
2‖u‖V .

It follows from above that we are in a position to use Theorem 2. In this way we obtain that if {ũn} is a
sequence of elements of V such that ũn is a solution of Problem Q̃Vn , for each n ∈ N, then ũn → u in V. Recall
now that for each n ∈ N the solution un of Problem QVn is a solution of Problem Q̃Vn . It follows from here that
un → u in V which concludes the proof. �

In addition to the mathematical interest in the convergence result in Theorem 3 b), it is important from
the mechanical point of view, since it establishes the link between the solutions of two di�erent contact
models. It also shows that the weak solution of the elastic frictional contact problemQ depends continuously
on the densities of body forces and surface tractions and the thickness of the deformable layer.
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