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Abstract:We consider the following critical nonlocal Schrödinger problem with general nonlinearities
−

ε2a + εb
∫
R3

|∇u|2
 ∆u + V(x)u = f (u) + u5, x ∈ R3,

u ∈ H1(R3),

(SKε)

and study the existence of semiclassical ground state solutions of Nehari-Pohoz̆aev type to (SKε), where f (u)
may behave like |u|q−2u for q ∈ (2, 4] which is seldom studied. With some decay assumption on V, we es-
tablish an existence result which improves some exiting works which only handle q ∈ (4, 6). With some
monotonicity condition on V, we also get a ground state solution v̄ε and analysis its concentrating behaviour
around global minimum xε of V as ε → 0. Our results extend some related works.
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1 Introduction and main results
In this paper, we consider the following nonlocal Schrödinger equation

−

ε2a + εb
∫
R3

|∇u|2
 ∆u + V(x)u = f (u) + u5, x ∈ R3,

u ∈ H1(R3), x ∈ R3,

(SKε)

where ε, a, b > 0. Such nonlocal equation is also called Kirchho�-Schrödinger equation.Wemake the follow-
ing assumptions on potential function and nonlinear term
(V1) V ∈ C

(
R3,R

)
and 0 < V0 = minx∈R3 V(x) < V∞ = lim|y|→∞ V(y);

(F1) f ∈ C(R,R) and limt→0
f (t)
t = 0, lim|t|→∞

f (t)
t5 = 0;

(F2) there exist constants µ, µ1 > 0 and q ∈ (2, 4] such that F(t) > µtq − µ1t2 for all t ≥ 0, where F(t) =∫ t
0 f (s)ds;

(F3) there exists a constant p ∈ (2, 6) such that f (t)t+6F(t)
|t|p−1 t is nondecreasing on (−∞, 0) ∪ (0, +∞).

In [39], Zhang, Chen and Zou used (V1) (F2) to study the existence of standing waves to nonlinear
Schrödinger equations involving critical growth, and (V1) (F2) was also used by S. Chen et al. in [6] to study
the ground state solutions to Schrödinger-Poisson system. (F3) once appeared in [36] and is weaker than the
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following weak version of Nehari type condition

f (t)/t is nondecreasing on (−∞, 0) ∪ (0, +∞).

Problem (SKε) is related to the stationary analogue of the following equation

utt −

a + b
∫
R3

|∇u|2dx

 ∆u = g(x, t),

which is proposed by Kirchho� [20] as an extension of classical D’Alembert’s wave equation. It has been
applied widely to model various physics problems and appears in some biological systems. For more de-
tails and backgrounds, we refer the reader to [2–4] and references therein. Owing to the presence of the term
(
∫
R3 |∇u|2dx)∆u, problem (SKε) is no longer a pointwise identity, whichmakes the study of this question very

complicated. However, it is worth mentioning that the pioneering work of Lions [24] introduced an abstract
framework, and since then Kirchho� type problemhas receivedmore andmore attention from themathemat-
ical community by using variational methods.

Making the scaling u(x) = v(εx), (SKε) is transformed to
−

a + b
∫
R3

|∇u|2
 ∆u + V(εx)u = f (u) + u5, x ∈ R3,

u ∈ H1(R3), x ∈ R3,

(PKε)

u resolves (PKε) i� v resolves (SKε). It follows from (V1) and (F1) that (PKε) has a variational structure, which
means the weak solutions of (PKε) are the critical points of the C1 functional Iε : H1 (R3) → R de�ned by

Iε(u) = 1
2

∫
R3

[
a|∇u|2 + V(εx)u2

]
dx + b

4

∫
R3

|∇u|2dx

2

−
∫
R3

[
F(u) + 1

6u
6
]

dx. (1.1)

For simplicity, inspired by [6, 39], we set

0 ∈ Ω0 :=
{
x ∈ R3 : V(x) = V0 = min

x∈R3
V(x)

}
. (1.2)

Most recently, many authors are concerned with semiclassical problems like (SKε), i.e. the parameter ε goes
to zero. For ε > 0 small, the solutions are called semiclassical states, which possess an important physical
interest in describing the translation from quantum to classical mechanics. There are some valuable results
on semiclassical solutions for Kirchho�-type problems like (SKε), we refer to [13, 15–17, 37].

Set ε = 1, V(x) ≡ 0, and replace R3 with a bounded domain Ω, then problem (SKε) is related to the
following problem 

−

a + b
∫
R3

|∇u|2
 ∆u = f (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

By minimax methods and invariant sets of descent �ow, Mao and Zhang [28], Perera and Zhang [30] proved
the existence of sign-changing solutions. At the same time, [1] obtained the existence of positive solution
using variational methods when f is critical growth.

When ε > 0, the existence and qualitative properties of solutions to
−

ε2a + εb
∫
R3

|∇u|2
 ∆u + V(εx) = f (u), x ∈ R3,

u ∈ H1(R3),

(S̃Kε)
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have been extensively studied; see for example [6, 9, 10, 18, 26, 34, 37]. If f (t) is super-linear at t = 0 and
super-cubic at t = ∞, He and Zou [17] �rstly studied (S̃Kε) via the Mountain Pass Theorem and the Nehari
manifold approach, under the condition that f ∈ C1(R+,R+) satis�es the Ambrosetti-Rabinowitz condition
((AR) in short)

∃ µ > 4, 0 < µF(t) ≤ f (t)t, t ≠ 0

and the monotonicity condition((MN) in short)

f (t)/t3 is strictly increasing for t ∈ (−∞, 0) ∪ (0, +∞).

If f (t) is not super-cubic at t = ∞, following the idea of Ruiz [31], Li and Ye [22] proved the special case that
V = 1 and f (u) = |u|s−2u for 3 < s < 6 has a positive solution by using a new manifold related to Nehari
equation and Pohoz̆aev equality. Then, Guo [14] and Tang and Chen [36] improve the above results withmore
general V and f , which handles the case where f (u) behaves like |u|s−2u for 2 < s ≤ 3.

For the critical case, Wang, Tian, Xu and Zhang [37] considered the problem

−

ε2a + εb
∫
R3

|∇u|2
 ∆u + V(x)u = λg(u) + |u|4u in R3,

under the assumption that g ∈ C1(R+, R+) is subcritical growth, g(t) = o(t3) as t → 0 and g(t)/t3 is strictly
increasing on (0,∞). Inspired by [17], they obtained the existence,multiplicity and concentration of solutions
when ε > 0 small enough and λ > 0 is large enough, in addition, they extended the results of [17] to the critical
case. In [18], He and Zou also obtained the similar results relaying on (AR) and (MN). Based on the work of
[11, 17], Liu and Guo [22] obtained the existence and concentration of positive ground state solution for (SKε),
where f (u) + u5 is replaced by λK(x)|u|s−2u + Q(x)|u|4u for 4 ≤ s < 6 with K, Q ∈ C(R3,R) satisfying some
suitable conditions.

We would like to emphasize that the previous work depends heavily on the condition (MN) or (AR) and
can be applied to the case where f (u) ∼ |u|q−2u for 4 ≤ q < 6. Obviously, the approaches adopted in them do
notworkwhen f satis�es neither (MN) nor (AR). Therefore, there are very few results concerning semiclassical
ground state solutions for (SKε) where f (u) behaves like |u|q−2u for q ∈ (2, 4]. The �rst purpose of this paper
is to consider this case and improve some previous results.

To state our results, we need introduce the following decay assumption on V

(V2) V ∈ C1 (R3,R
)
, and 2∇V(x) · x 6 (p − 2)V(x) for all x ∈ R3, where p is given by (F3).

Theorem 1.1. Assume that V and f satisfy (V1), (V2) and (F1)− (F3). Then there exist positive constants ε* and
µ0 such that for ε ∈ (0, ε*] and µ ≥ µ0, problem (SKε) admits a ground state solution.

Next we consider the concentration of ground solution of (SKε) as ε → 0. Furthermore, we establish the
exponential decay property of the solution obtained in the following theorem. For this reason, inspired by
[36], we introduce the following monotonicity condition on V

(V3) V ∈ C1 (R3,R
)
, and t 7→ 4V(tx)+∇V(tx)·(tx)

t(p−2)/2 is nonincreasing on (0, +∞) for any x ∈ R3\{0}

which is di�erent from the following monotonicity condition used in [6]:

V ∈ C1
(
R3,R

)
, t 7→ t2[V(tx) −∇V(tx) · (tx)] is nonincreasing on(0, +∞), x ∈ R3\{0}.

For ε ≥ 0, we de�ne the Pohoz̆aev type functional Pε as follows

Pε(u) = a
2‖∇u‖

2
2 + 1

2

∫
R3

[3V(εx) +∇V(εx) · (εx)]u2dx + b
2‖∇u‖

4
2 − 3

∫
R3

[
F(u) + 1

6u
6
]

dx. (1.3)

Based on the fact that any solution u of (PKε) satis�es Pε(u) = 0 and motivated by [22], de�ne the following
Nehari-Pohoz̆aev functional on H1 (R3)
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Jε(u) = 1
2

〈
I′ε(u), u

〉
+ Pε(u)

=a‖∇u‖2
2 + 1

2

∫
R3

[4V(εx) +∇V(εx) · (εx)]u2dx

+ b‖∇u‖4
2 −

1
2

∫
R3

[f (u)u + 6F(u)]dx −
∫
R3

u6dx,

(1.4)

and set
Mε :=

{
u ∈ H1

(
R3
)
\{0} : Jε(u) = 0

}
, (1.5)

i.e., the Nehari-Pohoz̆aev manifold of Iε. So every non-trivial solution of (PKε) is contained in Mε. A non-
trivial solution ū of (PKε) is called a ground state solution of Nehari-Pohoz̆aev type if ū satis�es Iε(ū) =
infu∈Mε Iε(u).

Our second result is given as follows.

Theorem 1.2. Assume (V1), (V3) and (F1) − (F3) hold. Then there exists ε0 > 0 determined by V and f such
that for ε ∈ (0, ε0] and for µ ≥ µ0, where µ0 is given in Theorem 1.1, problem (SKε) has a ground state solution
v̄ε ∈ H1 (R3) \{0} such that ūε(x) = v̄ε(εx) satis�es

Iε(ūε) = inf
u∈Mε

Iε(u) = inf
u∈H1(R3)\{0}

max
t>0

Iε(t1/2u(·/t)). (1.6)

Moreover, the following statements hold
(i) for ε ∈ (0, ε0], there is a maximum point xε of |v̄ε| which satis�es that

lim
ε→0

V(xε) = V0 = min
x∈R3

V(x);

(ii) there exist Π0, κ0 independent of ε ∈ (0, ε0] such that the maximum point xε of |v̄ε| satis�es that

|v̄ε(x)| ≤ Π0 exp(− κ0
ε |x − xε|), ∀x ∈ R3, ε ∈ (0, ε0];

(iii) for any sequence εn → 0, v̄εn (εnx+ xεn ) converges in H1 (R3) to a ground state solution of the following
problem 

−

a + b
∫
R3

|∇u|2
 ∆u + V0u = f (u) + u5, x ∈ R3,

u ∈ H1(R3). x ∈ R3.

(KV0 )

It’s worthy noting that (F3) (V3) are di�erent from that in [6], and unlike [36], we just assume in (V1) that
infx∈R3 V(x) < V∞ instead of V(x) ≤ V∞ for all x ∈ R3. Owing to the critical term, we have to face the lack
of compactness. To resolve the obstacle caused by the lack of compactness, we compare the mountain pass
level with the minimax level of the associated limiting problem. For this purpose, we study the existence of
ground solutions to the following equation

−

a + b
∫
R3

|∇u|2
 ∆u + Vu = f (u) + u5, x ∈ R3,

u ∈ H1(R3), u > 0, x ∈ R3,

(KV )

where V is a parameter with 0 < V ≤ Vmax := supx∈R3 V(x). We have the following statement.

Theorem 1.3. Assume that f satis�es (F1)−(F3), then (KV ) possesses a ground state solution ûV ∈ H1(R3)\{0}
for µ ≥ µ0, satisfying the following property

IV (ûV ) = m̂V := inf
u∈M̂V

IV (u) = inf
u∈H1(R3)\{0}

max
t>0

IV (t1/2(u)t)
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where (u)t(x) := u(x/t) for all x ∈ R3 and t > 0, and

IV (u) := 1
2

∫
R3

(
a|∇u|2 + Vu2

)
dx + b

4

∫
R3

|∇u|2dx

2

−
∫
R3

[
F(u) + 1

6u
6
]

dx (1.7)

JV (u) = a‖∇u‖2
2 + 2V‖u‖2

2 + b‖∇u‖4
2 −

1
2

∫
R3

[f (u)u + 6F(u)]dx −
∫
R3

u6dx (1.8)

M̂V := {u ∈ H1(R3)\{0} : JV (u) = 0}. (1.9)

The main di�culties lies in two aspects: (i) The fact that f (u) does not satisfy (AR) condition nor (MN) con-
dition prevents us from obtaining a bounded (PS) sequence and from using the Nehari manifold. (ii) The
unboundedness of R3 and the presence of critical term u5 result in the lack of compactness.

Motivated by [6], we �rstly consider (KV ) and prove Theorem 1.3 to �nd semiclassical solutions of (SKε).
Based on the general minimax principle [21, Proposition 2.8], we construct a Cerami sequence {un} with
IV (un) → cV andwith the extra property that JV (un) → 0 which is crucial to deduce the boundedness of {un},
even the (AR) condition is not satis�ed. By using some new estimates and subtle analysis introduced in [6],
we show that cV < abS3

4 + b3S6

24 + (b2S4+4aS)3/2

24 (see Lemma 3.3). More speci�cally, we determine the lower bound
µ0 in Theorem 1.3 (see Lemma 3.3) unlike [15].

To prove the existence of the semiclassical solutions, following the idea of Jeanjean [19](the so-called
monotonicity trick) and using a new global compactness lemma of critical type developed by [22, 36], we
construct a sequence {un} of the exact critical points of nearby functionals Iε,λn which satis�es λn → 1 and
I′ε,λn (un) = 0, where

Iε,λ(u) = Iε(u) + (1 − λ)
∫
R3

[
F(u) + 1

6u
6
]

dx for all u ∈ H1(R3) and λ ∈ [1/2, 1].

and show that Iε,λ satis�es the Palais-Smale condition because of cε,λ < m∞λ , as proved in Lemma 4.4. The
fact that un is the exact critical point provides additional information related to Pohoz̆aev identity, which is
important to ensure the boundedness of {un}.
Remark 1.4 As mentioned above, unlike [36], we just assume infx∈R3 V(x) < V∞ instead of V(x) ≤ V∞ for
all x ∈ R3, which makes it di�cult to show cε < m∞ε . To overcome this obstacle, we use some new energy
inequalities and some subtle analysis and �nd two constants ε* > 0 and λ̄ ∈ [1/2, 1) determined by V and f
(see Lemma 4.4) such that

cε,λ < m∞λ , ∀λ ∈ (λ̄, 1], ε ∈ [0, ε*].

Remark 1.5 To obtain the concentration phenomenon for ground state solution to (SKε) as ε → 0, we intro-
duce some new proof techniques due to [6] to overcome the obstacles caused by the lack of (AR) and (MN),
which is di�erent from the previous work. Our work extended the results of [23] to critical case.

In Sect. 2, we give some preliminaries and necessary lemmas. Sect. 3 is devoted to show the existence
of the ground state solution for the limited problem (KV ), and give the proof of Theorem 1.3. The proof of
theorem 1.1 is given in Sect. 4. We investigate the existence and concentration of the ground state solution of
Nehari-Pohoz̆aev type and complete the Proof of Theorem 1.2 in Sect. 5 and Sect. 6.

2 Preliminaries
In this section, we give some preliminaries. We will make use of the following notations.

• H1(R3) denotes the usual Sobolev space equipped with the inner product and norm (u, v) =
∫
R3 (∇u ·

∇v)dx, ‖u‖ = (u, u)1/2 for all u, v ∈ H1(R3).
• |u|q := (

∫
R3 |u|q)

1
q for 1 ≤ q < ∞ and u ∈ Lq(R3).
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• C, Ci denote (possibly di�erent) various positive constant.
• S = infu∈H1(R3)\{0} ‖∇u‖2

2/‖u‖2
2.

• Br(x) := {y ∈ R3 : |y − x| < r} for any x ∈ R3 and r > 0.
• (u)t(x) := u(x/t) for all x ∈ R3 and t > 0 along any u ∈ H1(R3)\{0}.

It is easy to check that (V1) and (V3) implies that

h1(t, y) :=V(y) − t4V(ty) − 2(1 − t(6+p)/2)
6 + p [4V(y) +∇V(y) · y]

≥0, ∀t ≥ 0, y ∈ R3\{0}.
(2.1)

Lemma 2.1. Assume that (F1) and (F3) hold.Then

h2(t, τ) :=t3F(t1/2τ) − F(τ) + 1 − t(6+p)/2

6 + p [f (τ)τ + 6F(τ)]

≥0, ∀t ≥ 0, τ ∈ R.
(2.2)

Proof. It is easy to see that for all t ≥ 0, h2(t, τ) ≥ 0. For τ ≠ 0, by (F3), we have

d
dt h2(t, τ) = 1

2 t
2+p/2|τ|p

[
f (t1/2τ)t1/2τ + 6F(t1/2τ)

|t1/2τ|p
− f (τ)τ + 6F(τ)

|τ|p

]
{
≥ 0, t ≥ 1,
≤ 0, t ≤ 1,

which, together with the continuity of h2(·, τ), implies that h2(t, τ) ≥ h2(1, τ) = 0 for all t ≥ 0 and τ ∈ ̸ R\{0}.
This shows (2.2) holds. �

Lemma 2.2. Assume that (V1), (V2), (F1) and (F3) hold. Then

Iε(u) ≥Iε
(
t1/2(u)t

)
+ 2(1 − t(6+p)/2)

6 + p Jε(u)

+ b
4(6 + p)α(t)‖∇u‖4

2, ∀u ∈ H1(R3), t > 0,
(2.3)

where
α(t) = 8t(6+p)/2 − (6 + p)t4 + p − 2, ∀t ≥ 0.

Proof. Since p > 2, one can easily have

α(t) > 0, ∀t ∈ [0, 1) ∪ (1,∞). (2.4)

By (1.1), one has

Iε
(
t1/2(u)t

)
= at2

2 ‖∇u‖
2
2 + t4

2

∫
R3

V(tεx)u2dx + bt4
4 ‖∇u‖

4
2

− t3
∫
R3

F(t1/2u)dx − 1
6 t

6‖u‖6
6, ∀u ∈ H1(R3), t > 0.

(2.5)

It is easy to check that
1 − t2

2 − 2(1 − t(6+p))
6 + p ≥ 0, ∀t > 0. (2.6)

1
6 t

6 − 1
6 + 2(1 − t(6+p)/2)

6 + p ≥ 0, ∀t > 0 (2.7)
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From (1.1), (1.4), (2.1), (2.2), (2.4), (2.5), (2.6) and (2.7), one has

Iε(u) − Iε
(
t1/2(u)t

)
=a(1 − t2)

2 ‖∇u‖2
2 + 1

2

∫
R3

[V(εx) − t4V(tεx)u2]dx + b(1 − t4)
4 ‖∇u‖4

2

+
∫
R3

[t3F(t1/2(u)t) − F(u)]dx + 1
6 (t6 − 1)‖u‖6

6

= 2(1 − t(6+p)/2)
6 + p

{
a‖∇u‖2

2 + 1
2

∫
R3

[4V(εx) +∇V(εx) · (εx)u2]dx + b‖∇u‖4
2

− 1
2

∫
R3

[f (u)u + 6F(u)]dx − ‖u‖6
6

}
+
[

1 − t2
2 − 2(1 − t(6+p))

6 + p

]
a‖∇u‖2

2

+ 1
2

∫
R3

h1(t, εx)u2dx +
[

1 − t4
4 − 2(1 − t(6+p)/2)

6 + p

]
b‖∇u‖4

2

+
∫
R3

{
t3F(t1/2u) − F(u) + 1 − t(6+p)/2

6 + p [f (u)u + 6F(u)]
}

dx

+
[

1
6 t

6 − 1
6 + 2(1 − t(6+p)/2)

6 + p

]
‖u‖6

6

≥2(1 − t6+p)/2)
6 + p Jε(u) + bα(t)

4(6 + p)‖∇u‖
4
2, ∀u ∈ H1(R3), t > 0.

(2.8)

This shows (2.3). �
Let t → 0, in (2.3), we have

Iε(u) ≥ 2
6 + p Jε(u) + b(p − 2)

4(6 + p)‖∇u‖
4
2, ∀u ∈ H1(R3). (2.9)

Lemma 2.2 gives the following corollary immediately.

Corollary 2.1. Assume that (V1), (V3), (F1) and (F3) hold.Then for u ∈Mε

Iε(u) = max
t>0

Iε
(
t1/2(u)t

)
. (2.10)

Lemma 2.3. Assume that (V1), (V3) and (F1)−(F3) hold.Then for any u ∈ H1(R3)\{0}, there exists a unique
tu > 0 such that t1/2

u (u)tu ∈Mε.

Proof. Let ε > 0 and u ∈ H1(R3)\{0} be �xed. De�ne the function ζε(t) = Iε
(
t1/2(u)t

)
on (0,∞). By (1.4) and

(2.5), we have

ζ ′ε(t) = 0⇐⇒at2‖∇u‖2
2 + 1

2 t
4
∫
R3

[4V(tεx) +∇V(tεx) · (tεx)]u2dx

+ bt4‖∇u‖4
x −

1
2 t

3
∫
R3

[
f (t1/2u)(t1/2u) + 6F(t1/2u)

]
dx

− t6‖u‖6
6 = 0

⇐⇒Jε
(
t1/2(u)t

)
= 0⇐⇒ t1/2(u)t ∈Mε .

By (F1) and (F2), we have limt→0 ζε(t), ζε(t) > 0 for t > 0 small and ζε(t) < 0 for t large. Therefore
maxt∈(0,∞) ζε(t) is achieved at tu > 0 so that ζ ′ε(tu) = 0 and t1/2

u (u)tu ∈Mε.
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Next, we claim that tu is unique for any u ∈ H1(R3)\{0}. If not, we can assume that there exist positive
constants tu,1 ≠ tu,2 such that Jε

(
t1/2
u,1 (u)tu,1

)
= Jε

(
t1/2
u,2 (u)tu,2

)
= 0, i.e. t1/2

u,1 (u)tu,1 , t1/2
u,2 (u)tu,2 ∈Mε. Then (2.3)

and (2.4) imply

Iε
(
t1/2
u,1 (u)tu,1

)
≥ Iε

(
t1/2
u,2 (u)tu,2

)
+

2
(
t(6+p)/2
u,1 (u)tu,1 − t

(6+p)/2
u,2 (u)tu,2

)
(6 + p)t(6+p)/2

u,1
Jε
(
t1/2
u,1 (u)tu,1

)

≥ Iε
(
t1/2
u,1 (u)tu,1

)
+

2
(
t(6+p)/2
u,2 (u)tu,2 − t

(6+p)/2
u,1 (u)tu,1

)
(6 + p)t(6+p)/2

u,1
Jε
(
t1/2
u,2 (u)tu,2

)
.

This contradiction shows that tu > 0 is unique for any u ∈ H1(R3)\{0}. �
Combining Corollary 2.1 with Lemma 2.3, we have the following lemma.

Lemma 2.4. Assume that (V1), (V3) and (F1)−(F3) hold. Then

inf
u∈Mε

Iε(u) = mε = inf
u∈H1(R3)\{0}

max
t>0

Iε
(
t1/2(u)t

)
.

Lemma 2.5. Assume that V satis�es (V1) and (V3).Then there exists γ1 > 0 independent of ε > 0 such that

2a‖∇u‖2
2 +
∫
R3

[4V(εx) +∇V(εx) · (εx)]u2dx ≥ γ1‖u‖2, ∀u ∈ H1(R3). (2.11)

Proof. By (2.1), limt→0 h1(t, y)/t(6+p)/2 ≥ 0 for any y ∈ R3\{0}, which implies

4V(y) +∇V(y) · y ≥ 0, ∀y ∈ R3\{0}. (2.12)

Set Vmax := maxx∈R3V(x) ∈ (0,∞), and t0 = (2Vmax/V0)1/4 > 1. Then it follows from (V1), (2.1) and (2.12)
that

2
6 + p [4V(y) +∇V(y) · y] ≥

2
(

1 − t−(6+p)/2
0

)
6 + p [4V(y) +∇V(y) · y]

≥t(2−p)/2
0 V(t0y) − t−(6+p)/2

0 V(y)

≥t(2−p)/2
0 [V0 − t−4

0 Vmax]

=V0
2

(
2Vmax
V0

)(2−p)/8
, ∀y ∈ R3.

(2.13)

Let γ1 = min
{

2a, V0
2

(
2Vmax
V0

)(2−p)/8
}
. Then (2.13) implies that (2.11) holds. �

Lemma 2.6. Assume that (V1), (V3) and (F1)−(F3) hold. Then exist constants δ > 0, ρ0 > 0 independent of ε
such that infu∈Mε ‖∇u‖

2
2 > δ and mε = infu∈Mε Iε(u) > ρ0.

Proof. Since Jε(u) = 0 for all u ∈ Mε, by (F1), (1.4), (2.11) and Sobolev embedding inequality, there exists a
constant C0 > 0 independent of ε such that

γ1‖u‖2 + 2b‖∇u‖4
2 ≤2a‖∇u‖2

2 +
∫
R3

[4V(εx) +∇V(εx) · (εx)]

=
∫
R3

[f (u)u + F(u)]dx + 2‖u‖6
6

≤γ1
2 ‖u‖

2
2 + C0‖u‖6

6

≤γ1
2 ‖u‖

2 + C0S−3‖∇u‖6
2,
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which implies

‖∇u‖2
2 ≥ δ :=

(
2bS3

C0γ1

)1/2
, ∀u ∈Mε . (2.14)

By (2.9) and (2.14), one has

Iε(u) = Iε(u) − 2
6 + p Jε(u) ≥ b(p − 2)

4(6 + p)‖∇u‖
2
2 ≥

b(p − 2)
4(6 + p) δ

4 = ρ0, ∀u ∈Mε . (2.15)

This completes the proof. �
As the proof of [23, Lemma 2.9], we have the following statement.

Lemma 2.7. Assume that (V1), (V3) and (F1)−(F3) hold. If ū ∈ Mε and Iε(u) = mε, then ū is a critical point of
Iε.

3 Ground state solution for the limited problem
In this section, by using the following general minimax principle, we show the existence of the ground state
solution for (KV ), and give the proof of Theorem 1.3. To prove the existence of nontrivial solutions, we use the
following general minimax principle [21, Proposition 2.8], which is a stronger version of [38, Theorem 2.8].

Lemma 3.1. Let X be aBanach space. Let M0 be a closed subspace of themetric spaceMand let Γ0 ⊂ C(M0, X).
De�ne

Γ̄ :=
{
γ ∈ C(M0, X) : γ

∣∣
M0
∈ Γ0

}
.

If φ ∈ C1(X,R) veri�es
∞ > c := inf

γ∈Γ
sup
u∈M

φ(γ(u)) > b := sup
γ0∈Γ0

sup
u∈M0

φ(γ0(u)),

then, for every σ ∈ (0, (c − b)/2), δ > 0 and γ ∈ Γ̄ satisfying

sup
M
φ ◦ γ ≤ c + σ,

there exist u ∈ X such that
(i) c − 2σ ≤ φ(u) ≤ c + 2σ,
(ii) dist(u, γ(M)) ≤ 2δ,
(iii) (1 + ‖u‖)‖φ′(u)‖ ≤ 8σ/δ.

In the following, we apply Lemma 3.1 to obtain a Cerami sequence for the functional IV with JV (un) → 0.

Lemma 3.2. Assume that (F1) and (F2) hold. Then there exist a sequence {un} ⊂ H1(R3) satisfying

IV (un) → cV > 0, ‖I′V (un)‖(1 + ‖u‖) → 0, JV (un) → 0, (3.1)

where
cV := inf

γ∈Γ
max
t∈[0,1]

IV (γ(t)), Γ :=
{
γ ∈ C([0, 1], H1(R3)) : γ(0) = 0, IV (γ(1)) < 0

}
.

Proof. By (F1), one has IV (tu) → −∞, as t → ∞ for every u ∈ H1(R3)\{0}. A standard argument shows that
Γ ≠ ∅ and cV < ∞. Moreover, it is easy to see that there exist constants ρ1 > 0 and σ1 > 0 such that

IV (u) ≥ 0 for all u, with ‖u‖ ≤ ρ1 and IV (u) ≥ σ1 for all u, with ‖u‖ = ρ1. (3.2)

Clearly γ(0) = 0 and IV (γ(1)) < 0 for every γ ∈ Γ. Hence (3.2) implies that ‖γ(1)‖ > ρ1. There exists tγ ∈ (0, 1)
such that ‖γ(tγ)‖ = ρ1. Thus, we have

sup
t∈[0,1]

IV (γ(t)) ≥ IV (γ(tγ)) ≥ σ1 > 0 for all γ ∈ Γ ,
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which shows
∞ > cV = inf

γ∈Γ
max
t∈[0,1]

Iv(γ(t)) ≥ σ1 > 0. (3.3)

Let us de�ne the continuous map h : R × H1(R3) → H1(R3), h(s, v)(x) = e s
2 v(x/es) for s ∈ R, v ∈ H1(R3) and

x ∈ R3, where R × H1 is a Banach space, with the product norm ‖(s, v)‖ := (|s|2 + ‖v‖2)(1/2). We consider the
following auxiliary functional

ĨV = IV (h(s, u)) = ae2s

2 ‖∇u‖2
2 + V

2 e
4s‖u‖2

2 + b
4 e

4s‖∇u‖4
2 − e3s

∫
R3

F(e
s
2 u)dx − 1

6 e
6s‖u‖6

6.

It is easy to see that ĨV ∈ C1(R × H1(R3),R), and

∂s ĨV (s, u) = JV (h(s, u)), ∂u Ĩ′V (s, u)w = I′V (h(s, u))h(s, w),

for all s ∈ R and u, w ∈ H1(R3).
De�ne the minimax value c̃V for ĨV ,

c̃V = inf
γ̃∈Γ̃

max
t∈[0,1]

ĨV (γ̃(t)),

where
Γ̃ =

{
γ̃ ∈ C([0, 1],R × H1(R3)) : γ̃(0) = (0, 0), ĨV (γ̃(1)) < 0

}
.

Since Γ =
{
h ◦ γ̃ : γ̃ ∈ Γ̃

}
, it implies cV = c̃V . By the de�nition of cV , for every n ∈ N there exists γn ∈ Γ such

that
max
t∈[0,1]

ĨV (0, γn(t)) = max
t∈[0,1]

IV (γn(t)) ≤ cV + 1
n2 .

Then, we apply Lemma 3.1 to ĨV , M = [0, 1], M0 = {0, 1} and X = R × H1(R3). Let εn = 1/n2, δn = 1/n, and
γ̃n(t) = (0, γn(t)). Since (3.3) implies εn = 1/n2 ∈ (0, cV /2) for large n ∈ N, Lemma 3.1 yields that existence of
(sn , vn) ∈ R × H1(R3) such that, as n → ∞,

ĨV (sn , vn) → cV ,

‖ĨV (sn , vv)‖(1 + ‖(sn , vn)‖) → 0, (3.4)

dist((sn , vn), {0} × γn([0, 1])) → 0. (3.5)

Moreover, (3.5) gives that sn → 0. Note that for all (τ, w) ∈ R × H1(R3),

〈Ĩ′V (sn , vn , (τ, w))〉 = 〈I′V (h(sn , vn)), h(sn , vn)〉 + JV (h(sn , vn))τ. (3.6)

Let un := h(sn , vn). Taking τ = 1 and w = 0 in (3.6), we have JV (un) → 0 as n → ∞. For every v ∈ H1(R3), set
τ = 0 and wn = e−sn/2v(xesn ) in (3.6), then (3.4) and (3.5) imply that

|〈Ĩ′V (un), (0, wn)〉|(1 + ‖un‖) = |〈I′V (h(sn , vn)), v〉|(1 + ‖(sn , vn)‖) = o(1)‖wn‖ (3.7)

as n → ∞. This shows {un} satis�es (3.1), as required. �

Lemma 3.3. Assume that (F1) and (F2) hold. Then there exists µ0 > 0 such that for all µ ≥ µ0

cV < abS
3

4 + b3S6

24 + (b2S4 + 4aS)3/2

24 .

Proof. For each ε > 0, consider the function

Uε(x) = (3ε)1/4

(ε + |x|2)1/2 for all x ∈ R3.
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Note that Uε is the extremal function for the embeddingD1,2(R3) ↪→ L6(R3) and

S = ‖Uε‖
2
2

‖Uε‖2
6

=
(√

3
2

)2/3
π2. (3.8)

Let η ∈ C([0,∞), [0, 1]) be such that

η(r) =


r, r ∈ [0, 1),
2 − r, r ∈ [1, 2),
0, r ∈ [2,∞).

Set wε := η(|x|)Uε and vε = wε/‖wε‖6. Inspired by [6], by a direct computation, for any ε ∈ (0, π
4/3

18 ) we have

‖∇vε‖2
2 ≤ S + C1ε1/2, (3.9)

‖vε‖2
2 ≤ C2ε1/2, (3.10)

‖vε‖qq ≥ C3ε((6−q)/4), (3.11)

where C1 = 16(4 ln 2 − 1)61/3, C2 = 16
√

3, C3 = 2(6−q)/33(q−6)/6π(2−q)/2. From (F2), (1.7) and (3.9)–(3.11), one
has, for all t > 0

IV (tvε) ≤
at2
2

(
S + C1ε1/2

)
+ Vmax

2 C2ε1/2 + bt4
4

(
S + C1ε1/2

)2

− µtqC3ε(6−q)/4 + µ1t2C2ε1/2 − 1
6 t

6

≤aS2 t2 + bS2

4 t4 − 1
6 t

6 + ε1/2
[

(aC1 + VmaxC2 + 2C2µ1) t
2

2 + (bC2
1 + 2bSC1) t

4

4

]
− µtqC3ε(6−q)/4

= t
2

2

(
aS + aC1ε1/2 + VmaxC2 + 2µ1C2ε1/2

)
+ t4

4

(
bS2 + bC2

1ε1/2 + 2bSC1ε1/2
)

− 1
6 t

6 − µtqC3ε(6−q)/4.

Then, de�ne the functions on [0,∞)

η1(t) = aS
2 t2 + bS2

4 t4 − 1
6 t

6, (3.12)

η2(t)ε1/2 =
[

(aC1 + VmaxC2 + 2C2µ1) t
2

2 + (bC2
1 + 2bSC1) t

4

4

]
ε1/2, (3.13)

η3(t) = −µtqC3ε(6−q)/4. (3.14)

It is easy to see that
IV (tvv) ≤ η1(t) + η2(t)ε1/2 + η3(t). (3.15)

Let ε0 := min
{
π4/3

18 ,
(

aS
2aC1+2Vmax+4µ1C2

)2
,
(
bS2

2bC2
1

+ 4bSC1
)2
}
, for any ε ∈ (0, ε0], it is easily checked

that K(t) = η1(t) + η2(t)ε1/2 is increasing on [0, t0/
√

2] and decreasing on [
√

2t0, ∞], where t0 =(
bS2+

√
b2S4+4aS
2

)1/2
.

We distinguish three cases.
1) 0 < t ≤ t0√

2
. From (3.12), (3.13) and (3.15), we have for all ε ∈ (0, ε0]

IV (tvε) < K(t) ≤ K
(
t0√

2

)
< η1(t0) − 1

2

[
η1(t0) − η1

(
t0√

2

)]
+ η2

(
t0√

2

)
ε1/2. (3.16)
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Let ε1 :=
(
η1(t0)−η1

(
t0√

2

)
2η2

(
t0√

2

)
)2

, and we have IV (tvε) < η1(t0) with 0 < ε < min{ε0, ε1} from (3.16). It shows

sup
t∈(0, t0√

2
]
IV (tvε) < η1(t0) for all ε, with 0 < ε ≤ min{ε0, ε1}. (3.17)

2) t ≥
√

2t0. In this case, (3.12), (3.13) and (3.15) imply that for all ε ∈ (0, ε0]

IV (tvε) ≤ K(
√

2t0) < η1(t0) − 1
2

[
η1(t0) − η1(

√
2t0)

]
+ η2(

√
2t0)ε1/2. (3.18)

Let ε2 :=
(
η1(t0)−η1(

√
2t0)

2η2(
√

2t0)

)2
, and we have IV (tvε) < η1(t0) with 0 < ε < min{ε0, ε1, ε2} from (3.18). It shows

sup
t∈[

√
2t0 ,∞)

IV (tvε) < η1(t0) for all ε, with 0 < ε ≤ min{ε0, ε1, ε2}. (3.19)

3) t0√
2
< t <

√
2t0. Note that

IV (tvε) < η1(t0) + η2(
√

2t0)ε1/2 + η3

(
t0√

2

)
, (3.20)

let ε3 = 2q/2η2(
√

2t0)
µ1 tq0

and ε4 = min{ε1, ε2, ε3}, then (3.20) implies that

sup
t∈( t0√

2
,
√

2t0)
IV (tvε4 ) < η(t0), (3.21)

provided that µ ≥ µ0, with µ0 = η2(
√

2t0)2q/2

tq0C3
ε(q−4)/4

4 .
It follows from (3.17), (3.19), (3.21), we have

cV ≤ sup
t≥0

IV (tvε3 ) < η1(t0) = abS3

4 + b3S6

24 + (b2S4 + 4aS)3/2

24
for all µ ≥ µ0. This completes the proof. �

Lemma 3.4. Assume that (F1)−(F3) hold. Then cV = m̂V .

Proof. From Lemma 2.4, we deduce that cV ≤ m̂V . Next, we show that cV ≥ m̂V . By (2.2),

h2(0, τ) = 1
6 + p [f (τ)τ − pF(τ)], ∀τ ∈ R. (3.22)

Note that for all u ∈ H1(R3),

IV (u) − 2
6 + p JV (u) = (p + 2)a

2(6 + p)‖∇u‖
2
2 + (p − 2)b

4(6 + p)‖∇u‖
4
2 + p − 2

2(6 + p)V‖u‖
2
2

+ 1
6 + p

∫
R3

[f (u)u − pF(u)]dx + 6 − p
6(6 + p)‖u‖

6
6

≥ (p + 2)a
2(6 + p)‖∇u‖

2
2 + (p − 2)b

4(6 + p)‖∇u‖
4
2 + p − 2

2(6 + p)V‖u‖
2
2

+ 6 − p
6(6 + p)‖u‖

6
6

(3.23)

by the de�nitions of IV , JV ≥ 0 and (3.22). Since ‖γ(1)‖ > ρ1, IV (γ(1)) < 0 for all γ ∈ ΓV , then (3.26) implies

IV (γ(1)) − 2
6 + p JV (γ(1)) > 0, (3.24)

which shows JV (γ(1)) < 0.
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From JV (0) = 0, (F1) and JV (γ(1)) < 0, there exist ρ2 ∈ (0, ‖γ(1)‖) and σ2 ≥ 0 such that JV (u) ≥ σ2 for all
‖u‖ = ρ2, which implies that there exist tV ∈ (0, 1) such that JV (γ(tV )) ≥ σ2. Thus, for every γ ∈ ΓV has to
cross M̂V , and cV ≥ m̂V . This shows that cV = m̂V . �
Proof of Theorem 1.3. In view of Lemma 3.2, there exist a sequence {un} ⊂ H1(R3) satisfying (3.1). By (3.1),
(3.22) and (3.23), we have

cV + o(1) = IV (un) − 2
6 + p JV (un) ≥ (p + 2)a

2(6 + p)‖∇un‖
2
2 + p − 2

2(6 + p)V‖un‖
2
2,

which implies {un} is bounded in H1(R3). Next, we claim that

lim sup
n→∞

sup
y∈R3

∫
B1(y)

|un|2dx > 0. (3.25)

If not, then Lions’ concentration compactness principle implies that un → 0 in Ls(R3) for all s ∈ (2, 6). By
(F1), we have for every ε > 0, there exist constant Cε such that

|f (τ)τ| + |F(τ)| ≤ ε(τ2 + τ6) + Cε|τ|4 for all τ ∈ R. (3.26)

Thus, as n → ∞

o(1) = 〈I′V (un), un〉 = a‖∇un‖2
2 + V‖un‖2

2 + b‖∇un‖4
2 − ‖un‖6

6 + o(1), (3.27)

and
cV + o(1) = a

2‖∇un‖
2
2 + V

2 ‖un‖
2
2 + b

4‖∇un‖
4
2 −

1
6‖un‖

6
6 + o(1). (3.28)

Since {un} is bounded in H1(R3) and cV > 0, up to a subsequence, we may assume there exists constants
l1, l2 > 0 such that

a‖∇un‖2
2 + V‖un‖2

2 → l1, b‖∇un‖4
2, n → ∞. (3.29)

Together with (3.27), (3.28) and Sobolev inequality, we have

cV = 1
3 l1 + 1

12 l2,

a‖∇un‖2
2 + V‖un‖ ≥ aS‖un‖2

6, b‖∇un‖4
2 ≥ bS2‖un‖4

6.

Letting n → ∞ in the above two inequalities, we achieve that

l1 ≥ aS(l1 + l2)1/3, (3.30)

l2 ≥ (l1 + l2)2/3. (3.31)

Combining with (3.30) and (3.31), we have

(l1 + l2)1/3 ≥ bS
2 + (b2S4 + 4aS)1/2

2
and

cV = 1
3 l1 + 1

12 l2 ≥
1
3 (l1 + l2)1/3 + 1

12 (l1 + l2)2/3

≥ abS
3

4 + b3S6

24 + (b2S4 + 4aS)3/2

24 .

This contradiction shows that (3.25) holds. Thus there exist δ > 0 and a sequence {yn} ⊂ H1(R3) such that∫
B1(yn) |un|

2dx > δ. Let ûn = un(x + yn). Then (3.1) gives

IV (ûn) → cV > 0, I′V (ûn) → 0, JV (ûn) → 0 as n → ∞, (3.32)
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and
∫
B1(0) |ûn|

2dx > δ for all n ∈ N. Therefore, there exists û ∈ H1(R3)\{0} such that, up to a subsequence,
ûn ⇀ û in H1(R3),
ûn → û in Lsloc(R

3) for all s ∈ [1, 6),
ûn → û a.e. on R3.

Moreover, û is nontrivial, and û satis�es

−(a + bA2)∆û + Vû = f (û) + û5, (3.33)

where A2 := limn→∞ ‖∇ûn‖2
2 and ‖∇û‖2

2 ≤ A2. Hence, we have the following equalities
(a + bA2)‖∇û‖2

2 + V‖û‖2
2 =

∫
R3

f (û)ûdx + ‖û‖6
6,

1
2 (a + bA2)‖∇û‖2

2 + 3
2V‖û‖

2
2 = 3

∫
R3

F(û)dx + 1
2‖û‖

6
6.

(3.34)

Next, we show that JV (û) = 0. From (1.8) and (3.34), we have

JV (û) = b‖∇û‖2
2(‖∇û‖2

2 − A2) ≤ 0.

If JV (û) < 0, it follows from Lemma 2.3, which is also true for IV and JV , that there exist a unique t ∈ (0, 1)
such that JV (t1/2(ût)) = 0. Combiningwith (2.3), (3.22), (3.23), (3.32), theweak semicontinuity of norm, Fatou’s
lemma and Lemma 3.4 that

m̂V = lim
n→

[
IV (ûn) − 2

6 + p JV (ûn)
]

= (p + 2)a
2(6 + p)‖∇ûn‖

2
2 + (p − 2)b

4(6 + p)‖∇ûn‖
4
2 + p − 2

2(6 + p)V‖ûn‖
2
2

+ 1
6 + p

∫
R3

[f (ûn)ûn − pF(ûn)]dx + 6 − p
6(6 + p)‖ûn‖

6
6

≥ (p + 2)a
2(6 + p)‖∇û‖

2
2 + (p − 2)b

4(6 + p)‖∇û‖
4
2 + p − 2

2(6 + p)V‖û‖
2
2

+ 1
6 + p

∫
R3

[f (û)û − pF(û)]dx + 6 − p
6(6 + p)‖û‖

6
6

=IV (û) − 2
6 + p JV (û)

≥IV (t1/2(û)t) −
2t(6+p)/2

6 + p JV (u)

≥m̂V −
2t(6+p)/2

6 + p JV (u) > m̂V ,

which is a contradiction. Hence we have JV (û) = 0 and IV (û) = m̂V which, together with Lemma 2.4 and
Lemma 2.9, implies

IV (û) = m̂V := inf
u∈M̂V

IV (u) = inf
u∈H1(R3)\{0}

max
t>0

IV (t1/2(u)t),

I′V (û) = 0.

This completes the proof. �
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4 Existence of the ground state solutions
In this section, by using the Jeanjean’s monotonicity trick [19, Theorem 1.1], we show the existence of ground
state solutions for (SKε). To this end, for λ ∈ [1/2, 1], we introduce two families of functionals on H1(R3)
de�ned by

Iε,λ(u) = 1
2

∫
R3

[
a|∇u|2 + V(εx)u2

]
dx + b

4

∫
R3

|∇u|2dx

2

− λ
∫
R3

[
F(u) + 1

6u
6
]

dx, (4.1)

and

I∞λ (u) = 1
2

∫
R3

[
a|∇u|2 + V∞u2

]
dx + b

4

∫
R3

|∇u|2dx

2

− λ
∫
R3

[
F(u) + 1

6u
6
]

dx. (4.2)

In the same way as in [14], we can obtain the following lemma.

Lemma 4.1. Assume that (V1), (V2), (F1) and (F2) hold. Let u be the critical points of Iε,λ in H1(R3), then we
have the following Pohožaev type identity

Pε,λ(u) = a
2‖∇u‖

2
2 + 1

2

∫
R3

[3V(εx) +∇V(εx) · (εx)]u2dx + b
2‖∇u‖

4
2 − 3λ

∫
R3

[
F(u) + 1

6u
6
]

dx.

Set Jε,λ(u) = 1
2

〈
I′ε,λ(u), u

〉
+ Pε,λ(u) for all λ ∈ [1/2, 1], one has

Jε,λ(u) =a‖∇u‖2
2 + 1

2

∫
R3

[4V(εx) +∇V(εx) · (εx)]u2dx

+ b‖∇u‖4
2 −

λ
2

∫
R3

[f (u)u + 6F(u)]dx − λ
∫
R3

u6dx.
(4.3)

Correspondingly, for λ ∈ [1/2, 1] we also let

J∞λ (u) = a‖∇u‖2
2 + 2V∞‖u‖2

2 + b‖∇u‖2
2 −

λ
2

∫
R3

[f (u)u + 6F(u)]dx − λ‖u‖6
6, (4.4)

M∞
λ = {u ∈ H1(R3)\{0} : J∞λ (u) = 0}, m∞λ = inf

u∈M∞
λ

I∞λ (u). (4.5)

Immediately, Lemma 2.2 implies the following lemma.

Lemma 4.2. Assume (F1), (F3) hold. Then

I∞λ (u) ≥I∞λ
(
t1/2(u)t

)
+ 2(1 − t(6+p)/2)

6 + p J∞λ (u)

+ b
4(6 + p)α(t)(2V∞‖u‖2

2 + ‖∇u‖4
2), ∀u ∈ H1(R3), t > 0.

(4.6)

For λ ∈ [1/2, 1], let

I*λ(u) = 1
2

∫
R3

(
a|∇u|2 + Vmaxu2

)
dx + b

4‖∇u‖
4
2 − λ

∫
R3

[
F(u) + 1

6u
6
]

dx, ∀u ∈ H1(R3). (4.7)

In view of Theorem 1.3, under (F1)-(F3), there exists u∞ ∈M∞
1 such that

(I∞1 )′(u∞) = 0 and m∞1 = I∞1 (u∞).
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It is easy to check that there exists T > 1 such that

I*λ

(
t1/2(u∞)t

)
< 0, ∀t ≥ T . (4.8)

By (4.8) and simple calculation, we can derive the following lemma.

Lemma 4.3. Assume that (V1), (V2) and (F1)-(F3) hold. Then
(i) Iε,λ

(
T1/2(u∞)T

)
< 0 for all λ ∈ [1/2, 1] and ε ≥ 0;

(ii) there exist a constant κ0 independent of λ and ε such that for all λ ∈ [1/2, 1] and ε ≥ 0,

cε,λ = inf
γ∈Γ

max
t∈[0,1]

Iε,λ(γ(t)) ≥ κ0 > max
{
Iε,λ(0), Iε,λ

(
T1/2(u∞)T

)}
, (4.9)

where
Γ =

{
γ ∈ C([0, 1], H1(R3)) : γ(0) = 0, γ(1) = T1/2(u∞)T

}
; (4.10)

(iii) m∞λ is non-increasing on λ ∈ [1/2, 1];
(iv) cε,λ is non-increasing and left continuous on λ ∈ [1/2, 1] for ε ≥ 0.

Since V ∈ C(R3,R), V(0) < V∞ and u ∈ H1(R3)\{0}, then there exist r̄ > 0 and R̄ > 0 such that

V∞ − V(x) > 1
4 (V∞ − V(0)), ∀|x| ≤ r̄, (4.11)

[V∞ − V(0) + 4 · 34(Vmax − V∞)]
∫

|x|>R̄

|u∞|2dx ≤ 1
2 (V∞ − V(0))‖u∞‖2

2, (4.12)

and
T4(Vmax − V∞)

∫
|x|>R̄

|u∞|2dx ≤ min{α(1/2), α(3/2)}
6 + p V∞‖u∞‖2

2. (4.13)

Lemma 4.4. Assume that (V1), (V2) and (F1)−(F3) hold. Then there exists λ̄ ∈ [1/2, 1] such that cε,λ < m∞λ for
λ ∈ (λ̄, 1] and ε ∈ [0, ε*], where ε* = r̄/R̄T.

Proof. For any ε ≥ 0, it is easy to see that Iε,λ(t1/2(u∞)t) is continuous on t ∈ (0,∞). Hence for any λ ∈ [1/2, 1]
and ε ≥ 0, there exists a tε,λ ∈ (0, T) such that Iε,λ

(
(tε,λ)1/2(u∞)tε,λ

)
= maxt∈(0,T] Iε,λ(t1/2(u∞)t). Set

γ0(t) =
{

(tT)1/2(u∞)(tT), for t > 0,
0, for t = 0.

Then γ0 ∈ Γ, Γ is de�ned in (4.10). Moreover, we have

Iε,λ

(
(tε,λ)1/2(u∞)tε,λ

)
= max
t∈[0,1]

Iε,λ(γ(0)(t)) ≥ cε,λ . (4.14)

From (F2) and (3.22), we can deduce that the function F(t)/t|t|p−1 is nondecreasing on t ∈ (−∞, 0) ∪ (0, +∞).
Since tε,λ ∈ (0, T), then

F((tε,λ)1/2u∞)
(tε,λ)p/2 ≤ F(T1/2u∞)

Tp/2 . (4.15)

Let

λ̄ = max
{

1
2 , 1 − [V∞ − V0]‖u∞‖2

2
28T3[

∫
R3 F(t1/2u∞)dx + T3‖u∞‖6

6]
,

1 − min{α(1/2), α(3/2)}b‖∇u‖4
2

4(6 + p)T3[
∫
R3 F(T1/2u∞)dx + T3‖u‖6

6]

}
.

(4.16)

Then 1/2 ≤ λ̄ < 1. We have two cases to distinguish.
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Case (i) tε,λ ∈ [1/2, 3/2]. From (4.1), (4.2), (4.6)−(4.16) and Lemma 4.3(iii), we have for all λ ∈ (λ̄, 1] and
ε ∈ [0, ε*]

m∞λ ≥m
∞
1 = I∞1

(
(tε,λ)1/2(u∞)tε,λ

)
=I∞ε,λ

(
(tε,λ)1/2(u∞)tε,λ

)
− (1 − λ)(tε,λ)3

∫
R3

[
F
(

(tε,λ)1/2u∞
)

+ (tε,λ)3|u∞|6
]

dx

+
(tε,λ)4

2

∫
R3

[V∞ − V(εtε,λx)]|u∞|2dx

≥cε,λ − (1 − λ)T3
∫
R3

[F(T1/2u∞) + T3|u∞|6]dx

+ V∞ − V(0)
27

∫
|x|≤R̄

|u∞|2dx − 34(Vmax − V∞)
25

∫
|x|>R̄

|u∞|2dx

≥cε,λ − (1 − λ)T3
∫
R3

[F(T1/2u∞) + T3|u∞|6]dx + V∞ − V(0)
27 ‖u∞‖2

2

− V∞ − V(0) + 4 · 34(Vmax − V∞)
27

∫
|x|>R̄

|u∞|2dx

>cε,λ .

Case (ii) tε,λ ∈ (0, 1/2) ∪ (3/2, T]. From (4.1), (4.2), (4.11), (4.13)−(4.16) and Lemma 4.3(iii), we have

m∞λ ≥ = m∞1 = I∞1 (u∞) ≥ I∞1
(

(tε,λ)1/2(u∞)tε,λ
)

+
α(tε,λ)

4(6 + p) (2V∞‖u∞‖2
2 + b‖∇u∞‖4

2)

=I∞ε,λ
(

(tε,λ)1/2(u∞)tε,λ
)
− (1 − λ)(tε,λ)3

∫
R3

[
F
(

(tε,λ)1/2u∞
)

+ (tε,λ)3|u∞|6
]

dx

+
(tε,λ)4

2

∫
R3

[V∞ − V(εtε,λx)]|u∞|2dx +
α(tε,λ)

4(6 + p) (2V∞‖u∞‖2
2 + b‖∇u∞‖4

2)

≥cε,λ − (1 − λ)T3
∫
R3

[F(T1/2u∞) + T3|u∞|6]dx − T
4(Vmax − V∞)

2

∫
|x|>R̄

|u∞|2dx

+ min{α(1/2), α(3/2)}
4(6 + p) (2V∞‖u∞‖2

2 + b‖∇u‖4
2)

>cε,λ for all λ ∈ (λ*, 1], ε ∈ [0, ε*].

In both cases, we conclude that cε,λ < m∞λ for all λ ∈ (λ*, 1] and ε ∈ [0, ε*]. �
Similarly to the proofs of Lemma 3.3 and 3.4, we have that m∞λ < aS

3

(
bS2+

√
b2S4+4λaS
2λ

)
+

bS2

12

(
bS2+

√
b2S4+4λaS
2λ

)2
under the assumption of Theorem 1.1. Then, analogous to the proof of Lemma 3.4 in

[22], we can obtain the following lemma.

Lemma 4.5. Assume that (V1), (V2) and (F1)−(F3) hold. Let {un} be a bounded (PS) sequence of cε,λ for Iε,λ
with λ ∈ [1/2, 1]. Then there exists a subsequence of {un}, still denoted by {un}, and u0 ∈ H1(R3) such that
A2 := limn→∞ ‖∇un‖ exist, un ⇀ u0 in H1(R3) and G′ε,λ(u0) = 0, where

Gε,λ(u) = a + bA2

2

∫
R3

|∇u|2dx + 1
2

∫
R3

V(εx)u2dx − λ
∫
R3

[
F(u) + 1

6u
6
]

dx (4.17)

and either
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(i) un → u0 in H1(R3); or
(ii) there exist an integer l ∈ N and w1, . . . ,wl ∈ H1(R3)\{0} such that (G∞λ )′(wk) = 0, for 1 ≤ k ≤ l, and

cε,λ + bA4

4 = Gε,λ(u0) +
l∑
k=1

G∞λ (wk);

A2 = ‖∇u0‖2
2 +

l∑
k=1
‖∇wk‖2

2,

where
G∞λ (u) = a + bA2

2

∫
R3

|∇u|2dx + V∞
2

∫
R3

u2dx − λ
∫
R3

[
F(u) + 1

6u
6
]

dx. (4.18)

Lemma 4.6. Assume that (V1), (V2) and (F1)−(F3) hold. Then for every ε ∈ [0, ε*] and for almost every λ ∈
(λ̄, 1], there exists uε,λ ∈ H1(R3)\{0} such that

(Iε,λ)′(uε,λ) = 0, Iε,λ(uε,λ) = cε,λ . (4.19)

Proof. By [19, Theorem 1.1], we have that for almost every λ ∈ [1/2, 1], and for every ε ∈ [0, ε*], there exist a
bounded sequence {un(λ, ε)} ⊂ H1(R3) denoted by {un} for simplicity, such that

Iε,λ(un) → cε,λ > 0, ‖I′ε,λ(un)‖ → 0, as n → ∞. (4.20)

From Lemma 4.5, it can be deduced easily that there exists a subsequence of {un}, still denoted by {un}, and
uε,λ ∈ H1(R3) such that A2

ε,λ = limn→∞ ‖∇uε,λ‖ exists, un ⇀ uε,λ in H1(R3) and (Hε,λ)′(uε,λ) = 0, and either
(i) or (ii) occurs, where

Hε,λ(u) = a + bA2

2

∫
R3

|∇u|2dx + 1
2

∫
R3

V(εx)u2dx − λ
∫
R3

[
F(u) + 1

6u
6
]

dx. (4.21)

If (ii) occurs, i.e. there exist l ∈ N and w1, . . . , wl in H1(R3)\{0} such that (H∞λ )′(wk) = 0 for 1 ≤ k ≤ l,

cε,λ +
bA4

ε,λ
4 = Gε,λ(uε,λ) +

l∑
k=1

G∞λ (wk); (4.22)

and

A2
ε,λ = ‖∇uε,λ‖2

2 +
l∑
k=1
‖∇wk‖2

2, (4.23)

where

H∞λ (u) =
a + bA2

ε,λ
2

∫
R3

|∇u|2dx + V∞
2

∫
R3

u2dx − λ
∫
R3

[
F(u) + 1

6u
6
]

dx. (4.24)

Since (Hε,λ)′(uε,λ) = 0, then we have the Pohožaev identity of the functional Hε,λ

P̂ε,λ(uε,λ) =
a + bA2

ε,λ
2 ‖∇uε,λ‖2

2 + 1
2

∫
R3

[3V(εx) +∇V(εx) · (εx)]u2
ε,λdx

+ b
2‖∇uε,λ‖

4
2 − 3λ

∫
R3

[
F(uε,λ) + 1

6u
6
ε,λ

]
dx.

(4.24)

It follows from (3.22), (4.21) and (4.24), that

Hε,λ(uε,λ) =Hε,λ(uε,λ) − 2
6 + p

[
1
2 〈(Hε,λ)′(uε,λ), uε,λ〉 − P̂ε,λ(uε,λ)

]
≥( 1

2 −
2

6 + p )bA2
ε,λ‖∇uε,λ‖

2
2.

(4.25)
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Since (H∞λ )′(wk) = 0, then we have the Pohožaev identity of the functional H∞λ

P̂∞λ (wk) =
a + bA2

ε,λ
2 ‖∇wk‖2

2 + 3
2

∫
R3

V∞(wk)2dx

+ b
2‖∇w

k‖4
2 − 3λ

∫
R3

[
F(wk) + 1

6 (wk)6
]

dx.
(4.26)

Then, from (4.4), (4.23), (4.24) and (4.26), we have

0 = 1
2 〈(H

∞
λ )′wk , wk〉 + P̂∞λ (wk)

≥J∞λ (wk).
(4.27)

Since wk ∈ H1(R3), in view of Lemma 2.3, there exists tk > 0 such that t1/2
k (wk)tk ∈ M∞

λ . From (4.2), (4.4),
(4.6), (4.24) and (4.27), one has

H∞λ (wk) = H∞λ (wk) − 2
6 + p

[
1
2 〈(H

∞
λ )′wk , wk〉 + P̂∞λ (wk)

]
= ( 1

2 −
2

6 + p )(a + bA2)‖∇wk‖2
2 + p − 2

6 + p

∫
R3

V∞|wk|2dx

+ 2λ
6 + p

∫
R3

[f (wk)wk − pF(wk)]dx + (1 − p)λ
6(6 + p)

∫
R3

|wk|6dx

= 1
4bA

2
ε,λ‖∇w

k‖2
2 + I∞λ (wk) − 2

6 + p J
∞
λ (wk)

≥ 1
4bA

2
ε,λ‖∇w

k‖2
2 + I∞λ

(
t1/2
k (wk)tk

)
−

2t6+p
k /2

6 + p J∞λ (wk)

≥ 1
4bA

2
ε,λ‖∇w

k‖2
2 + m∞λ .

(4.28)

It follows from (4.22), (4.23), (4.25) and (4.28) that

cε,λ +
bA4

ε,λ
4 =Hε,λ(uε,λ) +

l∑
k=1

H∞λ (wk)

≥lm∞λ + 1
4bA

4
ε,λ

[
‖∇uε,λ‖2

2 +
l∑
k=1
‖wk‖2

2

]

≥m∞λ +
bA4

ε,λ
4 , ∀λ ∈ (λ̄, 1], ∀ε ∈ [0, ε*].

It contradicts with Lemma 4.4. Thus un → uε,λ in H1(R3) and Iε,λ(uε,λ) = cε,λ. �
Proof of Theorem 1.1. In view of Lemma 4.6, for any �xed ε ∈ [0, ε*], there exist two sequences {λn} ⊂ [λ̄, 1]
and {uε,λn} ⊂ H

1(R3)\{0}, denoted by {un}, such that

λn → 1, (Iε,λn )′(un) = 0, Iε,λn (un) = cε,λ . (4.29)

Then, it follows from (V2), (3.26), (4.1), and Lemma 4.3 (iv), that

cε,1 + o(1) = cε,λn = Iε,λn (un) − 2
6 + p Jε,λn (un) ≥ p + 2

2(6 + p)a‖∇un‖
2
2. (4.30)

Since 〈I′ε,λn (un), un〉 = 0, from (4.29), (4.30) and the Sobolev embedding inequality, we can deduce that {un}
in bounded inH1(R3). Since cε,λn → cε,1, similar to the proof of Lemma 4.6, for any �xed ε ∈ [0, ε*], we derive
that there exist ûε ∈ H1(R3)\{0} such that

I′ε(ûε) = 0, Iε(ûε) = cε,1 > 0. (4.31)



Anmin Mao and Shuai Mo, Ground state solutions to a class of critical Schrödinger problem | 115

For ε ∈ [0, ε*], set
Kε = {u ∈ H1(R3)\{0} : I′ε(u) = 0}, m*ε = inf

u∈Kε
Iε(u).

Then (4.31) shows that Kε ≠ ∅ and m*ε ≤ cε,1. Since Kε ⊂ Mε and Lemma 4.4, we also have 0 < mε ≤ m*ε ≤
cε,1 < m∞1 . Let {un} ⊂ Kε be such that I′ε(un) = 0 and Iε(un) → m*ε. Arguing as the proof of Lemma 4.6, we
can prove that there exists u*ε ∈ H1(R3)\{0} such that Iε(u*ε) = m*ε and I′ε(u*ε) = 0. This shows that u*ε is a
ground state solution of (PKε) for every ε ∈ [0, ε*]. Hence, the function v*ε = u*ε(x/ε) is a ground state solution
of (SKε) for every ε ∈ [0, ε*]. �

5 Ground state solutions of Nehari-pohožaev type
In this section, we consider the existence of ground state solution of (PKε). By (1.1), (1.2), (1.4), (1.5), (1.7), (1.8)
and (1.9), one has I0 = IV0 , J0 = JV0 andM0 = M̂V0 . Let

V̂ = 1
2 (V∞ + V0) = 1

2 (V∞ + V(0)). (5.1)

Applying Theorem 1.3, there exist û0 ∈ M̂V0 and û ∈MV̂ such that

I′0(û0) = 0, I0(û0) = m0 = inf
u∈M0

I0(u) = inf
u∈H1(R3)\{0}

max
t>0

I0
(
t1/2(u)t

)
> 0 (5.2)

and
I′V̂ (û) = 0, IV̂ (û) = m̂V̂ = inf

u∈M̂V̂

IV̂ (u) = inf
u∈H1(R3)\{0}

max
t>0

IV̂
(
t1/2(u)t

)
> 0. (5.3)

In view of Lemma 2.3, there exists t0 > 0 such that

t1/2
0 (û)t0 ∈M0, I0

(
t1/2

0 (û)t0
)
≥ m0. (5.4)

Let
I*(u) = 1

2

∫
R3

(a|∇u|2 + Vmaxu2)dx + b
4‖∇u‖

4
2 −
∫
R3

[
F(u) + 1

6u
6
]

dx, ∀u ∈ H1(R3). (5.5)

Using (F1), (F2) and (4.8), it is easy to check that there exists T0 > 1 such that

I*
(
t1/2(u)t

)
< 0, ∀t > T0. (5.6)

In view of (5.6) and Lemma 2.3, for any ε > 0, there exists tε ∈ (0, T0) such that

t1/2
ε (û0)tε ∈Mε , Iε

(
t1/2
ε (û0)tε

)
≥ mε . (5.7)

Lemma 5.1. Assume that (V1), (V3) and (F1)−(F3) hold. Then m̂V̂ ≥ m0 + δ0, where

δ0 = V∞ − V0
4 t40‖û‖2

2 > 0 (5.8)

is independent of ε > 0.

Proof. By (5.3) and (5.4),

m̂V̂ = IV̂ (û) ≥ IV̂
(
t1/2

0 (û)t0
)

=I0
(
t1/2

0 (û)t0
)

+ V̂ − V0
2 t40

∫
R3

|û|2dx

≥m0 + V∞ − V0
4 t40

∫
R3

|û|2dx

=m0 + δ0. �
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Now we choose R0 > 0 large such that

V(x) ≥ V̂ ,
[

1 + T(6+p)/2
0

]
Vmax

∫
|x|≥R0

û0dx ≤ δ0, ∀|x| > R0. (5.9)

By (V1) and (V3), there exists ε0 > 0 small enough such that

‖û0‖2
2 sup
|x|≤R0

{[
p − 2 + 8T(6+p)/2

0

]
|V(εx) − V(0)|

+2
[

1 + T(6+p)/2
0

]
|∇V(εx) · (εx)|

}
≤ δ0(6 + p)

2 , ∀ε ∈ [0, ε0].
(5.10)

Lemma 5.2. Assume that (V1), (V3) and (F1)−(F3) hold. Then m0 ≥ mε − 3δ0/4 for every ε ∈ [0, ε0].

Proof. By (2.1), we have h1(0, y) ≥ 0 for all y ∈ R3, which, together with (2.12) implies

−4V(y) ≤ ∇V(y) · y ≤ p − 2
2 V(y), ∀y ∈ R3. (5.11)

Since J0(û0) = 0 by (5.2), it follows from (1.1), (1.4), (2.3), (5.7), (5.9), (5.10) and (5.11) that

m0 =I0(û0) = Iε(ûε) + 1
2

∫
R3

[V(0) − V(εx)]û2
0dx

≥Iε
(
t1/2
ε (û0)tε

)
+

2
(

1 − t(6+p)/2
ε

)
2 Jε(û0) + 1

2

∫
R3

[V(0) − V(εx)]û2
0dx

=Iε
(
t1/2
ε (û0)tε

)
+

2
(

1 − t(6+p)/2
ε

)
2 J0(û0) + 1

2

∫
R3

[V(0) − V(εx)]û2
0dx

+ 1 − t(6+p)/2
ε

6 + p

∫
R3

[4V(εx) +∇V(εx) · (εx) − 4V(0)]û2
0dx

=Iε
(
t1/2
ε (û0)tε

)
+ 1

2(6 + p)

∫
R3

[(p − 2)V(0) − (p − 2)V(εx) + 2∇V(εx) · (εx)]û2
0dx

− t
(6+p)/2
ε
6 + p

∫
R3

[4V(εx) +∇V(εx) · (εx) − 4V(0)]û2
0dx

≥mε −
1

2(6 + p)

∫
|x|≤R0

{[
p − 2 + 8T(6+p)/2

0

]
|V(εx) − V(0)|

+ 2
[

1 + T(6+p)/2
0 |∇V(εx) · (εx)|

]}
û2

0dx −
1 + T(6+p)/2

0
2 Vmax

∫
|x|>R0

û0dx

≥mε −
3δ0

4 , ∀ε ∈ [0, ε0]. �

Lemma 5.3. Assume that (V1), (V3) and (F1)−(F3) hold. Then mε is achieved for ε ∈ (0, ε0].

Proof. In view of Lemma 2.3 and Lemma 2.6, we have that Mε ≠ ∅ and mε > 0 for ε ∈ (0, ε0]. For any �xed
ε ∈ (0, ε0], let {un} ⊂Mε be such that Iε(un) → mε. Since Jε(un) = 0, then it follows from (2.9) that

mε + o(1) = Iε(un) ≥ b(p − 2)
4(6 + p)‖∇un‖

4
2,

which implies {un} is bounded in H1(R3) together with (2.11). Passing to a subsequence, we can assume that
un ⇀ ū in H1(R3), un → ū in Lsloc(R

3) for all s, with 2 ≤ s < 6 and un → ū a.e. on R3.
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Next, we claim that ū ≠ 0. Arguing by contradiction, suppose that ū = 0, then un → 0 in Lsloc(R
3) for

2 ≤ s < 6 and un → 0 a.e. on R3. In view of Lemma 2.3, there exists tn > 0 such that t1/2
n (un)tn ∈ M̂V̂ for every

n ∈ N. We claim that there exist two positive constant T1 < T2 such that

T1 ≤ tn ≤ T2, ∀n ∈ R. (5.12)

If tn → 0, then it follows from (2.5), (2.10), lemma 2.6 and the boundedness of {‖un‖} that

0 < m̂V̂ ≤IV̂
(
t1/2
n (un)tn

)
=a2 t

2
n‖∇un‖2

2 + V̂
2 t

4
n‖un‖2

2 + b
4 t

4
n‖∇u‖4

2

− t3n
∫
R3

F(t1/2
n un)dx − t6n‖un‖6

6

=o(1),

which is impossible. Hence, the �rst inequality holds in (5.12). On the other hand, it is easy to see that

lim inf
n→∞

‖un‖6 > 0. (5.13)

If not, then there exists a subsequence {unk} of {un} such that unk → 0 in L6(R3), and the Sobolev embedding
theorem implies that unk → 0 in Ls(R3) for all s ∈ (2, 6]. By (F1), for every ε > 0 and q ∈ (2, 6) there exists
Cε > 0 such that

|f (τ)τ| + |F(τ)| ≤ ε(τ2 + τ6) + Cε|τ|q for all τ ∈ R. (5.14)

Thus, as k → ∞, by (2.14),

0 = Jε(unk ) =a‖∇unk‖2
2 + 1

2

∫
R3

[4V(εx) +∇V(εx) · (εx)]u2
nk

+ b‖unk‖4
2 −

1
2

∫
R3

[f (unk )unk + F(unk )]dx −
∫
R3

|unk |
6dx

≥γ1
2 ‖unk‖

2 + b‖∇unk‖4
2 −

γ1
4 (‖unk‖2

2 + ‖unk‖6
6) − C4‖unk‖

q
q − ‖unk‖6

6

≥γ1
4 ‖unk‖

2 + b‖∇unk‖4
2 + o(1)

≥bδ4 + o(1).

This contradiction shows that (5.13) holds. Moreover, from (F1) and (3.22), there exist C2, C3 > 0 such that

F(τ) ≥ C2|τ|p + C3|τ|2, ∀τ ∈ R. (5.15)

Then, by (1.7), (5.13), (5.15), the boundedness of {un}, and Sobolev embedding theorem,

IV̂
(
t1/2(un)t

)
≤a2 t

2‖∇u‖2
2 + V̂

2 t
4‖un‖2

2 + b
4 t

4‖∇un‖4
2

− C2t(6+p)/2‖un‖pp + C3t4‖un‖2
2 −

1
6 t

6‖un‖6
6

≤C4(t2 + t4 + t(6+p)/2) − C5t6,

which together with p > 2, implies that there exists T2 > 0 such that

IV̂
(
t1/2(un)t

)
< 0, ∀t > T2, n ∈ N. (5.16)
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Since IV̂
(
t1/2(un)t

)
≥ mV̂ > 0 by (5.3), (5.16) leads to tn ≤ T2 for all n ∈ N, which shows (5.15) holds. Thus it

follows from (1.1), (1.7), (2.10), (5.9) and (5.12) that

mε + o(1) = Iε(un) ≥Iε
(
t1/2
n (un)tn

)
≥IV̂

(
t1/2
n (un)tn

)
+ t4n

2

∫
R3

[V(εtnx) − V̂]undx

≥m̂V̂ −
V̂T4

2
2

∫
|x|≤R0/(εT1)

u2
ndx

=m̂V̂ + o(1)

which, together with Lemma 5.1 and 5.2, implies

mε ≥ m̂V̂ ≥ m0 + δ0 ≥ mε + δ0
4 .

This contradiction shows that ū ≠ 0. Let wn = un − ū, by Brezis-Lieb Lemma, one has

Iε(un) = Iε(ū) + Iε(wn) + b
2‖∇ū‖

2
2‖∇wn‖2

2 + o(1) (5.17)

Jε(un) = Jε(ū) + Jε(wn) + b‖∇ū‖2
2‖∇wn‖2

2 + o(1). (5.18)

Let
Ψε(u) :=Iε(u) − 2

6 + p Jε(u)

= (p + 2)a
2(6 + p)‖∇u‖

2
2 + 1

2(6 + p)

∫
R3

[(p − 2)V(εx) − 2∇V(εx) · (εx)]u2dx

+ (p − 2)b
4(6 + p)‖∇u‖

4
2 + 1

6

∫
R3

[f (u)u − pF(u)]dx + 6 − p
p(6 + p)

∫
R3

u6dx.

(5.19)

Then (3.22) and (5.11) imply that Ψε(u) ≥ 0 for all u ∈ H1(R3). Moreover, it follows from (5.17), (5.18) and (5.19)
that

Ψε(wn) ≤ mε − Ψε(ū) + o(1), Jε(wn) ≤ −Jε(ū) + o(1). (5.20)

If there exists a subsequence {wni} of {wn} such that wni → 0, then

Iε(ū) = mε , Jε(ū) = 0. (5.21)

If not, we claim that Jε(ū) ≤ 0. Otherwise, if Jε(ū) > 0, then (5.20) implies Jε(wn) < 0 for large n. In view of
Lemma 2.3, there exists tε,n > 0 such that (tε,n)1/2(wn)tε,n ∈ Mε. From (1.1), (1.4), (2.3), (5.19) and (5.20), we
obtain

mε − Ψ(ū) + o(1) ≥ Ψε(w̄n) =Iε(wn) − 2
6 + p Jε(wn)

≥Iε
(

(tε,n)1/2(wn)tε,n
)
− 2(tε,n)1/2

6 + p Jε(wn)

≥mε −
2(tε,n)1/2

6 + p Jε(wn) ≥ mε ,

which implies Jε(ū) ≤ 0 due to Ψε(ū) > 0. In view of Lemma 2.3, there exists tε > 0 such that t1/2
ε (ū)tε ∈ Mε.

From (1.1), (1.4), (2.3), (3.22), (5.11), (5.19), the weak semi continuity of norm and Fatou’s Lemma, one has

mε = lim
n→∞

[
Iε(un) − 2

6 + p Jε(un)
]

= lim
n→∞

Ψε(un) ≥ Ψε(ū)

=Iε(ū) − 2
6 + p Jε(ū)

≥Iε
(
t1/2
ε (ū)tε

)
− 2t(6+p)/2

ε
6 + p Jε(ū) ≥ mε ,
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which implies (5.21) holds. �
In view of Lemma 2.6, 2.7 and 5.3, we can obtain the following Lemma.

Lemma 5.4. Assume that (V1), (V3) and (F1)−(F3) hold. Then for every ε ∈ (0, ε0], problem (PKε) has a ground
state solution ūε such that

Iε(ūε) = mε = inf
u∈H1(R3)\{0}

max
t>0

Iε(t1/2(u)t) > 0. (5.22)

6 Concentration of ground state solutions of (SKε)

In this section,we consider the concentration of ground state solutions of (SKε) and give the proof of Theorem
1.2. For this purpose, we always assume that (V1), (V3) and (F1)−(F3) hold. For every ε ∈ [0, ε0], let ūε be the
ground state solution of (SKε) obtained in Lemma 5.4. De�ne

Lmε = {u ∈ H1(R3)\{0} : I′ε(u) = 0, Iε(u) = mε} and Λ = {u ∈ Lmε : ε ∈ [0, ε0]}.

Lemma 6.1. There exists a constant K0 > 0, independent of ε, such that ρ0 ≤ mε ≤ K0 for all ε ∈ [0, ε0].

Proof. From (2.3), (5.6), Lemmas 2.4 and 2.6, we derive that

ρ0 ≤ mε ≤max
{
Iε
(
t1/2(û0)0

)
: t ∈ (0, T0]

}
≤aT

2
0

2 ‖∇û0‖2
2 + VmaxT4

0
2 ‖û0‖2

2 + bT4
0

4 ‖∇û0‖4
2

+ C1T4
0(‖û0‖2

2 + T4
0‖û0‖6

6) := K0, ∀ε ∈ [0, ε0]. �

Lemma 6.2. There exists a constant K1 > 0 independent of ε such that ‖u‖ ≤ K1 for all u ∈ Λ.

Proof. Fix ε ∈ [0, ε0] and uε ∈ Lmε . Then (2.9) and lemma 6.1 yield

K0 ≥ mε = Iε(uε) −
2

6 + p Jε(uε) ≥
b(p − 2)
4(6 + p)‖∇uε‖

4
2. (6.1)

From (6.1) and (2.14) we deduced that

‖uε‖ ≤
(

2C0
γ1S3

)1/2
‖∇uε‖3

2 ≤
(

2C0
γ1S3

)1/2 [4(6 + p)K0
b(p − 2)

]3/4
:= K1. �

Lemma 6.3. lim supε→ε̄ mε ≤ mε̄ for every ε̄ ∈ [0, ε0].

Proof. Fix ε̄ ∈ [0, ε0]. Arguing by contradiction, suppose that lim supε→ε̄ mε > mε̄. Let ϵ0 = lim supε→ε̄ mε −
mε̄ , then ϵ0 > 0. From Lemma 2.3, for any ε > 0, there exists t̄ε > 0 such that t̄1/2

ε (ūε̄)t̄ε ∈Mε, it follows that

Iε
(
t̄1/2
ε (ūε̄)t̄ε

)
≥ mε , Iε

(
t̄1/2
ε (ūε̄)t̄ε

)
≥ Iε

(
t1/2(ūε̄)t

)
, ∀ε > 0. (6.2)

Similar to the proof of (5.6), we easily deduce that there exists a number T̄ > 0 such that 0 < t̄ε ≤ T̄ for any
ε > 0. It is easy to check that for any bounded set Ω ⊂ R3,

lim
ε→ε̄

sup
x∈Ω

[|V(εx) − V(ε̄x)| + |∇V(εx) · (εx) −∇V(ε̄x) · (ε̄x)|] = 0. (6.3)

Choose R1 > R0 such that
Vmax

(
2 + T̄(6+p)/2

) ∫
|x|>R1

ū2
ε̄dx ≤ ϵ0/2. (6.4)
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Then it follows from (2.3), (5.11), (6.2)-(6.4) that

mε̄ = Iε̄(ūε̄) =Iε(ūε̄) + 1
2

∫
R3

[V(ε̄x) − V(εx)]ū2
ε̄dx

≥Iε
(
t̄1/2
ε (ūε̄)t̄ε

)
+ 2(1 − t̄(6+p)/2

ε )
6 + p Jε(ūε̄) + 1

2

∫
R3

[V(ε̄x) − V(εx)]ū2
ε̄dx

≥mε + 1 − t̄(6+p)/2
ε

6 + p

∫
R3

[4V(εx) +∇V(εx) · (εx) − 4V(ε̄x) −∇V(ε̄x) · (ε̄x)]ū2
ε̄dx

+ 1
2

∫
R3

[V(ε̄x) − V(εx)]ū2
ε̄dx

≥mε −
1 − t̄(6+p)/2

ε
6 + p

∫
|x|≤R1

[4|V(εx) − 4V(ε̄x)| + |∇V(εx) · (εx) −∇V(ε̄x) · (ε̄x)|]ū2
ε̄dx

− 1
2

∫
|x|≤R1

|V(ε̄x) − V(εx)|ū2
ε̄dx −

(
2 + T̄(6+p)/2

)
Vmax

∫
|x|≥R1

ū2
ε̄dx

≥mε −
1 − T̄(6+p)/2

6 + p ‖ūε̄‖2
2 sup
|x|≤R1

[4|V(εx) − 4V(ε̄x)| + |∇V(εx) · (εx) −∇V(ε̄x) · (ε̄x)|]

− ϵ0
2 ,

which implies
mε̄ + ϵ0

2 ≥ mε ≥ lim sup
ε→ε̄

mε = mε̄ + ϵ0.

This contradiction shows that lim supε→ε̄ mε ≤ mε̄. �

Lemma 6.4. If u ∈ Λ, then u ∈ C(R3,R) and lim|x|→∞ u(x) = 0. Moreover, there is α0 > 0 independent of
x ∈ R3 and u ∈ Λ such that

|u(x)| ≤ α0

∫
B1(x)

|u(y)|dy, ∀x ∈ R3, u ∈ Λ. (6.5)

Proof. For s ≥ 2, it follows from Lemma 6.2 and the standard bootstrap argument (see [6, 29]) that there exists
Cs > 0 independent of u ∈ Λ such that

u ∈ W1,s(R3), ‖u‖W1,s(R3) ≤ Cs , ∀u ∈ Λ,

which, together with Sobolev imbedding theorem, implies that there is C∞ > 0 independent of u ∈ Λ such
that

‖u‖∞ ≤ C∞, ∀u ∈ Λ. (6.6)

By (F1), there exists a constant Θ1 > V0 such that

|f (t) + t5| ≤ Θ1|t|, ∀|t| ≤ C∞. (6.7)

From (6.6), (6.7), Lemma 6.2 and [29, Lemma 1], we have u ∈ C(R3,R) and lim|x|→∞ u(x) = 0. Since u ∈ Lmε

is a solution of (PKε) for some ε > 0, then it follows from (5.7) and Lemma 6.2 that

∇u =u ·∇u|u| = V(εx)u2 − f (u)u − u6

(a + b‖∇u‖2
2)|u|

≥V0 − Θ1
a + bK2

1
|u| := −ϱ0|u|, ∀x ∈ R3,

(6.8)

which implies that |u| is a sub-solution of the equation (−∆ − ϱ0)w = 0, and hence (6.5) follows from the
sub-solution estimate (see [33, Theorem C. 12]). �
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Lemma 6.5. For every uε ∈ Lmε ⊂ Λ, there exists yε ∈ R3 such that |uε(yε)| = maxx∈R3 |uε(x)|. Let ũε(x) :=
uε(x + yε) with uε ∈ Lmε ⊂ Λ, and let εn ∈ (0, ε0] such that lim supn→∞ εn = ε̄. Then we have
(i) if ε̄ > 0, then {uεn} has a convergence subsequence, whose limit belongs to Λ;
(ii) if ε̄ = 0, then {ũεn} has a convergence subsequence, whose limit is not zero.

Proof. For {εn} ⊂ [0, ε0] and uεn ⊂ Lmεn , Lemma 6.2 implies that {uεn} is bounded in H1(R3). Since 0 < mε <
m∞1 < abS3

4 + b3S6

24 + (b2S4+4aS)3/2

24 due to Lemma 4.4, as in the proof of (3.25), we have

lim sup
n→∞

sup
y∈R3

∫
B1(y)

|uεn |2dx > 0. (6.9)

By Lemma 6.4, there exists yε ∈ R3 such that |uε(yε)| = maxx∈R3 |uε(x)|. Then it follows from (6.9) that

lim sup
n→∞

|uεn (yεn )|2 ≥ 3
4π lim sup

n→∞
sup
y∈R3

∫
B1(y)

|uεn |2dx > 0. (6.10)

By (1.1), (1.4) and (5.19), one has

mεn = Iεn (uεn ) − 2
6 + p Jεn (uεn ) = Ψεn (uεn ) > 0. (6.11)

In the following we prove that (i) or (ii) hold.
(i) If ε̄ ∈ (0, ε0], then passing to a subsequence, we may assume that

εn → ε̄ ∈ (0, ε0], uεn ⇀ ū in H1(R3). (6.12)

By Lemma 5.1 and 5.2, mεn ≤ m̂V̂ − δ0/4. Since uεn ≠ 0, then it follows from Lemma 2.3 that there exists t̂n > 0
such that t̂1/2

n (uεn )t̂n ∈ M̂V̂ , and so IV̂
(
t̂1/2
n (uεn )t̂n

)
≥ M̂V̂ . Similar to the proof of (5.12), there exist T̂1, T̂2 > 0

such that 0 < T̂1 ≤ t̂n ≤ T̂2. If ū = 0, then uεn ⇀ 0 in H1(R3), uεn → 0 in Lsloc(R
3), 2 ≤ s < 2* and uεn → 0 a.e.

on R3. Then it follows from (1.1), (1.7), (5.1), (5.9) and (6.12) that

m̂V̂ − δ0/4 ≥mεn = Iεn (uεn ) ≥ Iεn
(
t̂1/2
n (uεn )t̂n

)
=IV̂

(
t̂1/2
n (uεn )t̂n

)
+ t̂4n

2

∫
R3

[
V(εn t̂nx) − V̂

]
|uεn |2|dx

≥m̂V̂ −
2Vmax − V∞ − V(0)

4 T̂4
2

∫
|x|≤R0/(T̂1εn)

|uεn |2dx

=m̂V̂ + o(1).

(6.13)

This contradiction shows that ū ≠ 0.
Let wεn = uεn − ū. Then by Brezis-Lieb Lemma, one has

Iεn (uεn ) = Iε̄(ū) + Iεn (wεn ) + b
2‖∇ū‖

2
2‖∇wε‖2

2 + o(1), (6.14)

and
Jεn (uεn ) = Jε̄(ū) + Jεn (wεn ) + b‖∇ū‖2

2‖∇wε‖2
2 + o(1). (6.15)

Moreover, it follows from (5.19), (6.12), (6.14) and (6.15) that

Ψεn (uεn ) ≤ mεn − Ψε̄(ū) + o(1), Jεn (wεn ) ≤ −Jεn (ū) + o(1). (6.16)

Now we prove that
uεn → ū in H1(R3), Iε̄(ū) = mε̄ , Jε̄(ū) = 0. (6.17)
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If there exists a subsequence {wεni } of {wεn} such that limni→∞ wεni = 0, then (6.17) holds. If not, we claim
that Jε̄(ū) ≤ 0. Otherwise, if Jε̄(ū) > 0, then (6.15) implies that Jεn (wεn ) < 0 for large n. In view of Lemma 2.3,
there exists tn > 0 such that t1/2

n (wεn )tn ∈Mε̄. From (1.1), (1.4), (2.3), (5.19)and (6.15), we obtain

mεn − Ψε̄(ū) + o(1) =Ψεn (wεn ) = Iεn (wεn ) − 2
6 + p Jεn (wεn )

≥I
(
t1/2
n (wεn )tn

)
− 2t(6+p)/2

n
6 + p Jεn (wεn )

≥mεn −
2t(6+p)/2
n

6 + p Jεn (wεn ) ≥ mεn ,

which is a contradiction due to Ψε̄(ū) > 0. Hence, Jε̄(ū) ≤ 0. In view of Lemma 2.3, there exists t̄ > 0 such
that t̄1/2(ū)t̄ ∈ Mε̄. Then it follows from (2.3), (5.11), (5.19), (6.11), the weak semicontinuity of norm, Fatou’s
Lemma and Lemma 6.3 that

mε̄ ≥ lim sup
n→∞

mεn = lim sup
n→∞

Ψεn (uεn ) ≥ lim inf
n→∞

Ψεn (uεn ) ≥ Ψε̄(ū)

=Iε̄(ū) − 2
6 + p Jε̄(ū) ≥ Iε̄

(
t̄1/2(ū)t̄

)
− 2t̄(6+p)/2

6 + p Jε̄(ū)

≥mε̄ −
2t̄(6+p)/2

6 + p Jε̄(ū) ≥ mε̄ ,

which implies that Jε̄ = 0,
Iεn (uεn ) = mεn → mε̄ = Iε̄(ū) (6.18)

and
Ψεn (uεn ) → Ψε̄(ū). (6.19)

Next, we show that uεn → ū in H1(R3). From (5.19), (6.12) and (6.19), we can deduce that uεn → ū inD1,2(R3),
and so uεn → ū in Ls(R3) for 2 < s ≤ 6. Jointly with (6.18), one has∫

R3

V(εnx)u2
εndx →

∫
R3

V(ε̄x)ū2dx. (6.20)

We claim that uεn → ū in L2(R3). In fact, for any ϵ > 0, there exists Rϵ > 0 large enough such that∫
|x|≥Rϵ

V(ε̄x)ū2dx ≤ ϵ. (6.21)

Since uεn → ū in L2(BRϵ (0)), it follows from (6.20) and (6.21) that

lim
n→∞

∫
|x|≥Rϵ

V(εnx)u2
εndx =

∫
|x|≥Rϵ

V(ε̄x)ū2dx ≤ ϵ, (6.22)

which implies

lim
n→∞

∫
R3

V0|uεn − ū|2dx = lim
n→∞

∫
|x|≥Rϵ

V0|uεn − ū|2dx

≤ lim
n→∞

∫
|x|≥Rϵ

V(εnx)u2
εndx +

∫
|x|≥Rϵ

V(ε̄x)ū2dx ≤ 2ϵ.
(6.23)

By the arbitrariness of ϵ > 0, we derive from (6.23) that uεn → ū in L2(R3). Hence, uεn → ū in H1(R3), and so
(6.17) holds. Combining with Lemma 2.7 with (6.17), we have I′ū(ū) = 0. This shows that ū ∈ Lmε̄ ⊂ Λ.

(ii) If ε̄ = 0, passing to a subsequence, we may assume that

εn → 0, ũ ⇀ ũ0 in H1(R3). (6.24)
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Moreover, (6.10) implies that ũ0 ≠ 0. Since V is bounded, going to a subsequence if necessary, wemay assume
that

lim
n→∞

V(εnyεn ) = β > 0. (6.25)

In view of Theorem 1.3, there exists ûβ ∈ M̂β such that

Iβ(ûβ) = m̂β , I′β(ûβ) = 0. (6.26)

Note that
mεn = Iεn (uεn ) =a2‖∇ûεn‖ + 1

2

∫
R3

V(εn(x + yεn ))|ûεn |2dx + b
4‖∇ûεn‖

4
2

−
∫
R3

[
F(ûεn ) + 1

6 |ûεn |
6
]

dx.
(6.27)

It is easy to check that for any bounded set Ω ⊂ R3,

lim
n→∞

sup
x∈Ω

V(εn(x + yεn )) = β. (6.28)

Arguing as in the proof of Lemma 6.3,
lim sup
n→∞

mεn ≤ m̂β . (6.29)

Analogous to the proof of (6.17) in Case (i),

ũεn → ũ0 in H1(R3), Iβ(ũ0) = m̂β = lim sup
n→∞

mεn , Jβ(ũ0) = 0. � (6.30)

Lemma 6.6. inf{‖u‖∞ : u ∈ Λ} := δ0 > 0.

Proof. Suppose to the contrary that δ0 = 0. Then there is a sequence {uεn} ⊂ Λ such that limn→∞ ‖u‖∞ = 0.
Let uεn ∈ Lmεn . There are two possible cases.

Case (i) lim supn→∞ εn > 0. By Lemma 6.5(i), there exists ū ∈ Λ such that uεn → ū in H1(R3). Then it
follows from the Hölder inequality that∫

B1(x)

|ū(y)|dx ≤
∫

B1(x)

|uεn (y) − ū(y)|dy +
∫

B1(x)

|uεn (y)|dy

≤
(

4π
3

)1/2
‖uεn − ū‖2 + 4π

3 ‖ūn‖∞ = o(1), ∀x ∈ R3,

(6.31)

which implies that ū = 0, a contradiction.
Case (ii) lim supn→∞ εn = 0. By Lemma 6.5(ii), there exists ũ0 ∈ H1(R3)\{0} such that ũn → ũ0 in H1(R3).

Then it follows from the Hölder inequality that∫
B1(x)

|ũ0(y)|dx ≤
∫

B1(x)

|ũn(y) − ũ0(y)|dy +
∫

B1(x)

|ũn(y)|dy

≤
(

4π
3

)1/2
‖ũn − ũ0‖2 + 4π

3 ‖ũn‖∞ = o(1), ∀x ∈ R3,

which implies that ũ0 = 0, a contradiction. �

Lemma 6.7. There exist Π1, κ1 > 0 independent of x ∈ R3 and u ∈ Λ such that

|u(x)| ≤ Π1exp(−κ1|x − yu|), ∀x ∈ R3, u ∈ Λ, (6.32)

where |u(yu)| = maxx∈R3 |u(x)|.
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Proof. First, we claim that u(x) → 0, as |x − yu| → ∞, uniformly in u ∈ Λ. In fact, if not, then there exist
δ1 > 0, {un} ⊂ Λ and {xn} ∈ R3 with |xn − yun | → ∞ such that |un(xn)| ≥ δ1. Let un ∈ Lmεn . There are two
possible cases.

Case (i) lim supn→∞ εn > 0. By Lemma 6.5(i), there exists u* ∈ Λ such that un → u* in H1(R3). Since
|xn − yun | → ∞, then either lim supn→∞ |xn| = ∞ or lim supn→∞ |yun | = ∞, and so we deduce from (6.5) and
the Hölder inequality that

δ1 ≤ |un(xn)| ≤ α0

∫
B1(xn)

|un(y)|dy = α0

∫
B1(xn)

|u*(y)|dy + o(1) = o(1)

and
δ1 ≤ |un(yun )| ≤ α0

∫
B1(yun )

|un(y)|dy = α0

∫
B1(yun )

|u*(y)|dy + o(1) = o(1),

a contradiction.
Case (ii) lim supn→∞ εn = 0. By Lemma 6.5(ii), there exists ũ* ∈ H1(R3)\{0} such that ũn → ũ* in H1(R3).

Then it follows from (6.5) and the Hölder inequality that

δ1 ≤|un(xn)| ≤ α0

∫
B1(xn)

|un(y)|dy = α0

∫
B1(xn−yun )

|ũn(y)|dy

≤α0

∫
B1(xn−yun )

|ũ*(y)|dy + o(1) = o(1),

a contradiction.
By (F1) and the above claim, there exists a number R2 > 0 independent of x ∈ R3 and u ∈ Λ, such that

for any u ∈ Λ
|f (u(x)) + u5(x)| ≤ V0

2 |u(x)| for all x, with |x − yu| ≥ R2. (6.33)

Substitute (6.33) to (6.8), one has

∆|u| =u · ∆u|u| = V(εx)u2 − f (u)u − u5

(a + b‖∇u‖2
2)|u|

≥ V0
2(a + bK2

1)
|u| := ϱ1|u|, ∀x ∈ R3, |x − yu| ≥ R2.

(6.34)

Set w(x) = |u(x)| − C∞e−
√ϱ1(|x−yu|−R2), where C∞ is given by (6.6). Then

∆w ≥ ϱ1w, |x − yu| ≥ R2.

By the maximum principle, we can conclude that w(x) ≤ 0 for |x − yu| ≥ R2 i.e.,

w(x) ≤ C∞e−
√ϱ1(|x−yu|−R2), |x − yu| ≥ R2.

Therefore, the claim (6.32) holds. �

Lemma 6.8. Let uε ∈ Lmε for ε ∈ (0, ε0] and let yε ∈ R3 be a global maximum point of uε. Then (i)
supε∈[0,ε0](ε|yε|) < ∞;
(i) for ε → 0+, up to a subsequence, ũεn = uεn (· + yεn ) converges in H1(R3) to a ground state solution of (KV0 ).

Proof. (i) Assume by contradiction that there exists a sequence {εn} ⊂ [0, ε0] such that εn|yεn | → ∞. There
are two possible cases.

Case (1) lim supn→∞ εn = ū ∈ (0, ε0]. In this case, by Lemma6.5(i), up to a subsequence, onehas |yεn | → ∞
and uεn → uε̄ ∈ Λ in H1(R3). Hence, it follows from (6.5) and the Hölder inequality that

δ0 ≤ |uεn (yεn )| ≤ α0

∫
B1(yεn )

|uεn (y)|dy = α0

∫
B1(yεn )

|uε̄(y)|dy + o(1) = o(1),
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a contradiction.
Case (2) lim supn→∞ εn = 0. In this case, by (6.27), (6.30) and Lemma 6.3 that

m̂β = lim sup
n→∞

mεn ≤ m0. (6.35)

In the view of (6.26) and Lemma 2.3, there exists t̃ > 0 such that t̃1/2(ûβ)t̃ ∈ M0, and so I0 (̃t1/2(ûβ)t̃) ≥ m0.
Note that

V(0) = min
x∈R3

V(x) < V∞ ≤ lim
n→∞

V(εn(x + yεn )) = β, ∀x ∈ R3. (6.36)

Applying Corollary 2.1 to Iβ, we derive from (1.7), (6.26), (6.35) and (6.36) that

m̂β =Iβ(ûβ) ≥ Iβ
(
t̃1/2(ûβ)t̃

)
=I0

(
t̃1/2(ûβ)t̃

)
+ β − V(0)

2 t̃4‖ûβ‖2
2

≥m0 + β − V(0)
2 t̃4‖ûβ‖2

2 > m0 ≥ m̂β ,

a contradiction. Case (1) and (2) show that supε∈[0,ε0](ε|yε|) < ∞.
(ii) In viewof Lemma6.2, {uεn} is bounded inH1(R3), and so {ũεn} is bounded inH1(R3). After extracting

a subsequence, we may assume that ũεn ⇀ ũ in H1(R3), ũεn → ũ in Lsloc(R
3), 2 ≤ s < 2* and ũεn → ũ a.e. on

R3. It follows from (6.5) and Lemma 6.6 that

δ0 ≤ |ũεn (0)| = |uεn (yεn )| ≤α0

∫
B1(yεn )

|uεn (y)|dy

=α0

∫
B1(0)

|ũεn (y)|dy = α0

∫
B1(0)

|ũ(y)|dy + o(1).

This shows ũ ≠ 0. Moreover, by item (i), there exists ỹ ∈ R3 such that, up to a subsequence, εnyεn → ỹ.
Next, we prove that ũεn → ũ in H1(R3), V(ỹ) = V(0) and ũ is the ground state solution of (KV0 ). Let

V̂ := V(ỹ). Since V0 ≤ Ṽ, then it follows from Lemma 6.3 that

lim sup
n→∞

mεn ≤ m0 ≤ m̂Ṽ . (6.37)

Analogous to the proof of (6.30), we deduce that as n → ∞

IṼ (ũ) = m̂Ṽ , JṼ (ũ) = 0. (6.38)

Jointly with Lemma 2.7, we have I′Ṽ (ũ) = 0. If Ṽ > V0, then it follows from (6.27) that

m0 ≥ lim
n→∞

mεn = lim
n→∞

Iεn (uεn ) = m̂Ṽ > m0. (6.39)

This contradiction shows that
lim
ε→0

V(εyε) = V(ỹ) = V0 = min
x∈R3

V(x), (6.40)

and so ũ is a ground state solution of (KV0 ). �
Proof of Theorem 1.2 Let v̄(x) = ū(x/ε) and xε := εyε. In the view of Lemma 5.4, for every ε ∈ (0, ε0], v̄ε is a
ground state solution of (SKε) which satis�es (1.6). Obviously, (i) follows from (6.40). Moreover, Lemma 6.7
and 6.8 imply that (ii) and (iii) hold. �
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