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Abstract: We consider the following critical nonlocal Schrodinger problem with general nonlinearities
2 2 _ 5 3
-|e a+£b/\Vu| Au+V(xu=f(u)+u’, xcR’,
(SKe)
u e H'(R?),

and study the existence of semiclassical ground state solutions of Nehari-Pohozaev type to (SK¢), where f(u)
may behave like |u|972u for g € (2, 4] which is seldom studied. With some decay assumption on V, we es-
tablish an existence result which improves some exiting works which only handle g € (4, 6). With some
monotonicity condition on V, we also get a ground state solution V. and analysis its concentrating behaviour
around global minimum x. of V as € > 0. Our results extend some related works.
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1 Introduction and main results

In this paper, we consider the following nonlocal Schrédinger equation

- sza+£b/ \Vu|2 Au+V(u=fw) +u’, xeR,
R3
u e H'(R?), x € R?,

(SK¢)

where €, a, b > 0. Such nonlocal equation is also called Kirchhoff-Schrédinger equation. We make the follow-
ing assumptions on potential function and nonlinear term
(V1) Ve C(R?,R) and 0 < Vo = minycgs V(x) < Veo = limy 50, V(y);
(F1) f € C(R, R) and lim; @ =0, lim|/|5e /% =0;
(F2) there exist constants y, uy > 0 and q € (2, 4] such that F(t) > ut? - u;t* for all t > 0, where F(t) =
fot f(s)ds;
(F3) there exists a constant p € (2, 6) such that £ (t\)t|+6F ® is nondecreasing on (-oo, 0) U (0, +oo).

In [39], Zhang, Chen and Zou used (V1) (F2) to study the existence of standing waves to nonlinear
Schrodinger equations involving critical growth, and (V1) (F2) was also used by S. Chen et al. in [6] to study
the ground state solutions to Schrédinger-Poisson system. (F3) once appeared in [36] and is weaker than the
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following weak version of Nehari type condition
f(8)/t is nondecreasing on (-oo, 0) U (0, +o0).

Problem (SK¢) is related to the stationary analogue of the following equation

Ust — a+b/|Vu|2dx Au =g(x,t),

R3

which is proposed by Kirchhoff [20] as an extension of classical D’Alembert’s wave equation. It has been
applied widely to model various physics problems and appears in some biological systems. For more de-
tails and backgrounds, we refer the reader to [2-4] and references therein. Owing to the presence of the term
( fR3 |[Vul 2dx)Au, problem (SK.) is no longer a pointwise identity, which makes the study of this question very
complicated. However, it is worth mentioning that the pioneering work of Lions [24] introduced an abstract
framework, and since then Kirchhoff type problem has received more and more attention from the mathemat-
ical community by using variational methods.
Making the scaling u(x) = v(ex), (SK¢) is transformed to

- a+b/|Vu|2 Au+Viexu =fw) +u’, xeR>,
R3
u e HY(R3), x e R?,

(PK¢)

u resolves (PK;) iff v resolves (SKz). It follows from (V1) and (F1) that (PK¢) has a variational structure, which
means the weak solutions of (PK;) are the critical points of the ¢! functional J, : H* (R3) - R defined by

2

Je(u) = %/ [a|Vu|2 + V(ex)uz}dx+g /\Vu|2dx —/ {F(u) + %ué} dx. (1.1)

R3 R3

For simplicity, inspired by [6, 39], we set
0¢cQp:= {x e R?: V(x) = Vo = min V(x)} . (1.2)
x€R3

Most recently, many authors are concerned with semiclassical problems like (SK;), i.e. the parameter € goes
to zero. For € > 0 small, the solutions are called semiclassical states, which possess an important physical
interest in describing the translation from quantum to classical mechanics. There are some valuable results
on semiclassical solutions for Kirchhoff-type problems like (SK¢), we refer to [13, 15-17, 37].

Sete = 1, V(x) = 0, and replace R> with a bounded domain @, then problem (SK¢) is related to the
following problem

- a+b/\Vu|2 Au=f(x,u), x€c€Q,
R3

u=0, x € 00.

By minimax methods and invariant sets of descent flow, Mao and Zhang [28], Perera and Zhang [30] proved
the existence of sign-changing solutions. At the same time, [1] obtained the existence of positive solution
using variational methods when f is critical growth.

When € > 0, the existence and qualitative properties of solutions to

- "32a+£b/|Vu|2 Au+V(ex) =f(w), xeR3, N
2 (SKe)

u c H'(R?),
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have been extensively studied; see for example [6, 9, 10, 18, 26, 34, 37]. If f(t) is super-linear at t = 0 and
super-cubic at t = oo, He and Zou [17] firstly studied (§T(g) via the Mountain Pass Theorem and the Nehari
manifold approach, under the condition that f € C}(R*, R*) satisfies the Ambrosetti-Rabinowitz condition
((AR) in short)

Ju>4a, 0<uF(t)<f(t)t, t+0

and the monotonicity condition((MN) in short)
fO/8 is strictly increasing for t € (—o0, 0) U (0, +o0).

If f(¢) is not super-cubic at t = oo, following the idea of Ruiz [31], Li and Ye [22] proved the special case that
V = 1and f(u) = |u|*2ufor 3 < s < 6 has a positive solution by using a new manifold related to Nehari
equation and PohoZaev equality. Then, Guo [14] and Tang and Chen [36] improve the above results with more
general V and f, which handles the case where f(u) behaves like |u|s2u for 2 < s < 3.

For the critical case, Wang, Tian, Xu and Zhang [37] considered the problem

- £2a+eb/|Vu|2 Au+V(x)u = Ag(u) + [u|*uin R3,
R3

under the assumption that g € C1(R*, R") is subcritical growth, g(t) = o(t3) as t > 0 and g(¢)/ ¢ is strictly
increasing on (0, o). Inspired by [17], they obtained the existence, multiplicity and concentration of solutions
when € > 0 small enough and A > 0 is large enough, in addition, they extended the results of [17] to the critical
case. In [18], He and Zou also obtained the similar results relaying on (AR) and (MN). Based on the work of
[11, 17], Liu and Guo [22] obtained the existence and concentration of positive ground state solution for (SK¢),
where f(u) + u’ is replaced by AK(x)|u|*2u + Q(x)|u|*u for 4 < s < 6 with K, Q € C(R?, R) satisfying some
suitable conditions.

We would like to emphasize that the previous work depends heavily on the condition (MN) or (AR) and
can be applied to the case where f(u) ~ |u|972u for 4 < q < 6. Obviously, the approaches adopted in them do
not work when f satisfies neither (MN) nor (AR). Therefore, there are very few results concerning semiclassical
ground state solutions for (SK;) where f(u) behaves like |u|?~%u for q € (2, 4]. The first purpose of this paper
is to consider this case and improve some previous results.

To state our results, we need introduce the following decay assumption on V

(V2) V e C! (R?,R), and 2VV(x) - x < (p - 2)V(x) for all x € R?, where p is given by (F3).

Theorem 1.1. Assume that V and fsatisfy (V1), (V2) and (F1) - (F3). Then there exist positive constants x and
Uo such that for € € (0, ex] and u = uo, problem (SK¢) admits a ground state solution.

Next we consider the concentration of ground solution of (SK¢) as € - 0. Furthermore, we establish the
exponential decay property of the solution obtained in the following theorem. For this reason, inspired by

[36], we introduce the following monotonicity condition on V
(V3) Ve ' (R?,R), and t » AV(LI+VV(B)-(09 s nonincreasing on (0, +oo) for any x € R3\{0}

t-2)/2

which is different from the following monotonicity condition used in [6]:
Vect (RB, R) ,t o t2[V(tx) - VV(tx) - (tx)] is nonincreasing on(0, +oo), x € R3\{O}.
For € = 0, we define the PohoZaev type functional P, as follows
Pe(u) = gHVuH% + % /[BV(sx) + VV(ex) - (ex)]udx + §||Vu||§ - 3/ {F(u) + %u6] dx. (1.3)
R3 R3

Based on the fact that any solution u of (PKj) satisfies P¢(u) = 0 and motivated by [22], define the following
Nehari-PohoZaev functional on H* (IR?)
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84@=%<%0&u>+?dw

=a|\Vu||% + % /[4V(sx) +VV(ex) - (ex)]u’dx

e (1.4)
1
+b|[Vull3 - 5 [ [feu+ 6FGldx - [ u®dx,
/ /
and set
M := {u c H! (]RB) \{0} : Je(u) = O} , (1.5)

i.e., the Nehari-PohoZaev manifold of J.. So every non-trivial solution of (PK;) is contained in M. A non-
trivial solution & of (PK¢) is called a ground state solution of Nehari-PohoZaev type if &t satisfies J¢(i1) =
inf, e, Je(u).

Our second result is given as follows.

Theorem 1.2. Assume (V1), (V3) and (F1) — (F3) hold. Then there exists €y > 0 determined by V and f such
that for € € (0, o] and for u = o, where g is given in Theorem 1.1, problem (SK.) has a ground state solution
Ve € H (R?) \{0} such that iic(x) = Ve(ex) satisfies

Je(ite) = inf Je(w)=  inf  maxJ:("%u(-/0)). (1.6)
ueM, ueHY(R3)\{0} >0

Moreover, the following statements hold
() for € € (0, go], there is a maximum point x. of |V¢| which satisfies that

lim V(x¢) = Vo = min V(x);
€50 XER3
(ii) there exist Ily, ko independent of € € (0, o] such that the maximum point x. of |v¢| satisfies that

[Ve(x)| < exp(—%\x - Xel|), Vx € R?, €< (0, e0;

(iii) for any sequence en = 0, V¢, (enx + X¢,) converges in H* (R3) to a ground state solution of the following
problem

- a+b/|Vu\2 Au+V0u=f(u)+u5, x € R3,
R3 (KVO)

ue H'(R?). x e R3.

It’s worthy noting that (F3) (V3) are different from that in [6], and unlike [36], we just assume in (V1) that
infycps V(x) < Vo instead of V(x) < Vo forall x € R3. Owing to the critical term, we have to face the lack
of compactness. To resolve the obstacle caused by the lack of compactness, we compare the mountain pass
level with the minimax level of the associated limiting problem. For this purpose, we study the existence of
ground solutions to the following equation

- a+b/|Vu\2 Au+Vu=f(u)+u5, x € R3,
R3 (I<V)

ue H(®R?), u>o0, x € R?,
where V is a parameter with O < V < Vinax := sup,cps V(x). We have the following statement.
Theorem 1.3. Assume that f satisfies (F1)—(F3), then (Ky) possesses a ground state solution ity € H'(R>)\{0}
for u = o, satisfying the following property

Iy(iy) = my := inf Iy(u) = inf max I (¢12 (u
v(tty) = my nf v(u) werniBh o) "0 vt (u)y)
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where (u)(x) := u(x/t) forallx € R? and t > 0, and

2

1 b 1
Iy(u) == = (a|Vu|2 + Vuz) dx + — |Vu\2dx - [F(u) + fu(’} dx (1.7)
2 4 6
/ frvere) -
Ty () = al|vul} + 2Vijul3 + b vul} - 3 / [Fwu + 6F)]dx - / ubdx (1.8)
R3 R3
My := {u € H'(R*)\{0} : Jy(u) = 0}. (1.9)

The main difficulties lies in two aspects: (i) The fact that f(u) does not satisfy (AR) condition nor (MN) con-
dition prevents us from obtaining a bounded (PS) sequence and from using the Nehari manifold. (ii) The
unboundedness of R? and the presence of critical term u” result in the lack of compactness.

Motivated by [6], we firstly consider (Ky) and prove Theorem 1.3 to find semiclassical solutions of (SK¢).
Based on the general minimax principle [21, Proposition 2.8], we construct a Cerami sequence {u,} with
Iy(un) > cy and with the extra property that J(un) - 0 which is crucial to deduce the boundedness of {un},
even the (AR) condition is not satisfied. By using some new estimates and subtle analysis introduced in [6],
we show that ¢y < # + %Sf + M (see Lemma 3.3). More specifically, we determine the lower bound
Uo in Theorem 1.3 (see Lemma 3.3) unlike [15].

To prove the existence of the semiclassical solutions, following the idea of Jeanjean [19](the so-called
monotonicity trick) and using a new global compactness lemma of critical type developed by [22, 36], we
construct a sequence {un} of the exact critical points of nearby functionals J ,, which satisfies A, - 1 and
j;,/\n(un) = 0, where

Jea) =Je() +(1 —/1)/ {F(u) + %u6] dx forallu € HY(R?*)and A € [1/2, 1].

R3

and show that J, , satisfies the Palais-Smale condition because of ¢, , < m}’, as proved in Lemma 4.4. The
fact that uy is the exact critical point provides additional information related to Pohozaev identity, which is
important to ensure the boundedness of {un}.

Remark 1.4 As mentioned above, unlike [36], we just assume inf, s V(x) < Ve instead of V(x) < Ve for
all x € R3, which makes it difficult to show c: < mg. To overcome this obstacle, we use some new energy
inequalities and some subtle analysis and find two constants e~ > 0 and A € [1/2, 1) determined by V and f
(see Lemma 4.4) such that

cea<my, VAe (1], € €0, el.

Remark 1.5 To obtain the concentration phenomenon for ground state solution to (SK) as € - 0, we intro-
duce some new proof techniques due to [6] to overcome the obstacles caused by the lack of (AR) and (MN),
which is different from the previous work. Our work extended the results of [23] to critical case.

In Sect. 2, we give some preliminaries and necessary lemmas. Sect. 3 is devoted to show the existence
of the ground state solution for the limited problem (Ky), and give the proof of Theorem 1.3. The proof of
theorem 1.1is given in Sect. 4. We investigate the existence and concentration of the ground state solution of
Nehari-PohoZaev type and complete the Proof of Theorem 1.2 in Sect. 5 and Sect. 6.

2 Preliminaries

In this section, we give some preliminaries. We will make use of the following notations.

e H(RR?) denotes the usual Sobolev space equipped with the inner product and norm (u, v) = S (Vu -
vv)dx, |[u| = (u,w)? forallu,v e H'(R3).

® Julg := (fgs |u\4)5 for1<q<ooandu e LI(R3).
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e C, C; denote (possibly different) various positive constant.

* S = infye oy oy VUl3/ |[ull3-

*B(x):={yeR>:|y-x| <r}foranyx € R>and r > 0.

o (u)¢(x) := u(x/t) forall x € R3 and ¢ > 0 along any u € H'(R?)\{0}.
It is easy to check that (V1) and (V3) implies that

h 14 “y 2(1_t(6+p)/2)[4V( Y+ VV(y) -yl
1t y) =V(y) -t (t}/)—ﬁ y)+ y)-y 2.1)
>0, Vt=0,ycR*\{0}.
Lemma 2.1. Assume that (F1) and (F3) hold.Then
A2 1 — (6+p)/2
hy(t,T) :=F(t"'“1) - F(1) + “6ip [f(T)T + 6F(7)] (2.2)

20, Vtz0,7eR.
Proof. Itis easy to see that forall t > 0, h,(t, T) > 0. For T # 0, by (F3), we have

t120)¢ 21 + 6F(t%1) (1)1 + 6F(1)
|t1/27|p 7[P

d _1 2+p/2 P f(
ahz(t,‘r)—zt ke

which, together with the continuity of h, (-, ), implies that h,(t, T) = h(1,7) = O forall t = 0O and T ¢ R\{0}.
This shows (2.2) holds. O

Lemma 2.2. Assume that (V1), (V2), (F1) and (F3) hold. Then

2(1 - t(6+p)/2)

Te(u) 27¢ (/2 (w) ) + Je(u)
( , ) 6+p (2.3)
4 13
+ ma(t)ﬂvunz» Yue H (R%), t>0,
where
a(t) = 8t P12 _(6+p)t* +p-2, Vt=0.
Proof. Since p > 2, one can easily have
a(t) >0, vt € [0, 1) U (1, o). (2.4)
By (1.1), one has
120, = 4 gui2 + & 2ax + P 1 oul
Je (t (u)[) 5 IVu||3 + 3 V(tex)u”dx + 3 (IVull3
R . (2.5)
-t /F(tl/zu)dx— gt6\|u||2, vu e H'(R?), t > 0.
R3
It is easy to check that
1-£2 2(1- D)
> 6+ =0, Vt>O0. (2.6)
1e 1, 201-(0PN2)
Et E+W20, Vt>0 2.7)
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From (1.1), (1.4), (2.1), (2.2), (2.4), (2.5), (2.6) and (2.7), one has

Je(w) = (€2

_a(l-

2 _ 4
SO iwu+ ) [ien - evieoia X0
R3

o Ivul
+ [ FE 00 - Faldx + ¢ - 1)l
R3

201 - t(6+P)/2)

2 1 2 4
6+p {a||Vu|2+ Z/[4V(sx)+VV(£x) (ex)u®ldx + b||Vul>

R3

2
alVull2

- t? — (6+p)
- %/[f(u)u+6F(u)]dx_ |u||2} N [1 zt B 2(16 :p )
R3

1 2 1-t4 2(1- P12
+§/h1(t,ex)u dx + [ 3 6+
R3

_ ¢6+p)/
+/{t3F(t1/2u)—F(u)+ 16t+6;2[f(u)u+6F(u)]} dx
R3

b vull3

6 6 6+p

2(1 - t5*P)/2)
>~ - @ 7
6+p

16 1 2(1-t6nN2) p
+ {t -+ = |lull¢

ba(t)

Je(u) + 4(6 +p)

[Vuls, vue HYR3), t>o0.

This shows (2.3). O
Let t - 0, in (2.3), we have

b(p-2)
4(6 +p)

Lemma 2.2 gives the following corollary immediately.

2
Je(u) 2 mgs(u) + HVquz" vu € HY(R3).

Corollary 2.1. Assume that (V1), (V3), (F1) and (F3) hold.Then for u ¢ M

Je(u) = max Je (t”z(u)t) :

DE GRUYTER

(2.9)

(2.10)

Lemma 2.3. Assume that (V1), (V3) and (F1)-(F3) hold.Then for any u € H*(R>)\{0}, there exists a unique

tu > O such that t1/*(u),, € M.

Proof. Let ¢ > 0and u € H!(R?)\{0} be fixed. Define the function {:(t) = J¢ (tl/z(u),) on (0, o). By (1.4) and

(2.5), we have

1

(;(t) =0 <:>at2|\Vu\|§ + Et“ /[4V(tex) + VV(tex) - (tex)|u?dx

R3
e [Tl = 56 [ A0 ) + 67 )] dx
R3
- t]ull§ = 0

—=Je (tl/z(u)t) =0 < tl/z(u)[ € Me.

By (F1) and (F2), we have lim;sq {e(£), ((t) > O for t > O small and {:(t) < O for t large. Therefore

MaX ¢ (0,0) {e(£) is achieved at t, > 0 so that {;(t,) = 0 and ti%(u), € Me.



DE GRUYTER Anmin Mao and Shuai Mo, Ground state solutions to a class of critical Schrédinger problem =— 103

Next, we claim that t, is unique for any u € H*(R?)\{0}. If not, we can assume that there exist positive
constants t,, 1 # ty,» such that J. (t;{f(u)tu'l) = (tl 2(u)tu 2) 0,i.e. tl/z(u)tu s l‘lfg(u)tu,2 € Me. Then (2.3)
and (2.4) imply

6 2 6 2
(500) . (3000.) 2 (4, 4 )
£ tu1 ) = 8 ty,2 6+ )/2 & < u,1 tu,l)
6+ p)tfl i
2 (40P @, - 652 00

BIE
(6 +p)t, Y

) 3e (630, ) -

> 7, ( 1/2(u)tul)

This contradiction shows that t, > 0 is unique for any u € H'(R?)\{0}. O
Combining Corollary 2.1 with Lemma 2.3, we have the following lemma.

Lemma 2.4. Assume that (V1), (V3) and (F1)-(F3) hold. Then

inf Je(u) =me = inf max Je ( 1/2(u)t) .
ueMe ueHl(R3)\{o} t>0

Lemma 2.5. Assume that V satisfies (V1) and (V3).Then there exists v, > 0 independent of € > O such that
2a||Vu|\% + /[4V(sx) +VV(ex) - (ex)]u?dx = 71|\u\|2, vu € H'(R?). (2.11)
R3
Proof. By (2.1), lim,sq hy (¢, y)/t®*P)2 > 0 for any y € R3\{0}, which implies
4V(y)+VV(y)-y=0, vyeR>\{0}. (2.12)

Set Vinax := Maxyeps V(x) € (0, 00), and ty = (2Vmax/Vo)'/* > 1. Then it follows from (V1), (2.1) and (2.12)

that
2 2 (1 _ t6(6+p)/2)
m[w(y) +VV(y)-yl= ” [4V(y)+ VV(y) -yl

2t5 P2 V(toy) - 1PV (y)
El‘f)z_p)/z[Vo - t64 Vinax]

(2-p)/8
_ V() 2Vmax 3
=5 ( o ) , Yy eR’.

(2.13)

(2-p)/8
Let y1 = min {Za, Y% (%@“) } Then (2.13) implies that (2.11) holds. O

Lemma 2.6. Assume that (V1), (V3) and (F1)-(F3) hold. Then exist constants § > 0, po > 0 independent of €
such that inf, ¢y, |[Vu)3 > 8 and me = infy, e, Je(w) > po.

Proof. Since J:(u) = 0 for all u € Mg, by (F1), (1.4), (2.11) and Sobolev embedding inequality, there exists a
constant Cy > 0 independent of € such that

v lul? + 2b][Vul4 <2a|Vul3 + / [4V(ex) + VV(eX) - ()]

R3

_ / [F()u + FQu)ldx + 2 ull§

1 2 6
<L lull3 + Collullg

2 - 6
<Dl + CoS [ Vul,
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which implies

3\ 1/2
[Vul3 =68 := <2bs > , Yue M. (2.14)
Com
By (2.9) and (2.14), one has
_ 2 b(p -2) 2 bP-2) o4
Je(u) = Je(u) mﬂg(u) > 46+ p) IVulls = 46 +p)5 =po, Vue M. (2.15)

This completes the proof. [
As the proof of [23, Lemma 2.9], we have the following statement.

Lemma 2.7. Assume that (V1), (V3) and (F1)-(F3) hold. If i € M¢ and J-(u) = me, then i is a critical point of
Je.

3 Ground state solution for the limited problem

In this section, by using the following general minimax principle, we show the existence of the ground state
solution for (Ky), and give the proof of Theorem 1.3. To prove the existence of nontrivial solutions, we use the
following general minimax principle [21, Proposition 2.8], which is a stronger version of [38, Theorem 2.8].

Lemma 3.1. Let X be a Banach space. Let Mg be a closed subspace of the metric space M and let 'y C C(My, X).
Define

I:= {’Y € G(Mo,X) : ’7|M0 S Fo}.
If ¢ € CL(X, R) verifies

oo > ¢ := inf sup @(y(u)) > b := sup sup @(yo(w)),
YElyem ~o€lo ueM

then, for every o € (0, (c - b)/2), 6 > 0 and ~ € I satisfying

sup@oy<c+a,
M
there exist u € X such that
Hc-20<p)=<c+20,

(ii) dist(u, v(M)) < 26,
(i) (1 + |u[D]l9 )| < 80/8.

In the following, we apply Lemma 3.1 to obtain a Cerami sequence for the functional Iy, with Jy(un) - 0.

Lemma 3.2. Assume that (F1) and (F2) hold. Then there exist a sequence {un} c H'(R?) satisfying
Iy(un) > ¢y >0, |[Ty(ua)[|(1 + [[ul) > O, Jy(un) >0, (3.1)
where

ey i= inf max Iy((0), T'i= {7 € €(o, 11, H'®) : 4(0) = 0, Iy(+(1) < 0}.
~ver tel0,1]

Proof. By (F1), one has Iy(tu) > —oo, as t > oo for every u € H'(R>)\{0}. A standard argument shows that
I' # @ and cy < . Moreover, it is easy to see that there exist constants p; > 0 and o7 > 0 such that

Iy(u) = 0 forall u, with |ju|| < p; and Iy (u) = g, for all u, with ||u| = p;. (3.2)

Clearly v(0) = 0 and Iy (y(1)) < O for every v € I'. Hence (3.2) implies that ||y(1)|| > p1. There exists ¢t € (0, 1)
such that ||y(ty)|| = p1. Thus, we have

sup Iy(y(t)) = Iy(y(ty)) 2 01 >0 forally eI,
telo,1]
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which shows
00> Cy = 1nf max I, (y(t)) 2 o1 > 0. (3.3)
I'telo,1]
Let us define the continuous map h : R x H{(R3) > HY(R?), h(s, v)(x) = ez v(x/e®) for s € R, v € H'(R?) and
x € R?, where R x H' is a Banach space, with the product norm |(s, v)| := (|s|? + ||v||2)*/?). We consider the
following auxiliary functional

ae V' 4s b45

||Vu||z +5e ull3 +

Iy = Iy(h(s, u)) =

s 1
IVul - e [ Fetudx et Jul.

R3
It is easy to see that Iy € C}(R x H}(R?), R), and
dsTy(s,w) = Jy(h(s,u)), duly(s, uw = Iy(h(s, w)h(s, w),

foralls € Rand u, w € H'(R3).
Define the minimax value &y for Iy,

¢y = inf max Iy(3(t)),
Ferl telo,1]

where
f={aeamJLRxH%Rm:ﬂm=«xm,nwun<o}

Since I' = {h oy:5eTl }, it implies cy = Cy. By the definition of cy, for every n € N there exists v, € I such
that

- 1
max Iy(0, yn(f)) = max Iy(y(t) < cy + —.
tclo,1] telo,1] n

Then, we apply Lemma 3.1to Iy, M = [0, 1], My = {0, 1} and X = R x H}(R?). Let &4 = 1/n?, 8, = 1/n, and
Fn() = (0, vn(t)). Since (3.3) implies &, = 1/n? € (0, cy/2) for large n € N, Lemma 3.1 yields that existence of
(Sn, vn) € R x HY(R3) such that, as n - oo,

Ty(sn, vn) > cv,
[Ty (sn, v + [[(Sn, va)I)) > O, (3.4)
dist((sn, vn), {0} x m([0, 1])) > O. (3.5)
Moreover, (3.5) gives that s, - 0. Note that for all (r, w) € R x H'(R?),
(Ty(sn, v, (T, w))) = (Ly(h(sn, vn)), h(sn, vn)) + Jy(h(Sn, va))T. (3.6)

Let un := h(sn, vn). Taking T = 1 and w = 0 in (3.6), we have J(u,) > 0 as n > oo. For every v € H'(R?), set
7 =0 and wy = e5/2y(xe*") in (3.6), then (3.4) and (3.5) imply that

[(Ty(un), 0, wa)) (1 + [[unl) = [(Ty(h(sn, va)), V)I(L + [[(sn, va) ) = 0(1)||wnl| 3.7)
as n - oo. This shows {un,} satisfies (3.1), as required. 0J

Lemma 3.3. Assume that (F1) and (F2) hold. Then there exists po > 0 such that for all y = pg

C<m§+mﬁ+wﬁh4wwz
Ve 24 24 '

Proof. For each € > 0, consider the function

(38)1/4

3
W forall x e R°.

Ue(x) =
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Note that Uy is the extremal function for the embedding D?(R3?) > L®(R>) and

Uel|2 3\*?
(9
Let n € ([0, o0), [0, 1]) be such that
r, relo, 1),
nm=<2-r, rel1,2),
0, re2,o0).

Set we := n(|x|)Us and ve = we/||we||g. Inspired by [6], by a direct computation, for any € € (0, & 18 )we have

IVvel3 < S+ Cre'l?, (3.9)
[vell3 < 262, (3.10)
[velld = C3© /)] (3.11)

where C; = 16(41n2 - 1)6'/3, C, = 161/3, C5 = 2(6-9/33@-6)/6 5(2-0)/2 Erom (F2), (1.7) and (3.9)-(3.11), one
has, forallt > 0

2 4 2
Iy(tve) s% (S+ C1€1/2) + @6281/2 + th (S + Clel/z>

—ut1C3 €4 1y 2 Cret? - %té

2 2 4
S%Stz + b%t“ - %t6 +g1/? [(aCl + VimaxCa + 2C2y1)% +(bCi + 2bSC1)%]

- o -4
2
-5 (as +aCre? + VipaxCy + Zylczel/z) (b52 +bhC2e? 4 2bSC181/2)

- ltG - yth3e(6“1)/4_
Then, define the functions on [0, co)

asS ., bS? 1

ni(6) = t + —t“ - gt"’, (3.12)
4
N2 (He'? = {(aCl + VimaxCa + 2C2y1)— +(bC? + 2bSC1)tZ} el/?, (3.13)
n3(0) = —ut1C3e® /", (3.14)
It is easy to see that
Iy(tvy) < 1 (6) + 2 (D™ + 3 (D). (3.15)

4/3

2
Let g9 := min{”l—g, (m) , (2ch +4bSC1> }, for any € € (0, &), it is easily checked

that K(t) = ni(t) + rlz(t)el/ 2 is increasing on [0, to/v2] and decreasing on [v/2ty, oo], where to =
(bsuw v

We distinguish three cases.

1)0<tz< \% From (3.12), (3.13) and (3.15), we have for all £ € (0, &]

I(tve) < K(O <K (%) <alto) - 3 [m(to) s (%)} . (%) RIEY (3.16)
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2
(to)-n1 (%
Leteg := (W) , and we have Iy (tve) < n1(to) with 0 < € < min{eg, €1} from (3.16). It shows

(s
sup Iy(tve) < n1(to) forall e, with O < € < min{gp, £1}. (3.17)
te(0,-%]

2) t = v/2ty. In this case, (3.12), (3.13) and (3.15) imply that for all £ € (0, &o]

Iy(tve) < K(V2to) < n1(to) - 5 nl(to) 11(V2to) | +n2(V2t0)eM? (3.18)
Ve \ 2
Let g, := (%\%ﬂ)m)) , and we have Iy (tve) < n1(to) with 0 < € < min{¢gg, €1, £, } from (3.18). It shows
2 0
sup Iy(tve) < ni(to) forall g, with O < € < min{eo, €1, €5}. (3.19)
te[v/2to,00)

t
3) g5t V2to. Note that

t
waw)<maa+nﬂwﬂwé”+n3(4l), (3.20)
V2
letes = % and &4 = min{ey, &;, €3}, then (3.20) implies that
0
sup Iy(tve,) < nlto), (3.21)
te(-%,V2to)
provided that u = ug, with g = M 2‘1 a4,
It follows from (3.17), (3.19), (3. 21) we have
abS® b3S®  (b2S* + 4aS)3/?
CVSStI:(I))IV(tV83)<?11(fo)= Y +( 2 )
for all p = po. This completes the proof. O
Lemma 3.4. Assume that (F1)-(F3) hold. Then cy = y.
Proof. From Lemma 2.4, we deduce that cy < fy. Next, we show that cy > fy. By (2.2),
1
h,(0, 1) = m[f(r)r - pF(1)], VT €R. (3.22)
Note that for all u € H(R3),
2 (p+2)a 2, 0-2)b 4, P-
Iy(u) - Jy(u) = vulls + vu Vlu
V) - v 2%+pﬂ| I+ gy py IVHIE 2 VIl
— F
/vwm PRx + o= )um
(3.23)
(p+ 2)(1 2. (p-2)b 4, p
> Vul|; + Vu Viu

by the definitions of Iy, Ji = 0 and (3.22). Since ||y(1)|| > p1, Iy(7(1)) < O for all v € I'y, then (3.26) implies

V6 - g e W) >0, (3.24)

which shows J(y(1)) < 0.
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From J(0) = 0, (F1) and Jy(v(1)) < O, there exist p, € (0, ||y(1)|]) and 0, = 0 such that Jy(u) = o, for all
llul| = p2, which implies that there exist ty € (0, 1) such that Jy(y(ty)) = 0;. Thus, for every v € I'y has to
cross My, and cy > y. This shows that ¢y = iy, O
Proof of Theorem 1.3. In view of Lemma 3.2, there exist a sequence {un} c H'(R?) satisfying (3.1). By (3.1),
(3.22) and (3.23), we have

p+ p-2

_ _ 2 2)a 2 2
cy +0(1) = Iy(un) mfv(un) 2 mllvunﬂz + mVllunllz,

which implies {u,} is bounded in H*(R?). Next, we claim that

lim sup sup / |un|?dx > 0. (3.25)
n>eo  yeR3
Bi(y)
If not, then Lions’ concentration compactness principle implies that u, > 0 in L¥(R?) for all s € (2, 6). By
(F1), we have for every € > 0, there exist constant C¢ such that

If(D)1] + |F(7)| < e(t? + %) + Ce|7|* forall T € R. (3.26)
Thus, as n > oo
0(1) = (Iy(un), un) = a||Vun|3 + Vun|[3 + b[|Vun|3 - |un||§ + 0(1), (3.27)
and
cy+0(1) = guwnnﬁ + %nunu% + guwnné - %uunué +0(1). (3.28)

Since {un} is bounded in H!(R?) and cy > 0, up to a subsequence, we may assume there exists constants
11, I > O such that
a||Vun||3 + V|jun||3 > li, b||Vun|3, n-> eo. (3.29)

Together with (3.27), (3.28) and Sobolev inequality, we have

1 1
cy = §11 + ﬁlz’

al|Vun|[3 + Vlun|| = aS|un|i§, b|[Vun|3 = bS?|unlls.
Letting n - oo in the above two inequalities, we achieve that
I = aS(ly + 1), (3.30)
> (1 + )3, 3.31)
Combining with (3.30) and (3.31), we have

bS? + (b2S* + 4aS)Y/?
2

(I, +L)Y3 >

and
1

1 1 1
Cy = 511 + ﬁlz > §(11 + 12)1/3 + ﬁ(ll + 12)2/3
abS®  b>S®  (b2S* + 4aS)*?
> + + .
4 g 24
This contradiction shows that (3.25) holds. Thus there exist § > 0 and a sequence {y»} ¢ H'(R?) such that

fBl()’n) |un|>dx > 8. Let fin = un(x + yn). Then (3.1) gives

Iy(itn) > cy > 0, Iy(@n) >0, Jy(iin) > 0asn > oo, (3.32)
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and f B,(0) [tn \de > 6 for all n € N. Therefore, there exists it € H l(R3)\{0} such that, up to a subsequence,

i in HY(R?),

I, —
i, > 1 in LIOC(R ) foralls €[1, 6),
fin > @l a.e.onR>.
Moreover, i1 is nontrivial, and i1 satisfies
—~(a+bADAL+ Vi =f@) +@°, (3.33)

where A? := lim,5.. | Vila|| and ||Vil||3 < A%. Hence, we have the following equalities

(a+bA%)| a3+ Vial3 - [ f@ndx+ e,
. 5 R’ ) (3.34)
JasbA?)|val+ SVIal -3 [ Fadxs 3 ale.

R3
Next, we show that Jy/ (&) = 0. From (1.8) and (3.34), we have
Jv(@) = b||Va|3(|va|3 - A%) <o.

If Jy(@t) < 0, it follows from Lemma 2.3, which is also true for Iy and Jy, that there exist a unique t € (0, 1)
such that Jy (¢/2(i1¢)) = 0. Combining with (2.3), (3.22), (3.23), (3.32), the weak semicontinuity of norm, Fatou’s
lemma and Lemma 3.4 that

N . A 2 A
my =1r111_r)1 [Iy(un) - mlv(un)}

(p+2)a (p-2)b -2
_2(6+) 4(6 + p) 2(6 D)

/mwmnpﬂwm»+( )nwé

A 12 A 4
Vi3 + [Vunll + V1|inlf3

(p-2)b
4(6 +p) 2(6 p)

/[f(u)u pF(@)]dx tg 66+ p) P a8

>(p + Z)a
~2(6 +p)

~112
V|2 + Va3 + 2_vijal3

] v(@)
5 t(6+p)/z

=Iy(@1) - 6

>y (¢ (@) -

2¢(6+p)/2
T ey

Jv(w)

Jv(@w) > my,

which is a contradiction. Hence we have Jy (i) = 0 and Iy(if) = my which, together with Lemma 2.4 and
Lemma 2.9, implies

Iy@) = iy == inf Iy(w)=  inf maxIV(t/ W),
ueNty ueH (B3)\{0} 60

Iy@=0

This completes the proof. O
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4 Existence of the ground state solutions

In this section, by using the Jeanjean’s monotonicity trick [19, Theorem 1.1], we show the existence of ground
state solutions for (SK¢). To this end, for A € [1/2, 1], we introduce two families of functionals on H'(R?)
defined by

2
Jeaw) = %/{a|Vu|2 + V(sx)uz}dx+ 2 (N/ Vu|2dx) —}l/ {F(u) + %uG] dx, (4.1)
3 R3

RB
and

2
IT () = %/{awmz + Voouz}dx+ Z (R/ Vu|2dx) —/l/ {F(u) + %uﬂ dx. (4.2)
3 R3

R3

In the same way as in [14], we can obtain the following lemma.

Lemma 4.1. Assume that (V1), (V2), (F1) and (F2) hold. Let u be the critical points of J ) in H L(R3), then we
have the following PohoZaev type identity

Pealw) = g||Vu||§ + %/[3V(sx) + VV(ex) - (ex)u’dx + gHVuHé - 3/\/ [F(u) + éué} dx.

R3 R3

Set Je A(w) = 1 <J;’A(u), u> + P 2(u) forall A € [1/2, 1], one has

Jeaw) =a|\Vu|\% + % /[4V(ex) +VV(ex) - (ex)]u’dx
R; (4.3)
+ bHVuHé -3 /[f(u)u + 6F(u)]dx—/\/u6dx.
R3 R3
Correspondingly, for A € [1/2, 1] we also let
oo A
IX W) = a||Vul|3 + 2Veo|lu|l3 + b||Vul|3 - 5 /[f(u)u + 6F(u)]dx - AJju)é, (4.4)
R3
M = {u e H'®\{0} : I3 (1) =0}, my = inf_ I (u). (4.5)
ueMy
Immediately, Lemma 2.2 implies the following lemma.
Lemma 4.2. Assume (F1), (F3) hold. Then
- - 2(1 — 6+p)/2 -
JA (u) Zj/\ (tl/z(u)[) + gg}l (u)
, 6+ (4.6)
2 4 13
+ W6+p) a()2Ve||u|l2 + IVull3), Yue H (R’),t>0.
ForA € [1/2, 1], let
sy 1 2 2 b 4 _ 16 1(p3
Ji(w) = 5 (a|Vu\ + Vinaxu )dx+ Z||Vu\|2 Al |Fuw)+ i dx, Yu e H (R’). (4.7)
R3 R3

In view of Theorem 1.3, under (F1)-(F3), there exists u® € M7° such that

(1) @™) = 0 and m$> = I (™).
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It is easy to check that there exists T > 1 such that
7 (tl/z(u‘”)t) <0, vt=T. (4.8)
By (4.8) and simple calculation, we can derive the following lemma.

Lemma 4.3. Assume that (V1), (V2) and (F1)-(F3) hold. Then
(1) e n (Tl/z(u"")T> <OforallAe[1/2,1]and € = 0;
(ii) there exist a constant ko independent of A and € such that for all A € [1/2,1] and € = 0,

Ce 2 = inf max T 2(v(f)) = ko > max {JE,A(O), Ten (Tl/z(u“’)T)} , (4.9)
~v€T telo,1]

where
r={yee(o,1], H'®) :1(0) = 0,(1) = TV ™) 1 (4.10)

(iif) my® is non-increasingon A € [1/2, 1];
(iv) c ) is non-increasing and left continuous on A € [1/2, 1] for € = 0.

Since V € C(R3,R), V(0) < Voo and u € H' (R?)\{0}, then there exist ¥ > 0 and R > 0 such that

Veo - V() > %(vm “V(0), Vix|<F, (4.11)
[Voo = V(0) + 4 - 3*(Vinax — Veo)] / u™|dx < %(Vw - V(0)||u™3, (4.12)
\x.|>R

and
. min{a(1/2), a3/2)}

6+p

T*(Vinax — Vo) / [u™|dx Vool u®™||3. (4.13)

xR

Lemma 4.4. Assume that (V1), (V2) and (F1)-(F3) hold. Then there exists A € [1/2, 1] such that Ce p < my for
Ae (@, 1] and € € [0, €], where e« = 7/RT.

Proof. For any € > 0, it is easy to see that Jg,,\(tl/z(u"")t) is continuouson t € (0, o). Hence forany A € [1/2, 1]
and € = 0, there exists a t, , € (0, T) such that J, , ((tg,,\)l/z(u"")tm) = MaXc(o, 1] JS,A(tl/z(u‘”)t). Set

o) = (tT)l/z(u‘”)(tT), fort >0,
o, fort =0.
Then vg € I, I' is defined in (4.10). Moreover, we have

Tea (€2 @)e,, ) = max Jea(GO)(O) = cen- (4.14)
t€0,1]

From (F2) and (3.22), we can deduce that the function F(¢)/¢|t|P~! is nondecreasing on t € (oo, 0) U (0, +oo).
Since ¢, , € (0, T), then
F((tg,/()llzuw) . F(TY2y>)

CSVZERR O “r
Let
. 1 [Voo — Vol|[u™|13
A=max{ =,1- ’
{ 27 28T3[ [, F(2u=)dx + T3 |[u=|¢]
(4.16)

~ min{a(1/2), a(3/2)}b||Vu|/3
4(6 + p)T3[ [, F(TY2u>=)dx + T3||ul8] [

Then 1/2 < A < 1. We have two cases to distinguish.
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Case (i) t. € [1/2,3/2]. From (4.1), (4.2), (4.6)—(4.16) and Lemma 4.3(iii), we have for all A € (A, 1] and
ec |0, e

mi? zmi = 0% ()20, )

=Tz ((l‘g,/\)l/z(uw)tsj) -1 —A)(tg,,\)3/{F<(tgy,\)l/2u°°) +(te )P U8 |dx
R3

(t /1)

V(ete 20l u™ ‘ dx

scoq—(1- /\)T3 /[F(Tl/zu‘”) + TP fdx

R
+V°°;7V(0) / |uoo|2 3 (Vmax Veo) /|

|x|<R |x|>R
T L T Ll
R3
- .34 -
Voo V(0)+4273 (Vinax = Veo) / ™ 2dx

|x|>R

>Cs,/1'

Case (ii) t. € (0,1/2)U (3/2, T]. From (4.1), (4.2), (4.11), (4.13)-(4.16) and Lemma 4.3(iii), we have

my > =mg =97 W) > I7 ((tg,A)”Z(u“’)tS,A) + ;zg:;j) (Voo [u™ |3 + B[ Vu™||3)
=052 (6@ ) = (1= e’ / P 2u) + (te) | dx
R3
a(ts,/l)

(2Veo| ™13 + B|| V™3

(tS,/\)4 o0 2
= /[Voo - Vet p0l|u™|"dx + 46+ D)
3
4 _
scer-(1- DT /[F(T1/2u°°) + T ¥ldx - M / u™2dx
R3 |x|>R
mm{(x(l/z) a(3/2)}
4(6 +p)

>ce ) foralld e (A, 1], € € [0, &+].

(2Veo| ™13 + bI|Vu|3)

In both cases, we conclude that ¢, ; < m" forallA € (A, 1] and € € [0, &+]. O

Similarly to the proofs of Lemma 3.3 and 3.4, we have that my < “75 (1’52*7 W) +

12 21
[22], we can obtain the following lemma.

2
bs? (”527 ”’254”‘"“5) under the assumption of Theorem 1.1. Then, analogous to the proof of Lemma 3.4 in

Lemma 4.5. Assume that (V1), (V2) and (F1)—(F3) hold. Let {un} be a bounded (PS) sequence of c, j for J.
with A € [1/2, 1]. Then there exists a subsequence of {un}, still denoted by {un}, and uy € H*(R>) such that
A? := liMy e | V|| exist, un — uo in H*(R?) and G, ,(uo) = 0, where

G a(u) = a+bA /|Vu| dx+f/V(£x)u2dx /1/ {F(u)+ %u(’} dx (4.17)

R3

and either
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() un 2 ug in HY(R3?); or
(ii) there exist an integer | € N and w', ...,w' € H'(R>)\{0} such that (G") (W) = 0, for 1 < k < 1, and

Cedt —— b = G a(uo) + ZGA wh);
1
!
= [Vuo[3+ Y vwh3,
k=1
where
Gy (u) = ﬂ/ww dx+—/u2dx—)l/ [F(u)+%u6} dx. (4.18)
R3 R3

Lemma 4.6. Assume that (V1), (V2) and (F1)-(F3) hold. Then for every € € [0, €] and for almost every A
(A, 11, there exists u ) € H*(R*)\{0} such that

(js,/\),(us,/l) =0, jE,A(uE,A) =C¢,2- (4.19)

Proof. By [19, Theorem 1.1], we have that for almost every A € [1/2, 1], and for every € € [0, €«], there exist a
bounded sequence {un(A, £)} ¢ H'(R?) denoted by {un} for simplicity, such that

Jea(Un) > cen > 0, [T ()| > 0, asn > oo. (4.20)

From Lemma 4.5, it can be deduced easily that there exists a subsequence of {un}, still denoted by {un}, and
ug 4 € H'(R?) such that A2 ) = limy e || Vi || exists, un — u, 5 in H'(R?) and (H, ,) (4, ») = 0, and either
(i) or (ii) occurs, where

bA
H, () = ar |Vu| dx+ = [ V(ex)u?dx -2 [F(u)+ u } dx. (4.21)
vy | /

If (ii) occurs, i.e. there exist I € Nand wl, ..., w! in H*(R?)\ {0} such that (H}*) (wX) = 0 for 1 < k < 1,

4

A 1
Cea+ —28 = Gealug ) + Y Gr(wh); (4.22)
k=1
and
A= HVueA||z+Z [vwk|3, (4.23)
k=1
where
a+ bA?
H,T’(u)—%/lvm dx+7/ W2dx - /\/ {F(u)+ u }d (4.24)
R3 R3

Since (H¢, A),(ug,/\) = 0, then we have the PohoZaev identity of the functional H, ;

. a+bA2 1
Pealuga) =%\|Vu&/1||% + 3 /[BV(sx) +VV(ex) - (sx)]ug’,\dx

, R3 (4.24)
1
Bl 31 [ [P+ u] ax.
RB

It follows from (3.22), (4.21) and (4.24), that

2
6+p

1
2(5 )bA AHVus /1”2

Hs,/l (us,A) =Hs,}l (us,}l)

{ <(H£ A) (us A) Ug, A> s,/l(us,/l):|
(4.25)
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Since (H,‘{")'(w") = 0, then we have the PohoZaev identity of the functional H}®

e a+bA2 3
PrOv) =SS T + 5 [ Vel
- (4.26)
+ gllw"llé -3A / [F(wk) + %(wk)ﬂ dx
R3

Then, from (4.4), (4.23), (4.24) and (4.26), we have
1 N4 oo
= (EDY W, wh) + BT W

>3 (wh).

(4.27)

Since wk € H(R3), in view of Lemma 2.3, there exists t; > 0 such that ti/ 2wk € M. From (4.2), (4.4),
(4.6), (4.24) and (4.27), one has
oo oo 2 1 ooy oo
Hy (W) = Hy (W") - 6ip [2 ((HY wh, k) + B3 (w")}

_1_ p-2 k2
_(2 3 p/Vm|w |“dx

L / Fw* - pFOldx + G2 / w

2
p)(a + bA2)||Vwk||% +

(4.28)
= SbAZ VWK |3 + I (W) - Tpg;ﬁ(w")

- 267 /2
DAZAIVWHE + 7 (6700, ) - = 70T )

v

-J-\M—\ -L\M—\ -L\r—\

bAZ VW3 + m5.
It follows from (4.22), (4.23), (4.25) and (4.28) that

be/\
4

1
Hs,}l(ue,}l) + Z HT(Wk)

k=1

Ce,/\+

!
2Im + 2 DAL ([ Vugal3 + w3
k=1
~ bAY, -
>my + 4’, VA e (A, 1], Ve e |0, es].

It contradicts with Lemma 4.4. Thus un - u,  in H*(R?) and I, 3 (u. 2) = ¢ . O
Proof of Theorem 1.1. In view of Lemma 4.6, for any fixed € € [0, &+], there exist two sequences {An} C A, 1]
and {u, y,} ¢ H'(R?)\{0}, denoted by {un}, such that

A > 1, Top,) Wn) =0, J2 (un) = e (4.29)
Then, it follows from (V2), (3.26), (4.1), and Lemma 4.3 (iv), that

+2
Ce1+0(1) = cep, = I, (un) - HM (un) 2 2?6 +p)a||Vun||§. (4.30)

Since (J;’ A, (un), un) = 0, from (4.29), (4.30) and the Sobolev embedding inequality, we can deduce that {un}
inbounded in H'(R?). Since ¢, 1, > c¢,1, similar to the proof of Lemma 4.6, for any fixed € € [0, &:], we derive
that there exist i € H*(R?)\{0} such that

To(lte) =0, Je(lte) = Ceq > O. (4.31)
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For € € [0, &«], set
Ke = {u € HH®R>\{0} : J,(u) = 0}, m; = inf Je(u).
uckKe

Then (4.31) shows that K, # @ and m; < c,, ;. Since K, ¢ M, and Lemma 4.4, we also have 0 < m, < m; <
Ce,1 < MY Let {un} C K¢ be such that Je(un) = 0 and Je(un) > m;. Arguing as the proof of Lemma 4.6, we
can prove that there exists u; € H'(R>)\{0} such that J.(u;) = m; and J;(u;z) = 0. This shows that u; is a
ground state solution of (PK.) for every € € [0, £+]. Hence, the function v; = u;(x/¢) is a ground state solution
of (SK¢) for every € € [0, &«]. O

5 Ground state solutions of Nehari-pohozZaev type

In this section, we consider the existence of ground state solution of (PK). By (1.1), (1.2), (1.4), (1.5), (1.7), (1.8)
and (1.9), one has Jo = Iy,, do = Jv, and Mg = J\A/EVO. Let

- %(vao): %(Vw+V(O)). (5.1)

Applying Theorem 1.3, there exist iy € J\?EVO and & € M, such that

j’ u = 0, j u =Mg = .Ilf j uj= ‘“f lllaX'J tl/ u >0 5.2

O( 0) O( 0) 0 13\/[0 O( ) 1% 3)\{ } 0 0 ( ( )t> ( )
and

I’* u)= 0, I u)=ms = lnf I u)= lnf maXI'* tl/ u > 0. 5.3

V( ) V( ) 174 MA ‘r( ) 1 3)\{ } & 174 ( ( )[) ( )

In view of Lemma 2.3, there exists ty > 0 such that

té/z(ﬂ)to S Mo, JO (té/z(ﬁ)t()) 2 Mop. (54)
Let
L(u) = %/(alvmz + Vinaxu?)dx + ZHVMHQ‘ —/ {F(u) + %uﬂ dx, vYu e H'(R?). (5.5)
R3 R3

Using (F1), (F2) and (4.8), it is easy to check that there exists To > 1 such that
I (tl/z(u)t> <0, Vt> To. (5.6)
In view of (5.6) and Lemma 2.3, for any € > 0, there exists t; € (0, Tp) such that
(@), € Mz, Je (£27(@o), ) = me. (5.7)

Lemma 5.1. Assume that (V1), (V3) and (F1)-(F3) hold. Then fi, = mo + 8o, where

Voo =V, R
8o = —=,—"tollz|z > 0 (5.8)

is independent of € > 0.

Proof. By (5.3) and (5.4),

. . . . V-v .
my =TI (@) 2 I (t(l)/z(u)to) =Jo (t(l)/z(u)to) + 3 °t8/|u\2dx
]RB
>mg + L”; Voté/m\zdx
RS

=Mg + 6g. O
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Now we choose Ry > 0 large such that
Vix)= 7, [1 + Tg”p)/z} Vinax / tigdx < 6p, V|x| > Ro. (5.9)
|x|2Ro

By (V1) and (V3), there exists €9 > 0 small enough such that

litoll3 sup { [p -2+ 87| V(e - v(0)]

|x|<Ro

5.10
+2 [1 + Té“p)/z} |VV(ex) - (sx)|} < M, ve € [0, go]. ( )
Lemma 5.2. Assume that (V1), (V3) and (F1)-(F3) hold. Then mqy > mg — 389/ 4 for every € € [0, &o].
Proof. By (2.1), we have h;(0, y) = 0 forall y € R3, which, together with (2.12) implies
~4V) s VVG) -y E2200), vy e R (5.11)

2
Since Jo(i1p) = 0 by (5.2), it follows from (1.1), (1.4), (2.3), (5.7), (5.9), (5.10) and (5.11) that

mo =Jo(ilp) = Je(ite) + % /[V(O) - V(ex)liiddx

R3
2 (1- (e
2J¢ <t§/2(ﬁ0)t£> + gge(ﬁo) + 1 /[V(O) - V(ex)]gdx
2 2
R3
2 (1- (e
=0e (2 (@0):, ) + (z>ao(ao) + 5 [1VO) - Viennigdx

R3
1- tg6+p)/2

+6+

/ [4V(ex) + VV(ex) - (ex) - 4V(0)]iddx

R3

=J¢ (tg/z(ﬁo)te) + X%er /[(p -2)V(0) - (p -2)V(ex) + 2V V(ex) - (ex)]ﬁ(z)dx
]R3

t(6+p)/2
e / [4V(ex) + VV(ex) - (ex) - 4V(0)]i2dx
]R3

6

>Me — 2(6;”9) / { [p -2+ 8Té6+p)/2} |V(ex) - V(0)|

|x|<Ro
(6+p)/2
1+ Ty

+2 [1 + T(()6+p)/2|VV(£x) . (ex)|} }ﬁ%dx -~ 5

Vmax / fl()dx
|x|>Ro
_ 360
4 ’

>Me ve €[0,&0]. O

Lemma 5.3. Assume that (V1), (V3) and (F1)-(F3) hold. Then m. is achieved for € € (0, &].

Proof. In view of Lemma 2.3 and Lemma 2.6, we have that M, # @ and m¢ > 0 for € € (0, &]. For any fixed
€ € (0, gol, let {un} € M¢ be such that J¢(un) > me. Since J¢(un) = 0, then it follows from (2.9) that

b(p-2
me +0(1) = Je(un) = LHVWHQ’

4(6 +p)
which implies {un} is bounded in H*(R?) together with (2.11). Passing to a subsequence, we can assume that

up — win HY(R3), up > ain L§ (R?) for all s, with 2 < s < 6 and u, > i a.e. on R>.
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Next, we claim that & # 0. Arguing by contradiction, suppose that ii = 0, then un, > 0in L (R3) for

loc
2 <s < 6and un > 0 a.e. on R3. In view of Lemma 2.3, there exists ¢, > 0 such that t},/ z(un)tn e M, for every

n € N. We claim that there exist two positive constant T; < T, such that
TlstnSTz, vn € R. (512)
If tn - 0, then it follows from (2.5), (2.10), lemma 2.6 and the boundedness of {||ux||} that
0 <1y <3y, (trll/z(un)tn)
a 114 b
=S alIVunl3 + St w3 + Z 681V ul3

e / F(eun)dx - €8 un 6
R3
=0(1),

which is impossible. Hence, the first inequality holds in (5.12). On the other hand, it is easy to see that

liminf ||un||g > O. (5.13)
n—-oo

If not, then there exists a subsequence {un, } of {un} such that un,, > 0in L®(R?), and the Sobolev embedding
theorem implies that u,, - 0in L5(R?) for all s € (2, 6]. By (F1), for every £ > 0 and q € (2, 6) there exists
C¢ > O such that

If(D)1| + |F(1)| < &(t? + %) + C¢|7)9 forall T € R. (5.14)

Thus, as k > oo, by (2.14),

0 =Je(un,) =a|\Vunk\|§ + % /[4V(£x) +VV(ex) - (sx)]u?,k
]R}

1
+ bHunkH‘z‘ ) /[f(unk)unk + F(un,)]dx - / |unk|6dx
R3 R3

2 umy |+ B Vaan 13 = T lumel13 + uan 1€) — Callatn, 1§ = lun 1§
2 7 lune | + b Vum, 3 + 0(1)
>b6* + 0(1).
This contradiction shows that (5.13) holds. Moreover, from (F1) and (3.22), there exist C,, C3 > 0 such that

F(1) = C|t/P + C3|7)*, VT €R. (5.15)
Then, by (1.7), (5.13), (5.15), the boundedness of {uy}, and Sobolev embedding theorem,

14 b
5t4||un||% %

6+p)/2 2 1 6
= Cot PP un| [+ C3*Jun )3 ~ 2 ¢llun 1§

a

Iy (£20un).) <56 ul3 + £ Vunll$
<C4(E + 4+ (CP2) s,

which together with p > 2, implies that there exists T, > 0 such that

Iy (#/un)) <0, ¥E>To, neN. (5.16)
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Since I;, (tl/ 2(un)t) 2 my > 0 by (5.3), (5.16) leads to tn < T, for all n € N, which shows (5.15) holds. Thus it
follows from (1.1), (1.7), (2.10), (5.9) and (5.12) that

me +0(1) = Je(un) 27 (t}l/z(un)tn)
oy (62, ) + 2 / [V(etax) - Vundx
2
]R}
e / uzdx
|x|<Ro/(eT4)

=ﬁ1f/ +0(1)

which, together with Lemma 5.1 and 5.2, implies

. 6
mgszlzmo+5ozmg+fo.
This contradiction shows that it # 0. Let wn = un — i1, by Brezis-Lieb Lemma, one has
_ b, _._
Te(un) = Te(@) + Je(wn) + i\IVuH%IIVWnH% +0(1) (5.17)
Je(un) = Je(@) + Je(wn) + b|| V]3] Va3 + o(1). (5.18)

Let 5
We(u) :=J:(u) - mgs(u)

_(p+2a 2, 1 . i . )

—2(6+p)”V””2+2(6+p) /[(p 2)V(ex) - 2V V(ex) - (ex)u’dx .19
(p-2)b y

FaGap VUit g / [ - pFGdx + 2P / b

Then (3.22) and (5.11) imply that Ye(u) = 0 for all u € H*(R?). Moreover, it follows from (5.17), (5.18) and (5.19)
that
Ye(wn) < me = We(@) + 0(1), Je(wn) < -Je(@) + o(1). (5.20)

If there exists a subsequence {wy, } of {wn} such that wy; > O, then
Je(i) = me, Je(it) = 0. (5.21)

If not, we claim that J.(&) < 0. Otherwise, if J<(it) > 0, then (5.20) implies J:(wn) < O for large n. In view of
Lemma 2.3, there exists te,n > O such that (te,n)"/ Z(Wn)tm € Me. From (1.1), (1.4), (2.3), (5.19) and (5.20), we
obtain

- Y1) +0(1) = We(Wn) =Je(wn) - gs(Wn)
2Je ((ts,n)l/z(wn)tm> 2(28 n) Je(wn)
2(ten)?

>Me Je(wn) = me,

6+p

which implies J¢(it) < 0 due to We(it) > 0. In view of Lemma 2.3, there exists t > 0 such that ¢, 1 2(u)tS € Me.
From (1.1), (1.4), (2.3), (3.22), (5.11), (5.19), the weak semi continuity of norm and Fatou’s Lemma, one has

. 2 . _
Mme = gl_glo {js(un) - mgs(un) = rgnolo We(un) = Pe(it)

96(0) - g4 3e(8)

(6+p)/2
_ 2t;
29e (122@h) - Z 0@ > me,
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which implies (5.21) holds. O
In view of Lemma 2.6, 2.7 and 5.3, we can obtain the following Lemma.

Lemma 5.4. Assume that (V1), (V3) and (F1)-(F3) hold. Then for every € € (0, &9, problem (PK¢) has a ground
state solution e such that

max Je (12 (u),) > 0. (5.22)

Js(ﬂe) = Mg = inf
ueH (R3)\{0} £0

6 Concentration of ground state solutions of (SK;)

In this section, we consider the concentration of ground state solutions of (SK¢) and give the proof of Theorem
1.2. For this purpose, we always assume that (V1), (V3) and (F1)-(F3) hold. For every € € [0, &o], let i be the
ground state solution of (SK;) obtained in Lemma 5.4. Define

Lm, = {u e HY®>)\{0} : T.(u) = 0, Je(u) = me} and A = {u € Lm, : € € [0, &]}.
Lemma 6.1. There exists a constant K, > 0, independent of €, such that py < me < Kq for all € € [0, &o].
Proof. From (2.3), (5.6), Lemmas 2.4 and 2.6, we derive that

Po < Me <max {Je (tl/z(ﬁo)o) :te (o, To]}

aT} VimaxT§

2
Gena 12 o TANA A1) om

+C1To(|| @013 + Tgllito]|g) == Ko, Ve € [0, &0). O

<=2 Vito|3 +

bTA
~ 12 ~ 4
l[&ol|2 + TOIIWon

Lemma 6.2. There exists a constant K, > 0 independent of € such that ||u|| < K1 forallu € A.

Proof. Fix € € [0, &o] and ug € L. Then (2.9) and lemma 6.1 yield

2 -2
K() 2 Mg = js(ug) - mﬂg(ua) 2 b(p p) HVH&HZZ‘ (61)

From (6.1) and (2.14) we deduced that

1/2 1/2 3/4
||us\|s(zc°) \|Vus||3s(zc°> [“(“p)"“} Ky O

7183 1183 b(p -2)
Lemma 6.3. limsup,_,; m. < m; for every & € [0, &].

Proof. Fix & € [0, £9]. Arguing by contradiction, suppose that lim sup,_,; ms > mg. Let €y = limsup,_,; me -
mg, then €g > 0. From Lemma 2.3, for any € > 0, there exists t; > 0 such that fé/ z(ﬂg)ze € Mg, it follows that

Te (82, ) = me, Te (2@, ) 2 9 (7)), ve>o. 6.2)

Similar to the proof of (5.6), we easily deduce that there exists a number T > 0 such that O < ¢ < T for any
€ > 0.1t is easy to check that for any bounded set Q ¢ R3,

li_I)I_l sup[|V(ex) - V(Ex)| + [VV(ex) - (ex) - VV(Ex) - (Ex)|] = 0. (6.3)
& Ser

Choose R; > Rg such that
Vinax (2 + T(6+p)/2) / #2dx < €o/2. (6.4)

|x|>Rq
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Then it follows from (2.3), (5.11), (6.2)-(6.4) that

me = 9e(ie) Delie) + 5 [ Ve - Vexliddx

Z(6+p)/2
a2e (2@, ) + 205 e + 3 / V(e - Vienliddx

1- t(6+p)/z

2Me + 6+

/ [4V(ex) + VV(ex) - (ex) - 4V (Ex) - VV(EX) - (Ex)]uzdx

. / [V(ex) - V(ex)addx

1- Z"(g6+p)/2 ~ ~ ~ _2
2Me — —g o — / [4|V(ex) - 4V(EX)| + |V V(ex) - (€x) - VV(EX) - (Ex)|]uzdx
|x|<Ry
= / [V(EX) - V(ex)|addx - (z + T(W)/Z) Vmax / izdx
|x|<Ry X|>Ry
1- T2 ] o
2Me — WHuEHZ sup [4|V(ex) - 4V(ex)| + |[VV(ex) - (ex) - VV(Ex) - (Ex)|]
|x|<Ry
€o
-

which implies

€ .
Mms + -2 > me > limsup me = m; + €o.
2 )€

This contradiction shows that lim sup,.,; me < mgz. O

Lemma 6.4. Ifu € A, thenu € C(R3,R) and lim | 500 u(x) = 0. Moreover, there is ag > 0 independent of
x € R® and u € A such that

[u()| < ag / lu(y)|dy, Vxe R3, ucA. (6.5)
B1(x)

Proof. For s > 2, it follows from Lemma 6.2 and the standard bootstrap argument (see [6, 29]) that there exists
Cs > 0 independent of u € A such that

ue W®R?), |ullyusgs <Cs, Yu €A,

which, together with Sobolev imbedding theorem, implies that there is C- > 0 independent of u € A such
that
lulleo < Cooy, Yu € A. (6.6)

By (F1), there exists a constant ©1 > V; such that
If(t) + €] < O1]t], V|t| < Coo. (6.7)

From (6.6), (6.7), Lemma 6.2 and [29, Lemma 1], we have u € €(R3, R) and lim 500 u(x) = 0.Since u € Lm,
is a solution of (PK:) for some ¢ > 0, then it follows from (5.7) and Lemma 6.2 that

u-vu _ V(ex)u? - f(wu - u®
[u| (a+b||Vul3)|ul

Vu-=
(6.8)

a+bK2‘ | :=—polul, VXERB’

which implies that |u| is a sub-solution of the equation (-4 - go)w = 0, and hence (6.5) follows from the
sub-solution estimate (see [33, Theorem C. 12]). O
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Lemma 6.5. For every us € Lm, C A, there exists ye € R> such that |ue(ye)| = maXycps [Ue(X)]. Let fig(x) :=
Ue(x +ye) withue € Lm, C A, and let en € (0, £o] such that lim sup,,,., €n = & Then we have

(i) if & > 0, then {ue, } has a convergence subsequence, whose limit belongs to A;

(ii) if € = 0, then {ii¢, } has a convergence subsequence, whose limit is not zero.

Proof. For {e} C [0, eo] and ue, C Lm,, , Lemma 6.2 implies that {ue, } is bounded in HY(R3). Since 0 < mg <

ms < ‘“}‘53 + b;ff' + M due to Lemma 4.4, as in the proof of (3.25), we have
lim sup sup / |ug, [2dx > 0. (6.9)
nreo  yeR3
B1(y)

By Lemma 6.4, there exists y. € R> such that |us(ye)| = maX,cps [Ue(x)|. Then it follows from (6.9) that

lim sup |ue, (Ve,)| = ilimsup sup / |ug, |*dx > 0. (6.10)
n>oo 4 pee yer_ .
1y

By (1.1), (1.4) and (5.19), one has

2
Mme, = jen(us,.) - mﬂsn(uen) = lpen(us,.) > 0. (6.11)

In the following we prove that (i) or (ii) hold.
(i) If € € (0, 9], then passing to a subsequence, we may assume that

en > &€ (0,80, ue, — uin H'(R?). (6.12)

By Lemma 5.1 and 5.2, mg, < r?zf, - 80/4. Since ug, # 0, then it follows from Lemma 2.3 that there exists th>0
such that &/ 2(ugn)?n € M, and so I, (?,11/ 2(ug,,)?n) > M. Similar to the proof of (5.12), there exist Ty, T, > 0

suchthat 0 < Ty < #, < T,.If &1 = 0, then ug, — 0in H'(R?), ug, > 0in L§,.(R?), 2 < s < 2" and ug, > O ae.
on R3. Then it follows from (1.1), (1.7), (5.1), (5.9) and (6.12) that
fig, — 60/4 2me, = Jg, (ue,) 2 e, (%}1/2(“8”)%’[>
4
(312 t 5 S 2
=1, (tn (ugn)in) + ?”/ [V(sntnx)— V} lue, | |dx
. v ﬂf; . (6.13)
i, — 2/max = = © 34 / e, [2dx

|x|<Ro/(T1£n)

=ﬁlf/ + 0(1).

This contradiction shows that it # 0.
Let we, = ug, — it. Then by Brezis-Lieb Lemma, one has

_ b, __
Je,(Ug,) = Jz(@1) + Jg, (we,) + §||Vu\|§\|VW5\|% +0(1), (6.14)

and
Jen(Ue,) = 3z (@) + Je, (we,) + b||Vi]|5]|Vwe | + 0(2). (6.15)

Moreover, it follows from (5.19), (6.12), (6.14) and (6.15) that
Ve, (ue,) < me, — We(t) + 0(1), Je,(We,) < —Fe,(@1) + 0(1). (6.16)

Now we prove that
us, > uin H'(R?), Je(@t) = mg, J:(@) = 0. (6.17)
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If there exists a subsequence {we, } of {we,} such that limy 5. we, = 0, then (6.17) holds. If not, we claim
that Jz(&t) < 0. Otherwise, if Jz(i1) > 0, then (6.15) implies that J¢,(we,) < O for large n. In view of Lemma 2.3,
there exists t, > 0 such that t2/2(we,);, € M. From (1.1), (1.4), (2.3), (5.19)and (6.15), we obtain

me, — Ve (it) + 0(1) =¥, (We,) = Je, (We,) - igt‘—'n(wen)

6+p
(6+p)/2
2t
2] (trll/z(Wsn)t,,) - 6n+ 3sn(W£n)
Zt(6+P)/2
2Me, — #Hen(wsn) 2 Mg,

which is a contradiction due to Wz(t) > 0. Hence, Jz(i1) < 0. In view of Lemma 2.3, there exists f > 0 such
that #1/2(@2); € M. Then it follows from (2.3), (5.11), (5.19), (6.11), the weak semicontinuity of norm, Fatou’s
Lemma and Lemma 6.3 that

mg 2lim sup me, = limsup ¥, (ue,) 2 lirginf Ve, (ug,) 2 Pe(it)
n—->oo

n->oco n->oco
_q.(7) _ 2 (= ) _1/2 N\ 2?(6‘*'17)/2 s
<Te(®) ~ 5 0e(@) = 9 (F2(@)) - “¢ - del@
2§62
2Mg — ﬁgé(u) 2 Mg,
which implies that Jz = 0,
Je,(Ue,) = Mg, > Mg = T&(i1) (6.18)
and
Ve, (ue,) > We(i1). (6.19)

Next, we show that ug, - i1 in H'(R?). From (5.19), (6.12) and (6.19), we can deduce that u, > @t in DV2(R3),
and so ue, > i1 in L(R3) for 2 < s < 6. Jointly with (6.18), one has

/V(enx)ugndxé /V(éx)azdx. (6.20)
R3 R3

We claim that ug, > it in L%(R?). In fact, for any € > 0, there exists R¢ > 0 large enough such that

V(ex)i’dx < €. (6.21)

|x|=Re

Since ug, - @ in LZ(BRe(O)), it follows from (6.20) and (6.21) that

li_gn V(enx)uf;ndx = / V(E)R2dx < €, (6.22)
n—yoco
|x|=Re |X|2Re

which implies

lim /V0|ug,, - @1]%dx = lim / Volue, — it|*dx

n-yeo n->oeo

R3 >R,
. (6.23)
< lgm V(enx)ugndx + / V(ex)i’dx < 2e.
n—yoco

|X|2R¢ |x|=Re

By the arbitrariness of € > 0, we derive from (6.23) that u,, - @ in L>(R?). Hence, ue, - @t in H'(R?), and so
(6.17) holds. Combining with Lemma 2.7 with (6.17), we have J'L-,(ﬁ) = 0. This shows that it € L, C A.
(ii) If € = 0, passing to a subsequence, we may assume that

en >0, @t — ilpin HY(R?). (6.24)
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Moreover, (6.10) implies that i1 # 0. Since V is bounded, going to a subsequence if necessary, we may assume
that
li_;n V(Snyg") = ﬁ > 0. (6.25)
n—>co

In view of Theorem 1.3, there exists iig € Mﬁ such that
Ig(ig) = g, Iy(iig) = 0. (6.26)

Note that L "
a N N ~
M, = ey te) =5 198+ 3 [ Vienlo ye Dl P+ 719, 1
R3

1 (6.27)
- / {F(ﬁgn) + e, |6} dx.
R3
It is easy to check that for any bounded set Q ¢ R,
lim sup V(en(x + ye,)) = B. (6.28)
n>ee yc
Arguing as in the proof of Lemma 6.3,
lim sup mg, < fg. (6.29)
n—->oco
Analogous to the proof of (6.17) in Case (i),
fle, = flo in H'(R?), Ig(ilo) = iy = limsupme,, Jp(ito) =0. O (6.30)
n—->oco

Lemma 6.6. inf{||u|je : u € A} := 6o > 0.

Proof. Suppose to the contrary that §o = 0. Then there is a sequence {ue,} C A such that lim,s. ||u]l = O.
Let us, € Lm,, . There are two possible cases.

Case (i) limsup,., €n > 0. By Lemma 6.5(i), there exists t € A such that u,, > @ in H'(R?). Then it
follows from the Holder inequality that

/ ji(y)|dx < / e, ) - 2()|dy + / e, )]y
B1(x) Bi(x) By (x) (6.31)

1/2
41 _ 47t | _
s(?) Hugn—u||2+?\|un||oo=o(1), vx € R?,

which implies that i1 = 0, a contradiction.
Case (ii) lim sup, .. €n = 0. By Lemma 6.5(ii), there exists iio € H'(R?)\{0} such that i, > iig in H'(R>).
Then it follows from the Holder inequality that

/ o (y)|dx < / liin(y) - o (y)|dy + / litn(y)]dy

Bi(x) Bi1(x) Bi(x)
1/2
4 - - 4 .
< (7) i~ o]l + T in o = 0(1), v € B2,

which implies that iig = 0, a contradiction. O
Lemma 6.7. There exist IT1, k; > 0 independent of x € R? and u € A such that
lu(x)| < Oiexp(—x1|x = yu|), Vx € R} uca, (6.32)

where |u(yy)| = max,cps |ux)|.
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Proof. First, we claim that u(x) > 0, as |x — yu| & oo, uniformly in u € A. In fact, if not, then there exist
81> 0, {un} C Aand {xn} € R? with |xn - yu,| > oo such that |un(xn)| 2 61. Let un € Lm,,. There are two
possible cases.

Case (i) limsup,5.. €n > 0. By Lemma 6.5(i), there exists u» € A such that u, > u« in H*(R3). Since
|Xn = Yu,| > oo, then either lim sup,, s, |Xn| = oo or lim sup, s, |Yu,| = =, and so we deduce from (6.5) and
the Holder inequality that

b1l 200 [ wnOidy = a0 [ w-0)ldy+ o(t) - o)

B1(xn) B (xn)

and
bzl a0 [ n@dy-ao [ u0)dy+o(n) - o(1),

Bi1(yuy,) B1(yuy)

a contradiction.
Case (ii) lim sup,.. €n = 0. By Lemma 6.5(ii), there exists {i- € H*(R>)\{0} such that i, > it in H*(R?).

Then it follows from (6.5) and the H6lder inequality that

81 <lunCxn)| < o / un(y)ldy = o / n(y)ldy
B1(xn) Bl(xn_)/un)
<ao / )|y + 0(1) = 0(1),

Bl(xn_}/un)

a contradiction.
By (F1) and the above claim, there exists a number R, > 0 independent of x € R?> and u € A, such that
foranyu € A

If (u(x)) + u5(x)| < %\u(xﬂ for all x, with |x — yu| = R;. (6.33)
Substitute (6.33) to (6.8), one has

Alul _u-Au _ V(exu? - fwu - u®
| (a+b|Vul3)u| (6.34)
0 . 3
EZ(TbK%)M :=01|ul, Vx €R’, |x-yu|=R>.

Set w(x) = |u(x)| - Cooe™VEIIX¥ul-R2) 'where Co. is given by (6.6). Then
Aw 2 01w, [x-Yu|2R;.
By the maximum principle, we can conclude that w(x) < O for |x - yu| = R, i.e.,
W(x) € Cooe VI IXVul-R2) |x = yu| = R,.

Therefore, the claim (6.32) holds. O

Lemma 6.8. Let uz € Lm, for e € (0,&0] and let yo € R> be a global maximum point of ue. Then (i)

SUP,c(0,¢0] (ElVel) < 005
(i) for e > 0%, up to a subsequence, iie, = U, (- +ye,) converges in H'(R>) to a ground state solution of (Ky, ).

Proof. (i) Assume by contradiction that there exists a sequence {en} C [0, &o] such that €x|y¢,| > oo. There
are two possible cases.

Case (1) lim sup,, 5., €n = &t € (0, &o]. In this case, by Lemma 6.5(i), up to a subsequence, one has |ye,| > o
and ug, > uz € A in HY(R?). Hence, it follows from (6.5) and the Holder inequality that

Bo < e, (ye,)| < o / e, )|y = o / ue)ldy + 0(1) = o(1),
B1(ye,) B1(yey)
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a contradiction.
Case (2) lim sup,, 5., €n = 0. In this case, by (6.27), (6.30) and Lemma 6.3 that

fig = lim sup me, < mo. (6.35)
n—oco
In the view of (6.26) and Lemma 2.3, there exists f > 0 such that !/ 2(i1g); € Mo, and so Jo (Y *(i1g)y) = mo.

Note that

V(0) = min V(x) < Voo < lim V(en(x +ye,)) =B, Vx € R>. (6.36)
xeR3 n->oo

Applying Corollary 2.1 to I, we derive from (1.7), (6.26), (6.35) and (6.36) that

~ N -V(0)4, ~
=30 (#2ag)) + BT Oy 3

B=YO)

2mo g5 > mo = g,

a contradiction. Case (1) and (2) show that sup,c[g .,j(€]Ve]) < oo.

(ii) In view of Lemma 6.2, {u,, } is bounded in H'(R?), and so {ii,, } is bounded in H!(R?>). After extracting
a subsequence, we may assume that ite, — @ in H'(R?), &te, > @tin L§, (R?), 2 < s < 2" and I, > @ a.e. on
R3. It follows from (6.5) and Lemma 6.6 that

%smaW=mammmo/“mmmw

Bl (ygn)
=aot/\ﬁ&0mdy=aol/ E)|dy + o(1).
B1(0) B1(0)

This shows it # 0. Moreover, by item (i), there exists € R> such that, up to a subsequence, enye, = 7.
Next, we prove that it;, > it in H'(R?), V(¥) = V(0) and i is the ground state solution of (Ky,). Let
V := V(). Since V; < V, then it follows from Lemma 6.3 that

lim sup me, < mg < 1. (6.37)
n—>oco

Analogous to the proof of (6.30), we deduce that as n - oo
Iy(it) = my, Jy(i) = 0. (6.38)
Jointly with Lemma 2.7, we have I'f/(ﬂ) =0.1f 7 > V,, then it follows from (6.27) that
mg = rlll_glo Mme, = rlli_glolgn(ugn) = fiy > mo. (6.39)

This contradiction shows that
lim V(eye) = V() = Vo = min V(x), (6.40)
£50 xeR3

and so i is a ground state solution of (Ky,). O

Proof of Theorem 1.2 Let ¥(x) = &i(x/€) and x¢ := €y¢. In the view of Lemma 5.4, for every € € (0, €], V¢ is a
ground state solution of (SK,) which satisfies (1.6). Obviously, (i) follows from (6.40). Moreover, Lemma 6.7
and 6.8 imply that (ii) and (iii) hold. O
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