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Abstract The ensemble Kalman particle filter (EnKPF) is a combination of two Bayesian-based algo-
rithms, namely, the ensemble Kalman filter (EnKF) and the sequential importance resampling particle filter
(SIR-PF). It was recently introduced to address non-Gaussian features in data assimilation for highly nonlin-
ear systems, by providing a continuous interpolation between the EnKF and SIR-PF analysis schemes. In this
paper, we first extend the EnKPF algorithm by modifying the formula for the computation of the covariance
matrix, making it suitable for nonlinear measurement functions (we will call this extended algorithm
nEnKPF). Further, a general form of the Kalman gain is introduced to the EnKPF to improve the performance
of the nEnKPF when the measurement function is highly nonlinear (this improved algorithm is called
mEnKPF). The Lorenz ’63 model and Lorenz ’96 model are used to test the two modified EnKPF algorithms.
The experiments show that the mEnKPF and nEnKPF, given an affordable ensemble size, can perform better
than the EnKF for the nonlinear systems with nonlinear observations. These results suggest a promising
opportunity to develop a non-Gaussian scheme for realistic numerical models.

1. Introduction

The classical Kalman filter [Kalman, 1960] provides a complete and rigorous solution for the state estimation
of linear systems under Gaussian noise. If the system is nonlinear, the extended Kalman filter (EKF) provides
a suboptimal estimate by linearizing the nonlinear models. However, such linearization can cause large trun-
cation errors for highly nonlinear systems, and in particular is very difficult, even intractable, for certain
high-dimensional complex models such as general circulation models (GCMs). For this reason, the ensemble
Kalman filter (EnKF) has been introduced to address the drawbacks of the EKF. The EnKF is a sophisticated
sequential data assimilation method, initially proposed by Evensen [1994] and later on modified by Burgers
et al. [1998]. The EnKF chooses a set of samples, referred to as the ensembles of states, to capture the statis-
tical information of the forecast states. The ensembles are propagated with the full nonlinear model to
approximate the covariance of the prediction error, and observations are incorporated into the model
according to the Kalman filter formula. The square root Kalman filter (EnSRF), which avoids the perturba-
tions of the observations induced by the EnKF, has been developed, further promoting the application of
EnKF [Anderson, 2001; Bishop et al., 2001; Whitaker and Hamill, 2002; Tippett et al., 2003]. The EnKF and its
variants, e.g., the Ensemble Adjustment Kalman Filter [Anderson, 2001, 2009], Ensemble Transform Kalman
Filter [Bishop et al., 2001], and EnSRF [Tippett et al., 2003], have enjoyed great success in atmospheric and
oceanic data assimilation. However, these methods contain an inherent assumption, namely, that the error
statistics are Gaussian. This assumption often fails to hold for nonlinear systems. Even an initial Gaussian
error often becomes non-Gaussian while propagating forward with nonlinear models [Bocquet et al., 2010].

Several ideas have been proposed to address the issue of non-Gaussian error statistics in the field of geo-
physical data assimilation [Bocquet et al., 2010]. Among these proposals, the particle filter (PF) is a highly
promising technique because it does not invoke any Gaussian assumptions. It has been widely used and
studied in many other fields. The PF estimates the full probability density function (pdf) of the forecasted
state based on an ensemble of states with different weights. A member of this ensemble is also often
termed a particle. Similar to the EnKF, the filter propagates all the particles forward in time according to the
nonlinear model. When observation data become available, the weights of the particles are changed such
that the information present in the data is incorporated into the swarm of particles. In contrast, all members
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are equally weighted in the EnKF framework, and the analysis scheme only changes the value of the mem-
bers rather than the weights. The PF suffers from the problem of filter degeneracy, i.e., the procedure collap-
ses to a very small number of highly weighted particles among a horde of almost useless particles carrying
a tiny proportion of the probability mass. Even if resampling techniques are used, the degeneracy cannot
be completely avoided with limited ensemble size. The number of particles must grow substantially with
the dimension of the system to avoid degeneracy [Bengtsson et al., 2003; Snyder et al., 2008], a requirement
that is apparently too costly for large models such as GCMs. Various efforts have been made to resolve this
issue, as documented in several excellent overviews [e.g., Capp�e et al., 2007; van Leeuwen, 2009].

Several strategies are often employed to address the problem of filter degeneracy in applications of the par-
ticle filter. For example, Papadakis et al. proposed a weighted ensemble Kalman filter (WEnKF), which uses
an ensemble-based Kalman filter as the proposal density, from which the particles are drawn [Papadakis
et al., 2010]. van Leeuwen developed a fully nonlinear particle filter by exploiting the freedom of the pro-
posal transition density, which ensures not only that all particles ultimately occupy high-probability regions
of state space but also that most of the particles have similar weights [van Leeuwen, 2010, 2011; Ades and
van Leeuwen, 2013]. The implicit particle filter [Chorin et al., 2010; Morzfeld et al., 2012] uses gradient descent
minimization combined with random maps to find the region of high probability, avoiding the calculation
of Hessians. Luo and Hoteit have proposed an efficient particle filter that uses residual nudging to prevent
the residual norm of the state estimates from exceeding a prespecified threshold [Luo and Hoteit, 2014].
However, these particle filters still require a relatively large ensemble to maintain their advantage over the
EnKF.

In this study, we focus on the ensemble Kalman particle filter (EnKPF), which is a blend of the EnKF and the
PF [Frei and K€unsch, 2013; Rezaie and Eidsvik, 2012]. The analysis step of the EnKPF combines both the EnKF
and PF updating schemes with a continuous transition index c 2 ½0; 1�. The index can be chosen automati-
cally such that the analysis provides the particle filter with weighting appropriate for avoiding degeneracy,
providing a trade-off scheme between effectiveness and feasibility with limited computational resources.
The main advantage of the EnKPF over other filters is that the algorithm does not have to fit a Gaussian dis-
tribution to the forecast ensemble, nor does it requires a large ensemble to prevent filter degeneracy.
Accordingly, the EnKPF is easier to implement than the other filters considered.

As noticed in the original paper [Frei and K€unsch, 2013, hereinafter referred to as FK2013], the EnKPF was ini-
tially developed for state estimation with nonlinear dynamical models and linear measurement functions.
However, nonlinear measurement functions often occur in many realistic systems, e.g., the estimation of
atmospheric or oceanic states from satellite and remote sensing data. Thus, it is interesting to extend the
EnKPF algorithm to systems with nonlinear measurement functions. To achieve this goal, this study
attempts to modify the EnKPF algorithm, making it suitable for nonlinear measurement functions. Further-
more, the modified EnKPF is tested using the Lorenz ’63 and ’96 models, both of which are simplified
atmospheric models with realistic features of the atmosphere. These models have been widely used as test
beds in data assimilation due to their low dimensional but highly nonlinear nature.

Section 2 gives a brief review of the ensemble Kalman filter and the particle filter, in which a modified
scheme of Kalman gain for nonlinear measurement functions is proposed in a rigorous statistical sense with
detailed derivations. On this basis, the EnKPF is introduced for nonlinear dynamical systems with nonlinear
measurement functions. The applications of the modified EnKPF to the Lorenz ’63 and ’96 models are pre-
sented in section 3. Discussions and conclusions are given in section 4.

2. Bayesian-Based Methods

Atmospheric and oceanic flow can be described by a system of stochastic partial differential equations
(sPDE). Within this framework, the dynamic system can be stochastically forced, and the observations are
also considered in the form of stochastic processes rather than single numerical values. The sPDE model
can often be described in terms of a state-space model as follows:

xk5f ðxk21; gk21Þ; (1)
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yk5hðxk ; fkÞ; (2)

where xk denotes the state variable at discrete time step tk, and yk denotes the measurement of the state
variable. Functions f and h describe the evolution of the state vector over time and the relationship
between measurements and states, respectively, which might be linear or nonlinear. At the same time, the
dynamic model noise g and the measurement noise f are also incorporated into the models. These noise
variables are assumed to be independent. The aim of state estimation is to construct the posterior probabil-
ity density function (pdf) of the required state vector using all available information. The posterior pdf, writ-
ten as pðxk jYkÞ, is a complete description of the state of knowledge about the required vector. Yk denotes
all the observations up to time step tk, and yk is the observation at the current time. An equivalent probabil-
istic description of the evolution of the state by equation (1) is pðxk jxk21Þ, which is sometimes called the
transition density. Additionally, an equivalent probabilistic model for equation (2) is the conditional pdf
pðyk jxkÞ, which is the likelihood of yk, given an estimate xk. Thus, in summary, the probabilistic description
of the state estimate by equations (1) and (2) is pðx0Þ; pðxk jxk21Þ and pðyk jxkÞ, where p(x0) is the prior pdf of
the state vector at time k 5 0, before any measurements have been received.

State estimation problems are addressed mainly within Bayesian estimation theory. The Bayesian recursive
filter consists of two steps, namely a prediction and a correction operation. The prediction operation propa-
gates the posterior pdf of the state vector from time step k – 1 forward to step k with the dynamic model.
Using the probabilistic description, this operation yields

pðxk jYk21Þ5
ð

pðxkjxk21Þpðxk21jYk21Þdxk21: (3)

The correction (or analysis) operation incorporates the information in the measurements and updates the
state vectors to give the posterior pdf at time step k. By Bayes’ rule, it can be written as

pðxk jYkÞ5
pðyk jxkÞpðxkjYk21Þ

A
; (4)

where A5pðyk jyk21Þ5
Ð

pðyk jxkÞpðxk jYk21Þdxk is a normalizing factor. In most cases, the likelihood is
assumed to be Gaussian, i.e., pðyk jxkÞ5/ðyk ; hðxkÞ; RÞ. Here and subsequently, /ðx; l;RÞ denotes the multi-
variate normal density with mean value l and covariance matrix R at x.

For both the EnKF and the PF, the prediction steps are the same and use the nonlinear dynamic model in
(1). The two methods differ in terms of their specific analysis schemes and inherent assumptions, as dis-
cussed below.

2.1. The Ensemble Kalman Filter
The EnKF is a suboptimal method for state estimation in which the error statistics are analyzed by numeri-
cally solving the Fokker-Planck equation using the Monte Carlo method [Evensen, 2003], namely, using an
ensemble of states to approximate the covariance matrices. Initially, the term EnKF refers, in particular, to
the stochastic ensemble Kalman filter [Evensen, 1994], which requires perturbing the observations. Subse-
quently, several deterministic EnKFs that avoid the use of ‘‘perturbed observations’’ were developed, e.g.,
the ensemble transform Kalman filter [Bishop et al., 2001], the ensemble adjustment Kalman filter [Anderson,
2001], and the ensemble square root filter [Tippett et al., 2003]. These filter designs are labeled as variants of
the EnKF in the literature [e.g., Papadakis et al., 2010], because they are also based on the Kalman filtering
formula and ensemble representations. A common feature of all of these EnKF-based filters is the inherent
Gaussian assumption, which is the key issue targeted in the present study. For simplicity and convenience,
we only consider the stochastic EnKF as follows.

For a dynamic system with L variables, we denote the prior ensemble as Xf 2 RL3N ,

Xf 5ðxf
1;…; xf

i ;…; xf
NÞ;

where the subscript i and superscript f refers to the ith forecast ensemble member, and the ensemble size
is N. Because we are considering a single analysis cycle, the subscript k for the time step is omitted. The
empirical mean and empirical covariance are defined as follows:
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xf 5
1
N

XN

i51

xf
i ; (5)

Pf 5
1

N21

XN

i51

ðxf
i 2xf Þðxf

i 2xf ÞT : (6)

As N tends to infinity, these variables converge to the true mean and covariance of the forecast state
vector.

The EnKF performs the analysis step by applying the Kalman filter formula to each ensemble member,

xa
i 5xf

i 1K ½yi2hðxf
i Þ�;

for i51;…;N. The perturbed observations yi are given by

yi5y1vi;

where vi is a random variable having a normal distribution with zero mean and covariance R. The error
covariance matrix computed from vi converges to R as N !1.

If the measurement function is linear and the noise is additive, namely,

yk5Hxk1f; (7)

the Kalman gain is defined by

K5Pf HT ðHPf HT 1RÞ21: (8)

However, if the measurement function is nonlinear, as in equation (2), the two terms Pf HT and HPf HT , which
occur in equation (8), are written as follows [Houtekamer and Mitchell, 2001]

Pf HT � 1
N21

XN

i51

½xf
i 2xf �½hðxf

i Þ2hðxf Þ�T ; (9)

HPf HT � 1
N21

XN

i51

½hðxf
i Þ2hðxf Þ�½hðxf

i Þ2hðxf Þ�T ; (10)

where hðxf Þ5 1
N

PN
i51 hðxf

i Þ. Equations (9) and (10) allow for a direct evaluation of the nonlinear measure-
ment function h in calculating the Kalman gain. However, these equations were only presented intuitionally
and equivalent signs were used. Tang and Ambadan have argued that equations (9) and (10) approximately
hold only if the following is true [Ambadan and Tang, 2009]:

hðxf Þ5hðxf Þ; (11)

Normðxf
i 2xf Þ is small for i51; 2;…;N: (12)

Under the conditions of equations (11) and (12), equations (9) and (10) actually linearize the nonlinear mea-
surement functions h to H. Therefore, the direct application of the nonlinear measurement function in equa-
tions (9) and (10) imposes an implicit linearization process using ensemble members.

A general algorithm for the Kalman gain for the nonlinear model and the nonlinear measurement function
can be written as follows [Julier and Uhlmann, 1997; Tang et al., 2014]:

K5Pxy P21
yy ; (13)

where the Pxy is the cross covariance between the state and observation errors, and the Pyy is the error
covariance of the difference between the observation and its prediction of hðxf Þ. If the estimate is unbiased
and the ensemble size is infinite, we can use the ensemble mean to represent the true value, i.e.,

xtr5E½xf
i �1g5xf 1g;

ytr5hðxf Þ1f:
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in which the overbar represents the mean over all the ensemble members. The terms g and f were added
due to the random nature of the true state and are mutually independent. The error covariance matrices in
equation (13) can be computed as follows:

Pxy5
1

N21

XN

i51

½xf
i 2xf �½hðxf

i Þ2hðxf Þ�T ; (14)

Pyy5
1

N21

XN

i51

½hðxf
i Þ2hðxf Þ�½hðxf

i Þ2hðxf Þ�T 1R: (15)

A summary of the main equations of the modified EnKF is given below:

xa
i 5xf

i 1K½yi2hðxf
i Þ�; i51; 2;…;N; (16)

K5
1

N21

XN

i51

½xf
i 2xf �½hðxf

i Þ2hðxf Þ�T
( )

� 1
N21

XN

i51

½hðxf
i Þ2hðxf Þ�½hðxf

i Þ2hðxf Þ�T 1R

( )21

: (17)

The modified Kalman gain, equation (17), does not add additional computations compared with the tradi-
tional formula, equations (8)–(10). It has been found that the modified Kalman gain can result in better
assimilation analysis for nonlinear measurement functions [Tang et al., 2014].

It should be mentioned that an iterative scheme-based EnKF has recently been proposed as a tool for better
analysis. The idea behind this iterative EnKF is to repeatedly adjust the model states by multiple assimila-
tions of the same observations. It has been argued that the iterative EnKF can address the nonlinear models
and observations [e.g., Sakov et al., 2012]. However, the process of multiple iterations is computationally
costly.

2.2. The Particle Filter
The main difference between the particle filter and the EnKF is that in the particle filter, the ensemble mem-
bers (or the particles) are not modified, but are combined with different weights. We use the likelihood for
an ensemble member xðiÞk given the observation yk to update its weight. More specifically, the pdf of the
analysis at time step k – 1 is assumed to be a linear combination of Dirac-Delta functions

pðxk21jYk21Þ5
XN

i51

wðiÞk21dðxk212xðiÞk21Þ;

which is not necessarily Gaussian. Here xðiÞk21 is a particle at time step k – 1, with corresponding weight wðiÞk21.

If new particles at step k are generated by the transition density pðxk jxk21Þ, i.e., xðiÞk 5f ðxðiÞk21Þ, the prior pdf at
step k is

pðxk jYk21Þ5
XN

i51

wðiÞk21dðxk2xðiÞk Þ:

Based on Bayes’ rule by equation (4), the posterior pdf can be computed as follows:

pðxk jYk21Þ5
1
A

XN

i51

pðyk jxðiÞk Þw
ðiÞ
k21dðxk2xðiÞk Þ5

XN

i51

wðiÞk dðxk2xðiÞk Þ; (18)

where

wðiÞk / pðyk jxðiÞk Þw
ðiÞ
k21: (19)

With the estimated pdf, each statistical moment of the updated state vectors xk can be derived. For exam-
ple, the mean value of xk is

xk 5

ð
xk pðxk jYkÞdxk5

XN

i51

wðiÞk xðiÞk :
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The particle filter allows us to infer high-order moments of the posterior state. Suppose that f(x) is a function
of the state vector xk, the expectation of f(x) is then

f ðxkÞ5
ð

f ðxkÞpðxk jYkÞdxk5
XN

i51

wðiÞk f ðxðiÞk Þ:

High-order moments of the posterior state can be computed using f ðxÞ5xn. The likelihood function pðyk j
xðiÞk Þ5/ðyk ; hðxðiÞk Þ; RÞ usually takes the form of a Gaussian, although other forms of likelihood functions are
also applicable. To simplify the discussion, we assume that the observation noise is Gaussian, and the likeli-
hood function is as follows [van Leeuwen, 2009]:

pðyjxÞ5/ðy; hðxÞ; RÞ5Aexp 2
1
2
½y2hðxÞ�T R21½y2hðxÞ�

� �
: (20)

The bootstrap particle filter is commonly considered the first example of modern particle filters [Capp�e
et al., 2007]. Its basic idea is to use the transition density pðyk jxðiÞk Þ as the proposal density, producing new
particles in the next time step. The implementation of the bootstrap PF is easy, but its main drawback is
that the particles are not modified. As a result, when all particles move away from the observations, they
are not pulled back. Experiments have shown that most of the weights of the particles vanish after a few
steps, leading to a poor analysis. Therefore, the weights to collapse has been reported previously in the geo-
physical literature [e.g., Bengtsson et al., 2003], where it is often referred to as ‘‘degeneracy’’ or ‘‘impoverish-
ment.’’ To overcome degeneracy, particle filters invariably employ certain forms of resampling or selection
steps after the updated weights are calculated, i.e., removing particles with very small weights and duplicat-
ing those with large weights. The Sequential Importance Resampling (SIR) algorithms, including the System-
atic Resampling (SR) and Residual Resampling (RR) algorithms [Doucet et al., 2001], essentially import the
information contained in the weights into the swarm of posterior particles, making the weights become
uniform again.

Certain advanced particle filters are based on choosing more sophisticated resampling schemes to prevent
filter degeneracy. These filters include the merging particle filter (MPF) [Nakano et al., 2007], and the PF
with Gaussian resampling (PFGR) [Xiong et al., 2006]. They are good attempts but still require a large num-
ber of particles to produce superior performance compared with the EnKF.

To explore the problem of filter degeneracy, one can define the effective ensemble size Neff as follows [Aru-
lampalam et al., 2002]:

Neff 51=
XN

i51

ðwðiÞÞ2: (21)

The effective ensemble size is a measurement of degeneracy and is related to the distance between the
weights wðiÞ and uniform weights. Because the weights sum to 1, the value of Neff varies between 1 and N.
A value close to 1 indicates that there is only one useful sample in the set, i.e., severe degeneracy. Con-
versely, if the weights are spread uniformly among the particles, the effective ensemble size approaches N.
In practical applications of the SIR-PF, the resampling step is required only if the effective ensemble size is
below a prespecified threshold; typically, Neff 5N=2. If Neff is below the threshold, the assimilation system is
most likely degenerate. This threshold relationship is often termed the effective sample size criterion [Liu,
2008].

2.3. The Ensemble Kalman Particle Filter for Nonlinear Measurement Functions
Several comparisons between the performance of the EnKF and the SIR-PF have been reported [e.g., Boc-
quet et al., 2010; Nakano et al., 2007]. These comparisons have yielded the conclusion that each method has
its own advantages and drawbacks. On the one hand, the EnKF provides good estimates with a very small
ensemble. This property makes it suitable for large models. On the other hand, as the ensemble size
increases, the root-mean-squared error of the EnKF analyses rapidly converges to a lower bound, and the
performance of the EnKF cannot be further improved by increasing the ensemble size. The limitation of the
EnKF is due to its inherent Gaussian assumption. The SIR-PF is able to outperform the EnKF if the ensemble
size is sufficiently large to prevent filter degeneracy. However, even for the Lorenz ’96 model with N 5 10
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variables, the particle filter still requires 104 members to match the performance of the EnKF [Bocquet et al.,
2010].

As stated above, both EnKF and PF methods are based on the Bayesian estimation theory, but they
approximate the probability density function of the state in different ways. The EnKF only approximates
the mean and covariance of the state through a series of equally weighted ensemble members. The
analysis of EnKF, which is a weighted combination of the prediction and observation through Kalman
gain, updates each ensemble member based on its distance from the observation in the state space. In
contrast, the particle filter only updates the weight of each particle in the analysis step without updat-
ing the particle itself. Because most particles may have small weights, a large number of particles are
required to prevent filter degeneracy, making the particle filter impractical for high-dimensional
models.

The EnKPF takes advantage of both methods by combining the analysis schemes of the EnKF and
the SIR-PF using a controllable index (i.e., tuning) parameter. In contrast with both the EnKF and the
SIR-PF, the analysis scheme of the EnKPF not only updates the particles but also considers the
weights.

For convenience, we first present the analysis scheme of EnKPF for the linear measurement function, as in
FK2013. Here we assume that the forecast ensemble xf

i ; i51; 2;…;N and the observation data y are avail-
able and that the forecast covariance Pf can be calculated using equation (6).

1. Choose c 2 ½0; 1� and apply the EnKF, which is based on the inflated observation error covariance R=c as
follows:

K1ðcÞ5Pf HT ðHPf HT 1R=cÞ21
5cPf HT ðcHPf HT 1RÞ21; (22)

vi5xf
i 1K1ðcÞðy2Hxf

i Þ; (23)

Q5
1
c

K1ðcÞRK1ðcÞT : (24)

2. Compute the weights wi for each updated member vi as follows:

wi5/ðy; Hvi ;
R

12c
1HQHT Þ; (25)

and normalize the weights by ŵ i5wi=
XN

i51
wi .

3. Calculate the resampling index s(i) for each member vi according to ŵ i with the residual resampling
schemes [Arulampalam et al., 2002], then set

xu
i 5vsðiÞ1K1ðcÞ

�1;iffiffiffi
c
p ; (26)

where �1;i is a random observation error drawn from the Gaussian Nð0; RÞ.

4. Compute K2ð12cÞ5ð12cÞQHT ½ð12cÞHQHT 1R�21, generate �2;i from Nð0; RÞ and apply the EnKF with the
inflated observation error again as follows:

xa
i 5xu

i 1K2ð12cÞ½y1
�2;iffiffiffiffiffiffiffiffiffi
12c
p 2Hxu

i �: (27)

The analysis scheme of the EnKPF consists of two parts, including updating the particles with the EnKF
(step 1 and step 4) and redistributing the particles with the SIR-PF (step 2 and step 3). However, the
EnKF procedure is split into two parts in practice, as given by equations (23) and (27), processed using
tempered likelihood functions /ðy; hðxÞ; R=cÞ and /ðy; hðxÞ; R=ð12cÞÞ, respectively. The covariance of the
observations is divided by c or ð12cÞ to prevent overfitting. Equation (25) indicates that the SIR-PF pro-
cedure is also based on the tempered likelihood, in which the covariance consists of R divided by (1 –
c) and the covariance of the estimate from the EnKF. The observation y in equation (23) is supposed to
be perturbed in the regular EnKF. However, the perturbation is delayed until the resampling step is
completed via equation (26). By doing this, the non-Gaussian information in the ensemble can be
assimilated.
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The EnKPF was initially designed for data assimilation for nonlinear dynamical systems with Gaussian linear
observations. If the measurement function is nonlinear, i.e., yk5hðxk ; fkÞ, equations (22) and (25) cannot be
directly used. One solution is to directly linearize the nonlinear function and obtain H, but this approach is
often technically difficult. The other solution is to implicitly linearize the nonlinear function without obtain-
ing H, as shown in equations (9) and (10) in section 2.1.

For the nonlinear measurement function h, the H used in the above algorithm can be obtained by lineariza-
tion in a way similar to that used in the EKF. However, the linearization is most likely difficult, even intracta-
ble, for certain complicated measurement functions, e.g., if, the measurement function is a nonlinear
dynamical model. Here for the EnKPF, we propose to adopt the strategy used in the EnKF by Houtekamer
and Mitchell [2001]. Specifically, the EnKPF algorithm can be modified for nonlinear measurement functions
(this modified algorithm will be termed the nEnKPF hereafter) as follows:

1. Choose c and perform the analysis with an EnKF that has an inflated observation error covariance R=c,
namely,

K1ðcÞ5
1

N21

XN

i51

½xf
i 2xf �½hðxf

i Þ2hðxf Þ�T
( )

� 1
N21

XN

i51

½hðxf
i Þ2hðxf Þ�½hðxf

i Þ2hðxf Þ�T 1R=c

( )21

; (28)

vi5xf
i 1K1ðcÞ½y2hðxf

i Þ�; (29)

Q5
1

N21

XN

i51

xix
T
i ; (30)

where xi5
K1ðcÞ�1;iffiffi

c
p , and �1;i is the random observation error drawn from the Gaussian Nð0; RÞ.

2. Compute the weights wi as follows:

wi5/ðy; hðviÞ;
R

12c
1HQHT Þ; (31)

where the term HQHT is defined by

HQHT � 1
N21

XN

i51

½hðxiÞ2hðxÞ�½hðxiÞ2hðxÞ�T ; (32)

and normalize the weights by ŵ i5wi=
XN

i51
wi .

3. Calculate the resampling index s(i) or each member vi according to ŵ i and set xu
i 5vsðiÞ1xi .

4. Generate �2;i from Nð0; RÞ and apply the EnKF as follows

K2ð12cÞ5 1
N21

XN

i51

ðxi2xi Þ½hðxiÞ2hðxÞ�T
( )

� 1
N21

XN

i51

½hðxiÞ2hðxÞ�½hðxiÞ2hðxÞ�T 1 R
12c

( )21

; (33)

xa
i 5xu

i 1K2ð12cÞ½y1
�2;iffiffiffiffiffiffiffiffiffi
12c
p 2hðxu

i Þ�: (34)

As discussed in section 2.1, the direct use of nonlinear measurement h in equation (28) actually contains an
implicit linearization, which can cause truncation errors. Thus, a preferable solution is to process the nonlin-
ear measurement function based on equation (17). Specifically, equation (28) can be replaced by

K1ðcÞ5
1

N21

XN

i51

½xf
i 2xf �½hðxf

i Þ2hðxf Þ�T
( )

� 1
N21

XN

i51

½hðxf
i Þ2hðxf Þ�½hðxf

i Þ2hðxf Þ�T 1R=c

( )21

: (35)

This approach generates a slightly different scheme from nEnKPF. The modified scheme will be termed the
mEnKPF. In fact, equations (32) and (33) can also be replaced by the modified algorithm for the Kalman
gain, but this approach would make very little difference because the mean value of xi is zero.

The parameter c plays an important role in adjusting the proportions of analysis represented by the EnKF
and by the PF. If c 5 0, it is easy to check that K1ðcÞ50, and K2ð12cÞ50, corresponding to the SIR-PF. In
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contrast, c 5 1 implies all wi51=N and K2ð12cÞ50, corresponding to the EnKF. The EnKPF algorithm essen-
tially provides a continuous interpolation between the particle filter and the ensemble Kalman filter. A
larger c means that we place more emphasis on moving the particles toward the observation, reducing the
variance in the weights, which results in a large Neff, and makes degeneracy less likely. Meanwhile, a large c
also implies that less non-Gaussian information is incorporated into the ensemble by the PF, weakening the
performance of the EnKPF.

The criterion for choosing c follows the principle described in FK2013, namely that, c should be nei-
ther too large nor too small, to achieve a suitable balance between the EnKF and the PF. As stated
in section 2.2, the effective ensemble size Neff is a measurement of degeneracy, and it is also a mon-
otonic function of c. The parameter c is chosen adaptively in each data assimilation step to ensure
that Neff is neither too large nor too small. Thus, if we define the diversity of the ensemble by
s5Neff=N, then 0 < s < 1, the EnKPF can always find a value of c such that the corresponding s 2 ½s1; s2�
in each step.

An adaptive search procedure to find a suitable c value can be based on including s5Neff=N into a pre-
specified interval ½s1; s2�. In this procedure, an arbitrary initial guess (e.g., 1/2) is used for the c, and s can
then be computed from the weights using equation (21). If s < s1, we should use a larger c, whereas if
s > s2, a smaller c would be preferable. To avoid excessive computations, a binary search tree [Knuth,
2013] is used to find a suitable c. For convenience, we assume that c only takes the values of multiples of
1/16 as its value. In this situation, at most four steps are required to determine the smallest c such that
s 2 ½s1; s2� if possible.

In short, we have proposed two modified EnKPF algorithms for nonlinear measurement functions, nEnKPF
and mEnKPF. These algorithms differ in the approach used to formulate the Kalman gain. The details of the
procedures used in these algorithms can be summarized in a schematic figure (Figure 1).

Figure 1. Flow diagram of the EnKPF algorithms with adaptive c to limit the ensemble diversity s to the prespecified interval ½s1; s2�.
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3. Numerical Experiments

In this section, we will test the nEnKPF and mEnKPF algorithms using assimilation experiments. For compar-
ative purposes, the same experiment will also be performed using the EnKF. For both the nEnKPF and the
mEnKPF, the parameter c will be chosen adaptively during the assimilation to control the relative diversity s
in a prespecified interval, as discussed above. Two numerical models that have been widely used in the
assimilation community will be used for the purpose of validation.

3.1. Lorenz ’63 Model
The Lorenz ’63 model [Lorenz, 1963] is the benchmark in the field of chaos, which was derived from the sim-
plified equations of convection rolls arising at the Equator. It shares many common features with the atmos-
pheric dynamical system, and can be used to simulate nearly regular oscillations or highly nonlinear
fluctuations occurring in reality by adjusting the model parameters. In data assimilation, this model has
served as the test bed for examining the properties of various assimilation methods.

The Lorenz ’63 model consists of a system of three coupled and nonlinear ordinary differential equations,

dx
dt

5rðy2xÞ1qx ; (36)

dy
dt

5qx2y2xz1qy ; (37)

dz
dt

5xy2bz1qz; (38)

where x(t), y(t), and z(t) are the dependent variables, and related to the intensity of convective motion, and the
temperature gradients in the horizontal and vertical directions, respectively. qx, qy, and qz represent the unknown
model errors, assumed to be uncorrelated in time and unbiased. The parameters of r, q, and b are set to 10, 28,
and 8/3, respectively, as in Miller et al. [1994]. This model is integrated with the a fourth-order Runge-Kutta scheme,
using a time step of Dt50:01. One integration step is often called a model step in the following discussions.

For validation, we create the true state vector by integrating the model without model noises (i.e., perfect
model), where the initial conditions are set to 1.508870, 21.531271, and 25.46091. The observations are
made every T model steps with a randomly designed nonlinear measurement function, namely,

Yk510 tanh ðXkÞ1fk; (39)

where the state vector X5½x; y; z� contains all the model states; the observation vector Y is related to the
model state space by a randomly designed nonlinear measurement function. Here we use the hyperbolic
tangent function as an example. The observation noises are assumed to be Gaussian and additive. For a
nonadditive noise system (e.g., multiplicative noise), Gaussian-based assimilation methods, such as the
EnKF, are often invalid. All through the experiment, the observation noises are randomly drawn from the
Gaussian distribution Nð0;

ffiffiffi
2
p
Þ.

The assimilation experiment is designed to estimate model states from an inaccurate initial condition using
the imperfect model. The initial conditions are perturbed by a random noise drawn from Nð0; 1Þ, and the
model noises ½qx ; qy ; qz � are randomly drawn from Nð0; 0:04Þ. The system is run for 5500 assimilation cycles,
and the first 500 cycles are discarded, where one assimilation cycle is defined as an assimilation process.

Figure 2 shows the estimates of the variable x for the last 100 assimilation cycles, as a function of the model
step. The EnKF, nEnKPF, and mEnKPF are performed with the same ensemble size N 5 64, and observations
are assimilated every T 5 25 model steps. Both the nEnKPF and the mEnKPF use the same adaptive strategy
to limit the diversity s to a value in ½0:1; 0:3�. The variable x is randomly chosen but an examination of other
two variables reveals similar estimation accuracy (not shown). Figure 3 shows the RMSE of all state variables,
which is calculated at all model steps during the 100 assimilation cycles, namely,

RMSEðX; XtrueÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L
ðX2XtrueÞT ðX2XtrueÞ

r
;

where X and Xtrue are the assimilated state vector and true vector, respectively, and L 5 3 is the length of
the state vector.
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Figure 2. State estimates of variable x of the Lorenz ’63 model for the last 100 data assimilation cycles.

Figure 3. RMSE of all variables of the state estimates of Lorenz ’63 model for the last 100 data assimilation cycles.
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As shown in Figures 2 and 3, both the nEnKPF and the mEnKPF are better than the EnKF, indicating that the
EnKPF that was originally proposed for a linear measurement function can also perform well for nonlinear
measurement functions if its algorithm is properly modified. It is consistent with the finding in FK2013 that
the EnKPF with linear measurement functions outperforms the EnKF. Figure 3 also shows that the mEnKPF
seems slightly better than the nEnKPF, in particular, during the model step from 750 to 1500. The most
likely explanation for this result is that the use of the Kalman gain equation (35) in the mEnKPF can better
estimate the prediction error covariance matrix than the Kalman gain equation (28) of the nEnKPF, as dis-
cussed above.

The results from the SIR-PF are not presented here because filter degeneracy was observed to occur during
its assimilation cycles. The degeneracy of PF due to finite particles has been a challenging issue, and consid-
erable attention has been devoted to it in recent years. It has been reported that some significant progress
has been made in avoiding filter degeneracy, although there is still a long way to go to completely solve
the filter degeneracy problem with affordable numbers of particles for high-dimensional systems in practice
[Luo and Hoteit, 2014; van Leeuwen, 2010]. The main objective of this paper is to extend the EnKPF, and fur-
ther investigations on modern particle filters are beyond the scope of this study. As a result, the perform-
ance of the EnKPF is only compared with that of the EnKF in this study.

Table 1 shows the averaged RMSE over the last 5000 assimilation cycles for three assimilation schemes. To
explore the impact of assimilation frequency on assimilation analysis, we conducted four sensitivity experi-
ments, namely, assimilation performed every 25, 30, 35, and 40 model steps, respectively. The ensemble
size was set to 64 in all experiments. The constrained diversity was tuned in different intervals s 2 ½s1; s2�
for the nEnKPF and mEnKPF. It can be observed from Table 1 that the averaged RMSE is smaller in both the
EnKPF algorithms than in the EnKF for all experiments. This finding is consistent with the results shown in
Figures 2 and 3. The optimal performance of the nEnKPF and the mEnKPF is obtained if ½s1; s2� is [0.1,0.3] or
[0.3,0.5].

To compare our results with those obtained from a more advanced EnKF algorithm, we also applied the iter-
ative ensemble Kalman filter (IEnKF) [Sakov et al., 2012]. The EnKF with an iterative part has attracted a
broad attention in recent years, for its ability to address nonlinearities in data assimilation systems. Previous
studies have shown that the IEnKF significantly outperforms the EnKF if the model is nonlinear and the
measurement function is linear or weakly nonlinear. In our experiment, however, we found that the IEnKF
had very poor performance, even worse than the EnKF. The reason for this result is that the nonlinearity in
the measurement function was extremely strong, violating the IEnKF stipulation that the ensemble anoma-
lies should propagate in a generally linear manner. This stipulation is adopted to make the iterative scheme
converge [Sakov et al., 2012].

As mentioned in section 2.3, a control factor that affects the performance of both the nEnKPF and the
mEnKPF is the prespecified interval of diversity given by ½s1; s2�. We found from a series of sensitivity experi-
ments that the optimal interval of s values that yields the best assimilation analysis is dependent on the
ensemble size. For example, the optimal value of the s interval was [0.7,0.9] for ensemble size N 5 8 and 16,
[0.3,0.5] for N 5 32, and [0.1,0.3] for larger N. Figure 4 shows the RMSE of the EnKF, nEnKPF, and mEnKPF
with the optimal interval of s as a function of ensemble size. One significant feature of this figure is that
these three assimilation methods can all approach a minimum RMSE value (i.e., a ‘‘saturated RMSE’’) as the
ensemble size increases. The assimilation performance of the methods cannot be further improved beyond

Table 1. The Average RMSE Over 5000 Cycles for the Lorenz ’63 Model Using the EnKF and the Two Algorithms of EnKPF, i.e.,
Alg.1 5 nEnKPF, Alg.2 5 mEnKPFa

Data Frequency 25 Steps 30 Steps 35 Steps 40 Steps

[s1,s1] Alg.1 Alg.2 Alg.1 Alg.2 Alg.1 Alg.2 Alg.1 Alg.2

EnKPF [0.1,0.3] 1.23 1.07 1.41 1.23 1.84 1.63 1.94 1.75
[0.3,0.5] 1.26 1.09 1.35 1.23 1.85 1.59 1.96 1.72
[0.5,0.7] 1.3 1.08 1.41 1.23 1.97 1.65 2.05 1.79
[0.7 0.9] 1.45 1.15 1.5 1.25 2.07 1.8 2.24 1.95

EnKF 1.83 2.15 2.33 2.42

aSeveral different constrained diversity intervals (½s1; s2�) and different assimilation frequencies are considered (see text).
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this value. A comparison of the
methods shows that the EnKF has a
much larger saturated RMSE than
either the nEnKPF or the mEnKPF,
indicating the advantage of the lat-
ter for non-Gaussian systems. How-
ever, the EnKF converges to the
saturated value of the error more
rapidly, requiring only half the
ensemble size of the nEnKPF or the
mEnKPF. This comparison illustrates
the relative computational effi-
ciency of the EnKF. In addition, the
mEnKPF is superior to the nEnKPF
for all ensemble sizes in Figure 4,
and this result is consistent with the
conclusion drawn from Table 1. As
stated in section 2.3, the two meth-
ods differ only in the formulation of
the Kalman gain, i.e., equation (28)
in the nEnKPF and equation (35)
in the mEnKPF. As discussed in
section 2.1, the nEnKPF imposes an

implicit linearization process, whereas the mEnKPF removes this process. Therefore, the mEnKPF performs
better than the nEnKPF if the measurement function is nonlinear.

To explore the impact of the nonlinearity of the measurement function on the EnKPF, we slightly modified
the measurement function of equation (39), as follows:

Yk510 tanh ðXk=aÞ1fk ;

where a is a scale parameter. We set a 5 1, 5, 10 to represent different degrees of nonlinearity in the mea-
surement function. We repeated the above experiments with an assimilation frequency of 25 model steps
and calculated the RMSE using the optimal interval for s of [0.1,0.3]. The results are shown in Table 2, where
two ensemble sizes, 64 and 256, are considered.

The value a 5 1 implies a strongly nonlinear measurement function. In this case, both the nEnKPF and
mEnKPF are better than the EnKF, and the mEnKPF outperforms the nEnKPF significantly for N 5 64. For
N 5 256, the advantage is insignificant, most likely because both methods are approaching the saturated
value of RMSE, as shown in Figure 2. In the other two cases, a 5 5 and a 5 10, the nonlinearity of the mea-
surement functions decreases, with the result that the nEnKPF and the mEnKPF perform better than the
EnKF only at a very large ensemble size. This finding is consistent with FK2013, in which the EnKPF is pro-
posed to address linear or weakly nonlinear measurement functions and requires a large ensemble size of
the order of 102 to outperform the EnKF. As discussed above, we found that if the measurement function is
highly nonlinear, the performance of both the nEnKPF and the mEnKPF, in particular the mEnKPF, can be
better than that of the EnKF, even with a relatively small ensemble size.

Figure 4. The averaged RMSE of the EnKF, nEnKPF, and mEnKPF as a function of
ensemble size.

Table 2. The Average RMSE Over 5000 Cycles Using the EnKF, nEnKPF, and mEnKPF for Lorenz ’63 Model With Assimilation Every 25
Model Steps (T 5 25)a

T 5 25

EnKF nEnKPF mEnKPF

N 5 64 N 5 256 N 5 64 N 5 256 N 5 64 N 5 256

a 5 1 1.5 1.48 1.03 0.91 0.92 0.9
a 5 5 0.91 0.91 1.15 0.74 1.11 0.74
a 5 10 1.14 1.11 2.02 1.07 2.03 1.07

aThree types of nonlinear measurement functions are used to generate the observations.
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3.2. Lorenz ’96 Model
In this section, we use the Lorenz ’96 model as the test bed to further examine the nEnKPF and mEnKPF.
The Lorenz ’96 model [Lorenz, 1996] represents an atmospheric variable X at J equally spaced points around
a circle of the constant latitude. The jth component is propagated forward in time according to the differen-
tial equation

dXj

dt
5ðXj112Xj22ÞXj212Xj1F; (40)

where j50; 1;…; J21 represents a spatial coordinates. The boundary conditions are cyclic, i.e.,
XJ215X21; XJ5X0, and XJ115X1. This specification implies that the distance between two adjacent grid
points roughly represents the midlatitude Rossby radius (approximately 800 km), assuming that the circum-
ference of the midlatitude belt is approximately 30,000 km. F is a constant external forcing term that domi-
nates the system dynamics. In this experiment, we set F 5 8 to make the system highly chaotic.

This dynamic model is integrated with a time step of 0.05, corresponding to 6 hours in the realistic atmos-
pheric physics. The initial condition is produced after a spin up integration of 10 years (i.e., 14,400 steps)
with a rather arbitrary vector as in [Lorenz, 1996]. The true state vectors are obtained by integrating equa-
tion (40), and the observation data are generated by a nonlinear measurement function every T model
steps, in which the observational noises are also drawn from Nð0;

ffiffiffi
2
p
Þ. The model noise q is set with a

mean of zero and a standard deviation of 0.05. The system is run for 2500 assimilation cycles, and the first
500 cycles are discarded.

We first consider the Lorenz ’96 model with J 5 10 variables, and the observations are available for all varia-
bles in assimilation. Such a setting has been used as a test bed for the SIR-PF by Bocquet et al. [2010], who
found that the SIR-PF performed better than the EnKF only at ensemble sizes greater than 10,000. In our
experiment, four experiments were conducted to explore the sensitivity of the assimilation performance to
the assimilation frequency and to the strength of nonlinearity of the measurement function. In detail, we
performed the assimilation every T 5 8 or 12 model steps, and we used the nonlinear measurement func-
tions Yk55tanh ðXkÞ1fk or Yk55tanh ð2pXkÞ1fk . Figure 5 shows the averaged RMSE over 2000 cycles, as a
function of ensemble size for the four cases. The optimal diversity that has the smallest RMSE among sev-
eral chosen diversity intervals was used for Figure 5. As shown in this figure, the performance of the EnKPF
is comparable with that of the EnKF if the ensemble size is relatively small, especially for a strongly nonlin-
ear measurement function. However, if the ensemble size is greater than 64, both the nEnKPF and the
mEnKPF significantly outperformed the EnKF.

It should be noted that the difference between the nEnKPF and the mEnKPF appears insignificant in this
experiment. Actually, the nEnKPF is slightly better than mEnKPF if the ensemble size is very small. The rea-
son for this difference is most likely that the modified Kalman gain equation (35) in the mEnKPF assumes
the ensemble mean xf to be the true value, an assumption that holds well at large ensemble sizes.

Next, we consider the Lorenz ’96 model with J 5 40 variables and the observations are available for all varia-
bles in assimilation. Similar to the above experiments with J 5 10, the assimilation frequency was set at 8 or
12 model steps, and the measurement function was Yk55tanh ðXkÞ1fk . Table 3 shows the averaged RMSE
over 2000 cycles for the optimal diversity value s as a function of the ensemble size N. As Table 3 shows,
both the nEnKPF and the mEnKPF offer an advantage if the ensemble size exceeds 256. This finding is con-
sistent with the results of FK2013 for linear measurement functions. Those results showed that an ensemble
size of N 5 400 was required to show the advantage of the EnKPF. Again, the performance of the nEnKPF
and the mEnKPF was similar, but the mEnKPF was slightly better than the former for a large ensemble.

It is clearly recognized that if the model is high dimensional, it is not easy for the PF to outperform the EnKF
due to the computational costs of the PF. For the basic PF, the weight for each member is a scalar, and
members are duplicated or removed according to those scalars. The diversity among the ensembles will
decrease very rapidly during the data assimilation cycles. Although many efforts have been made to main-
tain the diversity among ensembles, the weights are still in the form of a scalar, as in equation (20). A local-
ization scheme is not available for particle filters due to the global algorithm of the PF [van Leeuwen, 2009]
which further increases the difficulty of increasing its ensemble diversity. For a high-dimensional system
such as a GCM model, a large population of ensembles is required to make the particle filter effective. The
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EnKPF, although its weight values can be substantial as c tends to 1, still requires many ensembles to realize
its advantage. Significant additional effort will be necessary before the EnKPF can be applied to a realistic
GCM model.

Another concern regarding the mEnKPF is its associated computational burden. In the adaptive c algorithm
of the EnKPF, the Kalman gain and the weights of particles require recursive computations to search for the
optimal value of c. Equations (28), (29), and (30) or equations (35), (29), and (30) are often run several times
in an assimilation cycle. This procedure differs from that employed by the EnKF, which only runs equations
(16) and (17) once. Usually, the c value is changed at the multiples of 1=2k11 at the kth search step, and the
binary search tree algorithm is used. Thus, we can set a reasonable value of the maximum iterative steps to
determine the c value in the adaptive algorithm.

Table 3. The Average RMSE Over 2000 Cycles for the Lorenz ’96 Model With J 5 40

N 32 64 128 256 512 1024

T 5 8 nEnKPF 4.04 3.19 1.76 1.23 1.09 1.07
mEnKPF 4.07 3.15 1.85 1.21 1.07 1.06
EnKF 4.06 3.16 1.89 1.3 1.2 1.18

T 5 12 nEnKPF 3.7 2.73 2.01 1.79 1.7 1.64
mEnKPF 3.7 2.72 2.03 1.75 1.67 1.62
EnKF 3.75 2.8 2.04 1.82 1.78 1.7

Figure 5. The averaged RMSE of all variables of the Lorenz ’96 model with J 5 10 over 2000 assimilation cycles for the nEnKPF, mEnKPF,
and EnKF as a function of the ensemble size, with different data frequencies and measurement functions.
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Note that the prediction step is often much more costly than the analysis step for high-dimensional systems
because the prediction step requires the forward integration of a high-dimensional model. Thus, the com-
putational cost of the EnKPF may be slightly greater than that of the EnKF but much less than that of the
IEnKF.

4. Conclusions

Significant progress has been made in the field of data assimilation in recent years. However, it is still a
great challenge to address nonlinear, non-Gaussian estimation problems. At present, the Kalman-based fil-
ters use a Gaussian pdf to approximate a non-Gaussian pdf. This approach is inefficient and can result in
large estimation errors. The particle filter, which directly approximates the pdf using a combination of finite
samples (particles) with the weights updated by the likelihoods, provides a complete image that serves to
characterize all error statistics of the model states. However, a substantial difficulty associated with the parti-
cle filter is the high cost of the extensive computations that are required to prevent filter degeneracy. Under
present conditions, these costs appear impractical for a high-dimensional model such as a GCM. The EnKPF
was developed to combine the ensemble Kalman filter and particle filter, namely, assimilating the Gaussian
information with the EnKF and the non-Gaussian information with the PF. This approach has the strengths
of both the EnKF and the PF and produce a filter that reflects the trade-off between estimation accuracy
and affordable cost. The results of the current study show that the EnKPF outperforms both the EnKF and
the SIR-PF at the expense of additional computations in the analysis step.

Initially, the EnKPF was proposed to address assimilation systems with linear measurement functions. In this
study, we extend the algorithm of EnKPF to nonlinear measurement functions in a rigorous statistical frame-
work, and also introduce a new formula for the Kalman gain to further improve the EnKPF. Two numerical
models, the Lorenz ’63 and ’96 models, are used to test the new algorithms. The assimilation experiments
show that if the measurement function is nonlinear, both the nEnKPF and the mEnKPF can still provide
more accurate estimates than the EnKF, as the original EnKPF did for linear cases. Thus, this modified algo-
rithm further supports the application of the EnKPF.

In this study, we explored the modified EnKPF using a highly simplified nonlinear model with a designed
nonlinear measurement function. One concern is the performance and efficiency of the mEnKPF when
applied to a realistic GCM. Additional studies (e.g., localization in the EnKF, the formulation of weights, non-
Gaussian likelihood functions) are needed for better implementation of these techniques applied to data
assimilation problems in atmospheric or ocean GCMs. Nevertheless, the present study represents a step in
the pursuit of advanced data assimilation algorithms based on a simple nonlinear model that shares several
common features with complicated atmospheric and oceanic models.
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