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1] Extreme precipitation is generally underestimated by current climate models
relative to observations of present-day rainfall distributions. Possible causes of this
systematic error include the convective parameterization in these models that have
been designed to reproduce measurements of climatological mean precipitation. One
possible approach to improve the interaction of subgrid-scale physical processes and
large-scale climate is to replace the conventional convective parameterizations with a
high-resolution cloud-system resolving model. A “‘super-parameterized” Community
Atmosphere Model (SP-CAM) utilizing this approach is used in this study to
investigate the distribution of extreme precipitation in the United States. Results show
that SP-CAM better simulates the distributions of both light and intense precipitation
compared to the standard version of CAM based upon conventional
parameterizations. The improvements are mostly seen in regions dominated by
convective precipitation, suggesting that super-parameterization provides a better

representation of subgrid convective processes.
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1. Introduction

[2] Extreme precipitation events often have dramatic
ecological, economic, and sociological impacts. The
simulation and projection of precipitation extremes are
of great importance as significant upward trends in the
frequency of these events have been detected in recent
decades with the warming of the climate [Min et al.,
2009, 2011], and further increases could affect less
resilient sectors of society and the environment
[Schneider et al., 2007]. Despite the need for robust
projections, it has been repeatedly demonstrated that
current climate models generally underestimate the
occurrence of intense precipitation as reported in several
recent studies [e.g., Durman et al., 2001; Boyle and Klein,
2010; Li et al., 2011a].

[3] The relatively coarse horizontal resolution typical
of previous generations of climate models has been
proposed as the main reason for the underestimation
of extreme precipitation. Recent studies [e.g., Chen and
Knutson, 2008; Wehner et al., 2010] have suggested that
low-resolution climate models, particularly those with
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grid spacings of 1° or more, cannot reproduce the
statistics of extreme rainfall events in the historical
climate record with sufficient fidelity. Although
increases in resolution yield more realistic spatial pat-
terns and probability distributions of precipitation over
most continental regions [Boyle and Klein, 2010], the
systematic errors in these properties persist during con-
vective-precipitation dominated seasons, e.g., June-July-
August (JJA) and March-April-May (MAM), in the
southeast USA [lorio et al., 2004]. This result is consist-
ent with the finding that convective precipitation
appears to decrease while total precipitation appears
to increase with greater horizontal resolution
[Williamson, 2008; Li et al., 2011b]. Therefore, while
the scale separation between convective and large-scale
precipitation is a reasonable approximation in low-
resolution models, increasing the resolution does not
necessarily ensure an accurate simulation of convective
precipitation. The reason is that the scale-separation
approximation introduced in most parameterizations
becomes less accurate as the model resolution
approaches the scales of individual convective systems.

[4] A promising approach to improve the representa-
tion of subgrid-scale physical processes in climate
models is to replace the conventional cloud parameter-
izations with a high-resolution cloud-resolving model
(CRM) embedded into each model grid column. This
technique is often designated by ‘‘super-parameteriza-
tion” (SP) [e.g., Khairoutdinov and Randall, 2001;
Khairoutdinov et al., 2005]. In comparison to conven-
tional parameterizations, SP is conjectured to improve
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the representation of sub-grid processes since the
embedded CRMs can explicitly resolve the interactions
among cloud dynamics, cloud and aerosol microphysics,
radiation, and turbulence down to cloud-system scales.
SP can dramatically improve the diurnal cycle of pre-
cipitation over summertime continents [Khairoutdinov et
al., 2005] while it simultaneously produces reasonable
simulations of time-mean precipitation. lorio et al
[2004] further showed that a climate model (CCM3)
enhanced using the SP methodology can produce longer
tails of the precipitation distribution over the contin-
ental United States (CONUS), and DeMott et al. [2007]
indicated that a similar approach can simulate intense
rainfall events more correctly.

[5] This study will specifically investigate how the SP
approach can be used to simulate the extreme precip-
itation over the CONUS compared with precipitation
produced using a climate model with conventional
parameterizations. We focus on the CONUS because
of the extensive rain gauge data, which, when appro-
priately gridded, can be readily used in the comparison.
Section 2 presents the description of model framework
and the observational precipitation data used to evalu-
ate the conventional and SP-based climate-model simu-
lations. The results are presented in section 3 and
conclusions are discussed in section 4.

2. Model and Data Description

2.1.

[(] We use the National Center for Atmospheric
Research (NCAR) Community Atmosphere Model
(CAM) version 3.5.36 as the main modeling framework
[Collins et al., 2006]. For our simulations, we have
selected CAM with a finite-volume dynamical core
configured with a horizontal resolution of 1.875° lat-
itude x2.5° longitude and 28 vertical levels. At this
lateral resolution the model is integrated forward in time
using time steps of 30 minutes, and the state of the
model is output every 3 hours to capture short-lived
hydrometeorological events. Two simulations are per-
formed to investigate the performance of SP in simulat-
ing extreme precipitation relative to conventional
approaches: (1) CAM with standard parameterizations
of cloud and convection processes [Collins et al., 2004];
and (2) “super-parameterized” CAM (SP-CAM), with a
CRM embedded in each grid cell in place of these
standard  parameterizations  [Khairoutdinov — and
Randall, 2001].

[7] Details of the configurations of the two simula-
tions have been described by D. Rosa et al. (Global
transport of passive tracers in conventional and super-
parameterized climate models: Evaluation of multiscale
methods, submitted to Journal of Advances in Modeling
Earth Systems, 2012). The most important aspect is that
both simulations have been performed in “chemical
transport” mode, in which CAM fields are replaced by
equivalent fields from the NCEP Re-analysis including
horizontal winds, temperature, surface pressure, wind
stress, sensible heat flux and water vapor flux. This
mode of operation insures that the large-scale fields in
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CAM are fully consistent with a reanalysis for the actual
meteorological conditions pertaining to our time series
of rain gauge data. These dynamic and thermodynamic
fields are linearly interpolated in time to the CAM time
step and interpolated in space onto the CAM grid. The
CRM embedded in each atmospheric column of CAM is
nudged to CAM large-scale fields using relaxation terms
[Khairoutdinov et al., 2005]. The difference in CAM-grid
scale precipitation simulations is from the difference of
sub-grid cloud and dynamical processes in the two
simulations. Therefore to leading order, we hypothesize
that differences between the modeled and observed
extreme precipitation are due to systematic errors in
the sub-grid physics rather than the large-scale meteoro-
logical fields.

[8(] The CRM in SP-CAM is a configured as a 2D
system with 2 km horizontal resolution. Each CRM
domain consisting of 64 columns is aligned in the
west-east direction and exchanges information with
itself via periodic lateral boundary conditions. Its ver-
tical grid levels are located at the same heights as the 28
levels of CAM. The CRM solves the non-hydrostatic
momentum equations with an anelastic approximation
(detailed by Khairoutdinov and Randall, [2001]). A bulk
microphysics parameterization is used to compute the
hydrometeor conversion rates and terminal velocities.
The prognostic thermodynamic variables including the
water moist static energy and precipitating water are
used to calculate the cloud water, cloud ice, rain, snow
and graupel mixing ratios.

[9] The 2-km CRM horizontal resolution is chosen to
optimally balance the computational cost and realistic
simulation of the formation of the cloud and extreme
precipitation. Ooyama [2001] showed that 2-km resolu-
tion is needed for realistic simulations of precipitating
clouds using a 2D non-hydrostatic model, which is in
many ways similar to the embedded CRM used in this
framework. His tests on the growth of single cell clouds
showed that, at 2-km resolution, the rain has more
realistic and clearer episodes with the peak rain intensity
doubling that in the coarser 4-km experiment, which
only produces very gentle and continuous precipitation.
Although more complex cloud structure and greater
precipitation intensity are seen in 1-km experiment, the
2-km resolution captures the rain episodes and peak
intensities reasonably well. These results provide a solid
proof of using the 2-km CRM in the SP-CAM frame-
work when taking into account the computation cost.
Meanwhile, Ooyama [2001] also indicates that increas-
ing the CRM’s resolution in the SP-CAM could slightly
increase the intensity of extreme precipitation. It may be
worth future investigation but the impact of the hori-
zontal resolution of the CRM is not the focus of this
framework.

[lo] In CAM, the precipitation is parameterized
through large-scale and convective precipitation
schemes. The mass vertical fluxes are calculated based
on the assumption that the cumulus ensemble depletes
the convectively available potential energy on a fixed
characteristic timescale. However in SP-CAM, each
CRM is forced by the grid-scale tendencies from CAM
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and it then computes the convective tendencies in each
column in its domain. The SP-CAM framework thus
includes both the large-scale atmospheric vertical
motion on the climate model grid and the cloud-scale
circulations  represented on the CRM’s grid
[Khairoutdinov et al., 2008]. Both scales of the vertical
motions are involved in the formation of precipitation,
but the conventional climate model parameterizes the
distributions of cloud-scale velocities. Khairoutdinov et
al. [2008] have shown that, despite the relatively coarse
grid spacing of the CRM, the clouds simulated by the
CRMs in SP-CAM behave in a manner consistent with
our understanding of the stratocumulus dynamics, and
that the bulk of vertical transport of water is carried out
by the circulations explicitly represented on the CRM
grid.

2.2. Precipitation Data

[11] We assess the performance of CAM and SP-CAM
in simulating extreme precipitation using a rain gauge-
based observational precipitation dataset from the
NOAA Climate Prediction Center (CPC). The specific
product we use is the daily U.S. Unified Precipitation
product [Higgins et al., 2000]. The dataset is derived from
~13000 rain gauge station reports collated each day since
1992 using three different data sources: NOAA’s National
Climate Data Center (NCDC) daily co-op stations, a
CPC collation containing River Forecast Centers data
first order stations, and daily accumulations from hourly
precipitation measurements. The station daily-accumu-
lated precipitation rates are mapped onto a regular
0.25°%0.25° grid for the U.S. continent using a
Cressman Scheme [Cressman, 1959; Charba et al., 1992]
after application of quality controls to eliminate duplica-
tive and overlapping stations [Higgins et al., 2000]. The
values are accumulated from noon of the day before to
noon of each reported day. A ten year period of the
gridded dataset spanning 1996 — 2005 that coincides with
the simulation period is used to ensure internal consist-
ency between the models and observations.

[12] Since extreme precipitation normally occurs on
sub-daily time scales, we also analyze the simulations at
3-hourly intervals using the gridded hourly CPC precip-
itation [Higgins et al., 2000]. The hourly precipitation is
mapped onto a coarser 2x 2.5 grid covering the con-
tiguous United States using the same Cressman Scheme
[Cressman, 1959; Charba et al., 1992] that is applied to
the daily data. The main difference between the daily
and hourly gridded precipitation data is that most
stations used for the daily product do not record hourly
precipitation rates. One-third of the stations used for the
hourly precipitation product are first order National
Weather Service (NWS) stations, and the remaining
stations consist of point measurements from cooperative
observers. Since the set of hourly stations is a relatively
small subset of the stations used in the daily precipita-
tion product, some differences are expected in the
gridded spatial distributions of time-mean precipitation
rates. In addition, the hourly precipitation product is
less up-to-date and covers only part of the simulation
period from 1996-2001.
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[13] To facilitate direct comparisons with the simula-
tions, the daily and hourly gridded rain gauge precip-
itation rates have been regridded onto the CAM grid
and outer (large-scale) SP-CAM grid using an area
weighted interpolation scheme designed to conserve
total precipitation. The 3-hourly model outputs are also
averaged to daily values when compared to daily obser-
vations. Note that the intensities of some extreme
precipitation events in the re-gridded data and/or daily
data constructed from the 3-hourly data may be sig-
nificantly reduced by the spatial interpolation and tem-
poral averaging.

3. Results

3.1.

[14] The time-mean distributions of precipitation over
the CONUS region for CAM and SP-CAM are shown
in Figures 1a and 1b, respectively. Since both CAM and
SP-CAM are strongly constrained by NCEP reanalysis
fields including surface moisture flux fields, the spatial
patterns of CAM and SP-CAM are very similar as
expected. Both simulations show high precipitation rates
in the northwestern, eastern, and southeastern US.
Relative to CAM, the precipitation is slightly higher in
SP-CAM in these wet regions but a little lower in dry
middle-west US. This difference implies some fun-
damental differences in the precipitation statistics
between the two models that will be discussed in more
detail below.

[15 CAM and SP-CAM generally have higher mean
precipitation rates than CPC rain gauge precipitation
over the CONUS region (Figure 1): ~30% higher for the
region averaged mean daily precipitation (Table 1). The
excess precipitation is primarily related to the differ-
ences between NCEP precipitation [Kalnay et al., 1996]
and CPC precipitation fields at large scales (Figures lc,
1d, and 2) and to the underestimation of topographic
effects from the Rocky Mountains due to the coarse
spatial resolutions of the models. Over the eastern US,
the maximum precipitation in CPC occurs in the states
adjacent to the Gulf of Mexico, while the precipitation
in CAM and SP-CAM peaks in the central and Mid-
Atlantic States. In addition, due to the sparser sampling
rain gauge stations, the CPC 3-hourly precipitation
(Figure 1d) is generally lower than the CPC daily
precipitation although the two datasets share similar
spatial patterns.

[16] The similarity in the mean precipitation between
CAM and SP-CAM is expected since we constrain both
models with large-scale dynamic and thermodynamic
fields from the NCEP reanalysis (Figure 2). However at
the level of corresponding grid points from each model,
the two representations of subgrid cloud and convective
processes are free to operate very differently subject to
the nearly identical boundary conditions imposed on
both grid points. Our experiments are designed to assess
if the embedded CRM can better resolve extreme pre-
cipitation within the CAM model grid compared to the
conventional precipitation parameterizations when
forced by the same realistic meteorological fields. We

Mean and Extreme Precipitation
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Figure 1.
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Mean precipitation for (a) CAM (1996-2005), (b) SP-CAM (1996-2005), (c) daily CPC (1996-2005), and

(d) hourly CPC (1996-2001) on the same 1.875° latitude x 2.5° longitude model grid. Boxes denote the southeastern

and western regions of the U.S. analyzed in section 3.

Table 1. The Mean, R95, and R995 Precipitation (mm d-1) From CAM, SPCAM and CPC, Averaged Over Three Regions:
Continental U.S. (CONUS), Southeastern U.S. (SE) and Western U.S. (W)’
Mean R95 R955
CONUS SE W CONUS SE \\% CONUS SE W
CAM 2.9 3.8 34 18.5 24.2 22.7 45.8 61.7 50.3
SPCAM 2.8 3.7 3.7 22.7 30.1 26.7 60.8 81.4 54.2
CPC 2.2 33 3.0 20.1 322 25.2 61.7 89.0 56.7

“The SE U.S. and W U.S. are defined in section 3 (the two gray boxes in Figure 1).
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Figure 2. Mean precipitation from NCEP Re-analysis
6-hourly precipitation (1996-2005).

show the simulated and observed extreme precipitation
in Figure 3 and their region averaged values in Table 1.

[17] The definitions of extreme precipitation used in
this study are determined by high percentile thresholds
applied to the daily and 3-hourly precipitation derived
from the Frich indices with slight modifications [Frich et
al., 2002; Alexander et al., 2006]. To facilitate our
analysis, the units of the extreme precipitation indices
have been converted from the yearly total extreme
precipitation (mm yr~ ') to the daily-mean intensity of
the extreme events (mm d~'). We first find the value for
the nth percentile precipitation during all the wet events
(>1 mm d ') at the same location for a whole year. The
extreme precipitation index Rn is defined as the mean
precipitation intensity for all the extreme events larger
than the nth percentile value. We choose R95 (rates
exceeding the 95th percentile value) for daily precipita-
tion and R995 (rates exceeding the 99.5th percentile
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value) for 3-hourly precipitation to have enough sam-
ples (~10-20 events per year) for robust statistics.

[18] The R9S daily extreme precipitation is shown in
Figure 3a for CAM, Figure 3c for SP-CAM, and
Figure 3e for CPC observations. The extreme precipita-
tion simulated by SP-CAM is significantly higher than
that in CAM although the spatial distributions of mean
precipitation appear to be very similar (Figures la and
1b). SP-CAM simulates more extreme precipitation over
almost the entire CONUS region, particularly in south-
eastern and western coastal US. While CAM exhibits a
characteristic underestimation of extreme precipitation
(Figures 3a and 3c) as noted in many previous studies
[e.g., Boyle and Klein, 2010; Li et al., 2011a], the spatial
distribution and intensity of the extreme precipitation in
SP-CAM much better matches the extreme precipitation
derived from CPC rain gauge observations. For
instance, the region averaged R95 precipitation over
southeastern (SE) U.S. in CAM is ~25% lower than
that in CPC, while the R95 from SP-CAM is only ~7%
lower (Table 1). While the changes in precipitation from
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CAM to SP-CAM represent an improvement over much
of the CONUS region, SP-CAM does not capture some
of the very extreme values along the southeastern and
eastern coasts and it overestimates extreme precipitation
over dry western mountainous regions.

[19] Although the CPC daily precipitation is deemed
more reliable because of the larger number of rain gauge
stations used to construct it and the longer duration of
the data record, the 3-hourly data may yield additional
information at the sub-diurnal time scales most relevant
to extreme precipitation. Figures 3b, 3d, and 3f show the
spatial distributions of the R995 (> 99.5th percentile)
extreme precipitation estimated using the 3-hourly
CAM and SP-CAM output and CPC data set, respect-
ively. Similarly to the daily extreme precipitation, the
conventionally parameterized CAM greatly underesti-
mates this measure of extreme precipitation while SP-
CAM agrees much better with the CPC observations
(also see Table 1), particularly in the eastern CONUS.
SP-CAM still misses some very extreme precipitation
events such as those in Texas, but its general spatial

R995 3hourly (mm d™")
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— — 100
/i 80
3 60
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Longitude
(d) SPCAM
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®
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-100
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-120

Figure 3. Simulated and observed U.S. extreme precipitation: 95th percentile daily precipitation for (a) CAM, (c)
SP-CAM, (e) CPC; and 99.5th percentile 3-hourly precipitation for (b) CAM, (d) SP-CAM, (f) CPC.
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patterns agree quite well with the CPC data. In general,
the differences between CAM and SP-CAM (and
between CAM and CPC) at 3-hourly time scales are
much larger than those for daily extreme precipitation.
This larger bias of CAM in 3-hourly extreme precipita-
tion is expected due to the higher percentile threshold
used which decreases the sample size and due to the
shorter time scale which will be discussed in the next
section.

3.2. Probability Distribution

[20] The results above show that SAM and SP-CAM
produce similar spatial patterns of mean precipitation
but produce quite different patterns and intensities of
extreme precipitation. The difference indicates a shift of
precipitation probability distributions towards higher
extremes in SP-CAM relative to CAM. Figure 4 thus
shows the probability density distribution of precipita-
tion for CAM, SP-CAM and CPC. In addition to the
whole CONUS region, we also analyze two sub-regions
with high extreme precipitation: the southeastern U.S.
between 25-35°N and 80-100°E and the western U.S.
between 35-50°N and 55-60°E, defined as the two gray
boxes in Figure 1. The precipitation is aggregated in
2 mm d ! bins from 0 to 120 mm d~'. Any precipitation
rates larger than 120 mm d ™~ are assigned to the last bin.

[21] Figure 4a shows the probability distribution for
the daily precipitation over the CONUS region. CAM
exhibits its characteristic underestimation of precipita-
tion for heavy precipitation larger than 30 mm d~'. The
precipitation distributions from SP-CAM are generally
in better agreement with the CPC observations particu-
larly since SP-CAM simulates more light precipitation
(<10 mm d ') and more heavy precipitation (>30 mm
d™') than CAM. However, the frequency of the daily
extreme precipitation from SP-CAM degrades at rates
exceeding 60 mm d~' and is comparable to that in
CAM. The precipitation distribution over the south-
eastern U.S. (Figure 4c¢) is generally similar to that over
the CONUS region (Figure 4a). The probability distri-
butions from SP-CAM and CPC are in better agreement
over the southeastern US, while CAM underestimates
the probability of precipitation for rates exceeding
~15 mm d~'. Over the western coastal US, the prob-
ability distributions from both CAM and SP-CAM are
in much better agreement with the CPC distribution
(Figure 4e). However, the much larger area of the
southeastern region relative to the western coastal zone
implies that the distributions of extreme rainfall exceed-
ing 30 mm d ™' are determined primarily by the south-
eastern region.

[22] In order to evaluate the simulation of sub-diurnal
extreme events, the probability distributions of 3-hourly
precipitation have been constructed as shown in
Figures 4b, 4d, and 4f for the CONUS, southeastern
US, and western US, respectively. Note that daily-mean
precipitation rates calculated from diurnally averages of
the 3-hourly dataset are not the same as the published
CPC daily precipitation dataset. The reason is that the
CPC 3-hourly precipitation dataset is derived from a
subset of the daily rain gauge stations for just the first
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half of the daily dataset record, For consistency with the
3-hourly observations, the CAM and SP-CAM precip-
itation statistics shown here correspond to just 1996 —
2001 rather than the whole 10 year period for daily
precipitation.

[23] The 3-hourly distributions show more extreme
high and low precipitation rates compared to the daily
distribution, as the daily temporal averaging eliminates
the most extreme values. Over the entire CONUS region
and southeastern US, the similarities and differences
among the distributions of precipitation from CAM, SP-
CAM, and CPC resemble those obtained in the compar-
isons of the daily data. For both the CONUS region and
southeastern US, CAM overestimates the probability of
moderate precipitation and underestimates the probabil-
ity the heavy precipitation relative to CPC (Figures 4b
and 4d). The SP-CAM distribution is in good agreement
with that of CPC in conditions of light and heavy
precipitation, although SP-CAM does overestimate the
likelihood of moderate precipitation. The difference
between CAM and SP-CAM is small over western
U.S. apparently due to the relative frequency of various
types of precipitation characteristic of this region. This
feature is discussed in the next section.

3.3. Seasonal Variation of Probability Distribution

[24] The precipitation in CAM is parameterized as
two separate processes representing convective and
large-scale precipitation. In the real world, convective
processes are more important in the southeastern U.S.
than in the western coastal region where large-scale air
motions (e.g., synoptic-scale frontal systems) are the
principal driving mechanism for precipitation. The not-
able improvement in the simulation of the extreme
precipitation distribution by SP-CAM in the southeast-
ern U.S. is therefore likely due to the improved repres-
entation of subgrid convective processes in the CRMs
embedded in SP-CAM. Similarly, the resemblance
between CAM and SP-CAM over the western U.S.
(Figure 4) should be expected because large scale air
motions are prescribed when running in Chemical
Transport Mode and therefore both models provide
identical conditions for the formation of large-scale
precipitation. Consequently, the seasonal variation of
precipitation should also be improved as convective
processes dominate summer precipitation over much
of the CONUS.

[25] Figure 5 shows probability distribution of U.S.
precipitation in JJA (Figures 4a and 4b) and in DJF
(Figures 4c and 4d). For the convectively dominated
summertime daily precipitation (Figure 5a), SP-CAM
clearly simulates a much better distribution than CAM
although it is still unable to capture the most extreme
precipitation observed by CPC. CAM’s underestimation
of the high rain-rate tail of the precipitation distribution
is more obvious in summer (JJA) than in the annual
total (Figure 4a). The wintertime (DJF) difference
between CAM and SP-CAM is much smaller than that
in summer, reflecting the diminished importance of
convective processes during this season. At the 3-hourly
time scales, these differences are even more robust and
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(b) Precip. probability — US (3houly)
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Figure 4. Probability density distributions of (a) U.S. daily precipitation; (b) U.S. 3-hourly precipitation; (c)
southeastern (SE) U.S. daily precipitation; (d) southeastern (SE) U.S. 3-hourly precipitation; (e) western (W) U.S.
daily precipitation; and (f) western (W) U.S. 3-hourly precipitation. Green, red, and black lines respectively

represent the CAM, SP-CAM, and CPC.

the CAM simulated summertime precipitation probabil-
ity distribution differs appreciably from the CPC distribu-
tion. Again, SP-CAM offers significant improvements
over CAM. Although it overestimates the moderate
precipitation, it captures the higher end of the distri-
bution very well (Figure 5b). These results suggest
SP-CAM appears to have better fidelity to the obser-
vational record for both light and extreme precipita-
tion during the convective precipitation dominated
season. As for the daily precipitation distribution,
the differences between CAM and SP-CAM 3-hourly
distributions are small for the winter season when

large-scale precipitation predominates. Both models
simulate the observed distribution with comparable
levels of accuracy (Figure 5d).

3.4. The Roles of Cloud Physics and Dynamics in Inter-
model Differences

[26] Differences in large-scale dynamic and ther-
modynamic fields cannot cause the differences in
extreme precipitation simulated by CAM and SP-
CAM since these fields are constrained by the same
NCEP-reanalysis data at each model time step and are
therefore almost identical in our two simulations.
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Figure 5. Probability density distributions of (a) JJA U.S. daily precipitation; (b) JJA U.S. 3-hourly precipitation;
(c) DJF daily precipitation; and (d) DJF 3hourly precipitation.

Instead, the differences can be attributed to some com-
bination of three main subgrid-scale processes: (1) the
advection of water vapor to altitudes above its lifted
condensation level (LCL) in convective updrafts; (2) the
condensation of the resulting supersaturated vapor to
form cloud water and ice; and (3) the conversion of this
cloud condensate to precipitation. The first process is
governed primarily by rates of subgrid vertical advec-
tion and the latter two are determined by cloud micro-
physical processes for condensation and collisional
coalescence. An assessment of which of the three subgrid
processes explains the different statistics of extreme
precipitation in CAM and SP-CAM would provide
insights into how best to improve the simulation of
cloud and precipitation in climate models.

[27] Due to the challenges posed by retrospective
analysis of the sub-grid physics and parameterizations
and due to the absence of suitable run-time diagnostics,
we do not have sufficient information to individually
quantify the differences in the first two processes asso-
ciated with moisture lifting or cloud condensation. Their
combined effects, however, are reflected in the total
cloud water produced by CAM and SP-CAM. The third
process, e.g., conversion from cloud water to precipita-
tion, can be quantified using a precipitation efficiency f
defined as the ratio of precipitation rate to the total grid
box cloud water path. The parameter / has units of 1/
days and represents the inverse timescale for the con-
version of cloud condensate to precipitation. Hence
larger values of f correspond to shorter timescales for
the conversion process.

[28] The total cloud condensate path and total pre-
cipitation amount for all the summer precipitation
events are shown in Figures 6a and 6b, respectively.
The 80 mm d ' upper boundary is chosen since there is
almost no precipitation larger than 80 mm d ! in CAM.
We accumulate all the precipitation events falling into a
given precipitation bin to obtain the total amounts of
cloud condensate and precipitation. The efficiency f for
each bin is estimated by dividing the total precipitation
amount by the corresponding total cloud condensate
path.

[29] The total cloud condensate in SP-CAM is much
higher than the condensate in CAM for heavy precip-
itation events. The condensate paths in SP-CAM are
almost two orders of magnitude higher than those in
CAM at precipitation rates approaching 80 mm d ™'
(Figure 6a). The magnitude of this difference corre-
sponds well with the magnitude of differences in the
precipitation amount (Figure 6b) and probability distri-
bution (Figure 5b). In addition, the precipitation effi-
ciency of SP-CAM exceeds that in CAM by
approximately 20% for all precipitation intensities
higher than 30 mm d~' (Figure 6c). This shows that
the microphysics for the conversion of cloud condensate
to hydrometeors in SP-CAM produces precipitation
20% faster than the corresponding parameterizations
in CAM given identical amounts of cloud water in the
two models. However, the magnitude of this difference
in conversion rates is one to two orders of magnitude
smaller than the total differences in extreme precipita-
tion. These results suggest that improvements in extreme
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Figure 6. (a) Total could water path and (b) total

precipitation amount, accumulated in 4 mm d-1 precip-
itation intensity bins, for all the 3-hourly precipitation
events during JJA from 1996 to 2001 over CONUS. (c)
Precipitation efficiency f = precipitation rate / total grid
box cloud water path.

precipitation simulated by SP-CAM are caused prim-
arily by differences in the representation of moisture
advection and cloud condensation, the two remaining
subgrid processes. In particular, the moisture-advection
process is fundamentally different in CAM and SP-
CAM since the bulk of vertical water transport is due
to small-scale circulations explicitly represented on each
CRM’s grid.

4. Conclusion and Discussion

[30] This study has evaluated a new approach for
simulating extreme precipitation over large spatial scales
based upon replacing conventional parameteriza-
tions with CRMs in a global GCM. We perform two
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experiments to evaluate this approach contrasting the
standard Community Atmosphere Model (CAM) and a
“super-parameterized” CAM (SP-CAM) with the grid-
scale tendencies in both experiments constrained by
identical NCEP reanalysis fields. Under this framework,
the differences between the two experiments are solely
due to differences in subgrid process representations
between CAM and SP-CAM. While cloud microphysi-
cal processes are parameterized in both models, con-
vective updrafts and downdrafts are explicitly resolved
in SP-CAM at the resolution of the embedded CRM:s.
Gridded estimates of U.S. precipitation derived by the
CPC from rain gauge data are used to evaluate the
simulated statistics of extreme precipitation.

[31] Our results show that more extreme precipitation
is simulated by SP-CAM than by CAM over almost all
the CONUS region despite the fact that both models
simulate very similar distributions of mean precipita-
tion. Compared to the CPC estimates, SP-CAM is much
better agreement than CAM in both the spatial distri-
bution and intensity of extreme precipitation, especially
at very high rain rates (99.5% percentile) and short (3-
hourly) time scales. While the underestimation of
extreme precipitation by CAM, as well as other
GCMs, has been previously reported [e.g., Boyle and
Klein, 2010; Li et al., 2011Db], it is encouraging to see the
improvement with the implementation of CRM.

[32] A closer look at the probability distribution of
the precipitation shows that the distribution produced
by SP-CAM generally agrees with the CPC observations
better than that produced by CAM. SP-CAM simulates
more light precipitation and more heavy precipitation
and this improvement is especially pronounced at 3-
hourly time scales, although the ability of SP-CAM to
simulate very extreme precipitation (e.g., daily rates in
excess 60 mm d ') remains limited.

[33] Distinct differences in the CAM and SP-CAM
simulations are found in the two regions with the most
extreme precipitation: the southeastern U.S. and the
western coastal US. Over the southeastern US, SP-
CAM agrees considerably better with the CPC in the
distribution of precipitation than CAM at both the daily
and 3-hourly time scales. However, the difference between
CAM, SP-CAM, and CPC is much smaller at both of
these time scales in the western coastal US. Since con-
vective processes are a more important source of extreme
precipitation in the southeastern U.S. while the extreme
rainfall in the western coastal U.S. is largely due to large
scale air motions, these regional differences imply that
improvements obtained with SP-CAM are due primarily
to the enhanced treatment of subgrid-scale convective
processes. The seasonal variation of the precipitation
distribution confirms that convective processes are the
key in improvement of SP-CAM over CAM. During the
convective dominated summer season, SP-CAM clearly
outperforms CAM, particularly at 3-hourly time scales.
The summertime precipitation distribution simulated by
CAM is clearly less realistic than that simulated by SP-
CAM. This validates the expectation that the subgrid
convective processes, not the large-scale air motions, are
better represented by the SP-CAM.
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[34] The subgrid dynamics and physics are purported
to be better resolved at the cloud scale and hence
potentially more realistic in SP-CAM, Several subgrid
processes could potentially result in the more extreme
precipitation produced by SP-CAM, including moisture
advection, cloud condensation, and the conversion from
cloud water to precipitation. We show that SP-CAM
has somewhat higher cloud-water-to-precipitation con-
version efficiency than CAM for moderate to high
precipitation and that the greater efficiency contributes
to some of the improvement of SP-CAM in simulating
extreme precipitation. However, the major difference
between CAM and SP-CAM is due to SP-CAM’s ability
to produce much more cloud water during the heavy
precipitation events, although we are not able to quant-
ify the relative importance of moisture advection and
cloud condensation in the cloud condensate production
in the current experiments.

[35] Bridging between conventional GCMs and global
scale CRMs, SP-CAM appears to be a new promising
approach of simulating and projecting the changes and
trends of extreme precipitation in regions of the world
where convective processes are significant. With the
increased availability of computation resources, more
tests and assessments of SP GCMs or ultimately global-
scale CRMs should be carried out and the results would
provide key information to improve the physical repre-
sentations of extreme precipitation in the models for
robust simulations and projections.
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