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Abstract

Delayed bone healing and non-union occur in approximately 10% of long bone fractures. Despite intense investigations and progress in
understanding the processes governing bone healing, the specific pathophysiological characteristics of the local microenvironment leading to
non-union remain obscure. The clinical findings and radiographic features remain the two important landmarks of diagnosing non-unions and
even when the diagnosis is established there is debate on the ideal timing and mode of intervention. In an attempt to understand better the
pathophysiological processes involved in the development of fracture non-union, a number of studies have endeavoured to investigate the
biological profile of tissue obtained from the non-union site and analyse any differences or similarities of tissue obtained from different types of
non-unions. In the herein study, we present the existing evidence of the biological and molecular profile of fracture non-union tissue.

Keywords: non-union(s)� human tissue� bone morphogenic protein(s)�mesenchymal stem cell(s)

Introduction

Bone healing is a complex but well-orchestrated physiological
process which recapitulates aspects of the embryonic skeletal
development in combination with the normal response to acute tissue
injury [1, 2]. It encompasses multiple biological phenomena and is
margined by the combination of osteoconduction (scaffold forma-
tion), osteoinduction (timed cellular recruitment controlled by
multiple signalling molecules) and osteogenesis (new bone forma-

tion) [2–5]. In contrast to the scar formation, which occurs in the
majority of other tissue types in adults, bone has the innate capability
to repair and regenerate, regaining its former biomechanical and
biochemical properties [6–8].

During the bone healing process, a well-regulated series of over-
lapping processes take place in the cortical bone, the periosteum, the
bone marrow and the undifferentiated fascial tissue surrounding the
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fracture [10, 12, 13]. According to the histological appearance, two
basic types of bone healing have been identified [6, 7, 11]. The pri-
mary (direct) healing pattern occurs when anatomical reduction is
achieved, along with almost absolute stability [3, 15]. The disrupted
continuity of the bone in this type of healing is re-established with
regeneration of the Harvesian system and the lamellar bone, with
therefore no need of any remodelling [12, 15]. On the contrary, the
secondary (indirect) healing pattern that occurs in the vast majority
of clinical cases depends to the formation of fibrocartilaginous
callus [3, 6]. This process can be broadly divided into five stages:
that of inflammation, granulation tissue formation, soft callus
formation (hyaline cartilage), hard callus formation (woven bone) and
remodelling [6, 9, 11, 14].

In more detail, following an injury the bone architecture is dis-
rupted, as is the surrounding soft tissue continuity. Consequently, the
local blood vessels are torn, a haematoma is formed and the coagula-
tion cascade is activated [16]. This fracture haematoma contains cells
that originate from the peripheral and intramedullary blood, as well as
from the bone marrow [15]. They include inflammatory immune cells,
neutrophils, monocytes and macrophages that are activated by the
coagulation process; fibroblasts; and mesenchymal stem cells
(MSCs) [6, 16]. Prostaglandins, cytokines and other proteins are
abundant in this environment and contribute to the formation of a
complex microenvironment which has different effect on each cell
population [6]. These mediators are known to increase cellular migra-
tion, proliferation, enhance osteogenesis, collagen synthesis and
angiogenesis [6].

Subsequently, the necrotic or damaged pieces of bone are removed
and the fracture haematoma is gradually replaced by granulation tissue
[17]. The osteoprogenitor cells then proliferate and differentiate, leading
to deposition of collagen and formation of soft callus. An increased vas-
cularity and intense cell proliferation in the cambium layer of the perios-
teum is evident in this stage [13, 17]. Bone formation then occurs by
endochondral or intramembranous ossification. Initially, immature
woven bone characterized by coarse collagen fibres arranged in a hap-
hazard fashion is formed, but is then transformed to mature lamellar
bone (remodelling) in a slow process [13, 17]. During remodelling that
could last several months to years after fracture, both osteoblast and
osteoclast activity is intense, with bone resorption followed by apposi-
tional production of new bone by osteoblasts [17].

In vitro investigations to evaluate osteogenic activity include
measurements of a number of secreted substances (proteins)
including: alkaline phosphatase (ALP), osteonectin, osteopontin,
osteocalcin and bone sialoprotein. Alkaline phosphatase is a key
protein secreted by osteoblasts in response to osteogenic activity
and represents a marker of the earlier stage of osteoblast differenti-
ation [18]. Osteonectin, osteopontin and osteocalcin are non-collag-
enous bone matrix proteins, abundant in bone tissue [19]. They are
thought to be of great importance in bone development, growth,
turnover and fracture repair; along with osterix, as essential factor
for osteoblast differentiation and bone formation, they represent
markers of the later stage of differentiation [18–20]. Bone Sialopro-
tein, an extracellular matrix protein secreted by osteoblastic cells,
has also been reported to modulate osteoblast differentiation and
mineralization [21].

As already mentioned, the physiological sequence of fracture
healing depends on numerous endogenous and exogenous factors
[22, 23]. If this sensitive balance is altered in any way, complica-
tions may arise, such as delayed union or non-union. The criteria
for defining a non-union are not yet standardized [24]. FDA (Food
and Drug Administration) defines a non-union as the incomplete
fracture healing within 9 months following injury, along with
absence of progressive signs of healing on serial radiographs over
the course of three consecutive months [25]. In the United States
alone, it is estimated that 5–10% of all fractures are complicated
by non-union or delayed union [26], posing an enormous economic
burden to the healthcare system [27]. The tibia and the femur are
the most common long bones associated with the development of
non-union [28, 29].

According to the radiological and histological appearance, non-
unions are characterized as: hypertrophic, usually resulting from
insufficient fracture stabilization (extensive callus formation) [30];
and atrophic, where the fracture stabilization is adequate but there is
localized dysfunction in biological activity (little callus formation and
presence of a fibrous tissue-filled fracture gap) [30, 31]. Synovial
pseudarthrosis is considered as a different pathological entity, caused
by inadequate immobilization with or without the presence of infec-
tion [32]. Moreover, non-unions can be characterized according to
the presence of bacteria at the fracture site, as septic or aseptic non-
unions [33].

It is generally accepted that the progression to a non-union in
most cases represents a multifactorial process. Various risk factors
have been implicated with compromized fracture healing, including:
patient dependent factors such as age, gender, medical comorbidities
(i.e. anaemia, diabetes and hormone disorders), smoking and admin-
istration of pharmacological agents (i.e. steroids, non-steroidal anti-
inflammatories, etc.); and patient independent factors such as the
‘personality’ of the fracture, presence of infection and adequacy of
surgical technique [22, 25, 34].

The exact biological process leading to a non-union remains
obscure and it is well accepted that any planned interventions to
reverse this process should be well-timed and well-aimed to restore
both biological and mechanical deficiencies [3, 14, 31, 35]. It can be
postulated that by gaining a better understanding of the underlying
mechanisms leading to a non-union, both clinicians and scientists
would be allowed to target specific pathways independently, tailoring
treatment to each patient’s individual requirements [11]. Therefore,
the purpose of this review is to investigate the biological profile of tis-
sue obtained from the non-union site and to analyse any differences
or similarities of tissue obtained from different types of non-unions.
Moreover, it aims to evaluate whether any interventions on the tissue
obtained would influence in a positive aspect its biological character-
istics and bone repair responses.

Materials and methods

This review was conducted in accordance to the PRISMA guidelines

[36]. Data were documented according to a standardized protocol,

where objectives and inclusion criteria were specified in detail.
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Eligibility criteria

Studies selected were original articles fulfilling the following inclusion cri-
teria: (i) the tissue was obtained from a non-union site and examined or

processed for defining its characteristics and properties; (ii) only tissue

acquired from human subjects was included; (iii) articles were published

in English language and (iv) the full text of each article was available. All
studies that did not fulfil all eligibility criteria were excluded from further

analysis, whereas no publication date restrictions were imposed.

Information sources

Studies were identified by searching the following resources/databases:

PubMed Medline; Ovid Medline; Embase; Scopus; Google Scholar; and
the Cochrane Library, to retrieve all available relevant articles. The terms

used for the search included: non-union(s), nonunion(s), human, tissue,

bone morphogenic protein(s) (BMP’s) and MSCs. The identified articles

and their bibliographies including any relevant reviews were manually
searched for additional potential eligible studies.

Study selection

Two of the authors (M.P., I.P.) performed the eligibility assessment, in

an independent, unblinded and standardized manner. Most citations

were excluded on the basis of information provided by their respective
title or abstract. In any other case, the complete manuscript was

obtained, scrutinized by the two reviewers and included if fulfilling the

eligibility criteria. Any disagreement between reviewers was resolved by

consensus.

Extraction of data

Relevant information on author’s name, publication year, patient demo-

graphics, site and duration of non-union, type of the non-union, charac-

teristics and evaluation of tissue samples, culture properties, gene

expression, protein expression and effect of additional interventions was
carefully extracted.

Data analysis

All outcomes of interest were inserted in an electronic database and

outcome of different studies were documented. The characteristics of

tissue samples were then compared across different studies and the
effect of any intervention was evaluated.

Results

Literature search

The electronic search of the literature retrieved 1532 citations,
but only 21 of them met the selection criteria [14, 18, 19, 22, 30, 35,

37–51]. Another three eligible papers [32, 52, 53] were obtained from
the hand search of the references of the eligible studies and relevant
review articles, yielding 24 eligible studies for the final analysis
(Fig. 1) [14, 18, 19, 22, 30, 32, 35, 37–53].

All studies were published from 1954 to 2013 and included 467
cases (Table 1) [14, 18, 19, 22, 30, 32, 35, 37–53]. Some of the
authors used the same tissue bank for their analysis, but as different
investigations were performed in each study, they were included as
different studies [14, 19, 35, 39, 47].

Studies characteristics

The studies characteristics are outlined in Table 2 [14, 18, 19, 22, 30,
32, 35, 37–53]. The definition of non-union varied between studies,
but it was generally based on the radiographic appearance and clinical
examination. Most of the samples were obtained during revision
operations for the treatment of the non-unions.

Macroscopic structure of non-union tissue

Urist et al. was the first to hypothesize the mechanism of non-
union based on its macroscopic and microscopic characteristics
[53]. He reported that white soft tissue was interposed between the
bone segments, a finding later supported by other authors [51],
and explained this as fibrinoid degeneration of the connective tissue
in the interior of the callus [53]. With regards to synovial pseu-
darthrosis, a yellow frond-like material was found interposed
between the bone fragments, with clear serous fluid filling this
space in aseptic cases, whereas in septic cases murky fluid was
present [32].

Microscopic structure of non-union tissue

Histology
The histological findings of non-union tissue are summarized in
Table 3 [18, 19, 30, 32, 35, 40, 43–48, 50, 51, 53]. Where relevant
information was available, a direct comparison of histological findings
between atrophic and hypertrophic non-unions was attempted
(Table 4) [30, 40, 43, 44, 46, 50].

Immunohistochemistry
The immunohistochemical findings of non-union tissue are summa-
rized in Table 5 [14, 19, 35, 39, 44, 45, 47, 48, 52]. Interestingly,
BMP’s were present in the non-union tissue, although their expres-
sion was reduced [35, 39, 45]. Moreover, matrix metalloproteinases
(MMP’s) were also reported to be present in the non-union tissue,
not localized in a particular cell type or cellular component [14, 48].

Neuroimmunohistochemistry
Only one study performed neuroimmunohistochemical analysis
revealing paucity or total lack of peripheral innervation in the non-
union tissue [48].
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Analysis of vessel density
Blood vessels were present in cases of hypertrophic non-unions, with
a varying density (Table 6) [44, 48, 50]. When comparing however
atrophic and hypertrophic non-union tissue, an interesting finding
was that the number of fields containing no blood vessels, some
blood vessels and hot-spots, was very similar [44]. This was also
confirmed with immunohistochemistry studies, where no significant
difference was evident in the median vessel count between atrophic/
hypertrophic non-unions and normal unions [44]. Finally, histological
findings confirmed the presence of vascular tissue in both types of
non-unions (Table 3) [19, 40, 44, 46].

Electron microscopy
Two studies performed ultrastructural examination of the non-union
tissue by the means of electron microscopy (Table 6) [32, 50]. In a
study by Quacci et al., it was found that the non-union tissue con-
tained normal fibroblasts and chondrocytes [50]. In addition, Heppen-
stall et al. who examined synovial pseudarthrosis reported large
amounts of surface fibrin and densely packed collagen [32].

Bacteriology of the non-union

Palmer et al. analysed 34 samples obtained from patients with non-
unions [37]. Although eight samples had a positive conventional culture,

only four of 34 cases were negative following analysis of bacterial DNA
using a combination of Ibis molecular diagnostics and fluorescence in
situ hybridization techniques. Similarly, Gille et al. examined culture
negative samples of 23 patients and reported the presence of bacterial
RNA following analysis with PCR in two patients (8.7%) [38].

Evaluation of tissue sample

Cell surface protein expression
Three studies performed flow cytometry to determine the presence of
specific proteins on the cell surface (Table 7) [18, 30, 40]. The non-
union tissue was found to be positive for MSC’s related markers
CD13 [30], CD29 [18, 30], CD44 [18, 30], CD90 [30], CD105 [18, 30,
40] and CD166 [18, 30], but negative for haematopoietic markers
CD14 [18, 30], CD34 [18], CD45 [18, 30, 40] and CD143 [18, 30].

Cell senescence
Bajada et al. was the only author to report on the cell senescence of
non-union stromal cells [40]. According to his findings, from passage
I onwards, many of the cells developed an appearance that was less
bipolar and more spread along with the development of prominent
stress fibres. Further passages lead to prolonged culture doubling
times (phenotypic changes are consistent with the onset of cell
senescence). When examining the proportion of SA-b gal positive
cells, that was significantly greater in the non-union stromal cells
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when compared to the bone marrow stromal cells, but that did not
correlate with the patient’s age, number of previous operative proce-
dures or time between original fracture and operative management.

Cultures characteristics

Properties
Cell morphology, viability and proliferation are outlined in Table 8
[18, 30, 40–42, 46, 49].

Alkaline phosphatase activity assay – messenger RNA
evaluation
Alkaline phosphatase activity and messenger RNA (mRNA) evaluation
is outlined in Table 9 [18, 19, 30, 40–42, 46, 49, 50].

Osterix
Koga et al. has studied the effect of low-intensity pulsed ultrasound
on non-union cells cultured with the presence of BMP-7 and reported
no significant difference in the expression of osterix [18].

Osteocalcin
Osteocalcin expression is outlined in Table 10 [18, 19, 30, 40–42, 46].

Osteonectin
Osteonectin expression was investigated by Lawton et al. [19].
Osteonectin was found to be strongly positive in non-cuboidal and
induced osteoblasts of early woven bone, as well as cuboidal osteo-
blasts of later woven bone. Included osteoblasts and flattened lining
cells on lamellar bone were only weakly positive, whereas endothelial
cells were consistently negative.

Osteopontin
Lawton et al. investigated osteopontin expression during the different
stages of repair [19]. Osteopontin was found to be weakly positive in
non-cuboidal osteoblasts on early woven bone, and moderately posi-
tive in cuboidal osteoblasts on the surface of woven bone later in
repair. Multinucleate resorptive cells were associated with a strong
signal, in comparison with most flattened cells on the surface of
lamellar bone and endothelial cells that were negative.

Bone Sialoprotein
Iwakura et al. studied the expression of Bone Sialoprotein under oste-
ogenic conditions and found it to be higher in the non-union cells than
under undifferentiated conditions in the human dermal fibroblasts
(controls) [30].

Mineralization assay
Mineralization assay outcomes are outlined in Table 10 [18, 19, 30,
40–42, 46].

Dickkopf-1 expression
The expression of Dickkopf-1 (Dkk-1) was studied by Bajada et al.
[40]. According to his findings, both non-union and bone marrow
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stromal cells secreted Dkk-1 into conditioned medium at comparable
levels under control (i.e. non stimulated) conditions. However, Dkk-1
levels detected in stimulated non-union stromal cells conditioned
medium were markedly and significantly greater than those found in
stimulated bone marrow stromal cells cultures.

Gene expression
Several authors have examined the expression of different genes in
the non-union tissue. A summary of their results is outlined in
Table 11 [14, 22, 30, 42, 52] and Table 12 [47, 49].

Western blot assay
Western blot assay was used to detect the presence of specific pro-
teins in the tissue under examination. Fajardo et al. investigated the
presence of MMP’s and reported that MMP-7 and MMP-12 were
present in both non-union and mineralized callus tissue; however, the
signal intensity of both enzymes was stronger in the non-union
tissue [14]. In another study, he and his team examined the pres-
ence of BMP’s [39]. His finding included: BMP-2 was present in
both non-union and mineralized callus tissue; BMP-4 was detected in
non-union samples but decreased in healing bone samples; BMP-7
was detected in the healing bone but was absent in the non-union
samples.

Comparison between atrophic and hypertrophic non-union
tissue
Table 4 [30, 40, 43, 44, 46, 50] and Table 13 [30, 40, 42, 44, 46]
compare the characteristics of tissue obtained from atrophic and
hypertrophic non-unions.

Effect of interventions to the non-union tissue
Table 14 [18, 41, 46, 49] outlines the effects of either pulsed electro-
magnetic field stimulation or BMP’s on the non-union tissue.

Genetic predisposition to fracture non-union
Several authors have investigated the theory of genetic predisposition
to fracture non-union by analysing samples from peripheral venous
blood [33, 54] or bone callus [55], and comparing them with unevent-
ful healing fractures. Numerous polymorphisms such as those of two
specific SNPs (rs1372857, genotype GG and rs2053423, genotype
TT) were identified to be associated with an increased risk of develop-
ing non-union [33, 55, 56].

Discussion

Non-unions represent a significant public health problem and have
been associated with devastating consequences for the patients,
their family and the society as a whole [57]. The mechanism
behind the progression of a fracture to a non-union state is multi-
factorial and as a consequence the treatment can be very chal-
lenging. The treatment of non-unions has evolved over the years
from prolonged immobilization [53] to the use of biological
stimulation and polytherapy. Such a strategy attempts to addressTa
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all the elements of a compromized fracture healing response
[3, 31].

With regard to the macroscopic appearance of non-unions, a
common finding is the interposition of soft tissue between the bone
fragments [51, 53]. In aseptic non-unions, this tissue is whiter in col-
our, occasionally surrounded by clear fluid, compared to infected
non-unions where this tissue becomes more yellowish and frequently
surrounded by murky fluid [32]. The experience of the authors con-
firms the above findings and in fact the macroscopic appearance of
the non-union tissue is used as an additional marker for confirming/
suspecting an underlying septic process.

Regarding the culture characteristics of the non-union tissue,
there was an inconsistency in the reported findings. This may be
because of the different types of non-union tissue examined (i.e. atro-
phic and hypertrophic), as well as because of the different topography
of the non-unions from where samples were obtained. Finally, the
expression of several genes was reported to be different in non-union
tissue and controls [14, 22, 30, 39, 42, 52], a finding suggesting that
such differences may contribute to the pathogenesis of non-unions.

Several similarities were reported in the histological analysis of
atrophic and hypertrophic non-unions. The main types of tissues
involved include fibrous, cartilaginous and connective tissue in vary-
ing degree [30, 40, 43, 44, 46, 50]. In atrophic non-unions, bony
islands were not always present [30, 40, 43, 44, 46, 50], whereas

necrotic bone was more prevalent [44]. Generally, the cellular density
of atrophic non-unions was lower compared to hypertrophic non-
unions, while some areas were completely acellular [40, 46]. This
suggests a different cellular background, which may correspond to
the higher failure rate following revision surgery of atrophic non-
unions [31].

More importantly, Iwakura et al. showed that tissue derived from
hypertrophic non-unions contains MSC’s [30], a finding later con-
firmed by Koga et al. [18]. Similarly, Bajada et al. reported the pres-
ence of biologically active cells in atrophic non-union tissue, largely
CD34/CD45-negative, CD105-positive, with the potential to differenti-
ate to osteoblastic, adipogenic and chondrocytic lineages [40].

In contrast to the common preconception that atrophic non-
unions are relatively avascular and inert [44, 58], several authors
have confirmed the vascularity of the atrophic non-union tissue [19,
32, 40, 44, 46, 48, 50]. In addition, Reed et al. reported no significant
difference in the vessel density between atrophic non-unions, hyper-
trophic non-unions and healing fractures [44]. This biological finding
may be of importance, as it suggests that treatments targeting to the
enrichment and restoration of local angiogenesis could be applied as
an effective treatment modality in the clinical setting.

Low-grade infection represents a challenge for the treating sur-
geon, as laboratory markers (such as C-Reactive Protein, erythrocyte
sedimentation rate, white blood count) and conventional cultures of

Table 4 Comparison of histological findings between atrophic – hypertrophic non-unions

Type of tissue Atrophic Hypertrophic

Fibrocartilaginous tissue [40, 44] [43, 44]

Fibrous tissue [44, 46] [30, 44]

Cartilaginous tissue – [44, 46, 50]

Collagenous extracellular
matrix/connective tissue

[40, 46] [40, 46, 50]

Bone tissue No ossicles [46];
occasional bony
islands [40, 44]

No ossicles [30, 46]; bony
islands [43, 44, 50]

Necrotic bone More prevalent [44] –

Bone production Predominantly via the
endochondral route [44]

Bone formation by both endochondral
and intramembranous ossification [44]

Cells Generally oligocellular [46];
some areas acellular [40]

More cellular [46]

Fibroblastic: majority of cells [40]
Osteoclasts: occasionally [40]
Bipolar cells: majority of cells [40]
Cells with a stellate (possessed
multiple cytoplasmic processes)
or dendritic appearance [40]

Fibroblast-like [30]

Vascularization Well vascularized [40, 44];
few vessels [46]

Well vascularized [44]
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intra-operative samples can be negative [37, 38]. A possible explana-
tion for this phenomenon could be the presence of biofilms (bacteria
adhere on implants and tissues around the fracture site, forming
matrix-enclosed communities), which are resistant to “normal” con-
centrations of systemic antibiotics [37]. Palmer et al. and Gille et al.

have reported the benefit of utilizing molecular based techniques to
identify these infections [37, 38]. This can be very important, as dis-
tinguishing between septic and aseptic non-union is essential for
determining the course of treatment. However, limitations of their use
in clinical practice include: the fact that single-primer PCR can only

Table 5 Immunohistochemistry findings

Author Classification Immunohistochemistry

Fajardo [14] Hypertrophic MMP-7 and MMP-12 were found to be stained within the substance of the non-union
tissue and not localized within a particular cell type or cellular component. Both enzymes
were likewise not visualized in the bone callus specimens

Kwong [35] Aseptic non-unions,
only fractures with
areas of cartilage
were chosen

There was a significant reduction in BMP-2 and BMP-14 expression in cartilaginous areas
of non-healing fractures compared to healing fractures, but no statistical differences in the
endogenous expression of noggin and chordin (BMP inhibitors)

Fajardo [39] Hypertrophic BMP-7: absent in the non-union specimens but present in the fracture callus specimens.
BMP-2: positive immunostaining was restricted consistently to the fibrous tissue of the
non-union tissue

Kilian [52] Atrophic Immunostaining appeared in close vicinity to immature osteoid trabeculae. EDB+ fibronectin
immunostaining was negative for scFvL19 antibody

Reed [44] Hypertrophic No statistically significant difference in median vessel counts between atrophic,
hypertrophic and normal unions

Reed [44] Atrophic No statistically significant difference in median vessel counts between atrophic,
hypertrophic and normal unions

Kloen [45] Not mentioned The most consistent expression was that of BMP-2, BMP-4, and BMP-7 in the osteoblasts
lining the newly formed osteoid. The staining was cytoplasmic and, in certain specimens,
was specifically located in the Golgi apparatus, illustrating local production of BMP. No
correlation between the location of the delayed union or non-union and staining. In the
areas of dense fibrous tissue the presence of staining for all BMP isoforms tested was the
same as or less than that in the areas close to bone at all time-points after the fracture.
Expression of Type IA, Type IB, and Type II BMP Receptors: positive staining was
observed in the osteoblasts lining the ossified tissue, in the areas near the ossification
sites, and in the fibrous tissue. As observed for the BMP antibodies, there was a trend
towards decreased staining in areas remote from bone formation. There was no clear
trend between a decreased percentage of positive staining and an increased duration of
the non-union. Expression of pSmad1: in the osteoblasts lining the areas of reactive bone
formation as well as in osteoclasts, fibroblast-like cells and chondroblast-type cells

Lawton [19] Not mentioned (had callus) In normally healing fractures, mature osteoblasts on woven bone were negative for MGP
mRNA, but positive for osteonectin, osteopontin and osteocalcin mRNA molecules. In
non-unions, osteoblasts displayed a novel phenotype: they were positive for MGP mRNA,
in addition to osteonectin, osteopontin and osteocalcin mRNA molecules

Lawton [47] Not mentioned (had callus) In areas of new bone covered by plump osteoblasts, the matrix was either stained
uniformly or in a superficial zone, indicating the presence of collagen type III. Fibrous
tissue in the fracture gap was also immunostained positively

Santavirta [48] Eight cases delayed union;
two cases established
non-unions

Most inflammatory cells were CD4 T lymphocytes and their number was always twice that
of the CD8 positive cells. Staining for CD11b positive monocyte/macrophages showed in
all samples positive cells scattered in the connective tissue stroma with perivascular
enrichments. Mast cells were absent or very rare. Almost all resident cells seem to be
involved in tissue remodelling as suggested by their content of fibroblast-type MMP-1 and
its proteolytic activator MMP-3 or stromelysin, whereas MMP-8 was rare or absent
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detect one target organism [37]; concerns for oversensitivity with
regard to clinical relevance [37, 59] and associated cost implications.

Cell senescence is known to play an important role in healing and
tissue regeneration [60]. In essence, the senescence of adult stem
cells or more differentiated cells present in the non-union tissue may
represent one of the main mechanisms of the loss of the regenerative
potential, leading to healing impairment [60]. As already mentioned,
Bajada et al. reported that an increased proportion of non-union stro-
mal cells were senescent when compared to bone marrow stromal
cells, which did not correlate with the patient’s age [40]. However, the
pathways leading to this genomic damage and the contribution of
several factors (such as repeated cellular replication and the conse-
quent cell stress [40]) are yet to be determined.

Bone morphogenic proteins are some of the major signalling mol-
ecules, promoting the differentiation of MSC’s into chondrocytes or

osteoblasts [12, 13]. Kloen et al. reported evidence of ongoing BMP
signalling in the non-union tissue, where endogenous BMP’s, their
receptors and molecules involved in their signal transduction were
present in the tissue [45]. Moreover, others have suggested that
imbalance in the expression of BMP’s and their inhibitors Drm (grem-
lin), follistatin, noggin and chordin, might account for the impaired
bone forming ability [35, 39]. When the non-union tissue was cul-
tured in the presence of exogenous BMP, the MSC’s differentiated
into functional osteoblasts, with an increased bone nodule formation
[41, 49]. Treatments regulating concentrations of BMP’s have already
been used in clinical practice with encouraging results (such as BMP-
2 and BMP-7 [31]). Future research is needed to investigate the
effects of similar agonist molecules or their inhibitors.

Matrix metalloproteinases are proteases that play an important
role in bone remodelling and bone repair. When the MMP’s or their

Table 6 Tissue examination

Author Analysis of vessel density Electron microscopy (Ultrastructural Examination)

Reed [44] The number of fields containing no blood
vessels, some blood vessels and hot-
spots was very similar in the atrophic and
hypertrophic non-union groups

Not applicable

Santavirta [48] Samples mostly consisted of vascularized
connective tissue of varying density

Not applicable

Quacci [50] A lot of blood vessels were present in the
tissue, often appearing free of blood and
occluded by thrombi at different
organization stages

Fibroblasts and chondrocytes found in the non-union tissue seemed
normal, with a good secretion apparatus. The cell membranes were
able to produce matrix vesicles. Hydroxyapatite crystals could be
observed in the cell matrix or inside matrix vesicles

Heppenstall [32] Not applicable (5 patients) Large amounts of surface fibrin. Some cells had profuse
rough endoplasmic reticulum and resembled fibrocytes or Type B
synovial lining cells. Some of these cells contained prominent lipid
droplets and intermediate filaments. There were also phagocytic
cells with vacuoles containing granular and cellular debris,
resembling to Type A lining cells or monocyte-macrophages.
Surrounding the cells were some necrotic cells, clusters of apatite
crystals and occasional clumps of collagen fibres infiltrated with
more fibrin-like material. Deeper was more densely packed
collagen

Table 7 Cell surface protein expression

Author Cell surface protein expression (flow Cytometry)

Koga [18] Strongly positive for the MSC’s related markers CD29, CD44, CD105 and CD166 but negative for
the hematopoietic markers CD14, CD34, CD45 and CD133

Iwakura [30] Positive for MSC’s related markers CD13, CD29, CD44, CD90, CD105 and CD166, but negative
for hematopoietic markers CD14, CD34, CD45 and CD133

Bajada [40] Less than 1% of NUSC and BMSC were immunopositive for CD34 and CD45, while
78% � 14% (mean � SD) of NUSC and 92% � 7% (mean � SD) of BMSC were immunopositive for CD105

MSC: mesenchymal stem cells; NUSC: non-union stromal cells; BMSC: bone marrow stromal cells.
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inhibitors are disrupted, disorders of fracture healing may occur
[14]. In a study by Fajardo et al., MMP-7 and MMP-12 genes were
reported to be significantly up-regulated within the tissue of hyper-
trophic non-unions [14]. When the hypertrophic non-union tissue
was examined in vitro, it was found that the same proteins directly
bounded to and degraded BMP-2, a highly osteoinductive agent
[14]. This action of the MMP’s may be responsible for the impaired
fracture healing in the case of hypertrophic non-unions, even
though the same finding may not correlate to atrophic fracture
non-unions.

Several reports suggest that low-intensity pulsed ultrasound treat-
ment stimulates bone healing, although the mechanism behind this
remains obscure [61, 62]. When applying low-intensity pulsed ultra-
sound in non-union cells cultures, it was found that there was a sig-
nificant effect on the osteogenic differentiation rather than
proliferation of non-union tissue cells [18]. In addition, growth factor
synthesis and release was stimulated [46]. The use of low-intensity
pulsed ultrasound can therefore improve union rates and accelerate
the healing process.

Dickkopf-1 is a secreted protein acting as an antagonist of the
Wnt signalling pathway, suppressing fracture repair by inhibiting
osteogenic differentiation [40, 63]. Bajada et al. has compared the
levels of Dkk-1 in atrophic non-union stromal cells and bone marrow
stromal cells, reporting an increased secretion by the non-union cells,
associated with reduced osteoblastic differentiation [40]. When they
treated the bone marrow stromal cells with recombinant human Dkk-
1 or conditioned medium from the non-union cells, the effect on oste-
ogenic differentiation remained inhibitory [40]. This finding suggests
that Dkk-1 may play an important role in the development of non-
unions, however further research is needed to shed more light on the
underlying mechanism of an increased Dkk-1 production by non-
union cells.

Another important element of progression to non-union that
needs to be discussed is genetic predisposition. Several authors have
investigated this theory by analysing samples from peripheral venous
blood [33, 54], and bone callus [55] and comparing them with
uneventful healing fractures. Numerous polymorphisms such as
those of two specific SNPs (rs1372857, genotype GG and rs2053423,
genotype TT) were identified to be associated with an increased risk
of developing non-union [33, 55, 56].

The herein study has some limitations. First, it excludes studies
involving experimental animal models. However, the outcome of
such studies should be treated with caution, as they cannot be
translated directly to the clinical scenarios. Second, there is an
inherent inconsistency in defining non-union, and as such the tim-
ing of tissue harvesting would be slightly different, which might be
responsible for some of the differences reported among similar
studies. Moreover, as the term MSC’s is fairly recent, studies per-
formed in earlier years used a different terminology for the same
cells, such as osteoprogenitors, skeletal stem cells, etc. As a result,
their findings could not be compared to those of more recent
studies.

Strengths of the study include the systematic approach of analy-
sing the results and the detailed careful analysis of the data obtained.
Collectively, this manuscript presents our current understanding ofTa

bl
e
10

.
C
on

tin
ue
d

A
ut
ho
r

C
la
ss
ifi
ca
ti
on

In
te
rv
en
ti
on

O
st
eo
ca
lc
in

M
in
er
al
iz
at
io
n
as
sa
y

H
of
m
an
n
[4
2]

H
yp
er
tr
op
hi
c

N
ot

ap
pl
ic
ab
le

N
ot

ap
pl
ic
ab
le

Th
e
m
in
er
al
iz
at
io
n
of

ex
tr
ac
el
lu
la
r
m
at
ri
x

(C
FU

-M
)
w
as

ve
ry

lo
w
in

hu
m
an

no
n-
un
io
n
os
te
ob
la
st

cu
ltu
re
s
th
at

w
er
e

cu
ltu
re
d
un

de
r
th
e
sa
m
e
cu
ltu
re

co
nd
iti
on
s
an
d
w
as

si
gn
ifi
ca
nt
ly
le
ss

th
an

th
at

in
hu

m
an

os
te
ob
la
st

cu
ltu
re
s

G
ue
rk
ov

[4
6]

A
tr
op

hi
c:

4;
hy
pe
rt
ro
ph

ic
:
3

P
ul
se
d
el
ec
tr
om

ag
ne
tic

fie
ld

st
im
ul
at
io
n

O
st
eo
ca
lc
in

w
as

ex
pr
es
se
d
at

ve
ry

lo
w

le
ve
ls

by
th
e
cu
ltu
re
s,

in
di
ca
tin
g
th
e

fo
ur
th

pa
ss
ag
e
cu
ltu
re
s
co
nt
ai
ne
d
fe
w
,
if

an
y,

co
m
m
itt
ed

os
te
ob
la
st
s.

P
ul
se
d

el
ec
tr
om

ag
ne
tic

fie
ld

st
im
ul
at
io
n
di
d
no
t

af
fe
ct

pr
od

uc
tio
n
of

os
te
oc
al
ci
n
by

no
n-

un
io
n
ce
lls
.

N
ot

ap
pl
ic
ab
le

La
w
to
n
[1
9]

N
ot

m
en
tio
ne
d

(p
re
se
nc
e
of

ca
llu
s)

N
ot

ap
pl
ic
ab
le

W
ea
kl
y
po

si
tiv
e
in

fla
tt
en
ed

lin
in
g
ce
lls

on
la
m
el
la
r
bo
ne
.
P
os
iti
ve

in
m
ul
tin
uc
le
at
e

re
so
rp
tiv
e
ce
lls
.
C
on
si
st
en
tly

ne
ga
tiv
e
in

en
do

th
el
ia
l
ce
lls
.

N
ot

ap
pl
ic
ab
le

ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

707

J. Cell. Mol. Med. Vol 19, No 4, 2015



the molecular and cellular pathways that can be involved in the
development of non-union. Direct recommendations to be applied in
the clinical setting cannot be safely made with the available evidence.
We deem essential that a widely accepted definition of the timeframe
for non-unions should be set allowing an earlier intervention in such
cases. The conceptual frame of the “diamond concept” for a success-
ful fracture healing response should be considered in cases where
bone repair is desirable [5]. Cellular therapies and inductive mole-
cules with scaffolds have a role to play in future treatment strategies,
as would do tissue engineering approaches [64]. Although still under
intense investigation genetic therapy could be another treatment
option in the foreseeable future.

Conclusion

In conclusion, failure of fracture healing and progression to non-
union represents a not uncommon clinical complication carrying
devastating consequences. The histopathological appearance of non-
union tissue between atrophic and hypertrophic non-union indicates
that both types of non-unions are not avascular and contain a
potentially active population of MSC’s. Pathways believed to be
involved in their pathogenesis include an imbalance in the expression
of BMP’s and their inhibitors, and an up-regulated expression of sev-
eral substances such as that of the MMP’s and Dkk-1which can block

Table 11 Gene expression

Author General gene expression Real-time PCR

Zimmermann [22] Genes expressed more than two times than in
normal tissue: CDO1; PDE4DIP; COMP;
FMOD; CLU; FN1; ACTA2; TSC22D1

Not applicable

Fajardo [14] MMP-7 and MMP-12 mRNAs were significantly
elevated in the non-union tissue when
compared with local mineralized callus from
the same site

MMP-7 and MMP-12 were the only enzymes (of 53 examined)
significantly elevated in non-union tissue when compared with
local mineralized callus from the same site

Iwakura [30] Not applicable It showed the expression of mRNA of Col II, Col X, SOX9 and
aggrecan chondrogenic conditions after a 21-day induction.
Under adipogenic conditions after a 21-day culture period, it
showed the expression of LPL and PPAR-g2 (higher than under
undifferentiated conditions in the control group)

Fajardo [39] BMP gene expression in healing bone
displayed several up-regulated genes between
the two tissues

BMP antagonist genes (DRM, follistatin, noggin): increased in
non-union tissue when compared to fracture callus tissue. BMP
receptors (R1A, R1B, R2): expressed but did not demonstrate
any significant differences. BMP-4: up-regulated in non-union
tissue when compared to the fracture callus tissue. RNA levels
of the BMP antagonists Drm/Gremlin, follistatin and Noggin:
up-regulated in the non-union tissues. BMP-7: increased in the
fracture callus tissue

Hofmann [42] Gene terms significantly overrepresented in
human non-union osteoblast cultures: skeletal
development; response to wounding; organ
morphogenesis; vasculature development;
proteinaceous extracellular matrix;
extracellular space; cytokine activity;
glycosaminoglycan binding; growth factor
activity; insulin-like growth factor binding.
Genes significantly down-regulated in human
non-union osteoblast cultures: IGF-2, FGF-1,
FGF-receptor 2 (FGF-R2), BMP-4, TGF-b2,
PDGF, Wnt-induced proteins (WISP2 and 3),
b-catenin and prostaglandin E2 receptor EP4

Confirmed the results of the microarray, especially regarding the
down-regulation of some genes involved in osteoblast
differentiation and bone metabolism

Kilian [52] Not applicable In qualitative and quantitative RT–PCR, EDA+ fibronectin mRNA
was detectable at low levels. in none of the seven non-union
samples, EDB+ fibronectin mRNA transcription was detected by
qualitative and quantitative PCR
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Table 12 Collagen gene expression

Author Intervention Type I Type II Type III

Lawton [47] Not applicable Signal for procollagen type I
mRNA over fibroblasts and
over osteoblasts on woven
bone was uniformly strong
in most non-unions and
normal fractures

Not applicable Non-unions: in the zone of new
bone formation and the interface
zone, a population of surface and
included osteoblasts was strongly
positive for the procollagen type
III mRNA signal; osteoblasts in the
old zone were usually negative,
while the gap zone contained
osteoblasts only rarely; fibroblasts
were frequently positive in the gap
zone and interface. Normal
fractures: procollagen type III
mRNA was seen in the very early
granulation tissue, where most of
the positive cells were
mesenchymal spindle cells (a cell
population that includes osteoblast
precursors; osteoblasts were in
the vast majority negative; small
areas of fibrous tissue in which
fibroblasts were either negative or
weakly positive

Boyan [49] BMP (bovine or dog) There was no stimulation of
Type I collagen message in
the non-union fibrocartilage
cells. Non-union periosteal
cells were found to be
more strongly activated by
BMP

The increase in
mRNA levels of
Type II collagen
was not significant
compared to
controls

Not applicable

Table 13 Comparison between atrophic/hypertrophic non-union tissue

Type of analysis Atrophic Hypertrophic

Histology Table 4

Immunohistochemistry/vessel
density

No difference in the median vessel count between atrophic/hypertrophic non-unions [44]

Cell surface antigen profile CD 105 [40] CD13, CD29, CD44, CD90, CD105, and CD166 [30]

Cells formed a uniform
monolayer of elongated
cells that had few cellular
extensions [46]

Also consisted of elongated cells, but the cells were
more cuboidal, having cellular extensions in a
multilayer [46]

Cell proliferation No significant effect of pulsed electromagnetic field stimulation [46]

ALP activity No differences between cultures from atrophic or hypertrophic non-unions [46]

Osteocalcin Low levels [46] Low levels [46]; higher than in human dermal
fibroblasts [30]

Mineralization assay Reduced compared to bone marrow stromal cells [40] Higher than haematoma cells [30]; lower than
human osteoblasts (normal healing) [42]
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the BMP and Wnt pathways respectively. Immerging evidence also
support a genetic predisposition in this patient group.
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