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Abstract

Short-actingb agonists (e.g., albuterol) are themost commonlyusedmedications for

asthma, a disease that affects over 300 million people in the world. Metabolomic

profiling of asthmatics taking b agonists presents a new and promising resource for

identifying themolecular determinants of asthmacontrol. Theobjective is to identify

novel genetic and biochemical predictors of asthma control using an integrative

‘‘omics’’ approach. We generated lipidomic data by liquid chromatography tandem

mass spectrometry (LC-MS), usingplasmasamples from20 individualswithasthma.

Theoutcomeof interestwas abinary indicatorof asthmacontroldefinedby theuseof

albuterol inhalers in the preceding week. We integrated metabolomic data with

genome-wide genotype, gene expression, and methylation data of this cohort to

identify genomic and molecular indicators of asthma control. A Conditional

Gaussian Bayesian Network (CGBN) was generated using the strongest predictors

from each of these analyses. Integrative and metabolic pathway over-representation

analyses (ORA) identified enrichment of known biological pathways within the

strongest molecular determinants. Of the 64 metabolites measured, 32 had known

identities. The CGBNmodel based on four SNPs (rs9522789, rs7147228, rs2701423,

rs759582) and two metabolites—monoHETE_0863 and sphingosine-1-phosphate

(S1P) could predict asthma control with anAUCof 95%. IntegrativeORA identified

17 significantly enriched pathways related to cellular immune response, interferon

signaling, and cytokine-related signaling, for which arachidonic acid, PGE2 and S1P,

in addition to six genes (CHN1, PRKCE,GNA12,OASL,OAS1, and IFIT3) appeared

to drive the pathway results. Of these predictors, S1P, GNA12, and PRKCE were

enriched in the results from integrative andmetabolic ORAs. Through an integrative

analysis of metabolomic, genomic, and methylation data from a small cohort of

asthmatics, we implicate altered metabolic pathways, related to sphingolipid

metabolism, in asthma control. These results provide insight into the pathophysiol-

ogy of asthma control.
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Introduction

Asthma affects over 300 million individuals in the world [1],

and the primary reliever medications used in asthma are

short-acting b2 agonists (SABA, e.g., albuterol) which relax

bronchial smooth muscle by activating b2-adrenergic

receptors. Use of SABA is a recognized marker for

uncontrolled asthma [2], which leads to asthma exacer-

bations, the most common health-related cause of lost

school and work days and contributes to the more than $50

billion spent annually on asthma [3, 4]. Asthma is a complex

disease with both environmental and genetic components [5,

6]. Although a number of genetic determinants have been

identified [7], much remains to be understood about how

these variants impact the maintenance and control of the

disease, and how these can lead to exacerbations. Metab-

olomics, the systematic analysis of small molecules, has been

successfully used to identify new disease biomarkers [8–10].

Metabolomics provides an integrated profile of biological

status reflecting the net results of genetic and environmental

interactions [11, 12], thereby making this a promising new

strategy to examine in the context of asthma control, an

approach that has already been advocated in the litera-

ture [13]. In contrast to transcriptional, translational, and

post-translational changes, metabolites have the distinct

advantage of being more proximal markers of disease

processes. Metabolic profiling can also capture the history of

past exposures such as hypermethylation and response to

hypoxia, making this approach particularly relevant to

asthma [14]. Therefore, metabolomic analysis offers a novel

approach for understanding asthma control.

To date, few metabolomics studies have been performed

with asthma [14–21]. Furthermore, none of these studies

utilized other forms of genomic data to inform their

findings. The objective of this study was to identify novel

predictors of asthma control using an integrative ‘‘omics’’

approach that integrates genotype, expression, metabolo-

mics, and methylation profiling data.

Materials and Methods

Study population

The Asthma BioRepository for Integrative Genomic Explo-

ration (Asthma BRIDGE) is an open-access collection of

cDNA and DNA from primary asthma-relevant cell types

and immortalized cell lines from more than 1,450 well-

characterized subjects participating in ongoing genetic

studies of asthma, and an accompanying database of

phenotype, genome-wide SNP genotype, gene expression,

and methylation data. For this analysis, we obtained samples

for 20 individuals from the Childhood Asthma Research and

Education (CARE) Network cohort, a subset of Asthma

BRIDGE [22]. The CARE Network enrolled children aged

1–18 years with a confirmed diagnosis of asthma or wheezing

illness [23]. Details relating to the study protocols were

previously published [22]. We stratified our cohort into

patients with uncontrolled and controlled asthma based on

self-reported use of SABA inhalers in the week preceding

blood draw for Asthma BRIDGE genomic assays, as an

indicator of asthma control.

Data

Metabolomic profiling

We used liquid chromatography tandem mass spectrome-

try (LC-MS) to measure lipid metabolites. Quadrupole

orbitrap mass spectrometers (two Q Exactive and one

Exactive Plus MS, Thermo Scientific) enabled the

measurement of high-resolution metabolites of both

known and unknown identities in the same experiment.

Targeted datasets contained lists of metabolites of known

identity and the integrated LC-MS peak areas measured in

each sample. Targeted datasets contained a large number

of de-isotoped LC-MS peaks per sample that were indexed

by mass to charge ratio and retention time. A subset of

these signals was readily identified by comparison to

reference standards and reference samples. Lipids were

extracted from plasma (10mL) using 19 volumes of 100%

isopropanol. Extracts were separated using reversed phase

chromatography and full scan MS data were acquired in

the positive ion mode. A total of 68 metabolites were

generated, of which two had no variation, and another two

had missing values for more than half the subjects. These

metabolites were removed before further analysis, leaving

64 metabolites successfully assayed. Principal component

analysis (PCA) identified four subjects as possible outliers;

these were included in subsequent analyses when

appropriate.

Genome-wide gene expression profiling

Existing data were obtained through Asthma BRIDGE.

Stimulated CD4þ T-cell lymphocyte RNA samples from

CARE were previously processed as part of a group of 2,317

samples of diverse tissues from within Asthma BRIDGE as

follows. The samples were assayed for 47,036 different

transcripts using Illumina Human HT-12 v4 arrays, as per

manufacturer’s protocol (Illumina, Inc., San Diego, CA).

After removing 27 outlier probes, the expression values of

the remaining 47,009 probes were log2-transformed and

quantile-normalized. Among the 2,068 non-duplicate

Asthma BRIDGE samples with good signal-to-noise ratios

(p95/p05>6), 16 were CARE samples that had also been

successfully assayed for each of 64 metabolites. PCA of gene

expression identified two CARE outliers, which were

removed from related downstream analyses.
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We tested the association between each metabolite with

each of the 47,009 mRNA probes, adjusted for age and

gender, using the limma Bioconductor package for the R

programming language [24]. Association findings that were

due to high leverage points were removed. Analyses were

adjusted for multiple testing using the False Discovery

rate (FDR) [25].

Genome-wide methylation profiling

Existing data were obtained through Asthma BRIDGE.

Genome-wide DNA methylation data was obtained on

CD4þ T-cell samples using the Illumina HM450 methyla-

tion platform as part of the Asthma BRIDGE cohort of 360

CD4þ samples and 690 whole blood samples. Each array

assesses methylation at 485,577 CpG sites, including 473,921

autosomal and 11,656 CpG sites from chromosomes X or Y.

Quality control (QC) steps were performed by the Channing

Division of Network Medicine, and applied norm-exponen-

tial background correction on raw data reads for each sample

plate. Then the norm-exponential corrected plates were

combined and four samples that were outliers were removed.

Finally dye-bias correction and further quantile normaliza-

tion on the above data set was applied.

Thirteen CARE subjects had successful methylation

assays. We then removed 43 methylation probes that had

missing values for more than half of the remaining subjects.

We further excluded 3,091 cross hybridizing probes and 65

SNP probes, resulting in a total of 482,378 methylation

marks (135,464 type I CpG sites and 346,914 type II CpG

sites). Some subjects had duplicate arrays of CD4þ
methylation data; in these cases we analyzed only the array

demonstrating the largest inter-quartile range (IRQ). We

performed PCA to identify possible batch effects. The first

two principal components (PCs) were clearly related to

gender and plate effects, which were subsequently adjusted

for in the analyses. For each of the 64 metabolites, we tested

the association of each CpG site, adjusted for age and the first

two methylation principal components, with each metabo-

lite. Type I and type II probes were analyzed separately using

statistical routines from the limma package available

through Bioconductor [24]. For each metabolite and for

each type of CpG sites, p-values for metabolite–CpG

association will be adjusted for multiple testing so that false

discovery rate (FDR) will be controlled (<0.05).

Genome-wide genotyping

We obtained data on genome-wide SNPmeasurements from

the Asthma BRIDGE. Genotyping was originally performed

through the SNP Health Association Resource (SHARe)

Asthma Resource Project (SHARP), by Affymetrix Inc.

(Santa Clara, CA), according to manufacturer’s protocol

using the Affymetrix Genome-Wide Human SNP Array 6.0.

This genotype data are archived on the database of

Genotypes and Phenotypes (dbGaP) (http://www.ncbi.

nlm.nih.gov/gap/) for all CARE participants. This resulted

in 400,741 high-quality SNPs, which were included in our

association tests.

We performed linear association tests with all 64

metabolites and all 400,741 SNPs under an additive model

using PLINK [26] (v1.07) on the full cohort of 20 CARE

subjects. Missing metabolite values were imputed with the

mean value for that metabolite, to bias toward the null

hypothesis while preserving as much of the cohort as

possible. Association tests were modeled as linear regressions

with metabolite concentration using age and sex

as covariates.

Table S8 shows if a subject had genotype data, metabolite

data, expression data, or methylation data. There are nine

samples having all four types of data.

Network methods

Overview

Figure 1 summarizes our overall integrative genomic

approach. We first performed genome-wide analyses using

SNPs, mRNA gene expression probes, and CpGmethylation

sites for all 64 metabolites as phenotypic outcomes. The top

association results from each of these analyses, all

metabolites, and the asthma control phenotype were used

as input into the integrative genomics analyses. Two such

analyses were performed. The first analysis was a statistically

driven conditional Gaussian Bayesian Network (CGBN)

analysis, where variants that contribute to the predictive

accuracy of the asthma control phenotype were identified.

The second analysis was a knowledgebase-driven overrepre-

sentation analysis (ORA) that identified key pathways that

are enriched in individuals with poorer asthma control.

Bayesian networks

The expression, SNP, and methylation probes were each

ranked according to most significant p-value. The top 20

associations to one or more metabolites were selected in

combination with the 64metabolites to be used in a Bayesian

network analysis. SNPs in tight linkage disequilibrium

(D0 ¼ 1) were filtered, and missing CpG methylation values

were imputed with the mean value, to bias toward no

association. Continuous variables were then normalized.

This resulted in a dataset of 64 metabolites, 19 SNPs, 19 CpG

methylation sites, and 20 mRNA gene expression probes, as

well as age and sex, combined with the asthma control

phenotype for the full 20 CARE patients.

A conditional Gaussian Bayesian network (CGBN) was

learned from this data using the CGBayesNets package in

MATLAB version R2013b (MATLAB, The Mathworks Inc.,

CGBayesNets [27], www.cgbayesnets.com). CGBN is a
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machine learning technique that makes a network model of

the data using the statistical (Bayesian conditional indepen-

dence) relationships present in the dataset [28]. Similar

CGBN methodologies have been effective in generating

predictive models of intensive care-unit mortality from

metabolomic profiling [29]. The CGBN was learned using a

low uniform Dirichlet prior (and g prior for continuous

nodes) to keep the number of edges low; a technique that has

been shown to be effective in prediction in genomic

contexts [30] and induces a sparse network with a high

complexity penalty [31]. We then performed 250 bootstrap

realizations of the dataset; a technique that helps correct for

small data samples by reducing the effect of outliers within

the population. For each bootstrap realization, we learned an

exhaustive network using a greedy search thatmaximized the

posterior likelihood of the data given the network. This

algorithm starts with an empty network and at each step adds

the edge that maximized the posterior likelihood, out of all

possible edges. Further details can be found in McGeachie,

Chang, and Weiss [27]. To obtain a final consensus network

from the bootstrap networks, we started with an empty

network and added edges sequentially starting with the most

commonly occurring in bootstrap samples, and proceeding

to less commonly occurring edges, and in each case

measured the area under the curve (AUC) of the network

so obtained by using fivefold cross validation (CV) on the 20

samples. The network that maximized the CV AUC

(AUC¼ 95.31%) was obtained using an edge threshold of

10.4%, a network that included edges occurring in at least

10.4% of all bootstrap sample networks.

Metabolite pathway analysis

For pathway over-representation analysis (ORA) of case-

control metabolite data manner, Metabolomics Pathway

Analysis (MetPA) (http://metpa.metabolomics.ca/MetPA/

faces/Home.jsp) [32] was used. MetPA evaluated a list of the

64 metabolites and their log-normalized concentration data

in the 20 samples, by comparing individuals that used rescue

albuterol at least once (cases) to those who did not use

albuterol (controls). Metabolites were evaluated for pathway

enrichment using the ‘‘Homo sapiens’’ library with the

default parameters (‘‘Global Test’’ and ‘‘Relative Between-

ness Centrality’’) specified as the algorithms for pathway

enrichment and topological analysis, respectively. The

resulting metabolic networks were represented as directed

graphs, and centrality measures of a metabolite within a

given network were then applied to estimate the relative

importance of that metabolite in the network. For

topographical analysis, the ‘‘pathway impact’’ score for a

given metabolite was then calculated as the sum of the

Figure 1. Overviewof study design. Directed relationships between top genomic predictors, topmetabolites, and asthma control phenotypeswere used
as input for an integrative genomics pipeline. The two outputs of this pipeline were relationships of pathways and Bayesian predictors, respectively, with
asthma control. IXG, integrative genomics; CGBN, conditional Gaussian Bayesian networks; ORA, over-representation analysis.
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importance measures of that metabolite normalized by the

sum of importance measures for all nodes within each

pathway. Univariate tests were then performed to evaluate

the distribution of individual metabolite concentrations in

individuals with good and poor asthma control.

Integrative pathway analysis

To integrate metabolomic and gene expression data

simultaneously, ORA and Wilcoxon pathway enrichment

analysis (WEA) were performed using Integrated Molec-

ular Pathway Level Analysis (IMPaLA) (http://impala.

molgen.mpg.de/) [33]. We selected the top 20 gene

probes based on their association p-values with any of the

given metabolites. A list of the 64 metabolite IDs, gene

IDs, and fold differences in metabolite concentrations

and gene expression values for cases and controls were

uploaded into the IMPaLA webserver, specifying the

metabolites and genes present across all pathways in the

database as the background list for comparison. For ORA,

the hypergeometric distribution with BH-adjustment of

p-values was applied to determine the significance of

pathways that overlap with the metabolite and gene query

lists. For WEA, the Wilcoxon test was used. Joint p-values

for genes and metabolites were calculated for each

pathway using Fisher’s method. For both approaches,

only pathways with one or more overlapping gene and

metabolite pair were evaluated. Pathways with unadjusted

p-values <0.05 were considered significant. p-Values were

corrected for multiple testing using the FDR (threshold of

0.05).

Genes were also mapped to pathways independently of

phenotype information, using WebGestalt (http://bio-

info.vanderbilt.edu/webgestalt/) webserver tools [34],

specifying the human genome as a reference list, and

using the hypergeometric distribution with BH-adjust-

ment to evaluate the significance of pathways. To

investigate pharmacogenetic pathways, pathway analysis

was performed using WebGestalt to query the drug-

associated genes annotated in the database,

PharmGKB [35]. For all results, pathways with unad-

justed p-values <0.05 were considered significant.

Graphs of gene networks were generated using

GeneMania [36].

In silico validation using the connectivity map

The Connectivity Map (www.broad.mit.edu/cmap)

(CMAP) is a publicly available, searchable database of

gene expression profiles collected from treatment of

human cell lines with small molecules [37]. A gene-

expression signature for ‘‘salbutamol’’ (a.k.a. albuterol)

was generated using data from two independent experi-

ments conducted in PC3 cells, specifying probe expression

threshold values of 0.67 to �0.67 (corresponding to

twofold changes in gene expression) for up- and down-

regulated probe sets. This signature was used to query

CMAP for compounds with correlated effects on gene

expression, emphasizing the lipid metabolites evaluated in

this study. A gene signature for ‘‘dinoprostone’’ (a.k.a.

PGE2) was similarly generated, and genes within the

signature were then evaluated for metabolite pathway

enrichment using WebGestalt.

Results

Description of the study cohort

Descriptive and clinical characteristics of the cohort are

shown in Table 1, stratified by SABA use. A cutoff of zero

versus one or more uses of SABA to identify cases and

controls was a natural point of dichotomy for a pharmaco-

logical outcome. Subjects in the two categories did not differ

significantly, apart from SABA use.

Table 1. Demographic and descriptive characteristics of study subjects.

Frequency of albuterol use in last 7 days

None (n¼ 12) �1 (n¼ 8) p-value

Age (mean, range) 13.3 14.9 0.77
Age at asthma symptom onset (mean, range) 2.5 3.8 0.79
Gender (% female) 25 50 0.25
Race (% self-reported European ancestry) 100 100 1.00
Allergic rhinitis (%) 50 88 0.09
Eczema (%) 42 63 0.36
Food allergy (%) 33 25 0.69
Use of inhaled corticosteroids in last 7 days (%) 42 50 0.71

Baseline characteristics of study subjects are shown, stratified by exacerbation phenotype. p-Values are computed using x2 test of Fisher exact test, as
appropriate.
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Metabolite profiling

The characteristics of all 64 lipidmetabolites are presented in

Table S1. The distributions of metabolite concentrations are

shown in Figure 2. While metabolite concentrations varied

greatly across the cohort, themetabolite concentrations were

not significantly different between subjects, with or without

SABA use, after adjusting for multiple testing, although

decreases in monoHETE_0863 were nominally associated

with well-controlled asthma (p¼ 0.015). To further investi-

gate the correlation structure between various metabolites

and the case/control status of our cohort, we conducted

unsupervised two-dimensional hierarchical clustering of the

metabolite concentrations by CARE participant (Figure S1).

While none of the subjects could be differentiated into

groups by SABA use based on correlated metabolite clusters,

some of the individual metabolites were correlated with each

other. The correlated metabolites included tauroursodeox-

ycholic acid (a.k.a. ursodeoxycholyltaurine) and taurocholic

acid (r2¼0.95), which are both bile acids. In addition, there

was a cluster of four correlated metabolites: stearic acid,

docosapentaenoic acid, adrenic acid (a.k.a. all-cis-

7,10,13,16-docosatetraenoic acid), and palmitic acid (all

r2> 0.9); stearic acid and palmitic acid are common

saturated fatty acids produced from triglyceride and

carbohydrate metabolism, while docosapentaenoic acid

and adrenic acid are eicosanoids derived from a-linoleic

acid and arachidonic acid, respectively. Docosahexaenoic

acid and eicosatrienoic acid (r2¼ 0.93), both eicosanoids,

were also tightly correlated. No other metabolite correlations

were |r2|> 0.9. Finally, a group of five bile acids (taur-

ochenodeoxycholic acid, tauroursodeoxycholic acid, taur-

ocholic acid, glycocholic acid, and glycoursodeoxycholic

acid) were anti-correlated with the majority of other

metabolites (Figure S1; five right-most columns). These

data show that while specific metabolite concentrations

could be correlated with one another across samples, the case

and control groups could not be differentiated from each

other based solely on the correlation of metabolite

concentrations.

Figure 2. Concentrations (log2) across 64metabolites for 16 CARE subjects. The distribution of eachmetabolite across the study cohort is presented as a
boxplot.
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Pathway analysis of metabolites

None of the pathways were significantly associated with

asthma control (Table 2). As a result, the pathway impact

scores were used instead of p-values to rank pathways in

order of priority. Five pathways had impact scores above 0.

The ‘‘Arachidonic Acid Metabolism’’ and ‘‘Linoleic Acid

Metabolism’’ pathways possessed the greatest number of

overlapping metabolites and the highest pathway impact

scores (Fig. 3A). Within the ‘‘Linoleic Acid Metabolism’’

node, two overlapping query metabolites, linoleic acid

(KEGG: C01595) and g-linoleic acid (KEGG: C06426),

showed higher concentrations in the cases, although these

differences were not significant (Fig. 3B). Similarly, for the

arachidonic acid pathway, six overlapping metabolites

(arachidonic acid (KEGG: C00219), 5-HETE (KEGG:

C04805), PGE2 (KEGG: C00584), 12(S)-HPETE (KEGG:

C05955), 15(S)-HETE (KEGG: C04742), and LTB4

(KEGG: C02165)) demonstrated differential concentrations

in cases and controls, but these differences were not

significant (Fig. 3C).

Association of metabolites with “omics” data

SNP–metabolite associations

Although our low sample size lead to underpowered

interrogation of SNP–metabolite associations, four had

FDR< 0.05. Further, of 64� 400,741 SNP-metabolite

association tests, 31 associations were present with an

FDR< 0.20 (shown in Table S2). Since the low power may

miss some important associations, we chose a more lenient

FDR 0.20 cutoff, which allowed us to prioritize a selection of

top associations for further analysis. Of these 31 associations,

two are in or near genes that are crucial for, or directly

participate in, the metabolism of the metabolite(s) (ATP10

andHAO2, respectively) (Table S2). Asmembers of the type-

IV subfamily of p-type ATPases are aminophospholipid

translocases [38], ATP10 may participate in transport of

arachidonic pathway precursors (phospholipids) that are

metabolized to adrenic acid [39]. Similarly, co-association of

HAO2 and docosahexaenoic acid is appropriate because the

gene is required for metabolism of fatty acids within this

pathway [40]. Direct relationships for the remaining loci

with their associated metabolites were less evident.

Gene expression–metabolite associations

We next investigated the relationship between mRNA

expression and metabolite concentrations. Of the

64� 47,009 mRNA–metabolite associations, the 20 stron-

gest associations, ranked by FDR, are shown in Table S3. The

eicosanoid docosatrieneoic acid was the most frequently

observed metabolite among the gene–metabolite pairs, and

was associated with expression of eight genes. The bile acid

metabolites ursodeoxycholyltaurine and ursodeoxycholyl-

glycine were linked to expression of four genes, and

docosapentaneoic acid and glycocholic acid were connected

to single genes (Table S3). An uncharacterized metabolite,

HDHA_1074, was linked to five genes (Table S3). While

there were no statistically significant associations (FDR

< 0.05), in order to prioritize a selection of top hits for

further analysis, we included the top 20 mRNA expression

probes in the Bayesian network methodology. In this case,

without a clear FDR cutoff presenting itself, we chose the top

20 to be similar to the number of top selections identified

from other integrative ‘‘omics’’ analysis.

CpG methylation–metabolite associations

We computed associations of methylation at individual

CpG sites to each of the 64 metabolites, adjusting for age

and the first two PCs. Type I CpG sites and type II CpG

sites were analyzed separately. For type I CpG sites, the

numbers of significant tests (FDR-adjusted p-value <0.05)

for the 64 metabolites were ranged from 0 to 1,463. Fifty-

nine metabolites had at least one significant association.

Table 2. Metabolomic pathways.

Pathway name
Total no. of
metabolites

No. of overlapping
metabolites

Unadjusted
p-value

FDR-adjusted
p-value

Pathway impact
score

Linoleic acid metabolism 15 2 0.61 0.97 0.66
Arachidonic acid metabolism 62 6 0.87 0.97 0.29
Primary bile acid biosynthesis 47 6 0.25 0.72 0.04
Fatty acid metabolism 50 1 0.97 0.97 0.03
Sphingolipid metabolism 25 1 0.27 0.72 0.03
Taurine and hypotaurine
metabolism

20 1 0.15 0.72 0.00

Fatty acid biosynthesis 49 5 0.94 0.97 0.00
Fatty acid elongation in
mitochondria

27 1 0.97 0.97 0.00
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The metabolite Taurochenodeoxycholic_acid had the maxi-

mum number of significant metabolite-type-I-CpG asso-

ciation tests. For type II CpG sites, the numbers of

significant tests for the 64 metabolites were ranged from 0

to 3,759. Fifty-nine metabolites had at least one significant

association. The metabolite Taurochenodeoxycholic_acid

had the maximum number of significant metabolite-type-

II-CpG association tests. We kept the top 50 metabolite-

type-I-CpG and metabolite-type-II-CpG association tests,

each of which contained nine unique metabolites. There

were 12 unique metabolites in the two sets of nine

metabolites. For each of the 12 metabolites, we selected the

top two associated CpG sites for further analysis and

inclusion in our Bayesian network methodology. This

resulted in 19 total methylation markers (Table S4). The

markers were annotated to 19 genes, which included

GLCCI1 (which was also associated with taurocholic acid),

an important candidate gene that modulates responses to

steroid treatment in asthmatics [41].

Integrative pathway analysis of metabolite–gene
associations

Docosatrienoic acid had the greatest number of associations

with individual genes, and was also among the top-ranked

associations (Table S3), providing additional evidence that

eicosanoid pathways for linoleic acid and arachidonic acid

(Table 2 and Fig. 4) are important network hubs. We

investigated the biological relevance of the 20 mRNA–

metabolite relationships (shown in Table S3) using IMPaLA

to integrate gene expression and metabolite data.

Twenty-seven metabolites, and 11 of the genes shown in

Table S3, mapped to 17 distinct molecular pathways (the top

10 pathways are listed in Table 3). The most frequently

observed metabolite was arachidonic acid, which appeared

in 12 of the 17 pathways, singly or among related metabolites

(Table 3). In addition, PGE2 and sphingosine-1-phosphate

(S1P) were the second and third most highly represented

metabolites among the pathways (Table 3). Thus, the ORA

Figure 3. Metabolomics pathway analysis. (A) Plot showsmetabolome view of pathway enrichment analysis results in the asthma cohort. In side panels,
metabolic pathways are shown for (B) “Linoleic Acid Metabolism” and (C) “Arachidonic Acid Metabolism”. In B and C, labels within small boxes
correspond to KEGG identifiers for metabolites. Box color gradient indicates increasing significance values for a given metabolite within the pathway
from least (blue) to the most significant (red). Boxplot figures in B and C represent the median� IQR for log-normalized concentrations for the indicated
metabolite, in the cases (teal boxplots) versus controls (red boxplots). In B, corresponding boxplots for linoleic acid (C01595) and g-linoleic acid (C06426)
concentrations are shown. The numerals in C correspond to (1) arachidonic acid (C00219), (2) 5-HETE (C04805), (3) PGE2 (C00584), (4) 12(S)-HPETE
(C05955), (5) 15(S)-HETE (C04742), (6) LTB4 (C02165).
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results were driven by the presence of three metabolites that

either directly represent (or are known to modulate) the

eicosanoids, namely arachidonic acid, PGE2 and S1P.

The largest and best-ranked pathway was ‘‘signal

transduction’’ (Table 3), which contained 18 metabolites

including the docosatrieneoic acid precursor, docosahex-

aenoic acid, as well as other linoleic acid pathway

metabolites. In addition, several pathways contained genes

whose expression was associated with this metabolite,

including CHN1, IFIT3, OASL, and OAS1, which were

present in multiple pathways for immune response, IFN and

cytokine-related signaling (Tables S3 and S4). The pathways

also included the genes GNA12 and PRKCE, of which

PRKCE and GNA12 were well-represented in the top

pathways (Table 3). Finally, through querying PharmGKB35,

we confirmed that OASL and OAS1 also represent

pharmacogenetic loci for interferon-based drugs (data not

shown).

Integrative ORA implicated multiple pathways related to

interferon signaling and sphingolipid signaling that included

Figure 4. Network of molecular interactions for integrative ORA pathway genes. A network was generated for CHN1, PRKCE, GNA12, OASL, OAS1,
ORMDL3, and IFIT3. Nodes (circles) represent genes, and lines between nodes (edges) represent relationships (co-expression, co-localization, shared
protein domains, physical and genetic interactions) between nodes. Node color indicates pathway annotation, and the strength of the evidence in
support of the indicated interaction is shown by edge thickness.
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PRKCE and/orGNA12. As multiple genes were annotated to

the same or redundant pathways, they are likely to have

important, and possibly complementary, roles in these

immune response pathways. UsingCHN1, PRKCE, GNA12,

OASL, OAS1, and IFIT3 as query genes, we generated a

network (GeneMania [36]) of molecular interactions.

Interestingly, this gene network also interacted with an

important asthma susceptibility gene, ORMDL3 [7, 42–44],

and two of its homologs, ORMDL1 and ORMDL2. Genetic

interactions exist between ORMDL3 and GNA12, and

between OASL and ORMDL2, suggesting that these genes

interact within a cellular network (Fig. 4, green lines) [45].

Bayesian network results

In parallel with the ORA-based approach, we implemented a

more statistically driven approach to identify predictors of

asthma control. To this end, we combined the 64metabolites

Table 3. Top 10 pathways for integrative ORA of genes and metabolites.

Pathway name

No. of
overlapping

genes

No. of
overlapping
metabolites

Gene
p-value

Metabolite
p-value

Joint
p-value

Adjusted
joint

p-value
Gene
symbol Metabolites

Signaling by GPCR 2 17 0.31 1.65E�20 2.42E�19 4.00E�17 GNA12,
PRKCE

PGE2, arachidonic acid, cholic acid,
palmitic acid, palmitoleic acid,

all-cis-7,10,13,16-docosatetraenoic
acid, stearic acid, gamma-linolenic
acid, myristic acid, sphingosine
1-phosphate, docosapentaenoic

acid, leukotriene B4,
chenodeoxycholic acid,

eicosatrienoic acid, oleic acid,
eicosapentaenoic acid,
docosahexaenoic acid

Signal transduction 3 18 0.32 1.02E�19 1.47E�18 9.72E�17 GNA12,
PRKCE,
CHN1

Eicosatrienoic acid, arachidonic
acid, cholic acid, palmitic acid,

chenodeoxycholic acid,
all-cis-7,10,13,16-docosatetraenoic
acid, stearic acid, gamma-linolenic
acid, myristic acid, sphingosine
1-phosphate, docosapentaenoic
acid, leukotriene B4, palmitoleic

acid, linoleic acid, PGE2, oleic acid,
eicosapentaenoic acid,
docosahexaenoic acid

Inflammatory
mediator
regulation of TRP
channels—homo
sapiens (human)

1 6 0.10 7.06E�08 1.37E�07 1.64E�06 PRKCE 12(S)-HPETE, 15(S)-HETE,
leukotriene B4, arachidonic acid,

5-HETE, PGE2

GPCR downstream
signaling

2 8 0.26 9.16E�08 4.46E�07 5.07E�06 GNA12,
PRKCE

Cholic acid, palmitic acid,
leukotriene B4,

sphingosine-1-phosphate,
arachidonic acid, oleic acid, PGE2

G-a (q) signaling
events

1 5 0.18 5.00E�06 1.36E�05 0.000118 PRKCE Palmitic acid, leukotriene B4, oleic
acid, arachidonic acid, PGE2

Gastrin-CREB
signaling pathway
via PKC and MAPK

1 5 0.20 5.00E�06 1.49E�05 0.000126 PRKCE Palmitic acid, leukotriene B4, oleic
acid, arachidonic acid, PGE2

Fc-g R-mediated phagocytosis—homo sapiens
(human)

1 2 0.091 0.001 0.001 0.005 PRKCE Sphingosine-1-phosphate,
arachidonic acid

S1P5 pathway 1 1 0.008 0.019 0.002 0.007 GNA12 Sphingosine 1-phosphate
S1P4 pathway 1 1 0.015 0.019 0.003 0.011 GNA12 Sphingosine 1-phosphate
S1P2 pathway 1 1 0.027 0.026 0.006 0.022 GNA12 Sphingosine 1-phosphate
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with top association results from the SNP, mRNA expres-

sion, and CpG methylation analysis into a single integrative

‘‘omics’’ dataset, and generated a conditional Gaussian

Bayesian network (CGBN) predictive of asthma control

among the 12 cases and 8 controls in CARE (Fig. 1).

After building a CGBN using bootstrapping and cross-

validation (see Methods), we obtained a consensus network

(Fig. 5), using a low-edge inclusion threshold from the

bootstrap networks (10.4%). This low threshold is indicative

of a variety of different networks generated in bootstrapping

and which is generally a consequence of the low sample-size.

The consensus network was successful at predicting asthma

control in the 20 sample cohort with a CV AUC of 95.31%.

Prediction by a CGBN of a phenotype (blue arrow, Fig. 5)

requires only the nodes within the Markov Neighborhood of

the phenotype (the node’s children, and other parents of

those children). In this case, the predictive ability of the

CGBN is based on twometabolites, Sphingosine 1 Phosphate

(S1P) and monoHETE_0863; and four SNPs, rs9522789 (far

from genes), rs7147228 (intronic to CDKL1), rs7201423 (in

LOC101927131), rs759582 (near CMAS). SNP rs759582 is in

tight LD (r2¼ 0.95) with a SNP, rs56069081, in a DNAseI

hypersensitivity site in a sample of lung tissue tumor

(HaploReg v3, ref). SNP rs9522789 is in tight LD with

rs1578536 (r2¼ 0.87), also in a DNAseI hypersensitivity site,

and one marked with enhancer histones in vascular

endothelial cells (HaploReg). It is possible these SNPs

have regulatory effects, although they are intergenic.

The CGBN network was compared with results fromORA

to determine whether the biologically inferred and statisti-

cally based methods could validate one another. Of the

CBGN predictors, multiple pathways that included S1P as a

major metabolite were identified from the metabolomic and

integrative ORAs. For example, from the metabolomics

ORA of 31 metabolites, ‘‘sphingolipid metabolism’’ had

been identified (Fig. 3A). Furthermore, out of 17 pathways

Figure 5. Consensus Bayesian network. Nodes represent gene expression probe levels, CpG site methylation percents, SNP minor allele distributions,
and metabolite levels. The phenotype, asthma control, is marked with a blue arrow. Nodes with more connections are bigger and redder; gray arrows
between nodes indicate the Bayesian conditional independence of the child node given the parent nodes of the remaining nodes. Thicker
arrows represent stronger statistical dependence.
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identified in the integrative ORA, nine pathways included

S1P (Table 3). These pathways also included the genes

GNA12 and PRKCE, the latter of which also constitutes a

network hub within both CGBN (Fig. 5) and a molecular

interaction network (Fig. 4) that is also predicted to interact

with GNA12.

The S1P pathway is modulated in response to
albuterol: in silico validation using CMAP

To provide insight into potential cellular mechanisms for

asthma control, we searched CMAP [37] to identify lipid

metabolites with gene expression signatures that were

significantly correlated with those resulting from albuterol

(‘‘salbutamol’’) treatment, indicating a commonmechanism

of action.

The CMAP query identified 96 small molecules that were

significantly correlated (p< 0.05) with the gene expression

signature for ‘‘salbutamol,’’ a.k.a. albuterol. Among these

were PGE1 (‘‘alprostadil’’) and PGE2 (‘‘dinoprostol’’),

which were significantly positively correlated with genes

responsive to albuterol (p¼ 2–4� 10�05) and were also

ranked among the top 10 correlated compounds (Table S6).

As our pathway-based and CGBN analyses both implicated a

role for S1P, which stimulates pro-inflammatory function

via boosting production of PGE2 (the major inflammatory

mediator prostaglandin), we investigated expression of

genes within the albuterol gene signature that were also

upregulated (n¼ 126) or down-regulated (n¼ 169) in

response to treatment with 10mMPGE2. The gene encoding

prostaglandin E synthase (PTGES) was the most highly

upregulated gene, while ADRB2, the molecular target of

albuterol, was down-regulated; as PGE2 negatively regulates

ADRB2, this finding was consistent with previous reports of

these interactions (data not shown). Interestingly, 2 of the 20

candidate genes, ISG20 and OASL, were also present and

highly upregulated (>3.5-fold) in this data set (data not

shown). Importantly, the S1P pathway (Pathway Commons

Pathway ‘‘Sphingosine-1-phosphate (S1P) pathway’’) was

significantly enriched in the PGE2 expression signature

(adjusted p¼ 2.2� 10�21). Thirteen genes annotated to the

S1P pathway were up-regulated (>1.5-fold), while eight

genes were down-regulated (Table S7).

Discussion

Our study has four key findings. First, our integrative

‘‘omics’’ analysis implicates two pathways—arachidonic

acid metabolism and linoleic acid metabolism—in asthma

control. Second, a Bayesian network of the integrated dataset

predicts uncontrolled asthma with high CV accuracy,

supporting the validity of our integrative approach to

identify important metabolite and gene interactions. Third,

altered sphingolipidmetabolism appears to be an underlying

feature of uncontrolled asthma and cellular response to

albuterol. Finally, our results suggest that albuterol and

PGE2 share common cellular pathways, based on correlated

gene signature expression patterns that include genes

involved in S1P metabolism and/or activity.

The metabolic pathways for the eicosanoids arachidonic

acid and linoleic acid had the highest impact scores. These

two pathways also scored highest for metabolite–mRNA

associations, with the eicosanoid docosatrieneoic acid

represented among the most frequently observed metabo-

lites. Although these results were not significant, the lack of

statistical significance was likely due to our small sample size.

Despite this, these findings still have relevance for asthma, as

arachidonic acid is the precursor for eicosanoid production,

including leukotrienes and prostaglandins, and both 15(S)-

HETE and PGE2 are differentially produced during acute

exacerbations [46]. In addition, linoleic acidmetabolites also

induce airway hyper-responsiveness [47] and variable

linoleic acid exposure influences asthma symptoms [48].

Integrative ORA identified multiple metabolites with

important relationships to genes involved in smooth muscle

contraction, which is an important mechanism of bronchial

hyper-responsiveness and/or airway constriction, and

inflammation. Arachidonic acid can alter inflammatory

gene expression through PRKCE [49, 50] and G-protein

coupled receptor and GTP-ase activity, potentially via

GNA12 and CHN1.

The Bayesian Network based on four SNPs and two

metabolites predicts asthma control with high CV accuracy,

supporting our hypothesis that inclusion of multiple omics

would lead to greater accuracy and while also revealing

important relationships among the metabolites and top

SNPs, genes, and epigenetic marks. Of course, considering

the low sample size in the current work, and the large

network assembled, we cannot rule out overfitting as a cause

of predictive accuracy, although the bootstrapping and

cross-validation methods are designed, along with the

Bayesian priors, to guard against this. We feel that these

findings provide evidence to support the ability of our

methods to identify important metabolite and gene

interactions, and further implicate sphingolipid signaling

as an important metabolomic signature for asthma control.

Furthermore, of these predictors, S1P, was enriched in the

results from integrative andmetabolic ORAs, demonstrating

that both the biologically inferred and statistically based

approaches we applied were complementary, and could

serve to validate one another.

Evidence from both methods implicated sphingolipid

metabolism; in particular, the BN subnetwork of GNA12,

PRKCE and S1P, may represent a potential mechanism for

asthma control.GNA12 encodes guanine nucleotide binding

protein (G-protein) a 12, which couples to the lung and

M. J. McGeachie et al. Integrative metabolomics of asthma control

© 2015 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd. 235



lymphoid-tissue specific S1P receptor, S1P(4), in response to

S1P binding [51]. GNA12 also physically interacts with, and

is phosphorylated by, PRKCE [52]. In turn, these genes

interact with a variety of signaling molecules and binding

partners, including genes identified in our analysis such as

CHN1, and the interferon-responsiveOAS and IFIT3 genes,

in order to effect cellular responses. Our finding that altered

sphingolipid metabolism is important in uncontrolled

asthma is supported by several reports describing the role

of sphingolipids in airway inflammation and asthma, and as

therapeutic targets [53, 54]. Furthermore, we explored the

potential interaction of the network genes with ORMDL3, a

negative regulator of sphingolipid biosynthesis with upre-

gulated expression in asthmatics [7]. ORMDL3 also

contributes to airway hyperreactivity through altered

sphingolipid biosynthesis [55]. This study implicates a

role for genes that participate in eicosanoid and sphingolipid

signaling, chiefly GNA12 and PRKCE, that also interact with

ORMDL3 and interferon-responsive OAS and IFI gene

family members, in a molecular interaction network.

As a first step toward functional validation, we

investigated these potential interactions in silico using

CMAP, a publicly available reference database of gene

expression profiles from human cell lines treated with

small molecules that can be mined for shared biological

connections. In this analysis, albuterol gene expression

signatures serve as a cellular proxy for asthma control, and

molecules that demonstrate significantly shared expression

signatures with albuterol are anticipated to share mech-

anisms of action. We determined that the gene expression

signatures for albuterol were highly correlated with PGE2,

and that ISG20 and OASL were both upregulated in

response to treatment with both compounds. Further-

more, 21 additional genes within the S1P metabolic

pathway were differentially expressed.

To our knowledge, few metabolomic studies have been

performed for asthma; most have focused on asthma

diagnosis while two studied asthma severity [14–21]. In

general, these studies had similarly good predictive

accuracy (>80%) in differentiating asthmatics with

good and poor control in our study [14–17]. None of

the prior studies implicated altered sphingolipid metab-

olism. Saude et al. identified five metabolites in the

tricarboxylic acid (TCA) cycle with a higher abundance in

subjects who experienced exacerbations compared to

subjects who did not experience exacerbations [17, 18].

This is consistent with the histamine release that occurs

during mast cell activation in asthma exacerbations [18].

A genomic analysis was also conducted using serum from

asthma patients experiencing serious asthma exacerba-

tions to identify the transcriptional variation during the

process of an exacerbation, which also identified

immune-related genes associated with uncontrolled

asthma [56]. This finding and others are promising,

identifying metabolites related to TCA cycle metabolism,

hypoxic stress, immune reaction and inflammation, all of

which are biologically plausible metabolites for asth-

ma [14, 18].

Notably, our investigation represents the first integra-

tive metabolomics study of asthma, in addition to the first

asthma pharmacometabolomics study conducted to date.

Our approach uses metabolites as intermediate measures

to connect each of the other ‘‘omics’’ data sets. A limited

set of the remaining ‘‘omics’’ was then tested relative to

the clinical outcome. By using either the ORA-based or

CGBN integrated approach, our analysis shows that novel

predictors of asthma control can be reliably identified.

Despite the strengths of our study, a few potential

weaknesses deserve mention. The primary weakness of

this study is the limited sample size. Despite this, both the

statistical and bioinformatics pathway analyses have

consistent results. In addition, there were no clinical,

baseline, or descriptive differences between our cases and

controls, suggesting that the two groups are well matched.

The small sample size and lack of power likely

contributed to our inability to identify statistically

significant associations in some of our single-genomic

modalities, such as the mRNA expression and methyla-

tion analysis. Investigations using larger samples sizes in

the future are warranted. In addition, our study used

blood plasma samples for the omic investigation, and it

may be of future interest to assess these findings in a

respiratory tissue such as lung epithelium or airway

smooth muscle, although previous studies have shown

that asthma exacerbation is detectable from mRNA

expression in blood [56]. Finally, the phenotype assessed

was based on self-reported albuterol use, which may be a

source of bias and represents a limitation of the analysis.

In conclusion, altered sphingolipidmetabolism represents

an underlying feature of both asthma control and cellular

response to albuterol. Lipid mediators play an important

role in airway inflammation and asthma, and sphingolipid

metabolites serve as novel molecular candidates for future

functional validation studies.
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