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Studies on climate change impacts are essential for identifying vulnerabilities and developing adaptation options. However, such
studies depend crucially on the availability of reliable climate data. In this study, we introduce the climatological database called
FORESEE (Open Database for Climate Change Related Impact Studies in Central Europe), which was developed to support the
research of and adaptation to climate change in Central and Eastern Europe: the region where knowledge of possible climate
change effects is inadequate. A questionnaire-based survey was used to specify database structure and content. FORESEE con-
tains the seamless combination of gridded daily observation-based data (1951-2013) built on the E-OBS and CRU TS datasets,
and a collection of climate projections (2014-2100). The future climate is represented by bias-corrected meteorological data from
10 regional climate models (RCMs), driven by the A1B emission scenario. These latter data were developed within the frame of
the ENSEMBLES FP6 project. Although FORESEE only covers a limited area of Central and Eastern Europe, the methodology of
database development, the applied bias correction techniques, and the data dissemination method, can serve as a blueprint for
similar initiatives.
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Introduction

Recently, a growing body of studies has been
published on the impacts of climate change on ecosys-
tems and societies, in response to increasing interest
in the anticipated economic development and options
for adaptation. Such knowledge supports policymak-
ers, diverse stakeholder groups, and individuals in mit-
igating the adverse effects, and taking advantage of
the positive effects, of the changing climate (IPCC,
2007).

The utilization of climate model results is currently
the most feasible way to estimate future meteorological

conditions (Calanca and Semenov, 2012; IPCC, 2013).
State-of-the-art impact analyses use ensembles of cli-
mate projections to gain an insight into the uncertainty
of projections (Baigorria et al., 2008; Cook et al.,
2010; Jonsson and Barring, 2011; Supit et al., 2012;
Carter, 2013).

General circulation models (GCMs) are run at coarse
spatial resolution, so they are unable to capture sub-
grid cell processes induced, for example, by regional
topography, which is often required for regional
impact studies. For this reason, downscaling methods
are applied to provide climate data in higher resolution
than that of GCMs (Wood et al., 2004; Castro et al.,
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2005). In the case of dynamic downscaling, outputs of
which are used in the current study, regional climate
models (RCMs) are run using the initial and boundary
conditions provided by GCMs (Giorgi, 1990) to gener-
ate higher resolution meteorological fields. The RCMs
are used to simulate smaller scale atmospheric pro-
cesses, owing to their higher resolution topography
and physics (Wang et al., 2004).

Direct use of RCM data is limited by systematic
errors inherently present in the simulated variables as
a result of uncertainties in the parameterization and
model structure (Varis et al., 2004; Christensen et al.,
2008). Such data may be unusable for impact studies
which, typically, need unbiased climate data, as the
models are sensitive to biases in the driving meteoro-
logical data (Baigorria et al., 2007; Teutschbein and
Seibert, 2010; Calanca and Semenov, 2012). The
assumption that systematic errors in the past are
propagated equally to the future (Maraun, 2012)
allows for using various bias correction methods (Ines
and Hansen, 2006; Li et al., 2010; Piani et al., 2010;
White and Toumi, 2013). Reliable, observation-based
datasets, covering a sufficiently long time period are,
however, required to remove the biases.

The climate in Central Europe is projected to face
substantial changes (e.g. Seneviratne et al., 2006), with
adverse effects on natural resources, ecosystems, and
societies. Transitional economies covering large parts of
this region often generate concern about the sustain-
ability of current management practices, owing to possi-
ble amplification of the vulnerability to climate change.
Central and Eastern Europe were found to be sur-
rounded by three of the most prominent climate change
hot spots in the world (Giorgi, 2006). The importance of
European ecosystems (Nabuurs et al., 1997) and their
vulnerability also calls for extending the currently insuffi-
cient knowledge of climate change impacts.

Despite the growing recognition of need for impact
studies, the availability of suitable meteorological data
is limited in many regions, and their quality often does
not meet the criteria of impact studies; e.g. considering
spatial and temporal resolution. This situation holds
true for Central Europe which means that impact stud-
ies are often hampered by the insufficient data avail-
ability. For these reasons, in this paper we introduce a
new meteorological database called FORESEE (Open
Database for Climate Change Related Impact Studies
in Central Europe) that aims to support studies on cli-
mate change impacts in Central Europe. The main
motivation for the construction FORESEE was to bridge
the gap between the raw results of climate models and
the end-users of climate projections, as such a link is,
by experience, often not straightforward and proper.
The main objectives of the paper are as follows:

— to survey the needs of potential database users
on the content and structure, retrieval, and pre-
processing of climate data driving diverse models

— to document the development of the FORESEE
database containing daily observation-based
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data and bias-corrected RCM results, covering
the period 1951-2100

— to document the applied bias correction tech-
nique

— to document the availability options of FORE-
SEE.

1. Data production methods

1.1. Geographical coverage of the database

FORESEE covers Bosnia and Herzegovina, Croatia, the
Czech Republic, Hungary, Slovakia, Slovenia, and parts
of Albania, Austria, Bulgaria, Germany, Italy, Kosovo,
Moldova, Montenegro, Poland, Romania, Ukraine, and
Serbia (Figure 1). The total area covered by FORESEE
is about 1 270 000 km?2. The region includes the
entire Carpathian Mountains and large part of the
Danube catchment, which have been recently receiv-
ing increased attention in EU coordinated actions, such
as the Carpathian EcoRegion Initiative (http://
www.carpates.org) and the Danube Strategy (http://
www.danube-region.eu).

1.2. Survey of users’ needs

To make FORESEE really supportive of climate change
research in Central Europe, a questionnaire surveying
users’ needs from climate data was circulated within
the Central European scientific community. Hydrolo-
gists, foresters, ecologists, climatologists, all of them
experienced in climate change research, were ques-
tioned primarily.

Five questions addressed the type of applied meteo-
rological variables commonly used in impact studies,
and their temporal and spatial resolution. Another two
questions addressed users’ knowledge of climate
model results, the need for addressing the uncertainty
related to climate modelling through the inclusion of
more than one model, and the awareness of the effect
and need of bias correction. Finally, suitable file for-
mats and software used for manipulating the climate
data, and problems experienced when accessing
meteorological datasets were addressed.

The 42 returned questionnaires indicated that basic
daily meteorological data — i.e. maximum and mini-
mum temperature and precipitation — are most com-
monly required by the users. Interest in hourly data
was only marginal, while interest in all resolutions
from daily to 30-year long averages was very fre-
quent. Therefore, provision of daily data, which can
be further aggregated, seems necessary. The respond-
ers were interested both in gridded data, allowing for
spatial modelling, and for single-point localized data.
This suggests that preparation of gridded data, which
may be further restricted to specific locations, should
meet users’ needs. The responders indicated interest
in the highest possible resolution data which are opti-
mal for regional studies. Voting for the length of time
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Figure 1. Target area of the FORESEE database (the location of the individual grid cells is also shown).

period for which the data are provided was quite bal-
anced, indicating the need for the provision of as long
a time series as possible; the responders denoted
interest in both past and future climate data. Demand
for RCM-GCM combinations varied among the
responders, who basically pointed out the intention to
use more than two models in their research. The
group interested in one model only was, however, also
large. This implies the need for the construction of a
larger number of models, with guidance for selecting
an appropriate subset or a single model.

Surprisingly, 20% of the answers indicated a lack of
awareness about the limitations and applicability of
raw climate model results (without bias correction
applied), and about the potential effects of applying
bias correction on the results of impact studies. As
limitations of using raw model outputs are generally
well recognized, the provision of corrected climate
data with detailed documentation of the correction
procedure and its effects seem to be an optimal
choice.

Forty-two per cent of responders indicated that they
can only handle ASCII files (MS Excel-compatible text),
so they are unable to read formats such as NetCDF
and HDF, which are commonly used for storing climate
data. The most obvious problem reported in relation
to the acquisition of climate data was general data
availability, low spatial resolution and the lack of meta-
data. Appendix S1 provides the complete statistics
about the survey.

1.3. Observed meteorology in the
FORESEE

Past climate within FORESEE is based on the E-OBS
dataset (Haylock et al.,, 2008), which contains
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observation-based gridded datasets in ~25 x 25 km
horizontal resolution, in daily time steps for the
period 1951-2013, and the CRU TS 1.2 dataset
(Climatic Research Unit, University of East Anglia, UK;
Mitchell et al., 2004), which contains monthly data
in 1/6 x 1/6° horizontal resolution for the period
1901-2000.

Currently, E-OBS has 10 versions. E-OBS covers the
whole Europe, although the density of meteorological
stations used for the construction of this dataset varies
(Klok and Klein Tank, 2008). In the latest version
of the FORESEE database (v2.0) the most up-to-date
E-OBS version was used (v10).

It was found that the CRU TS 1.2 dataset contains
very accurate meteorological data on a monthly scale,
thus we sought for options for improving the E-OBS
data using the CRU TS 1.2. For example, Szabd
(2008) compared different data sources (ECA, ERA40,
CRU TS 2.1 and CRU TS 1.2) with the Hungarian,
high-resolution meteorological observations (the so-
called HUGRID dataset). Szabd (2008) showed that
long-term averages of CRU TS 1.2 had the best fit to
HUGRID. To support the adjustment of E-OBS by CRU
TS 1.2, we performed additional evaluation of the
accuracy of both E-OBS and CRU TS datasets, using
the CarpatClim dataset (http://www.carpatclim-eu.org/;
Szalai et al., 2013). The CarpatClim is a daily meteo-
rological dataset for the Carpathian Region, based on
a large number of observed meteorological data and a
state-of-the-art interpolation technique, so it could
represent a reasonable control data in the accuracy
evaluation. (Note that as CarpatClim only covers about
38% of the FORESEE domain, it is not an adequate
substitute for E-OBS or CRU TS 1.2 datasets.) A better
match of the CRU TS 1.2 with the CarpatClim than
with the E-OBS (see Appendix S2 for details) lends
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support to the correction of daily E-OBS using monthly
CRU TS 1.2 data.

Hence, for the construction of FORESEE, the E-OBS
monthly means were forced to match the CRU TS 1.2
monthly means. As CRU TS 1.2 data were not avail-
able for the period 2001-2013, average correction fac-
tors for the period 1951-2000 were applied.

1.4. Model selection and post-processing of
raw climate data

For the construction of FORESEE we used high resolu-
tion RCM results disseminated within the frame of the
ENSEMBLES EU project (Van der Linden and Mitchell,
2009). About 31 model output sets are available for
download at the ENSEMBLES database. The model
selection was performed using the following logic. We
selected all output sets which are available for the per-
iod 1951-2100, driven by the A1B scenario (the A1B
greenhouse gas emission scenario represents a bal-
anced emphasis on all energy sources responsible for
greenhouse gas emission (IPCC, 2000); note that at
the ENSEMBLES data portal 30 models are driven by
the A1B greenhouse gas scenario out of the 31 tran-
sient model results. Of the 30 models 23 model output
sets fulfil the criteria of sufficiently high spatial resolu-
tion (25 x 25 km), but only 14 output sets cover the
entire 1951-2100 period, thus we only focused on this
latter subset. We neglected two output sets because
they used the same GCM-RCM combination as another
one but with high- and low-sensitivity RCM settings.
From the remaining 12 models one was not available
at the website and another one contains too many
data gaps at the end of the simulation period, which
prevented us from the proper use of the output. The
remaining ten models formed the basis for the con-
struction of the FORESEE database (Table 1).

Although the selected 10 RCM outputs have been
created within the same EU project, there are specific
differences between the disseminated datasets. Some
models use a 360-day calendar, some of them use
standard calendar which contains leap years. To
prepare the data for additional impact modelling

Table 1. List of the regional climate models used in the database.

L. Dobor et al.

purposes all RCM results were converted to a 365-day
calendar. In case of the standard calendar in leap
years 31 December was removed from the database.
The rationale behind removing the last day of the year
was that during winter removal of a single day in
every 4 years cannot have significant effect on hydrol-
ogy, plant growth, human health, and other processes.
When a climate model used a 360-day calendar addi-
tional days had to be created in case of January,
March, May, July, August, October, and December. For
these days we calculated the average of the previous
and following days’ temperatures, and dry days were
inserted into the precipitation time series. In case of
February some days had to be removed. In a few
cases the last year (2100) was missing from the data-
sets, in this case year 2099 have been duplicated.

After the temporal standardization, the RCMs were
interpolated to a uniform 1/6 x 1/6° horizontal resolu-
tion grid, using an inverse distance interpolation tech-
nique (the resulting grid is equivalent with the CRU TS
1.2 grid). FORESEE is available on this 1/6 x 1/6°
grid, where the resolution represents a compromise
between the highest possible resolution versus data-
base size (trade-off between quality and applicability
of the dataset).

As direct use of GCM and RCM data has been found
to be inadequate, bias correction seems inevitable to
produce realistic meteorological data driving the impact
models. Considering the 10 selected RCMs, comparison
of climate maps based on observations and the
uncorrected model output clearly reveals the need for
bias correction (Appendix S3). It is also well recognized
that the number of wet days tends to be overestimated
in the raw output of climate models (Mearns et al.,
1990; Goddard et al., 2001; Gutowski et al., 2003;
Dosio and Paruolo, 2011; ThemeBl et al., 2012).

Assuming that systematic errors are stable in time
(Maraun, 2012), the correction factors determined by
the comparison of observations and model results
(1951-2013) were used for the correction of model
results for the future (2014-2100). The period 1951-
2013 was used as the basis of the correction. We
applied a bias correction based on the cumulative

Model name Developing
Model ID (RCM-GCM) institute
1 ALADIN-ARPEGE National Centre for Meteorological Research (CNRM)
2 CLM-HadCM3Q0 Swiss Federal Institute of Technology Zurich (ETHZ)
3 HadRM3Q0-HadCM3Q0 Hadley Centre for Climate Prediction and Research (HC)
4 HIRHAMS5-ARPEGE Danish Meteorological Institute (DMI)
5 HIRHAM5-ECHAMS5 Danish Meteorological Institute (DMI)
6 RACMO2-ECHAM5 Royal Netherlands Meteorological Institute (KNMI)
7 RCA-ECHAM5 Sweden’s Meteorological and Hydrological Institute (SMHI)
8 RCA-HadCM3Q0 Sweden'’s Meteorological and Hydrological Institute (SMHI)
9 RegCM3-ECHAM5 The Abdus Salam International Centre for Theoretical Physics (ICTP)
10 REMO-ECHAM5 Max-Planck-Institute for Meteorology (MPI)

RCM, regional climate models; GCM, general circulation models
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distribution function (CDF) fitting technique (also If the model simulates more wet days than the
known as quantile mapping/fitting or histogram equal- observed (N7, > N2, ), wet days are removed starting
ization), at monthly time intervals (Ines and Hansen, from the smallest precipitation amount. If the model
2006) for each grid point in the target area. simulates fewer wet days than the observation
As temperature and precipitation possess different (N7, <NS ), rainfall events are generated artificially. In
statistical properties, specific bias correction tech- this way, additional days with precipitation are created
niques had to be applied (Hansen et al., 2006). In the in random fashion within a month. Precipitation amounts
case of precipitation, both the amounts and frequency take on a random value between 0.1 mm and the 90th
of precipitation were corrected. In the case of temper- percentile of the simulated dataset. To determine the
ature, the correction was based on additive shifting, correction factors (f.orr), the number of observed wet
while correction factors for precipitation amounts were days is divided by the number of simulated wet days:

based on the multiplication. In the next section we

describe the utilized precipitation correction method in £ NS 3
detail (temperature correction is similar to the second corr = N—wd- (3)
phase of the precipitation amount correction).

The correction factors are calculated monthly for

correction method in case of the the future (2014-2100) is scaled by the correction
precipitation factor (feorr) Which is calculated on the basis of the

period 1951-2013.
1.5.1. Precipitation frequency correction

Precipitation frequency correction is based on the
comparison of the monthly number of simulated (N))
and observed (N7 ;) wet days (i.e. when the daily pre-
cipitation amount is greater than or equal to 0.1 mm):

1.5.2. Precipitation amount correction

After the frequency correction, the precipitation amount
correction was performed using CDF fitting technique
(Figure 2; note that the same technique was used for
temperature correction). The p-quantile (q,) is a pre-
cipitation value which the random variable will be at, or

k
0= WP, where WP — { 1x7 201 mm} below, with probability p/1000 (p = 1, 2, ..., 1000)
— 0,x7<0.1mm J (1) (1000 partitions were used to split the [0,1] probability
fori=1,k, interval, this partition ensure the required continuity

but keeps the computing demand in acceptable level).

k 1,x™>0.1mm . p
_ _ = = <
wa = ) W, where W = { 0,x™ <0.1mm } 2) 9p = Inf{X € R: 3556 <FOO } @)
fori =1k, where F(X) is the CDF of the precipitation (x):

where k means the number of the days which belong F(X) =p(x<X). (5)
to the given month for the whole 1951-2013 period,
x? and x are the observed and the simulated precipi- Quantile functions (or inverse cumulative density
tation time series (respectively) for a given month; w? functions) using 1000 partitions were determined
and w" are the daily indicators of the rainfall events. based on the observed and the simulated (and already

1 1
: 70
_p_ P e
1000 1000 T "'I
£ : : z '
=] / H 3 ! - *,
§ ; P B = —2'—3 e ; p=1,1000 3 ! Xeorr = Acomp X
& H ' p,m i 1
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Daily precipitation amount [mm] Daily precipitation amount [mm]

Figure 2. Demonstration of the monthly cumulative distribution fitting (CDF) technique for one pixel. Fy(x) and F,,(x) show the
cumulative distribution functions, q,, and g, ,» mean the p-quantiles for the observed and the modelled daily precipitation
amount. The left figure shows the calculation of the correction factor (acor.p) for each p/1000 probability (p means the serial
number of the probability values). The right figure shows the correction of a given precipitation amount (x) using the associated
acomr,p COrrection factor.
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Figure 3. The g-q plots for HIRHAM5-ECHAMS5 model (the
quantile values based on the modelled (x-axis) and the
observed (y-axis) precipitation rates) before (a/1, b/1) and
after (a/2, b/2) the bias correction procedure in case of
removal (a/1, February) and generation of wet days (b/1,
August). After the correction the quantiles of the datasets
are approximately the same, fit to the identity function
(figures on the right side).

frequency corrected) precipitation data for the given
month and pixel (Figure 2).

The correction factors acorrp (P = 1, 2, ..., 1000) are
the quotients of the p-quantiles based on the simulated
and observed precipitation, and so form an 1000 ele-
ments array. In order to correct a precipitation value
(x), the closest p-quantile was determined from the
1000 elements quantile function (p’). The associated
‘serial number’ (p”) of the correction factor (acorr, ) Was
selected and used as a scale factor (Figure 2, right hand
side, x.orr is the corrected value of x).

The precipitation correction for the future works the
same way. The closest quantile has to be found and
then scaled by the relevant number of correction
factor created based on the comparison in the past.

Figure 3 shows the quantile-quantile function
diagrams (g—q plot) based on the observed and the
simulated datasets by the HIRHAM5-ECHAM5 model
before the correction. The g-q plots shows all the
days for a given month in the period 1951-2013, for a
given pixel. The upper left figure shows when the
model simulates too many wet days (February) and
the bottom left figure shows when it simulates fewer
wet days (August). After the correction the quantiles
of the datasets are approximately the same (figures
on the right-hand side).

1.5.3. Effect of bias correction on the
precipitation time series

The applied precipitation bias correction method is
expected to modify the statistical properties of the

Geoscience Data Journal 2: 1—-11 (2015)
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precipitation time series, which needs further consider-
ation. An important question is whether the variance
of precipitation is affected by the correction, and if it
does, to what extent? Additionally, as FORESEE con-
sists of observations for the past (not bias-corrected
RCM data), and bias-corrected RCM data for the
future, consistency of these two components in terms
of frequency of wet days needs to be preserved.

Standard deviation of simulated precipitation was
compared to observations with and without the bias
correction for the 1961-1990 time period. The results
indicated that precipitation variance (more precisely,
square root of variance) became closer to the
observed variance after the bias correction. Appendix
S4 demonstrates the effect of bias correction on the
standard deviation of simulated data in graphical form
for each model.

Frequency of wet days was calculated both for the
past and future based on the uncorrected and cor-
rected RCM data. Appendix S5 shows the comparison
of number of wet days for the FORESEE domain
according to the different GCM-RCM combinations and
the observations. The results demonstrate that the
applied bias correction method improved the consis-
tency between observations and projections in terms
of frequency of wet days.

2. Results — structure and dissemination of
the FORESEE

FORESEE data are primarily available in NetCDF for-
mat, which was designated to contain both data and
metadata in an easily accessible format (http://
www.unidata.ucar.edu/). The total size of the data-
base is about 22 GB. Once a request has been sent
out through the FORESEE website (http://nim-
bus.elte.hu/FORESEE), the requested files (one file per
model per variable) are made available for download
from the site. The dataset is also available via Zenodo
(http://zenodo.org/record/9614?In=en; doi: 10.5281/
zenodo.9614).

Questionnaire responses indicated that NetCDF for-
mat is not usable for most responders, and MS Excel-
compatible data (i.e. pure text retrieval of data) were
indicated as the most suitable. To meet this demand,
the web service technology was used to enable easy
access to data for the users.

The REST style web service (Fielding and Taylor,
2002) of FORESEE database is provided by the ‘ecos’
server of the Centre for Ecological Research of the
Hungarian Academy of Sciences, catalogued in ‘Biodi-
versityCatalogue’ — The Biodiversity Sciences Web Ser-
vices Registry for discovering, registering, annotating,
and monitoring biodiversity web services (http://
www.biodiversitycatalogue.org) powered by BioCata-
logue (Bhagat et al., 2010). This service provides tai-
lored access to the database at http://nimbus.elte.hu/
FORESEE/map_query/index.html. A query has to be
formulated according to the geographical location,
requested meteorology variables, time interval in years

© 2015 The Authors.
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(from 1951 to 2100), and selection of RCM, if time
range is over the observational period. The service
finds the corresponding FORESEE grid cell and serves
the requested dataset in comma separated ASCII text
format. The base URL of the service is ‘http://ecos.ok-
ologia.mta.hu:5000/foresee’, the REST endpoint is ‘/
find’ (GET method). Parameters can be set as an
example to ‘/18.63854,47.37291/1,1,0/1951,2100/ala-
din’ —/latitude and longitude in decimal degrees/set
daily maximum and minimum temperatures, precipita-
tion on or off/the requested time interval in years
and/short name of the RCM.

The GIS-based webpage has two main parts: the
online map and the menu with operations. One can
set up retrieval options in the ‘filter' menu point.
Downloading is possible for one given location for a
given period between 1951 and 2100 for one, two or
three meteorological variable(s) on daily time step. If
the end-year of the retrieval is after 2013, climate
model selection is also needed. The location could set
using the online map by directly clicking on the loca-
tion of interest, or set by providing longitude/latitude
coordinates, or it can also be chosen by typing a set-
tlement name under the ‘find city/location’ menu
point. The FORESEE grid layer helps to understand
the geographical coverage of the downloaded time
series. Note that in the present version of the GIS tool
interpolation is not implemented, which means that
for a given grid cell the same dataset is retrieved
which is assigned to the centre point of the grid cell.

3. Discussion

3.1. Added value of the FORESEE

The reliability of information acquired within various
studies on climate change impacts depends on a hum-
ber of factors, including availability and quality of driv-
ing climate data (Maurer et al., 2007), which may
represent an important source of uncertainty (Olesen
et al., 2007). The effect of climate data quality, spatial
resolution, or completeness on simulation outputs is,
however, poorly understood, even though it may limit
the interpretability and question the validity of some
findings. To address these issues, we developed the
FORESEE database which provides unified meteorolog-
ical data based on observations and an ensemble of
RCMs, seamlessly covering a large part of Central Eur-
ope. The importance of FORESEE for this region is
highlighted by the remarkably limited options for the
use of national meteorological data, owing to diverse
legal regulations and restrictions in all Central Euro-
pean countries. For these reasons, the use of freely
available gridded datasets is becoming a frequent
practice in this region, although lower quality and
accuracy of such data in comparison with data from
national meteorological networks is well recognized.
Hence, the availability of the presented database may
support the regional research of climate change
impacts, which is presently inadequate to anticipate
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climate change threats (e.g. Seneviratne et al., 2006;
Hlasny et al., 2011).

On the basis of the questionnaire-based survey the
designation of FORESEE was an important step
towards database development, potentially strength-
ening database’s effect on climate change research in
the FORESEE region. Although the representativeness
of the responders’ sample in the returned question-
naires is unknown, this feedback helped to shape
some parts of the database.

A seamless combination of observations with an
ensemble of climate model results creates an
improved modelling environment in comparison with,
for example, the original ENSEMBLES database.

Though the effect and need of bias correction was
found to be largely unrecognized among the question-
naire responders, we saw the provision of bias-cor-
rected data as necessary, since the uncorrected data
are often beyond the scope of permissible inputs to
impact models. For example, Ines and Hansen (2006)
found that the coupled correction of amounts and the
frequency of precipitation had a positive effect on crop
simulations, which were much more reliable as com-
pared with those run with uncorrected data. This
method was also applied successfully by Baigorria
et al. (2007) to simulate crop production. The need
for the inclusion of bias-corrected data in FORESEE is
also promoted by the more or less lacking skills of
users to perform such correction. In particular, the
correction of daily precipitation data may pose difficul-
ties because both amounts and frequency need to be
corrected (Déqué, 2007; Dosio and Paruolo, 2011;
Calanca and Semenov, 2012).

The scientific workflow concept is a new and emerg-
ing paradigm for the support of research in general
(Goble and De Roure, 2009), and specifically in biodi-
versity informatics (Hardisty et al., 2013). A workflow
can apply online web services, manage large, distrib-
uted data sources, and perform demanding computa-
tions within a simple framework. The development of
web services and the creation of workflows is a major
task within the frame of the BioVelL project (http://
www.biovel.eu). The construction of the GIS tool is
the first major step to satisfy the needs of the end-
users for climate projections in Central Europe.

3.2. Limitations and future developments

Currently, FORESEE contains only climate projections
based on the A1B emission scenario, which covers
approximately the central part of plausible realizations
of the future climate (in terms of warming). Therefore,
impact studies which will utilize the FORESEE data will
consider only a limited portion of the variability in
anticipated responses. At the same time, options for
the exploration of effects of various CO, trajectories
on ecosystems are also limited. For this reason, the
inclusion of additional simulations, driven by emission
scenarios other than AlB, is an important part of
future developments. FORESEE is intended to be
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extended with RCM results based on the new IPCC
greenhouse gas emission scenarios, the so-called rep-
resentative concentration pathways (RCPs; Moss
et al., 2008).

Another limitation of the current version of FORE-
SEE is related to the applied bias correction method,
which cannot retain intervariable dependencies within
the RCM outputs (mainly as a result of artificial intro-
duction and removal of wet days). As there is a func-
tional relationship between air temperature and
precipitation, the applied technique may violate the
consistency between these meteorological elements.
This fact should be kept in mind during the utilization
of the dataset. Similarly, as the bias correction method
alters the temporal correlation of the daily precipita-
tion time series, the consecutive number of wet days,
the length of dry periods, and other statistics related
to precipitation are modified. This artifact might be
important in some impact studies.

Therefore, methods which allow to retain the
intervariable dependencies — e.g. the so-called linear
correction (White and Toumi, 2013) — are expected to
be implemented. Another option is to use alternative
bias correction methods for RCM post-processing, e.g.
the so-called ‘change factor’ method (Ho et al.,
2012).

Currently, FORESEE contains only basic meteorologi-
cal data (minimum, maximum temperature and precip-
itation), however, the need for additional variables,
such as water vapour pressure, relative humidity, solar
irradiation or daylight temperature, may arise. Indeed,
some variables can be derived from the currently
available data. For example, the MT-CLIM (Mountain
Microclimate Simulation Model; Hungerford et al.,
1989; Thornton and Running, 1999) was found to be
an adequate (validated) tool for estimating the day-
time temperature and global radiation (which are
often needed for crop or biogeochemical modelling).
The generated values proved to be consistent with
measured temperature and precipitation data (Glassy
and Running, 1994; Thornton and Running, 1999;
Thornton et al., 2000). MT-CLIM uses the observed
relationship between daily temperature range and
atmospheric transmittance for the estimation of solar
radiation (Thornton and Running, 1999; Fodor and
Mika, 2011). As the changing climate might alter this
relationship, adjustment of the MT-CLIM internal
model parameters might be necessary to avoid biased
radiation estimations (tendency of the model parame-
ters can be estimated based on the raw climate model
results). In any case, by using MT-CLIM the intervari-
able dependencies are retained, what stresses their
potential value for further research. The MT-CLIM-gen-
erated data are expected to be included in FORESEE,
to provide additional daily meteorological variables.

4. Concluding remarks

FORESEE strives to fill a gap in climate data availability
in the Central European region and, at the same time,
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to present the concept of climatic database with a
strong focus on users rather than on the conventional
principles of climatic databases. The Central European
region may benefit from such a database, as climate
data availability has been recognized for a long time
as having many weaknesses with regard to regional
climate change research. The accessibility of an
ensemble of climate change scenarios, and the devel-
oped web services and GIS tools makes such data
available for a broad community of non-climatologists,
and in general, to experts who have not been able to
access the climate data in obviously available formats.
This fact may enhance the value and reliability of
impact studies and consequently accelerate the trans-
fer of scientific knowledge to management of natural
resources.

We believe that such a database may act as a
bridge between climate modelling groups and scien-
tists dealing with climate change impact studies. We
encourage other research groups to create similar
databases to support the wider scientific community in
the research of the currently changing environment.

Acknowledgements

We acknowledge the E-OBS dataset of the EU FP6
project ENSEMBLES  (http://ensembleseu.metof-
fice.com), and the data providers in the ECA&D
project (http://eca.knmi.nl). The ENSEMBLES data
used in this work was kindly provided by the EU FP6
Integrated Project ENSEMBLES (Contract number
505539). The authors gratefully acknowledge the Cli-
matic Research Unit of the University of East Anglia,
UK, for providing the monthly high-resolution dataset
CRU TS 1.2. The CARPATCLIM dataset was kindly pro-
vided by JRC (CARPATCLIM Database © European
Commission — JRC, 2013). The research was sup-
ported by the Hungarian Scientific Research Fund
(OTKA K104816), the CarpathCC project (ENV.D.1/
FRA/2011/0006), and the BioVeL project (Biodiversity
Virtual e-Laboratory Project, FP7-INFRASTRUCTURES-
2011-2, project number 283359). This work was also
supported by the Slovak Research and Development
Agency under the contract No. APVV-0111-10 and
APVV 0243-110. We thank the anonymous Reviewers
and the Associate Editor for their comments on the
manuscript which helped us to improve the paper.

References

Baigorria GA, Jones JW, Shin DW, Mishra A, O'Brien JJ.
2007. Assessing uncertainties in crop model simulations
using daily bias-corrected regional circulation model out-
puts. Climate Research 34: 211-222. doi:10.3354/
cr00703.

Baigorria GA, Jones JW, O'Brien ]J. 2008. Potential pre-
dictability of crop yield using an ensemble climate fore-
cast by a regional circulation model. Agricultural and
Forest Meteorology 148: 1353-1361. doi:10.1016/
j.agrformet.2008.04.002.

© 2015 The Authors.

Geoscience Data Journal published by Royal Meteorological Society and John Wiley & Sons Ltd.


http://ensembleseu.metoffice.com
http://ensembleseu.metoffice.com
http://eca.knmi.nl
http://dx.doi.org/10.3354/cr00703
http://dx.doi.org/10.3354/cr00703
http://dx.doi.org/10.1016/j.agrformet.2008.04.002
http://dx.doi.org/10.1016/j.agrformet.2008.04.002

Creation of the FORESEE database

Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J,
Roos M, Wolstencroft K, Aleksejevs S, Stevens R, Pettif-
er S, Lopez R, Goble C. 2010. BioCatalogue: a universal
catalogue of web services for the life sciences. Nucleic
Acids Research 38: 689-694.

Calanca P, Semenov MA. 2012. Local-scale climate
scenarios for impact studies and risk assessments: inte-
gration of early 21st century ENSEMBLES projections
into the ELPIS database. Theoretical and Applied Cli-
matology 113: 445-455. doi:10.1007/s00704-012-
0799-3.

Carter TR. 2013. Agricultural impacts: multi-model yield
projections. Nature Climate Change 3: 784-786.
doi:10.1038/nclimate1995.

Castro CL, SrRA P, Leoncini G. 2005. Dynamical downscal-
ing: assessment of value retained and added using the
Regional Atmospheric Modeling System (RAMS). Jour-
nal of Geophysical Research 110: D05108. doi:10.
1029/20041D004721.

Christensen JH, Boberg F, Christensen OB, Lucas-Picher P.
2008. On the need for bias correction of regional cli-
mate change projections of temperature and precipita-
tion. Geophysical Research Letters 35: L120709.
doi:10.1029/2008GL035694.

Cook BI, Terando A, Steiner A. 2010. Ecological forecast-
ing under climatic data uncertainty: a case study in phe-
nological modeling. Environmental Research Letters
5: 044014. doi:10.1088/1748-9326/5/4/044014.

Déqué M. 2007. Frequency of precipitation and tempera-
ture extremes over France in an anthropogenic sce-
nario: model results and statistical correction according
to observed values. Global and Planetary Change 57:
16-26. doi:10.1016/j.gloplacha.2006.11.030.

Dobor L, Barcza Z. 2014. FORESEE database v2.0. Eotvos
Lorand University, Hungary. doi: 10.5281/zenodo.9614.
Dosio A, Paruolo P. 2011. Bias correction of the ENSEM-
BLES high-resolution climate change projections for use
by impact models: evaluation on the present climate.
Journal of Geophysical Research 116: D16106.

doi:10.1029/20111D015934.

Fielding RT, Taylor RN. 2002. Principled design of the
modern web architecture. ACM Transactions on Inter-
net Technology 2: 115-150.

Fodor N, Mika J. 2011. Using analogies from soil science
for estimating solar radiation. Agricultural and Forest
Meteorology 151: 78-85. doi:10.1016/j.agrfor-
met.2010.09.006.

Giorgi F. 1990. Simulation of regional climate using a lim-
ited area model nested in general circulation model.
Journal of Climate 3: 941-963. doi:10.1175/1520-
0442(1990) 003.

Giorgi F. 2006. Climate change hot-spots. Geophysical
Research  Letters 33: L08707.  doi:10.1029/
2006GL025734.

Glassy JM, Running SW. 1994. Validating diurnal climatol-
ogy logic of the MT-CLIM model across a climatic gradi-
ent in Oregon. Ecological Applications 4: 248-257.

Goble C, De Roure D. 2009. The impact of workflow tools
on data-centric research. In Data Intensive Comput-
ing: The Fourth Paradigm of Scientific Discovery,
Hey T, Tansley S, Tolle K (eds.). Microsoft Research:
Redmond, WA; 137-145.

© 2015 The Authors.

Geoscience Data Journal published by Royal Meteorological Society and John Wiley & Sons Ltd.

Goddard L, Mason SJ, Zebiak SE, Ropelewski CF, Basher
R, Cane MA. 2001. Current approaches to seasonal to
interannual climate predictions. International Journal
of Climatology 21: 1111-1152. doi:10.1002/joc.636.

Gutowski W], Decker SG, Donavon RA, Pan Z, Arritt RW,
Takle ES. 2003. Temporal-spatial scales of observed and
simulated precipitation in central US climate. Journal of
Climate 16: 3841-3847. doi:10.1175/1520-0442(2003)
016.

Hansen JW, Challinor A, Ines A, Wheeler T, Moronet V.
2006. Translating forecasts into agricultural terms:
advances and challenges. Climate Research 33: 27-41.
doi:10.3354/cr033027.

Hardisty A, Roberts D, The Biodiversity Informatics Com-
munity. 2013. A decadal view of biodiversity informatics:
challenges and priorities. BMC Ecology 13: 16-23.
doi:10.1186/1472-6785-13-16.

Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones
PD, New M. 2008. A European daily high-resolution grid-
ded data set of surface temperature and precipitation
for 1950-2006. Journal of Geophysical Research 113:
D20119. doi:10.1029/20081D010201.

Hlasny T, Barcza Z, Fabrika M, Baldzs B, Churkina G,
Pajtik J, Sedmak R, Turcani M. 2011. Climate change
impacts on growth and carbon balance of forests in
Central Europe. Climate Research 47: 219-236.
doi:10.3354/cr01024.

Ho CK, Stephenson DB, Collins M, Ferro CAT, Brown SJ.
2012. Calibration strategies: a source of additional
uncertainty in climate change projections. Bulletin of
the American Meteorological Society 93: 21-26.
doi:10.1175/2011BAMS3110.1.

Hungerford RD, Nemani RR, Running SW, Coughlan JC.
1989. MTCLIM: A Mountain Microclimate Simulation
Model. USDA Forest Service: Ogden, UT, USA.

Ines AVM, Hansen JW. 2006. Bias correction of daily GCM
rainfall for crop simulation studies. Agricultural and
Forest Meteorology 138: 44-53. doi:10.1016/j.agrfor-
met.2006.03.009.

IPCC. 2000. Emissions scenarios. In Contribution of
Working Group Il to the Special Report of the Inter-
governmental Panel on Climate Change. Nakicenovic
N and Swart R (eds). Cambridge University Press: Cam-
bridge, United Kingdom, 570.

IPCC. 2007. Climate change 2007: impacts, adaptation
and vulnerability. In Contribution of Working Group Il
to the Fourth Assessment Report of the Intergovern-
mental Panel on Climate Change, Parry ML, Canziani ,
OF , Palutikof JP, dervan Linden PJ, Hanson CE (eds.).
Cambridge University Press: Cambridge, UK; 976.

IPCC. 2013. Climate change 2013: the physical science
basis. In Contribution of Working Group | to the
Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, Stocker TF, Qin D, Plattner
G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y,
Bex V, Midgley PM (eds.). Cambridge University Press:
Cambridge, United Kingdom and New York, NY, USA;
1535.

Jonsson AM, Barring L. 2011. Future climate impact on
spruce bark beetle life cycle in relation to uncertainties
in regional climate model data ensembles. Tellus A 63:
158-173. doi:10.1111/j.1600-0870.2010.00479.x.

Geoscience Data Journal 2: 1-11 (2015)


http://dx.doi.org/10.1007/s00704-012-0799-3
http://dx.doi.org/10.1007/s00704-012-0799-3
http://dx.doi.org/10.1038/nclimate1995
http://dx.doi.org/10.1029/2004JD004721
http://dx.doi.org/10.1029/2004JD004721
http://dx.doi.org/10.1029/2008GL035694
http://dx.doi.org/10.1088/1748-9326/5/4/044014
http://dx.doi.org/10.1016/j.gloplacha.2006.11.030
http://dx.doi.org/10.5281/zenodo.9614
http://dx.doi.org/10.1029/2011JD015934
http://dx.doi.org/10.1016/j.agrformet.2010.09.006
http://dx.doi.org/10.1016/j.agrformet.2010.09.006
http://dx.doi.org/10.1175/1520-0442(1990) 003
http://dx.doi.org/10.1175/1520-0442(1990) 003
http://dx.doi.org/10.1029/2006GL025734
http://dx.doi.org/10.1029/2006GL025734
http://dx.doi.org/10.1002/joc.636
http://dx.doi.org/10.1175/1520-0442(2003) 016
http://dx.doi.org/10.1175/1520-0442(2003) 016
http://dx.doi.org/10.3354/cr033027
http://dx.doi.org/10.1186/1472-6785-13-16
http://dx.doi.org/10.1029/2008JD010201
http://dx.doi.org/10.3354/cr01024
http://dx.doi.org/10.1175/2011BAMS3110.1
http://dx.doi.org/10.1016/j.agrformet.2006.03.009
http://dx.doi.org/10.1016/j.agrformet.2006.03.009
http://dx.doi.org/10.1111/j.1600-0870.2010.00479.x

10

Klok EJ, Klein Tank AMG. 2008. Updated and extended
European dataset of daily climate observations. Interna-
tional Journal of Climatology 29: 1182-1191.
doi:10.1002/joc.1779.

Li H, Sheffield J, Wood EF. 2010. Bias correction of
monthly precipitation and temperature fields from Inter-
governmental Panel on Climate Change AR4 models
using equidistant quantile matching. Journal of Geo-
physical Research 115: D10101. doi:10.1029/
200931D012882.

Maraun D. 2012. Nonstationarities of regional climate
model biases in European seasonal mean temperature
and precipitation sums. Geophysical Research Letters
39: L06706. doi:10.1029/2012GL051210.

Maurer EP, Brekke L, Pruitt T, Duffy PB. 2007. Fine-resolu-
tion climate projections enhance regional climate change
impact studies. Eos, Transactions American Geophysi-
cal Union 88: 504. doi:10.1029/2007E0470006.

Mearns LO, Schneider SH, Thompson SL, McDaniel LR.
1990. Analysis of climate variability in general circulation
models: comparison with observations and changes in
variability in 2xCO, experiments. Journal of Geophysi-
cal Research 95.D12: 20469-20490. doi:10.1029/
JD095iD12p20469.

Mitchell TD, Carter TR, Jones PD, Hulme M, New M.
2004. A comprehensive set of high-resolution grids of
monthly climate for Europe and the globe: the observed
record (1901-2000) and 16 scenarios (2001-2100). Tyn-
dall Centre Working Paper 55; 30.

Moss R, Babiker M, Brinkman S, Calvo E, Carter T,
Edmonds J, Elgizouli I, Emori S, Erda L, Hibbard K,
Jones R, Kainuma M, Kelleher ], Lamarque JF, Manning
M, Matthews B, Meehl J, Meyer L, Mitchell ], Nakiceno-
vic N, O'Neill B, Pichs R, Riahi K, Rose S, Runci P, Stouf-
fer R, van Vuuren D, Weyant J, Wilbanks T, van
Ypersele JP, Zurek M. 2008. Towards New Scenarios
for Analysis of Emissions, Climate Change, Impacts,
and Response Strategies. Intergovernmental Panel on
Climate Change: Geneva; 132.

Nabuurs GJ, Paivinen R, Sikkema R, Mohren GMJ. 1997.
The role of European forests in the global carbon cycle
— a review. Biomass and Bioenergy 13: 345-358.
doi:10.1016/S0961-9534(97)00036-6.

Olesen JE, Carter TR, Diaz-Ambrona C, Fronzek S, Heid-
mann T, Hickler T, Holt T, Minguez MI, Morales P, Paluti-
kof JP, Quemada M, Ruiz-Ramos M, Rubak GH, Sau F,
Smith B, Sykes MT. 2007. Uncertainties in projected
impacts of climate change on European agriculture and
terrestrial ecosystems based on scenarios from regional
climate models. Climatic Change 81: 123-143.
doi:10.1007/s10584-006-9216-1.

Piani C, Haerter JO, Coppola E. 2010. Statistical bias cor-
rection for daily precipitation in regional climate models
over Europe. Theoretical and Applied Climatology
99: 187-192. doi:10.1007/s00704-009-0134-9.

Seneviratne SI, Lithi D, Litschi M, Schar C. 2006. Land
atmosphere coupling and climate change in Europe.
Nature 443: 14. doi:10.1038/nature05095.

Supit I, Van Diepen CA, de Wit AJW, Wolf ], Kabat P,
Baruth B, Ludwig F. 2012. Assessing climate change
effects on European crop yields using the Crop Growth
Monitoring System and a weather generator. Agricul-

Geoscience Data Journal 2: 1—-11 (2015)

L. Dobor et al.

tural and Forest Meteorology 164: 96-111.
doi:10.1016/j.agrformet.2012.05.005.

Szabo P. 2008 Comparison of precipitation and tempera-
ture fields in different data sets used for evaluating
Regional Climate Models at the Hungarian Meteorologi-
cal Service. Research Report, 10.

Szalai S, Auer I, Hiebl J, Milkovich J, Radim T, Stepanek
P, Zahradnicek P, Bihari Z, Lakatos M, Szentimrey T,
Limanowka D, Kilar P, Cheval S, Deak Gy, Mihic D, Anto-
lovic I, Mihajlovic V, Nejedlik P, Stastny P, Mikulova K,
Nabyvanets I, Skyryk O, Krakovskaya S, Vogt ], Antofie
T, Spinoni J. 2013. Climate of the Greater Carpathian
Region. Final Technical Report. www.carpatclim-eu.org.

Teutschbein C, Seibert J. 2010. Regional climate models
for hydrological impact studies at the catchment scale: a
review of recent model strategies. Geography Compass
4: 834-860. doi:10.1111/§.1749- 8198.2010.00357.x.

ThemeBl MJ, Gobiet A, Heinrich G. 2012. Empirical-statis-
tical downscaling and error correction of regional cli-
mate models and its impact on the climate change
signal. Climatic Change 112: 449-468. doi:10.1007/
$10584-011-0224-4.

Thornton PE, Running SW. 1999. An improved algorithm
for estimating incident daily solar radiation from mea-
surements of temperature, humidity, and precipitation.
Agricultural and Forest Meteorology 93: 211-228.

Thornton PE, Hasenauer H, White MA. 2000. Simulta-
neous estimation of daily solar radiation and humidity
from observed temperature and precipitation: an appli-
cation over complex terrain in Austria. Agricultural and
Forest Meteorology 104: 255-271. doi:10.1016/
S0168-1923(00)00170-2.

Van der Linden P, Mitchell JFB. 2009. ENSEMBLES: Cli-
mate Change and its Impacts: Summary of research
and results from the ENSEMBLES project. Office; 160.

Varis O, Kajander T, Lemmela R. 2004. Climate and
water: from climate models to water resources manage-
ment and vice versa. Climatic Change 66: 321-344.
doi:10.1023/B:CLIM.0000044622.42657.d4.

Wang Y, Leung LR, McGregor JL, Lee D-K, Wang W-C,
Ding Y, Kimura F. 2004. Regional climate modeling: pro-
gress, challenges, and prospects. Journal of the Mete-
orological Society of Japan 82: 599-1628.

White RH, Toumi R. 2013. The limitations of bias correcting
regional climate model inputs. Geophysical Research
Letters 40: 2907-2912. doi:10.1002/grl.50612.

Wood AW, Leung LR, Sridhar V, Lettenmaier DP. 2004.
Hydrologic implications of dynamical and statistical
approaches to downscaling climate model outputs. Cli-
matic Change 62: 189-216. doi:10.1023/B:
CLIM.0000013685.99609.9¢.

Supporting information

The following supporting information is available as
part of the online article:

Appendix S1. Interpretation of the users’ needs
based on a self-made questionnaire.

Appendix S2. Comparison of the E-OBS and the CRU
TS 1.2 databases with the CarpatClim reference data-
base.

© 2015 The Authors.

Geoscience Data Journal published by Royal Meteorological Society and John Wiley & Sons Ltd.


http://dx.doi.org/10.1002/joc.1779
http://dx.doi.org/10.1029/2009JD012882
http://dx.doi.org/10.1029/2009JD012882
http://dx.doi.org/10.1029/2012GL051210
http://dx.doi.org/10.1029/2007EO470006
http://dx.doi.org/10.1029/JD095iD12p20469
http://dx.doi.org/10.1029/JD095iD12p20469
http://dx.doi.org/10.1016/S0961-9534(97)00036-6
http://dx.doi.org/10.1007/s10584-006-9216-1
http://dx.doi.org/10.1007/s00704-009-0134-9
http://dx.doi.org/10.1038/nature05095
http://dx.doi.org/10.1016/j.agrformet.2012.05.005
http://www.carpatclim-eu.org
http://dx.doi.org/10.1111/j.1749- 8198.2010.00357.x
http://dx.doi.org/10.1007/s10584-011-0224-4
http://dx.doi.org/10.1007/s10584-011-0224-4
http://dx.doi.org/10.1016/S0168-1923(00)00170-2
http://dx.doi.org/10.1016/S0168-1923(00)00170-2
http://dx.doi.org/10.1023/B:CLIM.0000044622.42657.d4
http://dx.doi.org/10.1002/grl.50612
http://dx.doi.org/10.1023/B:CLIM.0000013685.99609.9e
http://dx.doi.org/10.1023/B:CLIM.0000013685.99609.9e

Creation of the FORESEE database

Appendix S3. Differences between the non-cor-
rected/corrected climate model results and the obser-
vation-based dataset.

Appendix S4. Relationship between simulated and
observed standard deviation of precipitation time ser-

© 2015 The Authors.

1

ies based on the non-corrected and the corrected cli-
mate model results.

Appendix S5. Comparison of simulated (uncorrected
and corrected) and observed annual number of wet
days.

Geoscience Data Journal published by Royal Meteorological Society and John Wiley & Sons Ltd. Geoscience Data Journal 2: 1-11 (2015)



