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Abstract

Climate change is expected to affect natural populations in many ways. One

way of getting an understanding of the effects of a changing climate is to ana-

lyze time series of natural populations. Therefore, we analyzed time series of 25

and 20 years, respectively, in two populations of the citril finch (Carduelis citri-

nella) to understand the background of a dramatic increase in wing length in

this species over this period, ranging between 1.3 and 2.9 phenotypic standard

deviations. We found that the increase in wing length is closely correlated to

warmer winters and in one case to rain in relation to temperature in the sum-

mer. In order to understand the process of change, we implemented seven sim-

ulation models, ranging from two nonadaptive models (drift and sampling),

and five adaptive models with selection and/or phenotypic plasticity involved

and tested these models against the time series of males and females from the

two population separately. The nonadaptive models were rejected in each case,

but the results were mixed when it comes to the adaptive models. The differ-

ence in fit of the models was sometimes not significant indicating that the

models were not different enough. In conclusion, the dramatic change in mean

wing length can best be explained as an adaptive response to a changing

climate.

Introduction

It is well established that the climate is changing with

increasing temperatures as one of the factors that is

changing. How animal populations respond to this is,

however, a matter of debate. Given that the change in

temperature may lead to selection, and the fact that most

traits host measurable amounts of additive genetic varia-

tion, we would expect that populations respond to selec-

tion in an adaptive way, that is, by a genetic change due

to selection. However, it has been remarkably difficult to

show this in natural populations (e.g., Charmantier and

Gienapp 2014), and one of the more remarkable pheno-

typic changes over time, breeding phenology in great tits,

has been shown to be due to plasticity alone (Charman-

tier et al. 2008). A plastic response can be adaptive as

well, but will not lead to a persistent change in the popu-

lation. A great deal of effort has therefore been devoted

to test whether a change is plastic or due to a genetic

change as a result of selection (Meril€a and Hendry 2014),

and plasticity has been used as a null model against which

genetic changes are tested. As pointed out by Meril€a and

Hendry (2014), plasticity is not well suited as a null

model because this is a causal hypothesis itself, and if null

models should be used, genetic drift models are more

appropriate. Thus, a dichotomization of either a genetic

or a plastic change is not biologically realistic because in

most cases, we have both factors acting at the same time

to a varying relative extent. This is, for example, clearly

expressed in the Price theorem where change between

generations in traits means is the sum of selection and

“transmission bias”, that is, factors such as plasticity (e.g.,

Rice 2004).

Long-term trends in mean phenotypes are well known,

and considerable theoretical effort has been devoted to

understand the maximum rate of change over longer time
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periods, given the amount of additive genetic variation

and strength of selection (reviewed in Kopp and

Matuszewski 2014). To be able to know the potential and

extent of genetic change as a response to changing envi-

ronmental conditions, we need to have knowledge of the

amount of additive genetic variation both before the

trend starts and in the end, data that are rarely known.

Meril€a and Hendry (2014) summarize a number of

approaches to get hold of this important information, but

we have to face the fact that for the vast majority of natu-

ral populations we will not be able to get this data due to

all sorts of reasons, logistic not the least. Thus, other

means to understand the background of long-term phe-

notypic changes are necessary.

A complicating factor when studying possible effects of

global warming on natural populations is that the effects

can vary spatially depending on the overall ecological

conditions for a certain population, and long-term studies

on multiple populations are necessary for this. The citril

finch (Carduelis citrinella) is an ideal model species for

such a study. The species inhabits the high mountains of

southwestern Europe, with higher densities being present

in the Pyrenees mountain range (Borras and Senar 2003).

Previous studies have shown that different slopes of these

mountains, especially in the eastern range, can differ

markedly in environmental characteristics. The species

displays a marked local differentiation to this habitat het-

erogeneity, showing significant differences in wing length

and genetically between localities (Senar et al. 2006). The

mean wing length has increased substantially over time in

the two populations (Fig. 1A and B), such that females

now have the same size as the males had in the late

1980’s and early 1990’s. The mean winter temperature has

increased steadily from 1986 to 2010 (Fig. 1C), but this is

not the case for summer temperature (Fig. 1C). In accor-

dance with these observations, we predict that if a chang-

ing climate affects the population of citril finches, then it

is correlated to the changing winter temperatures, and

not the change in summer temperature. Furthermore, we

predict that the extent of change in wing length is corre-

lated to the magnitude of change in winter, but not sum-

mer temperature. We find that change in mean wing

length is correlated with changes in winter temperature.

Material and Methods

Study populations and field methods

Citril finches were captured at two breeding sites approxi-

mately 5 km apart, in the Pre-Pyrenees, approximately

100 km northwest of Barcelona (NE Spain). Both sites are

at approximately 2000 m elevation and are on opposite

slopes of a 2378 m mountain (Port del Comte): La Bofia

(41°100N 1°320E) faces south and its habitat intermixes

Mountain Pines Pinus uncinata with subalpine meadows;

La Vansa (41°120N 1°350E) faces north and its habitat is

dominated by open Mountain Pine forests. The difference

between the two localities is more extensively described in

Senar et al. (2002, 2006). Due to the differences in habi-

tat, the populations differ in a number of ways such that

La Vansa birds enjoy higher survival rate, a higher breed-

ing success and molt at a higher speed (Senar et al. 2002;

Borras et al. 2004; F€orschler et al. 2005). The populations

move down in the nearby valleys over winter.

Birds were ringed from 1986 to 2010 in La Bofia and

from 1991 to 2010 in La Vansa with most (approx. 99%)

capture occurring between 1 April and 30 October. We

captured a total of 9365 citril finches over the years

(Vansa 4992, Bofia 4373). Birds were captured with mist

nets and marked with numbered aluminum rings on cap-

ture. Sex and age were determined according to Svensson

(1992); we defined juveniles as hatching year birds (EUR-

ING 3J and 3) and adults as after hatching year (EURING

5 and 6). For the analysis of biometric differences, we dif-

ferentiated yearlings (EURING 5) from true adults (EUR-

ING 6). In the analysis, we only used the adult birds

from each locality resulting in 637 males and 318 females

from La Bofia, and 1149 males and 598 females from La

Vansa. We measured wing length from the bend of the

wing to the tip of the longest primary feathers, using the

method of the maximum chord (Svensson 1992). All

basic data are given in Data S1.

Evaluation of environmental covariates

Meteorological data were available from Can Cabot sta-

tion, located in Riner (Solsones, Lleida). This is a typical

citril finch wintering area, down of Port del Comte

mountains (Borras et al. 2010) and very close to Bofia/

Vansa area (26 km), and previous analyses in our study

area showed that meteorological data from different sta-

tions were highly correlated (Senar et al. 2002). Data used

are presented in Data S1.

To summarize the climate data, we made a principal

components analysis (PCA) using the cross-correlations

between climate parameters over time using the winter data

and the summer data separately (Table 1). To evaluate the

number of significant components, we used the broken-

stick model of Jackson (1993), where the expected eigen-

values in a random correlation matrix are calculated as

bk ¼
Xp

i¼k

1

i

where p is the number of variables and bk is the size

of the kth component. Eigenvalues larger than the
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(A)

(B)

(C)

Figure 1. Mean wing length (�SE, dotted

lines) over time for (A) males (open circles) and

females (filled circles) in La Bofia, (B) the same

for La Vansa, (C) mean winter temperature

(blue line) and mean temperature in June (red

line). There is a positive trend in mean winter

temperature over time (b = 0.069,

F1,23 = 47.4, P = 0.04), but not in summer

temperature (b = 0.12, F1,23 = 2.77, P = 0.11).

Time series smoothed by a 3-point moving

average.
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expected are significant and amendable for interpreta-

tion. Thus, the expected three-first eigenvalues in the

winter data set with seven variables are 2.6, 1.6 and

1.09, and for the summer data set with six variables

2.45, 1.45 and 0.95. For the winter data, the first two

eigenvalues were 4.02 and 1.69, and thus, we used the

first two components (Table 1). For the summer data

set, the two-first eigenvalues were 4.31 and 0.69, and

thus, only the first principal component is significant

(Table 1). Loadings were significant if they were larger

than (# variables * # components) * 0.05 (Franklin

et al. 1995), and thus for the winter data set, loadings

larger than 0.7 were significant, and for the summer

data set, the same figure was 0.3. Note that this applies

only to the original scale of the eigenvectors and not

the unit standardized eigenvectors that is normally dis-

played in a PCA. The values given here are standard-

ized to unit length.

In the winter data did PC1 account for 54.9% of the

variance among years and PC2 25.6%. PC1 summarizes

temperature with high values describing high tempera-

tures, and PC2 describes temperature in relation to rain-

fall with high values represent warm and dry conditions.

For the summer data, PC1 accounted for 72% of the vari-

ation and was the only significant component. PC1

describes rainfall in relation to temperature with high

values represent wet and cold weather. We calculated the

PC-scores for each year and made new cross-correlations

between the finch data and the different PC’s.

Statistics

To test for a correlation of climate parameters and wing

length, we used the cross-correlation of the time series

(Chatfield 2004). This was performed in two ways, first,

by the correlating climate variable at time t with the

mean values at time t, that is, the same time period, here

called lag 0. Secondly, we made the cross-correlation with

the climate variable at time t with the mean value at time

t + 1, that is, with 1 year of delay in the mean values,

here called lag 1. To remove the possible effects of tempo-

ral autocorrelations, we prewhitened and detrended both

time series by regressing the time series against time and

used the residuals before calculating the cross-correlation

to avoid spurious significance levels (c.f. Chatfield 2004).

Test of significance of the cross-correlation was per-

formed by a randomization procedure where new data

sets were created with individuals drawn for each year

from the pooled sample. The mean values from each year

then constituted a new time series of wing lengths, which

then was treated the same way as the original data (see

above). We ran this 10,000 times and the proportion of

times we found as large or larger cross-correlations as the

one observed is then the P-value.

Testing models of change

There are many possible causes for a trend like the ones

found here. We will test seven different general models, two

nonadaptive and five adaptive models either incorporating

plasticity or selection or both. Details of each model are

given below. The general approach was as follows. We

Table 1. Results from the principal components analysis using the cli-

mate variables, and the correlation between mean values in each sex

and population at lag periods 0 (same year) and 1 (the year after)

with the pc-scores. Bold figures are significant.

(a) Winter

Climate variable PC1 PC2

Winter Temp 0.34 0.44

Mean Min temp 0.49 0.08

Minimum Temp 0.36 �0.07

No. freeze days �0.44 �0.16

Extreme Temp �0.45 �0.12

Winter rain (mm) 0.19 �0.65

Days of rain 0.29 �0.58

Eigenvalue 4.03 1.69

% 57.4 24.1

Lag 0

Bofia males �0.13 �0.04

Bofia females 0.54 �0.02

Vansa males 0.00 0.26

Vansa females 0.19 0.19

Lag 1

Bofia males 0.37 0.07

Bofia females 0.16 �0.35

Vansa males 0.50 0.20

Vansa females 0.45 0.28

(b) Summer

Climate variable PC1

Max Temp June �0.45

Mean Temp June �0.45

Rain (mm) 0.39

Days of rain 0.41

Days over 30C �0.38

Days over 35C �0.36

Eigenvalue 4.31

% 71.8

Lag 0

Bofia males �0.01

Bofia females 0.36

Vansa males �0.07

Vansa females 0.00

Lag 1

Bofia males �0.13

Bofia females �0.08

Vansa males �0.11

Vansa females �0.30
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wanted to test which model is the most likely one to have

generated the data by generating distributions using these

models. In each case, we ran the models 50,000 times to get

the distributions. We evaluated the models by two criteria:

the probability of getting a cross-correlation as large, or lar-

ger, as the one observed, P(r), and the probability that the

time series ends with a mean value similar to that observed,

P(x). P(r) was estimated by counting the number of times

we found a cross-correlation as large, or larger, as the one

observed. This is the probability of getting the cross-corre-

lation given the model, P(r∣M), or P(r) for short. P(x) was

estimated by counting the number of times a simulated

time series ended with a mean value within one standard

error from the observed mean value. This gives the proba-

bility of getting the mean value given the model, P(x∣M),

or P(x) for short.

We evaluated the different models using a Bayesian

approach. This can be performed by noting that

P(x∣M) � L(M∣x), that is, the likelihood of the model

given the data (e.g., Congdon 2001). We already have the

likelihood of obtaining a certain cross-correlation given

the model, L(M∣r) = P(r∣M). Now, we can use the prob-

ability of getting the observed mean given the model

(P(x∣M), as a prior as we know that the population actu-

ally got there, and thus weigh the likelihood by the prior

to get the posterior probability of getting a certain

cross-correlation, divided by the probability of the data as

given by Bayes theorem. We then calculated the Bayes

factor by relating the model with highest posterior proba-

bility to the other i models (K = Pmax/Pi). For simplicity,

we display the Bayes factor as 2Ln (K). For a very detailed

summary of the procedure, we refer to Congdon (2001,

p. 465–480).
In addition to comparing the fit of the models to the

observed cross-correlation between the environmental fac-

tors and the mean values, we also compared the fit

between the simulated time series and the observed one.

This was performed by comparing the simulated mean

(xsim) to the observed mean (xobs) each year and calculat-

ing the probability that the simulated mean was equal to

the observed one by calculating a standard devi-

ate = (xsim � xobs)
2/SDobs and then calculating the corre-

sponding probability using the standard normal curve.

Thus, for each year, we obtained a probability that the

simulated mean value is similar to the observed one. We

then combined the yearly probabilities, Σln(Pi), and thus

obtained the likelihood of the data given the model. We

used the same prior as above and calculated Bayes factors

accordingly. By doing this, we get a distribution of likeli-

hoods and we compare the models by looking at the

mean of the distribution (Lmean) and by the highest likeli-

hood (Lmax; i.e., the smallest log-likelihood value). Models

were then compared by means of Bayes factors as above.

Some of the parameters involved are the same for all

models. Heritability, h2, could not be estimated directly

using the real data but were taken from a normal distri-

bution with mean 0.5 and a standard deviation of 0.1.

This results in 95% of the values ranging between 0.3

and 0.7. This corresponds to values of morphological

traits in other natural populations (Mousseau and Roff

1987). A new value of heritability was drawn for each

run.

Another parameter is effective population size, Ne. We

have estimates of Nel, where l is the mutation rate,

from each of the populations, and for Vansa, this equals

0.224 and for Bofia 0.305 (Senar et al. 2006). To get an

estimate of Ne, we used values of l ranging between

0.0001 and 0.005 (drawn from a uniform distribution),

which seems to be realistic for microsatellites (Li et al.

2002). We used a new value of l for each run. The sim-

ulated values of Ne had medians of 122 (95%: 63–1358)
and 90 (95%: 46–948) in La Bofia and La Vansa,

respectively.

Model 1 sampling

The first of our four models assumes that the results we

got are a product of sampling alone. Thus, as we have a

limited sample, the cross-correlation might be a result of

chance alone, that is, the mean has not changed over time

and the cross-correlation is a spurious result of sampling.

We simulated this by combining data from all years and

for each year (i) randomly sampled Ni individuals, the

same number as in the real data set. We then calculated

the mean values for each year and made the cross-correla-

tion between the different climate variables and the simu-

lated time series of means as above.

Model 2 drift

It is well known from any standard textbook in popula-

tion genetics that genetic drift can generate trends over

time, even if the expectation of change is zero every

generation. Thus, the trends we observe can be an effect

of genetic drift alone. Genetic drift can be modeled as a

normal deviate with zero expectation and a variance of

r2A/Ne, that is, the additive genetic variance divided by

effective population size (Falconer and Mackay 1996).

We do not have empirical estimates of r2A, and thus, we

used the fact that r2A ¼ h2 r2P, where h2 is the heritabil-

ity and r2P the phenotypic variance, which we do have

information of Falconer and Mackay (1996). We started

with the mean value for the first year in each popula-

tion and sex and then added a value drawn of drift

each generation;
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XðtÞ ¼ Xðt � 1Þ þNð0; r2A=NeÞ

Model 3 plasticity

An obvious possible adaptive explanation is phenotypic

plasticity (e.g., Meril€a and Hendry 2014; Valladeres et al.

2014). However, this is notoriously difficult to model as

there are a number of factors that we need to know from

each population and this kind of data is rarely available

for any population (Meril€a and Hendry 2014). Thus, we

use a simple model based on the data that is available

acknowledging that the real situation might be far more

complex. However, in the absence of data, a simple model

is more parsimonious. Thus, our main hypothesis is that

the mean values have not changed genetically but stayed

the same over years, and the trend is a result of a plastic

response to the environment that has changed over time

with a different slope and intercept of plasticity for each

individual. We have data on the same individuals from

different years, and hence, we can estimate the amount of

change in wing length in relation to a change in a climate

parameter (Charmantier et al. 2008) and use this as a

crude measure of plasticity. We found that wing length in

1 year was related to the amount of rainfall during the

molt the year before (summer). Thus, we used the follow-

ing relation

Change in wing length ¼ 0:702þ 0:221
� Logðdifference in rainfallÞ

This model was significant (F1,60 = 9.09, P = 0.0038,

R2 = 0.13), as was the intercept (P = 0.000025) and the

slope (P = 0.0038). Each year, we sampled the same num-

ber of individuals as in the original sample, calculated the

difference in rainfall between year x and x�1 and calcu-

lated the new phenotype according to the regression

model above. To simulate individual variation in response

to the different amounts of rainfall, we used the variance

of the slope and the intercept and created new individual

intercepts and slopes with values drawn from an

N (0.702, 0.221) and N (0.221, 0.073) distribution,

respectively. Thus, 95% of the intercepts lie between 0.4

and 1.0, and 95% of the slopes lie between 0.079 and

0.37. Not all individuals change between years, thus for

each individual, there is a probability of change (PP) with

turned out to be 0.75 (same for all groups) with a confi-

dence interval of 0.64–0.84. Thus, for each run, we first

calculated a probability that an individual had a plastic

change using a normal approximation to the binomial

with a mean of Ni PP and variance Ni PP (1�PP). This

gives the number of individuals that are plastic so this

was transformed to a proportion by dividing by Ni. Thus,

the model of plasticity is

XðtÞ ¼ Xðt � 1Þ þMeanðChange due to plasticityÞ

Model 4 constant selection

The simplest model of selection is where we assume that

there is a new adaptive peak at the last year (T) of study

and that there has been constant selection from year 1 to

the last year. Thus, the selection differential (s) is

(X[T] – X[1])/L, where L is the number of years. The

response to selection every generation was calculated

using the Breeder’s equation, Δz = h2s, where h2 is herita-

bility as defined above. We also incorporated a change

due to drift each generation. The model of change is thus

XðtÞ ¼ Xðt � 1Þ þ Dz þNð0; r2A=NeÞ

Model 5 fixed optimum weak selection

This model is similar to the preceding one except that we

assume that there is stabilizing selection acting at the

optimum and that selection change each year as a func-

tion of the distance to the new adaptive peak. Thus, the

selection acting each year is

sf ¼ XðTÞ � XðiÞ½ �2
x2

where x2 is the strength of stabilizing selection. We used

a fixed value of 20 to mimic weak stabilizing selection (to

be relaxed below). The response to selection is thus,

Δzf = h2sf. We also incorporated drift in this model and

thus the model of change is as above but with the selec-

tion calculated differently.

Model 6 fixed optimum weak selection with
plasticity

In this model, we combine Model 3 and Model 5 and

thus the model of change is

XðtÞ ¼ Xðt � 1Þ þ Dzf þMeanðChange due to plasticityÞ
þ Nð0; r2A=NeÞ

Model 7 moving optimum

In this model, we assume that the optimum changes every

year (i) and is strictly related to the climate parameters.

This was implemented as

optðiÞ ¼ aþ b � pcðiÞ
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where pc(i) is the pc-score each year (see above). The

slope (b) and the intercept (a) were determined by taking

the first and last values of the mean values (y) and

regressing those on the first and last values of the pc-

scores (x). This assumes that populations are at the

adaptive peak at the first and last years of study. In this

model, we also let x2 vary between runs. Based on the

data in Estes and Arnold (2007) and Kingsolver et al.

(2001), the mean value of x2 is 11. The distribution is

clearly skewed and to model this we draw values of x2

from a log-normal distribution with mean 2.4 (log[11])

and a standard deviation of 0.6. This creates values cen-

tered at around 11 and with a long right-hand tail (see

Fig. 7 in Estes and Arnold 2007). Thus, we calculated

selection as

sm ¼ XðoptÞ � XðiÞ½ �2
x2

The response to selection is thus Δzm = h2sm, and the

model of change over years is then

XðtÞ ¼ Xðt � 1Þ þ Dzm þ Nð0; r2A=NeÞ
We note that there are an infinite number of different

models that can be used, but we are here interested in

testing a few, simple models that differ in important

respects and will thus be able to reject certain factors

based on the outcome of the model comparisons.

Results

La Bofia males changed 1.29 standard deviations (SD), La

Bofia females changed 1.53 SD’s, La Vansa males changed

1.57 SD’s and La Vansa females changed 2.90 SD’s

(LR = 33.5, 24.2, 71.3, 30.1, respectively, P < 0.001 in all

cases, Fig. 2). The rate of change measured in haldanes

(phenotypic standard deviation/generation) was 0.080

(95% bootstrap interval = 0.065–0.094) and 0.12 (0.10–

0.014) in La Bofia males and females, respectively, and

0.14 (0.12–0.16) and 0.26 (0.22–0.31) haldanes in La

Vansa males and females, respectively.

Wing length in La Bofia females was positively corre-

lated to winter PC1 in the same year (Table 2), but in

males from La Bofia and males and females from La

Vansa, we found a positive correlation with winter PC1

and wing length the year after (Table 1). This correlation

means that the population means are higher after a

warm winter, but with 1 year of delay. This is confirmed

by looking at winter temperature alone where wing

length was positively correlated to wing length (Fig. 3).

Wing length in La Bofia females was also positively

correlated to increasing summer PC1 scores, that is, wet

and cold summers increased the wing length of females.

There was a significant cross-correlation between

males and females in La Vansa (r = 0.71, P = 0.0012),

but not in La Bofia (r = 0.36, P = 0.072). There was a

significant cross-correlation between females in both

populations (r = 0.56, P = 0.011) and males (r = 0.86,

P = 0.000092).

Trait variances changed over years, but not in the way

mean values changed (Fig. 4). There were no correlations

between the amount of change in mean values and

change in variance in any of the groups (r = �0.12 and

0.11 for La Bofia males and females, respectively;

r = 0.076 and 0.12 for La Vansa males and females,

respectively).

The comparison of possible models shows that the

nonadaptive models could be clearly rejected when it

comes to mimicking the correlation between the environ-

mental variables and wing length. Examples of the simu-

lations results are given in Figure 5. The model of

constant selection (Model 4) was the best model for males

from La Bofia and females from La Bofia when it comes

to winter period lag 0. The moving optimum model

(Model 7) was the best model for females from La Bofia

for the winter period at lag 1, while the model with a sin-

gle optimum (Model 5) was the best for the summer per-

iod in La Bofia females. In La Vansa, the plasticity model

(Model 3) was the best for males, and the combined opti-

mum and plasticity model (Model 6) was the best one for

females. However, as is evident from Table 2, many mod-

els differed little in terms of posterior probabilities. If we

concentrate on Bayes factors larger than 6, which indi-

cates strong evidence of a difference in support, we find

that none of the adaptive models are rejected for males

from La Bofia, winter lag 1 and summer in females from

La Bofia and for both males and females from La Vansa.

Two models stand out for females from La Bofia in the

winter period lag 0 and that is the constant selection

model (Model 4) and the moving optimum model

(Model 7), while the remaining models could be rejected.Figure 2. The study organism, the citril finch (Carduelis citronella).
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Further information on the success of the models to

simulate the patterns observed can be obtained by analyz-

ing P(r) for the different models. In most cases was P(r)

low with the exception of the summer data for females

from La Bofia, in other words, the models did a relatively

poor job of recreating the correlation between the climate

parameter and the mean values.

If we instead look at the ability of the models to simu-

late the means themselves, without reference to the corre-

lation with the climate variable, we find a much better fit.

Table 2. Result from the simulations. The columns show the group, the period, the model used in the simulations, the probability of obtaining a

cross-correlation as high as that observed, the probability that the end point in the simulation is within 1 SE of the observed mean, the relative fit

of the model given the data (K) expressed as the Bayes factor 2lnK, the best fit of a particular model to the data (Lmax) and relative fit expressed

as the Bayes factor, the mean fit of a particular model to the data (Lmean) and relative fit expressed as the Bayes factor. Bold figures indicate the

best model.

Group Period Model

Mean fit

Bayes Lmax Bayes Lmean BayesP(r) P(x)

Bofia M Winter 1 Sampling 0.033 0 15.3 �253.1 498 �322.4 565

Drift 0.031 0 15.4 �58.3 109 �129.6 179

Plasticity 0.041 0 3.4 �12.1 5 �63.9 36

Constant 0.022 0.06 0 �12.5 1.1 �59.5 23

Optimal 0.003 0.15 2.0 �12.8 0 �48.8 0

OptPlast 0.003 0.11 3.2 �16.1 7.3 �197.6 298

Moving 0.002 0.22 2.5 �13.6 0.8 �82.3 66

Bofia F Winter 0 Sampling 0.005 0.001 16.4 �15.6 33 �58.4 37

Drift 0 0 31.9 �126.4 263 �157.5 243

Plasticity 0.004 0.12 7.7 �8.9 10 �81.6 74

Constant 0.13 0.16 0 �5.6 3 �98.7 107

Optimal 0.002 0.22 8.0 �4.7 0.5 �48.9 7.1

OptPlast 0.001 0.13 10.2 �5.0 2.1 �149.2 209

Moving 0.001 0.29 0.8 �4.7 0 �45.6 0

Bofia F Winter 1 Sampling 0.081 0 9.6 �13.9 30 �58.5 38

Drift 0.031 0 19.4 �125.6 261 �157.4 244

Plasticity 0.058 0.11 0.8 �9.3 11 �81.5 75

Constant 0.032 0.16 1.3 �5.2 2.3 �98.8 108

Optimal 0.039 0.23 0.2 �4.8 0.6 �49.0 8.1

OptPlast 0.024 0.13 2.3 �5.4 3.0 �148.8 209

Moving 0.035 0.29 0 �4.7 0 �45.2 0

Bofia F Summer Sampling 0.047 0.001 14.3 �17.4 37 �58.4 37

Drift 0.089 0 20.9 �131.8 274 �157.4 243

Plasticity 0.067 0.11 4.0 �11.1 15 �81.4 74

Constant 0.12 0.16 2.3 �4.5 1.1 �98.5 107

Optimal 0.17 0.36 0 �4.8 0 �49.0 6.5

OptPlast 0.092 0.14 3.2 �5.3 3.0 �148.9 208

Moving 0.15 0.28 0.7 �4.6 0.1 �45.5 0

Vansa M Winter 1 Sampling 0.011 0.002 8.5 �5.8 16 �13 0

Drift 0.012 0 17.8 �153.0 320 �229.5 443

Plasticity 0.009 0.21 0 �2.3 0 �21.2 7.4

Constant 0.011 0.033 3.3 �4.8 8.7 �106.3 181

Optimal 0.010 0.035 3.2 �3.4 5.8 �42.0 53

OptPlast 0.008 0.074 2.2 �2.8 3.0 �72.2 112

Moving 0.006 0.14 1.7 �2.0 0.2 �25.1 16

Vansa F Winter 1 Sampling 0.021 0 18.0 �7.4 6.6 �23.2 38

Drift 0.023 0 18.0 �213.9 96 �247.5 487

Plasticity 0.017 0.029 3.9 �1.6 1.0 �25.3 28

Constant 0.025 0.024 3.4 �2.3 1.4 �87.9 153

Optimal 0.028 0.042 2.1 �1.4 0.7 �14.7 6.0

OptPlast 0.027 0.13 0 �1.3 0.2 �56.5 87

Moving 0.015 0.17 0.6 �1.2 0 �13.1 0
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For example, all adaptive models had an Lmax in the

range of �12 to �2. To set this in perspective, if all

simulated mean values are exactly 1 standard deviation

from the observed mean, Lmax would be �22.8 for La

Vansa. A value of �1.2 then corresponds to 0.02 SD’s

from the observed mean, which means that the simulated

data are very close to the observed mean values. In fact,

in all cases but for males from La Bofia was the fit

between the simulated adaptive models and the observed

data very good. However, this is the best possible fit and

a perhaps a better measure is the Lmean. Using these fig-

ures, it is clear that some models are, on average, still did

quite well in replicating the observed data. For example,

Lmean for the moving optimum model for females from

La Vansa was �13.1, which corresponds to a situation

where, on average, the simulated mean is around 0.5 SD’s

from the observed mean. Values larger than around �75

indicate that the distance between the observed and simu-

lated mean is, on average, larger than 2 SD’s.

Discussion

We found correlations between winter conditions in

1 year and wing length in the next year. In particular,

warmer winters correlated with larger individuals, and as

the winters have become warmer over the years of study,

so has the citril finches. The pattern is not entirely consis-

tent, though, with the females from La Bofia being the

exception. In La Vansa and in males in La Bofia, the cor-

relation is between temperature in year t and wing length

in year t + 1. This means that the effect of the tempera-

Figure 3. Standardized mean wing length and

winter temperature (red line). Solid lines are

male and females from La Bofia, and dotted

lines males and females from La Vansa. Time

series smoothed by a 3-point moving average.
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Figure 4. Phenotypic standard deviations over time. Solid lines males,

dotted lines females.
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ture in one winter is seen in the summer the year after.

In females in La Bofia, however, this effect is seen the

same year, which suggests that the warmer temperature

has a direct effect on these females, rather than the indi-

rect effect as in the other groups. In addition, these

females are also affected by summer conditions, which is

not the case in the other groups. In particular, summers

that are rainy in relation to the temperature seems to

select for larger females. Furthermore, there was a delayed

effect of winter conditions in females from La Bofia such

that dry winters select for larger females in the year after.

The differences in response are seen in the lack of a sig-

nificant correlation between male and female time series

in La Bofia, but which is highly significant in La Vansa.

Furthermore, the correlation between females in the two

populations was lower than the correlation between

males.

The results also suggest that birds from the two habi-

tats differ such the impact of changing winter tempera-

ture is stronger in La Bofia, which is probably an inferior

habitat to La Vansa (Senar et al. 2002; Borras et al. 2004;

F€orschler et al. 2005). It needs to be stressed in this con-

text that the birds overwinter in sympatry (Borras et al.

2010, 2011) and thus affected by the same winter

conditions and that the differences in change between the

years are due to an interaction between winter conditions

and conditions the rest of the year that might differ

between the two populations. Thus, the impact of a

change in climate seems to be conditional on the quality

of the habitats the populations are living in part of the

year. This in turn strongly suggests that studies of effects

of a changing environment should incorporate several

populations in order to make more robust inferences. It

needs to be remembered at this stage that what we have

found is a strong correlation between changes in a climate

variable and changes in mean phenotype, and not a causal

relationship, and there might be another underlying factor

behind this correlation.
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Figure 5. Examples of fit between data and four models using Bofia females as an example. The red line is the result of a simulation, and the

black line the observed mean � 1 SE (shaded area).
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To get an understanding of the magnitude of selection

that might have been acting, and if these values are rea-

sonable we treated the difference between means in adult

wing length as the response to selection (R). This means

that the selection coefficient (s) can be estimated from

the Breeder’s equation as s = R/h2, where h2 is the herita-

bility that can be estimated as above. The results from

this rough estimate of selection can be seen in Figure 6.

To compare to other published estimates, the estimated

selection is expressed in units of standard deviations.

Basically all published estimates are within �1.5 SD’s,

which corresponds to a truncation selection of the 15%

largest (smallest) individuals, and this is denoted in Fig-

ure 6 by the dotted lines. From this rough analysis it is

clear that in almost all years is the estimated selection

well within the magnitude found in other studies. The

main exceptions are 2003 and 2004 in males from La

Bofia, 2003 for males in La Vansa and 1998 in females

from La Vansa, where the estimated selection is far from

what is found elsewhere, that is, larger than 3 SD’s. Selec-

tion intensities in that order correspond to truncation

selection of the largest (smallest) 0.4%. If the breeding

population is 2000 individual, this corresponds to 8 indi-

viduals breeding that year. This is obviously unrealistic,

and hence, these values are composed of other factors as

well.

One thing that needs to be remembered in these crude

calculations is that there are several possible selection epi-

sodes between adult to adult change in mean, such as

selection during breeding, selection of fledging individuals

and selection on overwinter first-year birds. This means

that the estimated selection is the composite of a number
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Figure 6. Estimated selection for each. The bands are the 95% intervals. The dotted lines represent the upper limit of observed selection

coefficients taken from literature data. (A) Males and females from La Bofia, (B) males and females from La Vansa, (C) males from both

populations, (D) females from both populations.
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of selection episodes and thus, if they act in the same

direction, easily can add up to larger numbers. For exam-

ple, an estimated selection of 3 SD’s might be a sum of

four different episodes of 0.75 SD’s. This is still intensive

selection, but within the range of what has been seen in

other populations (Kingsolver et al. 2001). Thus, the val-

ues obtained are perhaps not that extreme after all, even

though without knowledge of the details of selection at

other episodes, we cannot make stronger inferences.

One issue that complicates studies like this is the extent

of phenotypic plasticity. To be able to understand the

impact of plasticity, we need to know the reaction norm of

each genotype, data that are basically impossible to get in a

wild-ranging population like this, and this is a problem that

is obvious in most natural populations. However, the crude

measure of plasticity we used here, which is based on

observed between-year changes in wing length, turned out

to be the best model in one case (males in La Vansa) and

with reasonable support in the other cases. In females from

La Vansa, the model that combined plasticity and the new

optimum had highest support. Thus, even if the mecha-

nism of plastic response probably is more complicated than

we have envisaged, the main conclusion is that plasticity

quite likely has had an impact on the changes over years in

wing length in the citril finch.

Long-term directional selection is expected to erode

genetic variance, and if the genotype–phenotype map

remains intact (i.e., constant heritability), we would

expect this to been seen also in the phenotypic variance

(Falconer and Mackay 1996) as a trend of decreasing phe-

notypic variance over time. However, we did not see any

trend in decreasing variance in either sex or population

(Fig. 4). Thus, despite the substantial change in mean val-

ues, the phenotypic variation has been kept intact. Unfor-

tunately, we have no information on the amount of

additive genetic variation in this species, and it is basically

impossible to obtain for logistic reasons. If genetic varia-

tion has decreased, but the phenotypic variance remains

intact this must mean that heritability has decreased over

time, or in other words, the organisms increased their

level of plasticity over time. However, recent results from

other study systems suggest that genetic variance can

actually increase as a result of a changing environment

through the expression of cryptic genetic variance (e.g.,

Paaby and Rockman 2014). The results suggest that selec-

tion has been weak enough to keep, at least, the pheno-

typic variance relatively stable over time.

The models we have used are admittedly simple, and

there is an infinite number of ways to model processes

that might match the observed trend. For example, selec-

tion on correlated traits and genetic correlations between

traits within and between sexes has not been incorpo-

rated. We wanted to keep things simple using a minimum

of unknown variables and still we were able to get a good

match between the observed and simulated data. We

could also exclude two nonadaptive models and concen-

trate on the adaptive ones. Often a dichotomy between

plasticity and selection is made (reviewed in Meril€a and

Hendry 2014), but this is an unnecessary division of pro-

cesses. A change in mean values between years could be

due to either process or both in combination. Likewise,

plasticity is to some unknown extent adaptive and

amendable for selection as any trait. We know that there

is plasticity in wing length in this species as about

three-fourth of the individuals change their wing length

between years. Wing feathers are molted every year, and

hence, there is thus ample opportunity for local environ-

mental and intrinsic physiological factors to interact, but

we have so far no idea on the exact details on how this

might work. We did find a relationship between change

in wing length and rainfall during summer, which gives a

hint on how plasticity works in this species.

The results presented here have strong implications for

the study of climatic effects on natural populations. First,

a sufficiently long time series is needed to capture the

changes that might have occurred. If the time series is too

short, then the changes in climate during the period stud-

ied might be too weak to result in any evolutionary

change. This can be seen in Figures 1, 3 where the winter

temperature did not change much over a decade (i.e.,

1997–2007), and there were no changes in mean wing

length either. Second, populations even very close to each

other might respond in different ways depending on local

factors. Thus, the global impact might be enhanced in

some populations and mitigated in other populations.

This means that multiple populations need to be studied

in order to control for local, population-specific factors.

Third, changes in mean values as a response to a chang-

ing environment can be very fast on an evolutionary time

scale. The changes observed here are large, but still within

the range of those observed in other taxa (Kinnison and

Hendry 2001), albeit in the upper range of the distribu-

tion. As an extreme case, Grant and Grant (1995; recalcu-

lated by Hendry and Kinnison 1999) found changes up

0.7 haldanes over two generations in Darwin’s finches,

although most rates of change are in the order of 0.03

(Kinnison and Hendry 2001).

In conclusion, the large change in mean wing length

over 20–25 years in two populations of the citril finch is

best explained by adaptive factors, such as selection and

plasticity, alone or in some combination. The results also

show that a change in an environmental factor, such as

winter temperature, can lead to drastic changes in men

phenotypes over very short time periods.
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