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Abstract

Single-catch traps are frequently used in live-trapping studies of small mam-

mals. Thus far, a likelihood for single-catch traps has proven elusive and usu-

ally the likelihood for multicatch traps is used for spatially explicit capture–
recapture (SECR) analyses of such data. Previous work found the multicatch

likelihood to provide a robust estimator of average density. We build on a

recently developed continuous-time model for SECR to derive a likelihood

for single-catch traps. We use this to develop an estimator based on observed

capture times and compare its performance by simulation to that of the mul-

ticatch estimator for various scenarios with nonconstant density surfaces.

While the multicatch estimator is found to be a surprisingly robust estimator

of average density, its performance deteriorates with high trap saturation and

increasing density gradients. Moreover, it is found to be a poor estimator of

the height of the detection function. By contrast, the single-catch estimators

of density, distribution, and detection function parameters are found to be

unbiased or nearly unbiased in all scenarios considered. This gain comes at

the cost of higher variance. If there is no interest in interpreting the detection

function parameters themselves, and if density is expected to be fairly con-

stant over the survey region, then the multicatch estimator performs well with

single-catch traps. However if accurate estimation of the detection function is

of interest, or if density is expected to vary substantially in space, then there

is merit in using the single-catch estimator when trap saturation is above

about 60%. The estimator’s performance is improved if care is taken to place

traps so as to span the range of variables that affect animal distribution. As a

single-catch likelihood with unknown capture times remains intractable for

now, researchers using single-catch traps should aim to incorporate timing

devices with their traps.

Introduction

Animal density is a crucial parameter in wildlife manage-

ment and conservation (Buckland et al. 1993; Marques

et al. 2013) and there is often interest in understanding

how and why density varies in space (Gaston 2003). Spa-

tially explicit capture–recapture (SECR) models provide a

tool for investigating this as they incorporate spatial

information on where captures are made (Efford et al.

2009; Royle et al. 2009; Gerber et al. 2012; Noss et al.

2012).

A variety of different detectors or traps are used in

capture–recapture or SECR studies. The majority of stud-

ies of small mammals use single-catch traps that catch

and hold a single animal at a time (Efford et al. 2009;

Krebs et al. 2011; Gerber and Parmenter 2015). Multi-

catch traps also hold an individual animal until it is

released but are able to simultaneously hold multiple

individuals. Examples include mist nets for birds and pit-

fall traps for lizards. Proximity detectors are devices that

record the presence of an individual without actually

holding it, and unlike the previous two detector types
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allow an individual to be detected at more than one

detector during an occasion. Camera traps, acoustic

devices, and hair snares are all examples of proximity

detectors.

The characteristics of the type of trap determine the

specification of the detection process component of the

SECR model (Efford et al. 2009). Capture in either a

multicatch or single-catch trap precludes capture in any

other trap during that occasion. The competition between

traps for individuals leads to a competing risks formula-

tion for multicatch traps, but single-catch traps have the

additional complexity that once they are full, they are

effectively unable to catch any other individuals. A suit-

able capture model for single-catch traps therefore needs

to account for a second kind of competing risk, that of

competition among individuals for traps (Efford et al.

2009). The construction of a suitable likelihood for sin-

gle-catch traps is considerably more complicated than for

multicatch traps, and to date no likelihood function for

single-catch traps currently exists (Efford et al. 2009;

Royle et al. 2013). Consequently, the multicatch trap esti-

mator is typically used for the analysis of single-catch trap

data.

Trap saturation can be calculated as the average

proportion of traps that are occupied at the end of an

occasion. As explained above, the extent to which the

multicatch estimator assumption that traps do not fill up

after catching an individual is violated depends on the

degree of trap saturation. The multicatch estimator is

therefore expected to perform well for low levels of trap

saturation.

Efford et al. (2009) conducted simulations that

explored the performance of the multicatch trap estimator

when applied to single-catch trap data. Three distribu-

tions for the activity centers were considered: a homoge-

nous Poisson distribution, a Neyman–Scott distribution

(with clustered centers), and an inhomogeneous Poisson

distribution with an east–west linear gradient in density.

The fitted model assumed constant density and a half-

normal detection function that uses two parameters (g0,

which determines detection function height, and r, which
determines its range).

They reported that in all cases, even at high levels of

trap saturation (of around 86%), the multicatch estimator

of both the density and r parameters performed well.

There was negative bias in the g0 parameter that increased

with increasing trap saturation. The only scenario that

exhibited slight bias in density (of around �5%) was that

with a gradient in the density of activity centers and a

high degree of trap saturation. The tentative conclusion

was that the multicatch estimator may be sufficiently

robust to use with single-catch traps as long as extreme

trap saturation is avoided.

Traditionally, data from live-trapping studies do not

contain actual capture times. However, devices that

record times when a trap is triggered are available and

have been used by Cowan and Forrester (2012) to study

the activity patterns of possums. A continuous-time SECR

model for proximity detectors that record exact capture

times was developed by Borchers et al. (2014). With slight

modifications, it can be used to obtain a single-catch trap

likelihood. This study presents a single-catch trap likeli-

hood for situations in which capture times are recorded

and uses simulation to compare the performance of the

associated likelihood-based estimator with that of the

multicatch estimator under various scenarios.

Materials and Methods

We assume that the actual times of capture in single-

catch traps are available, and model the process generat-

ing detections as a competing hazards survival process

(Borchers and Efford 2008) in which “death” corresponds

to being caught and all individuals become “alive” again

after release. Each individual is exposed to trap-specific

hazards that we assume are at any time independent of

the individual’s capture history up to that time (although

the model is easily extended to estimate different hazard

levels before and after first capture as per model Mb).

The likelihood for single-catch traps needs to account

for the consequences of a trap catching and holding an

individual. The first consequence is that the trapped indi-

vidual cannot be caught at any other trap until it is

released, that is, the individual’s exposure to detection by

all other traps is zero for the remaining period of capture

(the competing hazards formulation takes care of this).

The second consequence is that the trap in which the

individual is held cannot catch any other individuals until

the time of release, that is, exposure to that trap for all

other individuals is zero.

If we were dealing with proximity detectors, it would be

straightforward to handle latent times of capture by inte-

grating times out of the likelihood as done by Barker et al.

(2014) (although their model is for abundance rather than

density and does not include both time and space). How-

ever, the fact that single-catch traps induce a dependence

between individuals complicates matters and means that a

high-dimensional integral would need to be solved.

Notation

There are n unique individuals caught over a survey of

duration T with an array of K traps. If release times are

the same for all traps, then this leads to a natural defini-

tion of occasion (for discrete SECR models), and the sur-

vey duration T can be divided into L occasions.
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As is typical for SECR models, it is assumed that the

individuals have fixed activity center locations for the

duration of the survey period: xi for the ith individual,

which is a distance dkðxiÞ from trap k. Detection proba-

bility is a decreasing function of dkðxiÞ. The number of

times the ith individual is caught at the kth detector is

denoted by xik, and instead of a capture history of length

L, we have the capture times of the xik � L captures

t ik ¼ ðtik1; . . .; tikxik
Þ at trap k, and t ¼ ft ikg (i = 1,. . .,

n; k = 1,. . .,K) denotes the set of all detection times.

The hazard function (representing the mean capture

rate per unit time) for the ith individual and the kth trap

at time t is denoted as hkðt; xi; hÞ and can depend on

both space (in terms of the distance from the trap to the

activity center xi) and time. h is an unknown vector of

hazard function parameters. In the absence of other traps

and other individuals, the “survivor function” for individ-

ual i at trap k over the whole survey (the probability of

individual i not being caught in the trap by time T) is

SkðT; xi; hÞ ¼ exp � R T

0 hkðu; xi; hÞ du
� �

. The combined

detection hazard over all traps at time t is h�ðt; xi; hÞ
¼ PK

k¼1 hkðt; xi; hÞ, and the overall probability of detection

in (0, T) over all detectors is p�ðxi; hÞ ¼ 1� S�ðT; xi; hÞ,
where S�ðT; xi; hÞ ¼ exp � R T

0 h�ðu; xi; hÞ du
� �

is the

overall survivor function.

In addition to h, / is the vector of parameters of the

Nonhomogeneous Poisson Process (NHPP) governing

animal density and D(x; /) indicates that the density at a

point in space depends on both the / parameters and

the spatial coordinate x. For example, if density foll-

ows an exponential east–west gradient then Dðx;/Þ
¼ expb0 þ b1� x coordinate and / ¼ ðb0; b1Þ.

A continuous-time likelihood for single-
catch traps

The likelihood for / and h is the joint distribution of the

number of individuals captured n, and the density of the

outcomes “xik events, at times tik1 \ . . .\ tikxikr
”, for all i

and k. With single-catch traps, the survival function term

needs to take account of traps having been taken out of

action by catching other individuals. Exposure to any par-

ticular trap falls to zero as soon as that trap catches any

individual, and once an individual is caught in a particular

trap, it cannot be caught in any other trap until it is

released.

To construct a likelihood with these features, we define

an indicator variable akðtÞ that is 1 if trap k is unoccu-

pied at time t and zero otherwise (k = 1,. . ., K), and we

define another indicator variable viðtÞ to be 1 if individual

i is not in a trap at time t, and zero otherwise

(i = 1,. . ., n). (These variables are readily calculated from

the observed capture and release times of individuals at

each trap.) The hazard function for individual i for trap k

at time t is then conveniently written as viðtÞakðtÞ
hkðt; xi; hÞ. The survivor function for individual i to time

t is defined to be S�ðt; xi; hÞ ¼ exp � R t

0 viðuÞ
PK

k¼ 1

�
akðuÞhkðu; xi; hÞ duÞ.
The likelihood for / and h for single-catch SECR

surveys then becomes:

Lð/; hjn; tÞ ¼ e�kð/;hÞ

n!

Yn
i¼1

Z
A

Dðxi;/ÞS�ðT; xi; hÞ

�
YK
k¼1

Yxik

r¼1

hkðtikr; xi; hÞ dx
(1)

where kð/; hÞ ¼ R
A Dðx;/Þp�ðx; hÞ dx, and the integral

is over all possible activity center locations that could

have led to a detection on the survey. The term p�ðx; hÞ
is the overall probability of being caught during the sur-

vey, which depends on the combined detection hazard

h�ðt; x; hÞ over the duration of the survey. This in turn

depends on akðtÞ (k = 1, . . ., K), which depend on ran-

dom variables (the times of capture in each trap). Calcu-

lating p�ðx; hÞ requires taking expectation over these K

random variables – something that is prohibitively com-

putationally expensive.

Our estimator therefore involves maximizing the

above likelihood equation with k(/, h) replaced by

k̂ð/; hÞ¼R
ADðx;/Þexp �R T

0

PK
k¼1 akðuÞhkðu;x; hÞ du

� �
dx,

which depends on the observed akðtÞ (k = 1, . . ., K).

Consequently, the proposed estimator may not be an

MLE and may not enjoy the asymptotic properties of

MLEs. We evaluate the bias of the estimator and the cov-

erage of a confidence interval estimator based on the

observed information, by simulation.

Simulations

As stated in the introduction, Efford et al. (2009) found

that the multicatch model estimator exhibited slight bias

when there was a gradient in density, although an estima-

tor with a constant density model was used in those cases

and hence both the detection and density components of

the model were misspecified. The simulations conducted

here use the same form of density model in simulating

and estimating and contrast the performance of the mul-

ticatch estimator with that of the single-catch estimator

for other kinds of nonconstant density surfaces. We con-

sider a range of NHPPs, with either exponential or quad-

ratic rate parameters as a function of distance east.

Table 1 and Figure 1 provide details of the scenarios used

in the simulations. Note that scenario 3 in the quadratic
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simulations is similar to scenario 2 but with the maxi-

mum density being shifted from the center of the trap

array to the right-hand side of the array area.

Except where stated otherwise, all simulations are over

5 9 24-h occasions (i.e., all trapped individuals are

released simultaneously after each 24-h period) with a

5 9 4 array of traps and use a r of 100 m, trap spacings

of 100 m, and a g0 of 0.2. For all scenarios, single-catch

trap data with observed capture times are simulated and

two estimators (namely the discrete time SECR multi-

catch trap estimator and the single-catch trap estimator

proposed in this study) used to estimate the parameters

of interest. In both cases, the estimators use the correct

form of NHPP rate parameter (exponential or quadratic).

As explained in Borchers et al. (2014), the hazard func-

tion can be specified in a way that links it with the dis-

crete time model to allow the same detection function to

be fitted when the performance of the two models are

compared. The model parameters are estimated using an

integration area constructed with a buffer equal to 4 9 r,
but the estimated density surfaces are evaluated within

the convex hull of the trap array with a buffer of width

2 9 r added.

The approach used to simulate single-catch trap detec-

tion times is adapted from a method for simulating com-

peting risks data ((Beyersmann et al. 2009). Individuals

compete for traps, and hence, the capture of one individ-

ual changes the relative hazards of capture elsewhere for

all other individuals. For this reason, the simulation can-

not generate capture times for each individual in isolation

and needs to move forward with time rather than loop

over individuals.

The steps of the simulation are summarized below:

1. A population of individuals from the given NHPP is

simulated. Function sim.popn from the R pack-

age secr (Efford 2013) was used for this step.

2. The total hazard across all traps for each individual is

calculated and used to generate a vector of capture

times (one for each individual). We assume a con-

stant hazard through time leading to the density of

capture times following an exponential distribution.

3. The minimum capture time from this vector is taken

and the rest discarded. If this time is greater than the

end of the study the simulation ends, if not the time

is taken to be the capture time. The time of release is

also calculated and is based on the assumption that

all traps are checked and reset on a set time each day

(08:00 used in these simulations).

4. The particular trap where the capture event took

place is then drawn from a multinomial distribution

using the relative hazard at each as yet unfilled trap

as the appropriate vector of probabilities, where the

relative hazard for the kth trap is ðhk=
P

K hkÞ , and

the sum is over all unfilled traps at the given capture

time.

5. The total hazard from the remaining traps and the

revised trap-specific relative hazards are recalculated.

A new vector of capture times is simulated and the

minimum of these times added to the last capture

time. If this new capture time exceeds the release

time from step 3, the time is discarded and step 2

restarted from the release time, if not it becomes the

next capture time and this step is repeated.

The statistical computing language R (R Core Team

2013) is used for the analysis and the R package secr
(Efford 2013) used to fit the multicatch models. Compu-

tations are performed using facilities provided by the

University of Cape Town’s ICTS High Performance Com-

puting team (http://hpc.uct.ac.za).

Model evaluation

The performance of the estimators is evaluated in a vari-

ety of ways. Firstly, the relative biases of the predicted

mean density over the area (D̂) and of the detection func-

tion parameters (ĝ0 and r̂) for both exponential and

quadratic simulations, and of the density slope parameter

(D̂slope) for the exponential simulations are calculated.

The estimated parameters of the quadratic coefficients are

not reported as they are correlated and are more difficult

to interpret than the slope parameter of the exponential

rate parameter. Secondly, two measures of overall model

performance that are based on predicted density at each

point in space are calculated and reported, namely the

root-mean-squared prediction error (RMSPE), and the

Table 1. Details of four different exponential and quadratic scenarios

used in the simulations. DMax is the maximum density (at 4r from the

trap array for the exponential simulations), DS refers to the density at

the start of the trap array (where the x coordinate is equal to zero), �D

is mean density, “Unique” is the mean number of unique individuals

captured, and “Trap %” refers to trap saturation and is the propor-

tion of traps occupied at the end of each occasion. Means have been

rounded off.

Simulation

Type Scenario # DMax DS
�D Unique Trap (%)

Exponential 1 6.00 2.00 2.77 65 94

2 6.00 1.00 1.79 50 80

3 6.00 0.50 1.20 36 64

4 2.00 0.67 0.92 32 60

Quadratic 1 3.68 2.48 2.56 66 96

2 3.71 0.52 1.30 47 81

3 3.86 0.03 1.33 42 69

4 1.49 0.74 0.80 32 63
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root-mean-squared bias (RMSB). These measures of

model performance are calculated for two different areas:

the “full” area which extends 2r beyond the trap array,

and the “reduced” area which is defined as the area

encompassed by the convex hull of the trap array.

The RMSPE and RMSB are calculated as follows:

RMSPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

XR
r¼ 1

ðMSPErÞ;
vuut

where

MSPEr ¼ 1

M

XM
m¼ 1

ðD̂mr � DmÞ2 � cell area;

RMSB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
m¼ 1

ð �̂Dm � DmÞ2 � cell area

vuut ;

where �̂Dm is the mean estimated density at the mth point

in space (m = 1,. . .,M) averaged over the R simulations.

Results

With single-catch traps, there is an upper limit on the

total number of captures over the survey, which is equal

to the number of traps multiplied by the number of occa-

sions. With 20 traps and 5 occasions, there are a maxi-

mum of 100 captures, and consequently, the mean

number of captures for these simulations is equal to the

mean percentage trap saturation and only the latter is

reported.

Figure 2 presents a set of plots from the exponential

simulations that show the estimated density surface from

each simulation overlaid on the true density surface. It is

apparent that at high levels of trap saturation the multi-

catch estimator has a tendency to flatten out the esti-

mated density surface. Table 2 and Figure 3 show that the

multicatch model underestimates the slope parameter and

that the extent of underestimation varies with trap satura-

tion. Table 2 also shows that the relative bias in mean

density is similar for the two models. Consistent with the

results from the simulations performed by Efford et al.

(2009), the g0 parameter is negatively biased with the

multicatch estimator and again depends on trap satura-

tion while estimates of r are unbiased. Figure 4 shows

that the single-catch model has lower bias in all cases

except scenario 4, and there is not much difference

between the two models in terms of RMSPE particularly

when not extrapolating beyond the trap array.

For the quadratic simulations, Figure 5 presents the

estimated density surface plots, Figure 6 the RMSPEs and

RMSBs, and Table 3 the relative biases of the detection
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Figure 1. Simulated density surfaces for the four scenarios. The vertical dashed red lines indicate the borders of the trap array.
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function parameters and the mean density estimates. The

results are similar to those from the exponential simula-

tions although, in addition to g0 being negatively biased,

estimates of r from the multicatch estimator tend to be

slightly positively biased in scenarios 2 and 3 where the

gradient in density is steeper than the other two scenar-
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Figure 2. Results from the simulations with an exponential density surface. The black line depicts the true density surface, the gray lines the

estimated density surface from each simulation, and the dashed black line the average of the simulations. The vertical dashed red lines indicate

the borders of the trap array.
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ios. The RMSPE for the single-catch estimator is notice-

ably higher than that for the multicatch estimator for sce-

nario 1 which has the flattest quadratic bump, and

for scenario 3 when the peak in density is shifted to

the side of the trap array. Note that while in general the

multicatch estimator again performs worse for higher

levels of trap saturation, scenario 2 (and scenario 3 over

the reduced area) has more bias than scenario 1 despite

having lower trap saturation (81% vs. 96%).

On average, the single-catch estimator accurately esti-

mates the true density surface although the occasional

replicate overestimates the gradient in density. In some

cases, a slight discrepancy between the average estimated

density from the single-catch estimator and the true den-

sity can be seen at the edges of the density surface where

no sampling occurs. It should be noted that the sample

sizes produced by these simulations are not large. The

simulations are rerun with 10 occasions, and the results

in Figures 4 and 6 confirm that both the RMSPE and the

slight bias reduces with larger sample sizes.

Discussion

Comparing the estimators

When density is constant, the multicatch estimator is

unbiased or nearly so even when the g0 parameter is badly

negatively biased (Efford et al. 2009). The multicatch esti-

mator ignores the fact that occupied traps are out of

action until they are reset. The estimator appears to

compensate for this by underestimating the g0 parameter.

As stated by Efford et al. (2009), this compensator mecha-

nism results in a surprisingly robust estimator of density

although the incorrect estimation of g0 would still have

implications if used in movement or space-use models.

A nonconstant density surface can lead to high trap

saturation in areas of high density but not in low-density

areas. The assumption implicit in the multicatch trap

model that traps continue to operate after catching an

individual can therefore be badly violated in the high-

density areas leading to density being underestimated in

those areas. The consequent underestimation of g0 also

gets applied to the traps in low-density areas where trap

saturation may not be high, resulting in density being

overestimated in low-density areas.

When density follows an east–west exponential gradi-

ent, the multicatch estimator therefore overestimates den-

sity where density is low in the west and underestimates

density where it is high in the east. These two errors tend

to cancel each other out and the estimator of mean den-

sity is nearly unbiased although it underestimates density

in high-density areas and overestimates it in low-density

areas. A slight negative bias is evident when evaluating

density over the full area due to the steep exponential

increase in the eastern part of the true density surface.

A similar thing happens with a quadratic bump in

density whereby the multicatch estimator underestimates

density around its peak and overestimates density at the

edges resulting in a reasonably unbiased estimate of mean

density over the full area. However, the estimator is

Table 2. Simulation of bias in density and detection parameters estimated by the SECR multicatch estimator and the proposed single-catch esti-

mator when data are from single-catch traps with 5 and 10 occasions and density follows an exponential gradient. Relative % bias is shown for

each parameter followed by the standard error in parentheses. RB(D̂) is the relative bias in mean density over the area, F refers to the full area

(with 2 9 r) and R to the area spanned by the convex hull of the trap array. In all cases, 500 replications were run and converged.

Scenario Model RB(D̂slope) RB(ĝ0) RB(r̂) RB(D̂F ) RB(D̂R)

5 occasions

1 Multicatch �62.29% (1.22) �66.84% (0.37) �0.77% (0.65) �2.09% (0.96) 0.71% (0.99)

Single-catch 2.54% (2.43) 3.18% (1.04) 0.43% (0.65) 4.30% (1.08) 2.98% (1.03)

2 Multicatch �42.18% (1.11) �53.79% (0.46) 0.23% (0.63) �4.59% (0.95) 0.99% (1.02)

Single-catch 2.53% (1.76) 1.67% (0.98) 0.64% (0.62) 4.29% (1.11) 2.44% (1.06)

3 Multicatch �27.56% (1.16) �40.08% (0.67) 0.56% (0.67) �6.13% (1.01) 0.84% (1.10)

Single-catch 2.66% (1.56) 6.21% (1.12) 0.58% (0.65) 3.74% (1.27) 1.03% (1.14)

4 Multicatch �21.04% (2.61) �32.72% (0.72) �0.58% (0.67) 1.61% (1.14) 1.79% (1.14)

Single-catch 4.00% (3.40) 3.96% (1.06) �0.27% (0.65) 5.39% (1.21) 2.95% (1.14)

10 occasions

1 Multicatch �47.76% (1.24) �68.23% (0.20) �0.79% (0.36) �2.58% (0.57) �0.28% (0.59)

Single-catch 2.00% (2.05) 0.84% (0.57) 0.21% (0.35) 1.92% (0.61) 1.06% (0.60)

2 Multicatch �32.75% (1.05) �54.80% (0.27) �0.19% (0.35) �4.84% (0.64) �0.31% (0.70)

Single-catch �0.09% (1.44) 0.86% (0.54) �0.16% (0.33) 1.83% (0.72) 1.01% (0.71)

3 Multicatch �20.08% (0.95) �43.61% (0.36) 0.63% (0.39) �5.31% (0.76) 0.19% (0.86)

Single-catch 2.33% (1.18) 0.54% (0.63) �0.11% (0.37) 2.73% (0.88) 1.16% (0.88)

4 Multicatch �11.67% (2.41) �35.14% (0.43) 0.00% (0.41) �0.78% (0.80) �0.88% (0.82)

Single-catch 7.27% (2.88) 1.28% (0.65) 0.19% (0.40) 1.78% (0.83) �0.06% (0.83)
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negatively biased for mean density if evaluated over the

reduced area since then the error from underestimating

density dominates the corresponding error from overesti-

mating density at the edges. This bias is worst when the

peak in density is centered on the trap array as in scenarios

1 and 2.

As expected, trap saturation affects the extent that the

multicatch estimator underestimates g0. However, the

steepness of the change in density also plays an important

part and can lead to overestimation in r and to the dete-

rioration of the robustness of the multicatch estimator.

When the gradient is slight (as with scenario 4 in both
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Figure 3. The sampling distributions of the estimates for the slope in the density model from the exponential simulations for both the multicatch

and single-catch estimators. The arrows mark the position of the mean values, and the red arrows show the true values of the slope parameters.
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types of simulations), the multicatch estimator performs

well.

The single-catch estimator is approximately unbiased

for the parameters of interest, and the confidence interval

estimator has reasonably good coverage for the parame-

ters of interest (see Table 4). It is clear that the single-

catch trap estimator has lower bias than the multicatch

estimator for trap saturations above about 60%, and the

estimators have similar RMSPEs.

Implications for trap design

If the multicatch estimator is used in a single-catch

study, a trap design that lays traps out with trap density

roughly proportional to expected animal density in

space may avoid higher trap saturation in areas of high

density.

Because the single-catch estimator sometimes estimates

density with substantial positive bias when extrapolating

beyond the range of explanatory variables spanned by the

traps (the variable x in our simulations), it is important

that traps adequately span the range of any covariate that

is included in the density model. Furthermore, the vari-

ance in the single-catch estimator for density seems to

increase when one extrapolates in this way. For example,

the RMSPE from the single-catch estimator is worse com-

pared to the multicatch estimator in the 1st and 3rd

quadratic scenarios with 5 occasions. Both these scenarios
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Figure 4. Measures of model performance based on predicted density from the exponential simulations with 5 (top row) and 10 occasions (bottom

row). Results are given for both the full area (top left and bottom left plots) and the area spanning the trap array (top right and bottom right plots).

Standard errors are calculated using the Delta method for the root-mean-square prediction error (RMSPE) and bootstrapping for the root-mean-

square bias (RMSB), and error bars are plotted using two standard errors. The x-axis is ordered by trap saturation (94, 80, 64, and 60%).
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are characterized by a sampling design where the trap

array does not sample from regions where density is

changing. A clustered trap design that spans the range of

such covariates would facilitate interpolation rather than

extrapolation and ameliorate the high variance in the sin-

gle-catch estimator.
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Figure 5. Results from the simulations with quadratic density surfaces. The black lines depict the true density surface, the gray lines the
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the borders of the trap array.
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Conclusion

If the focus of interest is only overall density or if density

is reasonably constant, then the multicatch estimator

should perform well. However, this performance deterio-

rates with high trap saturation and increasing density gra-

dients. Furthermore, the multicatch estimator is poor at

estimating the height (but not range) of the detection

function and the detection function parameters may be of

interest in their own right (for example to inform models

of animal movement).

By contrast, the single-catch estimators of density, dis-

tribution, and detection function parameters are found to

be unbiased or nearly unbiased in all scenarios consid-

ered. If accurate estimation of the detection function is of

interest, or if density is expected to vary substantially in

space, then there is merit in using the single-catch estima-

tor.

In the absence of a single-catch trap likelihood that

does not require observed capture times, we recommend

that where possible researchers who are using single-

catch traps and are interested in modeling variation in

density in space incorporate timing devices and use a

single-catch trap estimator when trap saturation is

expected to be above about 60%.
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