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Abstract

Quantifying the behavior of motile, free-ranging animals is difficult. The

accelerometry technique offers a method for recording behaviors but interpreta-

tion of the data is not straightforward. To date, analysis of such data has either

involved subjective, study-specific assignments of behavior to acceleration data

or the use of complex analyses based on machine learning. Here, we present a

method for automatically classifying acceleration data to represent discrete,

coarse-scale behaviors. The method centers on examining the shape of his-

tograms of basic metrics readily derived from acceleration data to objectively

determine threshold values by which to separate behaviors. Through application

of this method to data collected on two distinct species with greatly differing

behavioral repertoires, kittiwakes, and humans, the accuracy of this approach is

demonstrated to be very high, comparable to that reported for other automated

approaches already published. The method presented offers an alternative to

existing methods as it uses biologically grounded arguments to distinguish

behaviors, it is objective in determining values by which to separate these

behaviors, and it is simple to implement, thus making it potentially widely

applicable. The R script coding the method is provided.

Introduction

Behavior is a manifestation of movement and can account

for a large proportion of energy expenditure (Karasov

1992; Rezende et al. 2006), thus allocation of time to dif-

ferent behaviors can greatly affect an individual’s survival

and reproduction (Nagy et al. 1999). Behavior can be

quantified over a range of biological scales, from within

individual changes over short time-scales (e.g., changes in

behavior while foraging (Ropert-Coudert et al. 2004)), to

persistent changes in group behavior over time (e.g.,

changes in time-spent foraging in response to increased

interspecific competition (Namgail et al. 2006)). Yet,

despite its importance, collecting sufficiently accurate,

quantitative data on behavior for free-ranging animals

tends to be problematic, especially in motile and/or

elusive species (Ropert-Coudert and Wilson 2005). To

address this, a range of biotelemetry approaches have

been, and continue to be, developed to monitor animals

remotely (Cooke et al. 2004). The most widely used

biotelemetry devices collect positional data, and such

devices have provided invaluable insights into species dis-

tributions across a range of spatial and temporal scales

(Cagnacci et al. 2010). However, to elucidate behavior

from such positional data alone is complex, typically

involving either making assumptions (Freeman et al.

2010), introducing statistically complex behavior assign-

ments (Guilford et al. 2009; Cristescu et al. 2014), or

coupling the data with those obtained from other devices

(Dean et al. 2013).

Among these other devices, the use of accelerometers

to identify behaviors in free-ranging animals has become

4642 ª 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.



increasingly common in recent years (Yoda et al. 2001;

Tsuda et al. 2006; Halsey and White 2010; Zimmer et al.

2011; Williams et al. 2014). Accelerometers measure the

acceleration of an organism across one, two, or three

axes. By measuring across multiple axes, it is possible to

derive the orientation of the logger which, in relation to

gravitational force, in turn makes it possible to derive the

orientation of the instrumented animal (Tsuda et al.

2006; Halsey and White 2010; McClune et al. 2014). The

moment-to-moment difference between the acceleration

recorded by the logger and the orientation of the logger

indicates the dynamic movement of the animal’s center of

mass (Gleiss et al. 2011). Accelerometers confer the

advantage over direct observations and inference from

other biologging tools, such as GPS loggers, of being able

to record at high temporal resolutions (from 0.5 to

10,000 Hz), allowing measurement of short-lived behav-

iors such as escape responses or feeding events (Carroll

et al. 2014; Kawabata et al. 2014) as well as continuous

measurement of coarse-scale behaviors such as flight, rest-

ing, swimming, and running (Shepard et al. 2008; Halsey

et al. 2009; McClune et al. 2014).

However, identifying discrete behaviors in accelerome-

try data at all temporal scales has to date largely involved

subjective assessments of data or, as with identifying

behavior from positional data, the use of complex com-

putational techniques; both of which often lack validation

(Bidder et al. 2014). This lack of consistency has resulted

in numerous techniques being developed for classification

of such data. The simpler methods available in the litera-

ture tend to be reliant on separating behaviors by specific

threshold values of metrics derived from acceleration

data. These are typically determined through comparison

with a source of validation such as video-recorded images

(Kawabata et al. 2014), or through subjective inspection

of the data (G�omez Laich et al. 2009); in both cases such

approaches are, therefore, largely study-specific and

potentially labor intensive. Furthermore, despite their effi-

cacy, objectivity, and increasing availability in statistical

software packages (Nathan et al. 2012; Campbell et al.

2013; Gerencs�er et al. 2013; Bidder et al. 2014; Carroll

et al. 2014), approaches based on machine learning,

which are also reliant on a source of validation and com-

prise numerous types of analyses, are conceptually diffi-

cult and therefore potentially inaccessible to many

biologists. Indeed, such complexities may discourage the

collection and use of accelerometry data. A computation-

ally simple method for interpreting behaviors from

accelerometry data, which is not inherently reliant on a

source of validation yet which also incorporates objectiv-

ity, is currently lacking. A key consideration which

emerges when evaluating and choosing methods to inter-

pret such data is the level of information required to

answer the target research questions. In many studies, this

might mean that just the coarse-scale behaviors need to

be identified; for example, when comparing time-activity

budgets between individuals or groups (G�omez Laich

et al. 2011; Le Vaillant et al. 2012) or for isolating certain

behaviors to calculate associated energetic costs (Wilson

et al. 2006). Even for studies identifying finer-scale behav-

iors and short-lived events such as characteristics of limb

movement during locomotion, identifying the coarse-scale

behaviors is often a necessary first step in analysis (Kawa-

bata et al. 2014).

This study presents a computationally simple method

for assigning coarse-scale behaviors to accelerometry data.

Discrete behaviors are assigned by using objectively iden-

tified separation points in frequency histograms of simply

calculated metrics derived from accelerometry data.

Behavioral assignments using this method are presented

and independently validated for two distinct species with

disparate modes of locomotion: black legged kittiwakes

Rissa tridactyla and humans Homo sapiens.

Materials and Methods

Data collection

Tri-axial accelerometers (X8m-3; Gulf Coast Data Con-

cepts, LLC, MS, USA; recording range �8 g, resolution:

0.001 g, weight: 14 g), set to record at 25 Hz, were

attached to feathers on the center of the backs of seven

kittiwakes using clothed black Tesa� tape. The placement

of the accelerometer was kept as consistent as possible

across all birds. In addition to the accelerometers, birds

were deployed with salt water immersion loggers (GLS

Mk18-H British Antarctic Survey, weight: 1.9 g) on the

tarsus via cable tie attachment to existing metal leg rings.

These loggers record a value between 0 and 200 once

every ten minutes, measuring the proportion of time the

logger was immersed in salt water over the previous

epoch. Average body mass was 357 � 20 g (mean � SD)

and data loggers weighed on average 4.5 � 0.2% of body

mass, which is within recommendations for deployment

weight (Bridge et al. 2011). All seven birds were recap-

tured but one of the salt water immersion loggers was

not functioning upon removal, giving a final sample size

of six combined deployments. Deployment time ranged

from 47 to 74 h during which time birds exhibited nor-

mal breeding behavior, including incubation of eggs, rear-

ing of chicks (dependent on which breeding stage they

were at), or the absence from the nest (most likely on

foraging trips). Fieldwork was carried out on Puffin

Island, North Wales (53° 190 05″ N, 04 °01 040″ W) in

July 2013. All work was carried out under Countryside

Council for Wales permit number (44043:OTH:SB:2013).
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The same tri-axial accelerometers set to record at

25 Hz (n = 5) or 40 Hz (n = 1) were attached to the

sternum in a vertical orientation using Tesa� tape on six

humans. Participants were instructed to undertake three

activities for approximately five minutes each: sitting,

walking, and running. All participants carried out each of

the activities once and in the same order. Duration of

deployment ranged from 14 to 28 min.

Approach

The method of behavioral assignment presented here con-

sists of a stepwise process which assigns predetermined

behaviors to acceleration data using objectively identified

threshold values of metrics derived from raw acceleration

data (outlined in Fig. 1). Initially, behaviors to be classi-

fied were considered and metrics thought likely to differ

depending on these behaviors were calculated from raw

accelerometry data. Histograms of these metrics were then

plotted to identify any patterns potentially indicative of

discrete behaviors. These histograms, coupled with knowl-

edge of the target species and the target behaviors, were

then used to select the metrics most suitable for assigning

behaviors from the accelerometry recordings. Behaviors

were assigned dependent upon threshold values of these

metrics. These thresholds were objectively determined val-

ues relating to the shape of the histograms, specifically

the minimum frequency of data points falling between

peaks (the interpeak frequency minimum).

Calculating metrics of acceleration

To identify metrics potentially indicative of discrete

behaviors in both kittiwakes and humans, the following

10 metrics were calculated to 1-sec intervals across the

dataset of each subject bird or participant: mean accelera-

tion and standard deviation of raw acceleration for each

of the three axes (heave, surge, and sway), pitch of the

body, and roll of the body; ODBA (overall dynamic body

acceleration); and VeDBA (vectorial dynamic body accel-

eration). Mean and standard deviation of the acceleration

values were calculated over a moving period of 25 data

points (representing a duration of 1-sec). Pitch (the angle

of the device and therefore also of the bird or participant)

and roll (the side-to-side movement of the bird or partic-

ipant) were derived from all three axes using the follow-

ing equations:

Pitch ¼ ArctanðX=ðY2 þ Z2Þ1=2Þ � ð180=piÞ

Roll ¼ ArctanðY=ðX2 þ Z2Þ1=2Þ � ð180=piÞ
where X is acceleration (g) in the surge axis, Y is accelera-

tion (g) in the sway axis, and Z is acceleration (g) in the

heave axis.

Overall dynamic body acceleration and VeDBA are

measures of DBA (dynamic body acceleration) in all three

dimensions. DBA was calculated by smoothing data for

each axis across a 1-sec period to calculate the static

acceleration, and then subtracting the static acceleration

Raw acceleration data
Calculate metrics of 
acceleration and plot 

histograms

Inspect histograms 
and use prior 
knowledge of 

behaviours to select 
metrics to be used for 

assignment

Objectively determine 
threshold values 

dependent upon the 
shapes of histograms 
of the chosen metrics

Assign behaviours 
based on threshold 

values.

If appropriate include 
other arguments 

relating to biological 
limitations of 

transitions between 
behaviours (e.g. 
averaging pitch 

behaviours to be 
assigned

Repeat if necessary to remove certain 
behaviours before assigning others

Figure 1. Flowchart of the process developed

for assigning behaviors to accelerometry data.
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values from the raw acceleration values. ODBA is the sum

of the dynamic body acceleration of the three axes,

whereas VeDBA is the square root of the sum of the

squares of dynamic body acceleration of the three axes

(Qasem et al. 2012).

Assigning behaviors

We aimed to categorize kittiwake behaviors as: flying, on

land, and on water, while human behaviors were catego-

rized as: sitting, walking, and running. Assignment of

behaviors was undertaken in a stepwise manner for both

kittiwakes and humans. Metrics of the recorded accelera-

tion data were selected based on how clearly they

appeared to distinguish these target behaviors. Then, one

behavior at a time was separated from the others based

on a threshold value calculated as an interpeak frequency

minimum of the metric employed. For the kittiwake data,

flight behavior was assigned first on the basis that this

dynamic movement was likely to be more distinct than

the stationary behaviors of “on land” or “on water.” The

behaviors of “on land” or “on water” were then assigned

to the remaining data. For human data, sitting was

assigned before “walking” and “running” were assigned,

again on the basis that this stationary behavior was likely

to be more distinct than the behaviors relating to two

types of movement, walking and running.

Histograms plotted for the 10 metrics derived from the

accelerometry data indicated that the standard deviation

of the heave axis (SDHeave) was bimodal for all kittiwakes

(Appendix S1) and trimodal for all humans (Appendix

S2). SDHeave also had the greatest range of values when

compared to other axes, indicating that movement across

this axis was the most variable. For these reasons, as well

as the use of heave in previous studies to identify flight

behavior (Wilson et al. 2006; Sato et al. 2008; Sakamoto

et al. 2013; Vandenabeele et al. 2014), SDHeave was the

metric used to separate flight from nonflight behavior in

kittiwakes, and to separate sitting, walking, and running

in the human dataset. Furthermore, use of the standard

deviation is likely to be more appropriate for identifying

movement than just the raw acceleration values as raw

acceleration during movement tends to oscillate and

therefore likely overlap considerably with values recorded

when the subject/participant is not moving (Fig. 2). As

histograms of SDHeave for kittiwake data were bimodal, it

was expected that nonflight behavior would correspond

to the lower values of SDHeave and the higher values of

SDHeave would relate to flight. Therefore, the value of

SDHeave corresponding to the interpeak frequency mini-

mum between the first and second peak was determined

and used as the threshold value to separate these behav-

iors. Histograms of the human data had trimodal distri-

butions of SDHeave and, considering the three behaviors

recorded in the data correspond to different amounts of

movement, it was assumed that each peak related to each

of the behaviors. As such, the SDHeave value correspond-

ing to the interpeak frequency minimum values between

the first and second peak for each individual was deter-

mined and used as the threshold value for separating sit-

ting behavior from walking and running. The value of

SDHeave corresponding to the interpeak frequency mini-

mum between the second and third peak was determined

and used as the threshold value to separate walking and

running.

For kittiwakes, the behaviors of “on land” and “on

water” were assigned after flight had been assigned.

Therefore, histograms of calculated metrics were
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Figure 2. Raw acceleration values of the

heave axis (upper trace) compared to the

standard deviation of the heave axis (lower

trace) from an accelerometer attached to a

kittiwake.
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reassessed with data corresponding to flight removed

(Appendix S3). Body pitch was chosen as the most suit-

able metric to use to separate these remaining behaviors.

This is because a kittiwake’s body angle is likely to be

different when on land compared to on water, due to

the influence of nest angle as well as differences in body

position arising from the range of movements; notably

standing, incubating eggs, and brooding chicks. His-

tograms of pitch showed clear peaks, indicating that

individuals exhibited certain body pitch angles more pre-

dominantly than others during the data logger deploy-

ment (Appendix S3). The threshold value for separating

“on land” and “on water” was determined as the pitch

value corresponding to the minimum frequency value

between the first and second peak in the pitch his-

togram for each bird.

Cliff-nesting birds such as kittiwakes must fly to com-

mute between land and water, thus to potentially further

aid in the separation of the behaviors “on land” and “on

water” this understanding of the underlying biology was

incorporated into the behavioral assignment process. To

prohibit the possibility of an assignment of “on water”

directly following “on land” and vice versa without a per-

iod of flight in between, the mean pitch was calculated

between the end of each bout of flight and the start of

the next (Fig. 3). Data within the between flight bouts

were then assigned as being “on land” or “on water”

depending on the mean pitch value across the entire

between-flight period. These behaviors were assigned

using the threshold determined by the interpeak

frequency minimum from the histograms of pitch before

averaging.

Validation

To determine the suitability of assigning behaviors by

thresholds that correspond to interpeak frequency mini-

mum values of the chosen acceleration-derived metrics,

the accuracy of behavior assignments determined by a

range of threshold values including the interpeak fre-

quency minimum values was calculated. To determine

accuracy, the behavioral assignments across these thresh-

old ranges were calculated during periods when the

behaviors were known. This validation step is not integral

to assigning behaviors and was used in this instance to

test the effectiveness of the presented method.

For kittiwakes, “flight” was assigned across a range of

thresholds of SDHeave, from 0 to 1 g at 0.02 g intervals.

“Flight” was assigned to data falling above each threshold.

Accuracy of flight assignment dependent on the range of

thresholds was calculated before assignment and subse-

quent validation of “on land” and “on water” behaviors.

For assessing accuracy of assigning the behaviors “on

land” and “on water” dependent on body pitch, the two

behaviors were assigned across a range of pitch thresholds

from �10° to 40° at 1° intervals. Data with pitch values

below the threshold were assigned as “on water,” and data

with pitch values above were assigned as “on land.” The

intervals chosen for the range of thresholds (0.02 g for

SDHeave and 1° for pitch) correspond to the bin sizes used

Time

On water Flight On land

*

Figure 3. Pitch values of a kittiwake averaged

to 1-sec values (upper panel), and pitch values

subsequent to the application of a correction

factor averaging pitch between the end and

start of flight periods (middle panel). Salt water

immersion data, indicating on water or out of

water (lower panel). The asterisk indicates a

brief period of resting on water in the middle

of the flight section.
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for plotting the histogram. Bin sizes chosen resulted in

smooth histograms with sufficient resolution to detect

small changes in posture or amount of movement. An

examination of the effect of bin size across orders of mag-

nitude indicated that it made almost no difference to the

accuracy of behavioral assignment (Appendix S4).

The known period of behavior for kittiwake data used

to calculate accuracy of assignment consisted of a two-

hour period for each bird encompassing the three target

behaviors (flight, on land, and on water) which was

selected by eye and was manually assigned behaviors as

carried out previously with similar datasets (Bidder et al.

2014; McClune et al. 2014). Due to the varied time bud-

gets of the individual birds, the amount of time within

this two-hour period spent doing each of the behaviors

varied. Manual behavioral assignments were made using

the programme IGOR Pro (Wavemetrics Inc., Portland,

OR, USA, 2000, version 6.3.5) with the Ethographer pack-

age (Sakamoto et al. 2009). Flight was assigned when

traces of acceleration data displayed periodic fluctuations

in dorso-ventral movement, as described previously in the

literature (Wilson et al. 2006; Sato et al. 2008; Sakamoto

et al. 2013; Vandenabeele et al. 2014), while assignment

of “on land” or “on water” was informed by values from

the salt water immersion logger. To calculate accuracy of

assignment, we compared the assignment of behavior for

every second for each threshold value to these known

behaviors during the validation period. We were then able

to calculate the percentage of behavioral assignments

which were correct for each threshold value in the series.

For the human data, SDHeave was used to assign all

three behaviors. For assessing the accuracy of assigning

sitting behavior, “sitting” was assigned to data with an

SDHeave value below a threshold between 0 and 2 g at

0.02 g intervals. Once sitting was assigned using the inter-

peak frequency minimum value of SDHeave, the behaviors

of walking and running were assigned to the remaining

data across a range of standard deviation thresholds. The

thresholds ranged from the standard deviation value iden-

tified for separating sitting behavior (~0.1 g) up to a stan-

dard deviation value of 2.0 g, at 0.02 g intervals. As with

the kittiwake data, intervals tested corresponded to the

bin size of the histograms (0.02 g), with the chosen bin

sizes resulting in smooth histograms. Furthermore, bin

size again made very little difference to the accuracy of

behavioral assignment (Appendix S4). Walking was

assigned to data with a standard deviation below each

threshold, while running was assigned to data above the

threshold. Accuracy of human data assignments was easier

to measure as during data collection exact activities were

recorded by participants thus behavioral assignments were

fully validated. Accuracy was calculated as the percentage

of behavioral assignments from this method which were

the same as the known, recorded behaviors. As deploy-

ments were relatively short the full dataset was compared

to each threshold-dependent assignment, giving a measure

of accuracy across the full deployment.

All data analysis was conducted in R statistical software

(R Development Core Team, 2015), other than visualiza-

tion of accelerometry and immersion data for validation,

which was conducted using the Ethographer package in

Igor Pro (Wave Metrics). Script required to execute this

method in R is provided (Appendix S5) along with an

example dataset for a kittiwake (Appendix S6).

Results

Kittiwakes

A clear bimodal distribution was present in histograms of

SDHeave for all birds (Fig. 4). Separating flight behavior

from nonflight behavior in kittiwakes using SDHeave was

highly accurate. By separating flight behavior using the

interpeak frequency minimum threshold, the mean

(�1SD) accuracy of assignment of flight versus nonflight

behavior across all birds was 97.9 � 1.7% (Fig. 5).

Although this value did not correspond to the mean high-

est possible accuracy calculated across the full range of

SDHeave thresholds (98.3 � 1.3%), the difference in accu-

racy was small (mean difference: 0.4 � 0.3%; maximum

difference: 0.9%).

Histograms for body pitch of the bird did not display

such a clear or consistent distribution as histograms for

SDHeave (Fig. 6). Three of the birds had a distribution

with two peaks in frequency, whereas the other three had

three peaks. The degree to which these peaks were dis-

tinct, and at which point they occurred in the data varied

between the individuals. However, averaging pitch values

between flight periods further separated the peaks (Fig. 7)

and, despite the variability between individuals, separating

the behaviors of “on land” and “on water” by pitch was

consistently highly accurate. By separating these behaviors

using the threshold corresponding to the interpeak fre-

quency minimum value between the first and second peak

of each pitch histogram, accuracy of assignment was

90.4 � 8.9% when behaviors were assigned based on ini-

tial pitch values, and 97.5 � 2.1% when assigning behav-

iors based on the pitch values averaged between bouts of

flight. The maximum possible accuracy of assignment by

separating these behaviors by pitch was 95.9 � 3.6%

when assigned by initial pitch values and 97.7 � 2.0%

when pitch was averaged (Fig. 8A and B). In addition,

the range of pitch values at which accuracy of assignment

remained above 95% increased by an average of 8.5° �
6.0° after assigning behaviors based on average pitch

between bouts of flight. This is shown by the elongated
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plateaus of higher accuracy values in Figure 8B compared

to Figure 8A.

Humans

A trimodal distribution was present in histograms of

SDHeave for all human participants (Fig. 9). In this

instance, SDHeave was used to differentiate between all

three behaviors exhibited (sitting, walking, and running).

Separating sitting behavior from any movement using the

interpeak frequency minimum of the first and second

peak, assignment accuracy was 98.75 � 0.68% (Fig. 10A).

The highest possible percentage accuracy was higher than

this at 99.11 � 0.46%; the mean difference in accuracy

was therefore small, at 0.36 � 0.30%. Running and walk-

ing behaviors were separated after sitting data were

already assigned. Using the interpeak frequency minimum

value between the second and third peak of the standard

deviation histogram to determine the threshold value,

average assignment accuracy was 98.26 � 0.88%

(Fig. 10B). The highest possible accuracy regardless of fre-

quency of standard deviation values was 98.42 � 0.86%.

Discussion

The analysis presented shows that by assigning behaviors

using objectively determined thresholds from histograms

of readily calculated metrics of accelerometry data, it is

possible to classify coarse-scale behaviors in both kitti-

wakes and humans to a high degree of accuracy. Esti-

mated percentage accuracy of assignments of

approximately 97% for kittiwake data and 98% for

human data is very high, and such accuracy is comparable

to methodologies achieving the highest rates of coarse-

scale behavior assignment (Nathan et al. 2012; Bidder

et al. 2014; McClune et al. 2014). It should, however, be

noted that a direct comparison to other methods has not

been made.

The purpose of this study was to test and provide a

method for assigning behaviors which can be readily

applied to other datasets. Existing studies have used simi-

lar threshold based approaches to classify behavior (Yoda

et al. 2001; G�omez Laich et al. 2009; Nathan et al. 2012;

Kawabata et al. 2014). However, the threshold values pro-

vided in these cases have tended to be study specific, with

Figure 4. Histograms of the standard deviation of the heave axis data recorded during accelerometer deployments on each of six kittiwakes. The

dashed line indicates the inter-peak frequency minimum.
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little information given as to how such values were deter-

mined. In the present study, it has been demonstrated

that separation of coarse-scale behaviors can be achieved

by assigning behaviors based on an objectively identified

threshold value between peaks within histograms of suit-

able metrics of acceleration. By defining these thresholds

as the value corresponding to the minimum frequency of

data points falling between peaks (the interpeak frequency

minimum), accuracy was almost as high as the maximum

possible accuracy calculated for separating behaviors. As

determining the interpeak frequency minimum is an

objective stage of the method, the small difference in

accuracy achieved when compared to the maximum pos-

sible accuracy achievable through an iterative approach of

testing a range of threshold values justifies the application

of this approach. This is especially true for studies where

validation is not possible. Using objectively determined

thresholds for separating behaviors is also advantageous

in that they are specific to each individual while being

simple to calculate. This reduces potential assignment

error of using one threshold for all individuals which may

arise from individual variation in the metrics used to sep-

arate behaviors. Furthermore, demonstration of the con-

sistency of this approach for two distinct model species

with contrasting behavioral modes implies that the

method is likely suitable for a range of other species. In

addition, unlike with more complex approaches incorpo-

rating machine learning for classifying behavior, which

represent and classify data as points in space based on

summary statistics (Bidder et al. 2014), the method out-

lined here relies on assigning behaviors based on metrics

Figure 6. Histograms of the pitch angle of six kittiwakes while instrumented with an acceleration data logger. Data already assigned as flight are

excluded. The dashed line indicates the interpeak frequency minimum between the first and second peak.
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Figure 5. Percentage accuracy of flight assignment plotted against

the standard deviation of the heave axis used as a threshold value

used to assign the behavior. Each line represents an individual

kittiwake. Circles indicate accuracy at the threshold value

corresponding to the interpeak frequency minimum from the

histogram of standard deviation of the heave axis (see Fig. 4),

triangles indicate the value corresponding to the threshold value that

achieves maximum accuracy.

ª 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 4649

P. M. Collins et al. Interpreting Behaviors from Accelerometry



relating to the position of the subject (body pitch) or its

amount of movement (standard deviation of an axis).

This aspect of the method does incorporate some subjec-

tivity into the method, at the point of choosing how

many behaviors to classify and which metrics to use, but

results in the process of assignment being readily under-

standable and justifiable in relation to the target species’

biology. With such metrics relating to behavior in many

taxa, and the method being simple to execute, application

of this approach on other species should be straightfor-

ward. Indeed, by providing the script to apply this

method, we hope it will be further tested on acceleration

data from species with different modes of behavior to

those presented here.

Figure 7. Histograms of pitch for each kittiwake after averaging pitch values between flight periods. The dashed line indicates the interpeak

frequency minimum between the first and second peak present in the histogram before averaging (Fig. 6).

(A) (B)

Figure 8. (A) Percentage accuracy of behavior assignments after determining whether the bird was on land or on water against body pitch. (B)

Percentage accuracy of behavior assignments against body pitch after pitch values were averaged between bouts of flight. Circles indicate

accuracy at the threshold value corresponding to the interpeak frequency minimum between the first and second peak from the histogram of

pitch for each bird, while triangles indicate the value corresponding to the threshold value that achieves maximum accuracy.
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In some cases, it may be that the shapes of histograms

of chosen metrics do not correspond clearly with the

number of behaviors being assigned. This was evident

when using body pitch to separate the behaviors of “on

land” and “on water” for kittiwakes, which was initially

the least accurate stage of behavioral assignment. This was

due to the pitch of the bird sometimes overlapping when

on land and on water. Such overlap of pitch is likely to

be due to the potentially small difference in orientation of

the birds when on the nest in relation to their position

on water. Pitch measurements were also likely to vary due

to individual variation in amount of movement when on

land (i.e., when the bird was mainly on the nest). How-

ever, the simplicity of the metrics used to separate these

behaviors allowed for the inclusion of a biological argu-

ment to further enhance accuracy of assignments, namely

that to transition between being on land and on water

requires a period of flight between the two. Averaging

Figure 9. Histograms of the standard deviation of the heave axis data recorded during acceleration data logger deployments on six human

participants. Dashed lines indicate the interpeak frequency minimum between peaks.
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Figure 10. Percentage accuracy for all human participants against the standard deviation of the heave axis for (A) identifying sitting and (B) for

separating walking and running behaviors. Circles indicate accuracy at the threshold value corresponding to the interpeak frequency minimum

between (A) the first and second and (B) the second and third peak from the histogram of standard deviation of the heave axis for each

participant. Triangles indicate the value corresponding to the threshold value that achieves maximum accuracy.
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pitch between bouts of flight further separated out the

range of pitch values associated with the bird being on

land and the range of values associated with the bird

being on water, thus increasing accuracy.

Although pitch has been used to differentiate behavior

in seabirds before (Shepard et al. 2008; G�omez Laich

et al. 2009), species used in such studies have tended to

have a much more defined difference in body angle

between behaviors; for example, penguins and shags,

which tend to be in either prone or upright positions

during particular behaviors (Yoda and Ropert-Coudert

2007; G�omez Laich et al. 2009). By averaging pitch

between flight periods, this method can potentially be

applied to other species which either overlap in pitch

between behaviors or have less pronounced differences

between body orientations across different behaviors. In

addition to, and perhaps more important than, the

increase in accuracy resulting from averaging pitch

between flight bouts, the range of pitch values at which

accuracy remained high increased in all birds. This effec-

tively reduces the importance of identifying an exact

threshold value for separating behaviors as long as the

value identified falls in the range corresponding to high

accuracy of assignment. While it is unlikely that such an

argument can be applied to all taxa, where possible the

inclusion of such biologically grounded arguments should

be considered before resorting to more complex

approaches of behavioral classification.

An unexpected consequence of our approach is that

variation in frequency histograms of metrics such as body

pitch could also be used as a diagnostic tool for identify-

ing even coarser scale behavioral or life-history states such

as the stage of the breeding cycle of a target individual.

The kittiwake individuals in this study which displayed

three peaks in the pitch histograms were all rearing chicks

while those with two peaks were incubating eggs. This is

consistent with incubating birds spending a larger propor-

tion of their time sitting (incubating), whereas chick rear-

ing birds switch between sitting (brooding) and standing.

This potential application of acceleration metric his-

tograms could be especially viable given the continuing

miniaturization and increased longevity of data logging

devices (Hunt and Wilson 2012), which should enable

longer term deployments on free-ranging animals.

Validation of behavior assignments

Validation of behavioral assignments on wild animals is

often unobtainable. However, the approach of simultane-

ous deployment of two different types of logger, as

demonstrated with coupling accelerometers with salt

water immersion loggers on kittiwakes in this study,

offered a source of sample validation. Such coupling of

devices increases the confidence of interpreting informa-

tion from datasets which may otherwise be difficult to

justify (Wilson et al. 2008; Dean et al. 2013; Watanabe

and Takahashi 2013). Furthermore, by allowing estima-

tion of accuracy across a range of threshold values, this

approach has enabled confirmation that frequency distri-

butions (represented by histograms) of metrics of

accelerometry data can indeed correspond to distinct

behaviors. Although validation of behavioral assignments

would be desirable for each study employing the

accelerometry technique, it is not always possible. Using

data from similar species, or even captive animals, to

inform behavioral assignments (Campbell et al. 2013) has

been suggested in the absence of validation; however, the

approach we present here offers a solution which is not

reliant on a source of validation, or sourcing other data-

sets. The lack of dependence upon validation therefore

broadens the applicability of this approach.

Conclusion

There are numerous methodologies available for classifi-

cation of behavior from accelerometry data, for example

(Shepard et al. 2008; Nathan et al. 2012; Brown et al.

2013). The present approach offers a method informed by

sound biological reasoning for classifying coarse-scale

behaviors by means of objectively determined threshold

values, and which is easy to understand, visualize and

undertake. In turn, we hope that future studies of animal

behavior based on the deployment of acceleration data

loggers can employ the methods described here, thus

bringing a degree of consistency to studies in which

behaviors are assigned to accelerometry data. We espe-

cially hope for this method to be applied to and tested on

a wider range of species exhibiting different types of

behaviors. Where a more detailed behavioral analysis is

required, the approach presented here offers an appropri-

ate platform prior to further interrogation of the data.

Such further analysis could, for example, involve isolating

flight behavior to calculate wingbeat frequency or other

such metrics now calculable from high-resolution

accelerometry data (Spivey and Bishop 2013).
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