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Abstract

Little attention has been paid to the use of multi-sample batch-marking studies,

as it is generally assumed that an individual’s capture history is necessary for

fully efficient estimates. However, recently, Huggins et al. (2010) present a

pseudo-likelihood for a multi-sample batch-marking study where they used

estimating equations to solve for survival and capture probabilities and then

derived abundance estimates using a Horvitz–Thompson-type estimator. We

have developed and maximized the likelihood for batch-marking studies. We

use data simulated from a Jolly–Seber-type study and convert this to what

would have been obtained from an extended batch-marking study. We compare

our abundance estimates obtained from the Crosbie–Manly–Arnason–Schwarz
(CMAS) model with those of the extended batch-marking model to determine

the efficiency of collecting and analyzing batch-marking data. We found that

estimates of abundance were similar for all three estimators: CMAS, Huggins,

and our likelihood. Gains are made when using unique identifiers and employ-

ing the CMAS model in terms of precision; however, the likelihood typically

had lower mean square error than the pseudo-likelihood method of Huggins

et al. (2010). When faced with designing a batch-marking study, researchers

can be confident in obtaining unbiased abundance estimators. Furthermore,

they can design studies in order to reduce mean square error by manipulating

capture probabilities and sample size.

Introduction

Batch-marking experiments have largely been neglected

by statistical ecologists, as they are deemed inferior and

to be avoided (Pollock 1981; Pollock and Mann 1983).

However, biologists still use batch-marking for various

purposes, and for some studies, they may be the only

option available (e.g., insects, juvenile fish).

There are other types of batch-marking studies that dif-

fer in design from the one we study here. For example,

Measey et al. (2003) performed a three-sample batch-

marking experiment on caecilians where individuals were

given a batch mark on the first occasion and on the sec-

ond occasion, a subsample was given a secondary mark.

Both marked and unmarked captured individuals were

recorded at each sample time. Because an individual’s

capture history can be deduced when a different batch

mark is applied on each sampling occasion, a Jolly–Seber
type model can be fitted to analyze these data (Jolly 1965;

Seber 1965). However, the disadvantage of the design is

that there is a physical limitation to how many marks can

be applied to an individual and this would vary by both

species and mark type.

Frequently, batch marks are used to study movement

of individuals between locations. For example, Roberts

and Angermeier (2007) studied the movements of three

fish species in the South Fork of the Roanoke River, Vir-

ginia, using a two-sample study. Here, they constructed

movement corridors with favorable pool characteristics

between suitable habitats and compared movement rates

in corridors with unfavorable characteristics. Captured

fish were given a mark that was a randomly assigned

color and body location. Recaptured individuals were

counted, and movement rates were estimated.
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Skalski et al. (2009) review several batch-marking

designs and marking methods for very small fish. How-

ever, most of these result in complete capture history

information and are for two or three sampling occasion

designs.

Arguments against using batch marks are based on the

lack of individual capture histories. For example, if a

marked individual is captured at sample time three, it is

not known whether this individual was one of the marked

individuals captured at sample time two or not. In addi-

tion, batch-marking experiments do not allow for ade-

quate testing of model assumptions (Williams et al. 2002;

p. 312).

We motivate this work with the data found in Huggins

et al. (2010). They describe a study of oriental weatherlo-

ach (Misgurnus anguillicaudatu), which is a freshwater fish

native to Eurasia and Northern Africa. It was brought to

Australia for use in aquaria but was accidentally released,

and the aim of the study was to investigate activity pat-

terns of the wild populations in the inland waters.

Huggins et al. (2010) provide a pseudo-likelihood

method for analyzing an extended batch-marking study.

They caution that the likelihood is intractable as the

number of marked individuals alive at any sample time

is unknown. They condition on released individuals to

develop estimating equations and obtain capture and

survival probability estimates. Then, they use a Horvitz–
Thompson-type estimator to estimate population size at

each time point after obtaining capture probability esti-

mates. Standard errors are obtained by first using a

sandwich estimator for the variance of the model

parameters (Freedman 2012) and then using the delta

method to obtain estimated standard errors for popula-

tion size.

We develop the batch-marking likelihood conditional

on release (rather than the pseudo-likelihood), followed

by a Horvitz–Thompson-like estimator for abundance.

Although theoretically the likelihood can be maximized, it

involves nested summations, resulting in a large number

of computations, but the calculations can be run in paral-

lel when a multiprocessor computer, a cluster or a grid is

available. For this article, we investigate the use of

extended batch-marking data in comparison with the

Crosbie–Manly–Arnason–Schwarz (CMAS) model (Schwarz

and Arnason 1996) to study the loss in estimation preci-

sion when one does not have information on individual

encounter histories for a seven sampling occasion

simulation experiment under various parameter values.

Materials and Methods

An extended batch-marking study is one where individu-

als captured at the first sample time are all given the same

nonunique type of tag (e.g., blue in color). At subsequent

sample times, individuals captured with tags are counted

and unmarked individuals are given a different color

batch mark resulting in an independent cohort. Table 1

provides an example of generated data from a four sam-

pling occasion extended batch-marking experiment. New

marks are not given to marked individuals, and thus indi-

vidual capture histories cannot be obtained. For example,

it is not known whether the nine blue-tagged individuals

at sample time three are a subset of the 16 found at time

two. Note the similarity to the m-array notation for

Cormack–Jolly–Seber data (see Williams et al. 2002;

p. 419).

The assumptions we make are similar to other open

population capture–recapture models namely:

• All individuals behave independently.

• All individuals have the same probability of capture at

sample time j; j = 1, 2, …, k.

• All individuals have the same probability of survival

between sample times j and j + 1; j = 1, 2, …, k � 1.

• Individuals do not lose their tags.

Below we detail notation used in the model develop-

ment.

Statistics or indices

i index for release occasion (or colour of tag).

j index for recapture occasion.

k the number of sampling occasions.

rij the number of individuals tagged and released at time

i and recaptured at time j, i = 1, 2, …, k � 1;

j = i + 1, …, k.

Ri the number of individuals released at time i; i = 1, 2,

…, k.

Latent variables

Mij the number of marked individuals released at sample

time i, alive and available for capture at sample time

j; j = i ,…, k. Note that Mii = Ri.

Table 1. Example data for the extended bmarking design. The num-

ber of individuals marked with a particular tag color is found on the

diagonal, while the number of recaptures is on the off diagonal.

Release Color

Occasion

1 2 3 4

1 Blue 21 16 9 11

2 Green 22 15 12

3 Orange 17 4

4 Red 6
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dij the number of deaths between sample times j and j

+ 1 from release group i; dij = Mij – Mi,j+1;

i = 1, …, k; j = i, …, k – 1.

Parameters

/ij the probability of survival for individuals from release

group i between times j and j + 1; j = 1, 2, …, k � 1.

pij the probability of capture for individuals from release

group i at time j; j = 2, 3, …, k.

We develop the likelihood by first looking at the joint

distribution of the recaptures rij and deaths dij given the

releases Ri. We then obtain the marginal distribution of

the recaptures given releases by summing over all possible

values of the deaths. The likelihood can be written as

Lð/; pÞ ¼
Yk
i¼1

X
dii

� � �
X
di;k�1

Yk
j¼iþ1

Pðrijjdii; . . .; di;k�1;RiÞ

Pðdii; . . .;di;k�1jRiÞ:
(1)

Conditional on release, we model the recaptures as

independent given deaths rijjdii; . . .; di;k�1;Ri �Binomial

ðRi �
Pj�1

m¼i dim; pijÞ and the deaths as dii,…,dik|Ri�
Multinomial(Ri, pii,… ,pik) where pij ¼ ð1� /ijÞ

Qj�1
m¼i

/im. We note that pik ¼ 1�Pk�1
m¼i pim and dik ¼ Ri�Pk�1

m¼i dim where dik would be the individuals that were

released at time i and are still alive after the last sample

time k. These dik are convenient for modeling purposes.

Thus, the likelihood becomes

Lð/; pÞ ¼
Yk
i¼1

X
dii

� � �
X
di;k�1Yk

j¼iþ1

Ri �
Pj�1

m¼i dim
rij

 !
pij

rij

"
�

1� pij
� �Ri�

Pj�1

m¼i
dim�rij

�
Ri!

dii! � � � dik! p
dii
ii � � � pdikik

(2)

Inference

The calculation of the likelihood involves nested summa-

tions for the latent dij variables which require high execution

times if serially computed or cause the available RAM to be

used up if fully vectorized. We developed parallel computer

code to implement this model in MATLAB (MATLAB

2012) trading off CPU speed and memory that works for up

to 11 sampling occasions. For experiments beyond 11 sam-

pling occasions, we propose to use our likelihood up to the

11th sample time; and the pseudo-likelihood (Huggins et al.

2010) for occasions 12 through k. In the simulation studies,

we first produce maximum likelihood estimates of the sur-

vival and capture probability parameters. Then, we derive a

Horvitz–Thompson–type estimator for population size at

each sample time (Nj) using the capture probability esti-

mates and the number of individuals captured at each sam-

pling time, N̂j ¼
P

i rij=p̂j. Standard errors for the N̂j are

estimated from the estimated variances of rij and p̂j using

the delta method (see Huggins et al. 2010 for details).

Monte Carlo simulations

We simulated data from a k = 7 sample occasion Cros-

bie–Manly–Arnason–Schwarz model (Schwarz and Arna-

son 1996) with constant survival probabilities (/ = 0.2,

0.5, or 0.8), constant capture probabilities (p = 0.2, 0.5,

or 0.8), and entry probabilities equal across time (1/k)

with both a small superpopulation size (N = 200) and a

larger superpopulation size (N = 1000). The superpopula-

tion N is defined as the population that enters the popu-

lation of interest at some point during the study. The

computing time (on a dual quad core 2.53 GHz, 32 Gb

RAM Linux server) was approximately 2 days to run 100

replications for N = 1000 but larger superpopulation size,

more samples, or more replications would result in longer

computing times. Parameter values were selected to

obtain sparse-to-plentiful data by varying the probability

of capture and survival.

For each set of parameter values, we simulated 100

CMAS datasets and collapsed these datasets into batch-

marking data. We analyzed the individual capture history

data using the CMAS model with constant parameters

implemented in RMark (Laake 2013). The associated

batch-marking data were analyzed using both the

pseudo-likelihood (Huggins et al. 2010) and the likeli-

hood with constant parameters (/, p). For all methods of

analyses, we estimated the survival and capture probabil-

ities and obtained abundance estimates and estimated

standard errors for each sampling time. The 100 dataset

results are summarized using box plots for the estimated

abundance, and estimated capture and survival probabili-

ties. Root mean square errors (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100�1

P100
r¼1ð̂hr � hÞ2

q
)

were calculated for the capture and survival probabilities.

While standard errors were estimated, plots of these results

are not included in the interest of space but are provided

in the supplementary materials (see Supporting

information).

Results

Figures 1 and 2 provide results for the 9 simulation stud-

ies under varying parameter values for estimates of p and
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/, respectively, for N = 200. For sparse data (p = 0.2 or

p = 0.5, / = 0.2), many of the simulations produced

boundary estimates for p and occasionally / (see Fig. 1),

and the calculation of the standard errors then failed due

to the Hessian being singular. These simulation failures

are similar to what happens in the Cormack–Jolly–Seber
model when analytical estimates of / exceed 1 with sparse

data and actual parameter values are close to 0 and 1. In

these cases, the maximization function in MATLAB con-

strained estimates to be admissible, i.e. between 0 and 1

(inclusive). When the estimation of p was on a boundary,

Nj was estimated at infinity (p̂ ¼ 0) or ∑irij (p̂ ¼ 1).

Table 2 provides the number of simulations out of 100

that produced boundary estimates for p or / for all three

methods. Similar figures for N = 1000 are provided in the

Supporting information. Results for the estimation of

standard errors are based on those simulations that did

not fail (see Supporting information).

The root mean square error (RMSE) for estimates of p

and / are given in Tables 3 and 4, respectively. As

expected, we find that within a method, RMSE decreases

as p and / increase. Similarly, RMSE decreases with
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0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P = 0.2 P = 0.5 P = 0.8

P = 0.2 P = 0.5 P = 0.8

P = 0.2 P = 0.5 P = 0.8

p̂
 = 0.2

 = 0.5

 = 0.8

C L H C L H C L H

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p̂

C L H C L H C L H

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p̂

Fig. 1. Boxplots of capture probability

estimates (p̂) from 100 simulated datasets, for

the Crosbie–Manly–Arnason–Schwarz (C: red),

the likelihood (L: green), and the pseudo-

likelihood (H: yellow; Huggins et al. 2010)

methods when parameter values are N = 200,

and p = 0.2, 0.5, 0.8 for / = 0.2 (top),

/ = 0.5 (middle), and / = 0.8 (bottom).
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increased N. We also confirm that the CMAS method

typically has lower RMSE than either of the batch mark-

ing methods and that the likelihood method typically has

lower RMSE than the pseudo-likelihood method. Excep-

tions to this occur with sparse data when the estimates

are not reliable.

Under sparse data conditions (e.g., N = 200, / = 0.8,

p = 0.2), the average population size estimates are similar

between the three methods; however, variability in

estimates is higher for the likelihood and pseudo-likelihood

methods as expected (Fig. 3; box plots for other sets of

parameters are provided in Supporting information). For

example, average population size estimates for time three

were 71, 74, and 72 individuals for the CMAS, likelihood,

and pseudo-likelihood, respectively, and the corresponding

average standard error estimates were 18, 32, and 32 indi-

viduals. For higher quality data (e.g., N = 1000, p = 0.5,

/ = 0.8), we found similar results. The CMAS model

produces more precise estimates followed by the likelihood

(see Supporting information for box plots of estimated

standard errors). For example, the average population size

estimate for sample time three was 348, 349, and 349 indi-
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Fig. 2. Boxplots of survival probability

estimates (/̂) from 100 simulated datasets, for

the Crosbie–Manly–Arnason–Schwarz (C: red),

the likelihood (L: green), and the pseudo-

likelihood (H: yellow; Huggins et al. 2010)

methods when parameter values are N = 200,

and / = 0.2, 0.5, 0.8 for p = 0.2 (top),

p = 0.5 (middle), and p = 0.8 (bottom).
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viduals for the CMAS, likelihood, and pseudo-likelihood

method, respectively, with corresponding average estimated

standard errors of 12, 29, and 29 individuals.

Discussion

For an extended batch-marking study, using the likelihood

provides more accurate estimates and lower standard

errors than using the pseudo-likelihood method of Hug-

gins et al. (2010). However, the computing power neces-

sary to calculate the likelihood by summing over all

possible values of deaths is prohibitive when sampling

times go beyond k = 11 or if Ri is large. In these cases, the

pseudo-likelihood method is computationally faster and

provides unbiased estimates with similar precision to the

likelihood approach. Ultimately, if full-capture histories

are possible and available, then naturally the CMAS model

outperforms both batch-marking models. With plentiful

data (large numbers of recaptures), our model can have a

relative efficiency of between about 30–40% compared

with the CMAS model; thus, using the CMAS model has

obvious gains in precision.

In many of the plots for N̂j, the average population size

increases over time. This is due to the models allowing

for births/immigration into the population from the

superpopulation (N). In these simulations, entry probabil-

ities were equal across time and summed to one. Thus,

with high survival rates, population size would naturally

increase with time.

Practitioners who are confined to using batch marks

should design their studies to have large sample sizes and

high capture rates so as to minimize mean square error.

Table 2. The number of simulations out of 100 that produced

boundary estimates (0 or 1) for either parameter p or / for the Cros-

bie–Manly–Arnason–Schwarz (CMAS), the likelihood (L), and the

pseudo-likelihood (H; Huggins et al. 2010) methods under the 18 sim-

ulation scenarios.

N Method p

/

0.2 0.5 0.8

200 CMAS 0.2 95 9 2

0.5 32 0 0

0.8 37 0 0

L 0.2 75 9 6

0.5 32 2 0

0.8 36 18 0

H 0.2 76 10 6

0.5 26 2 0

0.8 31 16 0

1000 CMAS 0.2 32 0 0

0.5 1 0 1

0.8 1 0 0

L 0.2 27 0 0

0.5 3 0 0

0.8 9 2 0

H 0.2 24 0 0

0.5 8 0 0

0.8 14 1 0

Table 3. Root mean square error for estimates of p for the Crosbie–

Manly–Arnason–Schwarz (CMAS), the likelihood (L), and the pseudo-

likelihood (H; Huggins et al. 2010) methods under the 18 simulation

scenarios.

N Method p

/

0.2 0.5 0.8

200 CMAS 0.2 0.704 0.282 0.062

0.5 0.319 0.100 0.046

0.8 0.160 0.065 0.028

L 0.2 0.616 0.271 0.065

0.5 0.330 0.136 0.077

0.8 0.215 0.123 0.058

H 0.2 0.616 0.296 0.073

0.5 0.309 0.151 0.079

0.8 0.233 0.125 0.068

1000 CMAS 0.2 0.470 0.066 0.026

0.5 0.149 0.036 0.019

0.8 0.086 0.027 0.011

L 0.2 0.448 0.083 0.035

0.5 0.185 0.050 0.031

0.8 0.137 0.057 0.031

H 0.2 0.428 0.087 0.035

0.5 0.212 0.053 0.032

0.8 0.150 0.061 0.034

Table 4. Root mean square error for estimates of / for the Crosbie–

Manly–Arnason–Schwarz (CMAS), the likelihood (L), and the pseudo-

likelihood (H; Huggins et al. 2010) methods under the 18 simulation

scenarios.

N Method p

/

0.2 0.5 0.8

200 CMAS 0.2 0.224 0.196 0.095

0.5 0.087 0.068 0.040

0.8 0.041 0.036 0.027

L 0.2 0.221 0.197 0.106

0.5 0.101 0.083 0.058

0.8 0.064 0.053 0.035

H 0.2 0.215 0.206 0.116

0.5 0.112 0.090 0.060

0.8 0.075 0.060 0.039

1000 CMAS 0.2 0.121 0.072 0.046

0.5 0.038 0.027 0.014

0.8 0.021 0.016 0.009

L 0.2 0.116 0.093 0.067

0.5 0.049 0.035 0.021

0.8 0.035 0.025 0.016

H 0.2 0.116 0.096 0.067

0.5 0.053 0.037 0.023

0.8 0.038 0.027 0.017
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For future work, we will complete the model develop-

ment by incorporating both tagged and untagged individ-

uals at each sample time. We will also deal with issues

such as goodness of fit, model selection, and parameter

redundancy. With the many latent variables in the

complete data, this model lends itself well to Bayesian

methods where a state-space formulation is under devel-

opment.

With permanent batch marks, tag loss would not be an

issue. However, if injectable color tags are used for example,

tag loss may bias parameter estimates. If it were possible to

double tag individuals, an extended batch-marking model

incorporating tag retention rates could be developed using

methods similar to Cowen and Schwarz (2006). However,

for those study species where double tagging is not possible

(e.g., insects), separate experiments to estimate tag reten-

tion would have to be carried out and this auxiliary infor-

mation could be used to adjust parameter estimates using

methods similar to Arnason and Mills (1981).
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. Boxplots of capture probability estimates (p̂)

of 100 simulated datasets, for the Crosbie–Manley–Arna-
son–Schwarz (C: red), the likelihood (L: green), and the

pseudo-likelihood (H: yellow; Huggins et al. 2010) when

parameters values are N = 1000, and p = 0.2,0.5,0.8 for

/ = 0.2 (top), and / = 0.5 (middle), / = 0.8 (bottom).

Figure S2. Boxplots of survival probability estimates /̂ of

100 simulated datasets, for the Crosbie–Manley–Arnason–
Schwarz (C: red), the likelihood (L: green), and the

pseudo-likelihood (H: yellow; Huggins et al. 2010) when

parameters values are N = 1000, and / = 0.2, 0.5, 0.8 for

p = 0.2 (top), and p = 0.5 (middle), p = 0.8 (bottom).

Figure S3. Boxplots of abundance estimates N̂j for each

sample time (k = 7) of 100 simulated datasets, for the

Crosbie–Manley–Arnason–Schwarz (C: red), the likelihood
(L: green), and the pseudo-likelihood (H: yellow; Huggins

et al. 2010) when parameters values are N = 200, and

/ = 0.2 for p = 0.2 (top), and p = 0.5 (middle), p = 0.8

(bottom). The long black horizontal lines show the

expected population size at time j.

Figure S4. Boxplots of abundance estimates N̂j for each

sample time (k = 7) of 100 simulated datasets, for the

Crosbie–Manley–Arnason–Schwarz (C: red), the likelihood
(L: green), and the pseudo-likelihood (H: yellow; Huggins

et al. 2010) when parameters values are N = 200, and

/ = 0.5 for p = 0.2 (top), and p = 0.5 (middle), p = 0.8

(bottom). The long black horizontal lines show the

expected population size at time j.

Figure S5. Boxplots of abundance estimates N̂j for each

sample time (k = 7) of 100 simulated datasets, for the

Crosbie–Manley–Arnason–Schwarz (C: red), the likelihood
(L: green), and the pseudo-likelihood (H: yellow; Huggins

et al. 2010) when parameters values are N = 1000, and

/ = 0.2 for p = 0.2 (top), and p = 0.5 (middle), p = 0.8

(bottom). The long black horizontal lines show the

expected population size at time j.

Figure S6. Boxplots of abundance estimates N̂j for each

sample time (k = 7) of 100 simulated datasets, for the

Crosbie–Manley–Arnason–Schwarz (C: red), the likelihood
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(L: green), and the pseudo-likelihood (H: yellow; Huggins

et al. 2010) when parameters values are N = 1000, and

/ = 0.5 for p = 0.2 (top), and p = 0.5 (middle), p = 0.8

(bottom). The long black horizontal lines show the

expected population size at time j.

Figure S7. Boxplots of abundance estimates N̂j for each

sample time (k = 7) of 100 simulated datasets, for the

Crosbie–Manley–Arnason–Schwarz (C: red), the likelihood
(L: green), and the pseudo-likelihood (H: yellow; Huggins

et al. 2010) when parameters values are N = 1000, and

/ = 0.8 for p = 0.2 (top), and p = 0.5 (middle), p = 0.8

(bottom). The long black horizontal lines show the

expected population size at time j.

Figure S8. Boxplots of estimated standard errors for the

abundance estimates (SEðN̂jÞ) for each sample time

(k = 7) of 100 simulated datasets, for the Crosbie–Man-

ley–Arnason–Schwarz (C: red), the likelihood (L: green),

and the pseudo-likelihood (H: yellow; Huggins et al.

2010) when parameters values are N = 200, and / = 0.2

for p = 0.2 (top), and p = 0.5 (middle), p = 0.8 (bottom).

Estimates from simulations that produced a singular Hes-

sian were removed.

Figure S9. Boxplots of estimated standard errors for the

abundance estimates (SEðN̂jÞ) for each sample time

(k = 7) of 100 simulated datasets, for the Crosbie–Man-

ley–Arnason–Schwarz (C: red), the likelihood (L: green),

and the pseudo-likelihood (H: yellow; Huggins et al.

2010) when parameters values are N = 200, and / = 0.5

for p = 0.2 (top), and p = 0.5 (middle), p = 0.8 (bottom).

Estimates from simulations that produced a singular Hes-

sian were removed.

Figure S10. Boxplots of estimated standard errors for the

abundance estimates (SEðN̂jÞ) for each sample time

(k = 7) of 100 simulated datasets, for the Crosbie–Man-

ley–Arnason–Schwarz (C: red), the likelihood (L: green),

and the pseudo-likelihood (H: yellow; Huggins et al.

2010) when parameters values are N = 200, and / = 0.8

for p = 0.2 (top), and p = 0.5 (middle), p = 0.8 (bottom).

Estimates from simulations that produced a singular Hes-

sian were removed.

Figure S11. Boxplots of estimated standard errors for the

abundance estimates (SEðN̂jÞ) for each sample time

(k = 7) of 100 simulated datasets, for the Crosbie–Man-

ley–Arnason–Schwarz (C: red), the likelihood (L: green),

and the pseudo-likelihood (H: yellow; Huggins et al.

2010) when parameters values are N = 1000, and / = 0.2

for p = 0.2 (top), and p = 0.5 (middle), p = 0.8 (bottom).

Estimates from simulations that produced a singular Hes-

sian were removed.

Figure S12. Boxplots of estimated standard errors for the

abundance estimates (SEðN̂jÞ) for each sample time

(k = 7) of 100 simulated datasets, for the Crosbie–Man-

ley–Arnason–Schwarz (C: red), the likelihood (L: green),

and the pseudo-likelihood (H: yellow; Huggins et al.

2010) when parameters values are N = 1000, and / = 0.5

for p = 0.2 (top), and p = 0.5 (middle), p = 0.8 (bottom).

Estimates from simulations that produced a singular Hes-

sian were removed.

Figure S13. Boxplots of estimated standard errors for the

abundance estimates (SEðN̂jÞ) for each sample time

(k = 7) of 100 simulated datasets, for the Crosbie–Man-

ley–Arnason–Schwarz (C: red), the likelihood (L: green),

and the pseudo-likelihood (H: yellow; Huggins et al.

2010) when parameters values are N = 1000, and / = 0.8

for p = 0.2 (top), and p = 0.5 (middle), p = 0.8 (bottom).

Estimates from simulations that produced a singular Hes-

sian were removed.
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