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Abstract

Accurate prediction of species distribution shifts in the face of climate change

requires a sound understanding of population diversity and local adaptations.

Previous modeling has suggested that global warming will lead to increased abun-

dance of Atlantic cod (Gadus morhua) in the ocean around Greenland, but the

dynamics of earlier abundance fluctuations are not well understood. We applied

a retrospective spatiotemporal population genomics approach to examine the

temporal stability of cod population structure in this region and to search for sig-

natures of divergent selection over a 78-year period spanning major demographic

changes. Analyzing >900 gene-associated single nucleotide polymorphisms in 847

individuals, we identified four genetically distinct groups that exhibited varying

spatial distributions with considerable overlap and mixture. The genetic compo-

sition had remained stable over decades at some spawning grounds, whereas

complete population replacement was evident at others. Observations of elevated

differentiation in certain genomic regions are consistent with adaptive divergence

between the groups, indicating that they may respond differently to environmen-

tal variation. Significantly increased temporal changes at a subset of loci also sug-

gest that adaptation may be ongoing. These findings illustrate the power of

spatiotemporal population genomics for revealing biocomplexity in both space

and time and for informing future fisheries management and conservation

efforts.

Introduction

The geographical distribution of many plants and animals

is expected to shift poleward in face of climate change, as

revealed by both modeling and empirical investigations

(e.g., Parmesan and Yohe 2003; Burrows et al. 2011; Chen

et al. 2011). Although studies documenting these trends

have provided important insights, they almost exclusively

focus on the species level, ignoring that species are made

up of populations that each may harbor unique adaptations

to specific local environments and therefore will react

differently in response to altered conditions (Hilborn et al.

2003; Schindler et al. 2010; Kelly et al. 2011). It is typically

unclear to what extent climate-induced species distribution

shifts simply reflect the sum of different populations mov-

ing to new areas as they each track the changing location of

their environmental ‘niche’. Alternatively, species-level

shifts could result from extinction of certain populations—
and therefore loss of a unique portion of the species’ evolu-

tionary legacy—coupled with local growth and spatial

expansion in previously marginal populations. With chang-

ing conditions, rapid adaptation may also be required, both
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for maintaining current distributions and for colonizing

new habitat (Gienapp et al. 2008; Hoffmann and Sgr�o

2011). Understanding population diversity, temporal

dynamics, adaptive divergence and evolutionary potential

is therefore critical for making accurate predictions about

the future distribution of biodiversity, both at the species

and population levels.

Atlantic cod (Gadus morhua L.) in the waters around

Greenland offers an exceptional opportunity for studying

these issues at a northern range edge, in a habitat that cur-

rently appears marginal but is predicted to become much

more important for the species with the substantial ocean

warming forecasted for the region (Drinkwater 2005).

Greenland is likely to be among the most recently colonized

parts of the contemporary range of Atlantic cod (Bigg et al.

2008), and historical records show that its abundance here

has exhibited episodic extreme fluctuations (Hansen 1949;

Buch et al. 1994). The most recent period of high abun-

dance occurred between 1930 and the late 1960s, when the

continental shelf off Greenland’s west coast supported an

enormous cod fishery that for decades yielded annual land-

ings >250.000 tons (Buch et al. 1994; Horsted 2000). After

1970, however, both the spawning biomass and recruitment

declined by nearly 100%, leading to a period of virtual

absence of cod from the offshore waters, although they

remained present in lower abundance inshore (Horsted

2000; Storr-Paulsen et al. 2004; R€atz and Lloret 2005).

Multiple similar abundance outbursts, coupled with vary-

ing expansion and retraction of the northern distribution

limit, have been reported over the past centuries (Hansen

1949; Buch et al. 1994). These patterns have, at least partly,

correlated with ocean temperatures (Buch et al. 1994; Stein

2007), and indeed, coinciding with ocean warming in

recent years, increased cod biomass has been observed both

inshore and offshore in Greenland (Drinkwater 2009; ICES

2011).

Yet, it remains unclear if increases in abundance—now

and in the past—are caused by recurrent colonization by

populations from elsewhere or if they result from sudden

growth in resident populations that have maintained a sta-

ble distribution through periods of low abundance. This

distinction is key to understanding what underlying factors

may cause the extreme fluctuations and thereby better

enable prediction of future patterns. Tagging studies and

egg distribution surveys have suggested that there are sepa-

rate inshore and offshore spawning components within

Greenland and that inflow of eggs and larvae from Icelan-

dic waters also makes an important contribution to local

recruitment (Buch et al. 1994; Storr-Paulsen et al. 2004). A

recent study demonstrated genetic differentiation between

samples of cod collected offshore and inshore during the

feeding season (Pampoulie et al. 2011), but this did not

clarify the spatial genetic population structure of

reproductively isolated units or how the different compo-

nents have been distributed over time. It also did not com-

prehensively assess adaptive divergence between the

groups, including their ability to rapidly adapt to changing

conditions.

With improvements in high-throughput genotyping

methods, it has now become possible to screen large panels

of genetic markers, even in studies of non-model organisms

such as Atlantic cod. The increased genomic coverage gen-

erally improves the statistical power to resolve weak popu-

lation structure and it provides unprecedented

opportunities for identifying genomic regions that show

elevated levels of differentiation, presumably as an effect of

selection (Luikart et al. 2003; Stinchcombe and Hoekstra

2007). The elevated differentiation at particular loci (‘out-

lier loci’) can indicate adaptive divergence (e.g., Storz

2005) and it can substantially enhance our ability to distin-

guish populations genetically, a practical feature that

increasingly is harnessed for fisheries management and

enforcement applications (e.g., Russello et al. 2011; Nielsen

et al. 2012).

Recently, it has also become possible to apply high-

throughput genotyping methods to historical DNA sam-

ples, which makes it possible to recover previously unavail-

able information about the past. Combined analysis of

contemporary and historical samples opens up completely

new and extremely powerful opportunities for simulta-

neously tracking population structure and adaptive diver-

gence in both space and time. This provides a practical tool

for assessing whether the spatial distribution of different

populations has changed over time, for detecting cryptic

shifts in the distribution of intraspecific variation, and for

retrospectively monitoring potential signatures of ongoing

selection—all issues of central importance for management

and conservation.

We here illustrate this approach with one of the first spa-

tiotemporal population genomics studies on wild popula-

tions published for any species. Utilizing invaluable

collections of archived material, the study is based on

extensive sampling of Greenlandic cod spawning grounds

both contemporarily and during the historical period of

maximum abundance 5–8 decades ago. Through analysis

of >900 single nucleotide polymorphisms (SNPs), we dis-

entangle locus-specific from genome-wide patterns of vari-

ation in both space and time to shed light on (i) how many

separate cod populations inhabit Greenlandic waters; (ii)

how stable the population structure and the geographical

distribution of the different components has been over

time; (iii) whether the populations are adapted to different

environmental conditions; and (iv) whether we can observe

signatures of ongoing adaptation over the study period.

Our findings provide important insights into population

differentiation and changing distribution patterns within
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the system. This baseline information is of practical impor-

tance, not only for understanding historical abundance

fluctuations but also for matching current fisheries man-

agement to relevant biological units and for predicting the

future distribution of cod at the northern range edge.

Methods

Samples

Contemporary samples of fin tissue were collected from 13

known spawning areas in Greenland during the spawning

season (March to May) of 2008 and 2010 (Fig. 1). Where

available, we matched these samples with historical otoliths

collected from the same locations during the spawning sea-

son 55–80 years ago (sample sizes ranged from 20 to 39

individuals per location and year, see Table 1). The otoliths

had been archived individually in paper envelopes at room

temperature at the Greenland Institute of Natural

Resources. Since low abundance of cod on the west coast

banks in recent years prevented extensive contemporary

sampling here, we added additional historical samples from

this area. For reference, we supplemented the data with

three population samples from different spawning

components in Iceland collected in 2002, and a single pop-

ulation sample collected in Greenland during the feeding

season in 2005 (previously analyzed by Nielsen et al. 2012).

Previous studies have suggested that Greenlandic cod are

demographically and genetically much more closely con-

nected to Iceland than to North America (Storr-Paulsen

et al. 2004; Bigg et al. 2008). Unfortunately, it was not pos-

sible to obtain a sample from the most proximal Canadian

cod habitat in the Arctic to directly assess the local connec-

tivity. However, as a representative of western Atlantic

populations (which generally show substantial divergence

from all eastern Atlantic samples [Bigg et al. 2008; Brad-

bury et al. 2010]), we included a sample from the southern

Gulf of St. Lawrence, Canada (previously analyzed in Ther-

kildsen et al. in press). All sampled individuals were of

reproductive age and most were in spawning condition.

Sample sizes as well as sampling locations and years are

listed in Table 1.

Molecular analysis and genotyping

DNA was extracted with Omega EZNA Tissue DNA kits

(Omega Bio-Tek, Norcross, GA, USA) following the manu-
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Figure 1 Approximate sampling locations in Greenland and Iceland (main map) shown in relation to the reference sample from Canada (blue dot on

the inset map). Dots shifted left represent historical samples while dots shifted right represent contemporary samples. Samples are named by three-

letter codes to indicate the location followed by two digits to indicate the sampling year (see Table 1; note the mixed origin of OWE10). For all sam-

ples except CAN08, the colors of the dots represent the blends of sample mean coordinates on the first two discriminant functions recoded as signal

intensities of red and green, respectively (see text and Fig. 2a).
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facturer’s instructions for fresh tissue and the procedure

described by Therkildsen et al. (2010a) for otoliths. To

minimize contamination risk, all DNA extraction and PCR

preparation from otoliths were conducted in an ancient

DNA laboratory where no contemporary samples had been

processed. We also pre-screened the historical extracts by

amplifying four highly polymorphic microsatellites (mean

number of alleles 19) and discarded individuals that

showed evidence of cross-sample contamination (amplifi-

cation of >2 alleles for any locus) or that failed to produce

reliable amplification within 2–3 attempts.

Samples that passed the pre-screening were genotyped

for 1152 previously validated transcriptome-derived

SNPs (Moen et al. 2008; Nielsen et al. 2009; Hubert

et al. 2010; Bowman et al. 2011; Hemmer-Hansen et al.

2011). Of these SNPs, 766 were already positioned on

the published linkage map for Atlantic cod (Borza et al.

2010; Hubert et al. 2010). By mapping 120 bp of the

flanking sequence surrounding each SNP on to scaffolds

of ATLCOD1A build of the cod genome (Star et al.

2011) using BLASTN with an e-value threshold of 1�10,

133 additional SNPs could be anchored (for a total of

899 of the SNPs) on to specific linkage groups (LGs),

although the position within LGs (in cM) could not be

determined for these SNPs. The applied SNP panel was

fairly evenly distributed among the 23 LGs (between 20

Table 1. Summary of sample information including the sampling location and year, the sample identification code, the cluster to which most individ-

uals assigned, the mean posterior membership probability to that cluster (Mbrship Prob; see text), the number of individuals analyzed (n), the number

of polymorphic loci (Var loci), the percentage of missing data (Missing), and the observed (Hobs) and expected (He) heterozygosity. Samples are

ordered by hydrographic distance from the easternmost sample.

Country Location Year Code Region Cluster

Mbrship

Prob n

Var

loci Missing (%) Hobs He

Iceland Northeast coastal 2002 INC02 Coastal Iceland-inshore 0.69 39 841 0.7 0.27 0.27

Southwest coastal 2002 ISC02 Coastal Iceland-inshore 0.90 38 845 1.0 0.27 0.27

Southwest offshore 2002 ISO02 Offshore East 0.83 39 851 0.8 0.26 0.26

Greenland Tasiilaq 2010 TAS10 Coastal East 0.69 29 807 13.7 0.28 0.25

Offshore East 2010 OEA10 Offshore East 0.96 29 810 6.0 0.27 0.25

Offshore South 2010 OSO10 Offshore East 0.96 29 807 11.0 0.28 0.26

Danas Banke 1934 DAB34 Offshore East 0.52 31 926 3.2 0.29 0.29

2008 DAB08 Offshore East 0.67 21 857 3.5 0.26 0.27

Fyllas Banke 1954 FYB54 Offshore East 0.50 30 891 3.6 0.28 0.28

Qaqortoq 1947 QAQ47 Coastal West 0.82 28 914 4.6 0.31 0.32

2008 QAQ08 Coastal East 0.39 27 854 3.5 0.26 0.27

Paamiut 1947 PAA47 Coastal West 0.87 31 917 4.9 0.33 0.31

2008 PAA08 Coastal East 0.49 29 850 3.0 0.27 0.27

Ameralik 2008 AME08 Fjord Nuuk 0.79 30 891 3.8 0.29 0.30

Qorqut 2008 QOR08 Fjord Nuuk 0.76 30 901 3.7 0.30 0.29

Kapisillit 1943 KAP43 Fjord Nuuk 0.77 30 894 4.2 0.30 0.29

2008 KAP08 Fjord Nuuk 0.75 30 902 1.5 0.30 0.30

Offshore West 2010 OWE10* Offshore West 0.56 39 910 2.1 0.29 0.29

Lille Hellefiskebanke 1957 LHB57 Offshore West 0.81 31 912 5.3 0.30 0.31

Store Hellefiskebanke 1950 SHB50 Offshore West 0.37 31 909 1.7 0.29 0.30

Sisimiut 1932 SIS32 Coastal West 0.99 20 876 7.8 0.33 0.31

1937 SIS37 Coastal West 0.96 31 891 4.8 0.29 0.30

2005 SIS05† Coastal West 0.42 34 919 1.7 0.31 0.31

2010 SIS10 Coastal West 0.50 26 892 13.7 0.34 0.30

Ilulissat 1953 ILL53 Coastal West 0.80 30 898 3.8 0.31 0.31

2010 ILL10 Coastal West 0.65 30 902 3.7 0.31 0.30

Uummannaq 1945 UMM45 Coastal West 0.73 30 898 3.7 0.31 0.31

2010 UMM10 Coastal West 0.95 25 891 11.1 0.35 0.31

Canada Gulf of St Lawrence 2008 CAN08‡ Coastal N/A N/A 39 907 1.2 0.36 0.36

Mean 0.72 31 881 4.6 0.30 0.29

*Due to the absence of contemporary spawning aggregations offshore, the individuals in this sample were collected over the entire west coast area.

The mean position is plotted in Fig. 1.

†This is the only sample collected outside the spawning season.

‡This sample was only used for reference as a representative of western Atlantic populations. Due to strong differentiation from all other samples at

non-outlier loci, it was excluded from DAPC, outlier identification and environmental correlation analysis.
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and 60 [mean of 39] SNPs per LG), ensuring broad

genomic coverage.

The SNP genotyping was performed at the Roslin Insti-

tute at the University of Edinburgh, Scotland, using the

Illumina GoldenGate platform following the manufac-

turer’s protocol. This array-based technology is based on

hybridization of short (<60 bp) locus- and allele-specific

probes to the template DNA and should therefore be well

suited for fragmented historical DNA. To minimize the risk

of cross-sample contamination, historical and contempo-

rary samples were kept separate during all steps. The SNP

data were visualized and analyzed with the GenomeStudio

Data Analysis software package (llumina Inc., San Diego,

CA, USA). All genotype cluster positions were edited man-

ually and we only included data points with GenCall score

>0.25 and samples and SNPs with a call rate >0.7.

Data quality control and summary statistics

To evaluate the reproducibility of genotype calls, 26 histori-

cal DNA extracts were analyzed in two independent assays

and a single control individual was included on all 96-well

plates. We computed the genotyping concordance for each

SNP as the number of identical genotype calls among repli-

cates divided by number of samples where both replicates

had been successfully genotyped. SNPs with a mean con-

cordance <0.9 were discarded from the data set.

We computed expected and observed heterozygosity (He

and Hobs) and tested for Hardy–Weinberg equilibrium

(HWE) in all samples using 105 permutations with the

Monte Carlo procedure implemented in the R-package ADE-

GENET (Jombart 2008). The degree of linkage disequilibrium

(LD) between all pairs of loci within each sample was eval-

uated with the GENETICS package for R (Warnes 2003). Here,

and where appropriate throughout the analysis, we cor-

rected for multiple testing by computing the expected false

discovery rate (FDR), or q-value, for each test based on the

distribution of P-values using the R-package QVALUE (Storey

and Tibshirani 2003). We considered tests significant when

the FDR was <5% (q < 0.05).

Population structure

To examine the patterns and levels of differentiation

among samples, we computed pairwise FST (following Weir

and Cockerham 1984) between all samples with the Fstat()

function from the GENELAND package in R (Guillot et al.

2005) and tested for pairwise differences in allele frequen-

cies among all samples using chi-square tests, as imple-

mented in the software CHIFISH (Ryman 2006). This analysis

showed that the Canadian sample was highly divergent

from all the other samples (especially when only consider-

ing presumably neutral markers, see Results). To avoid

swamping the signal of variation within the Greenland–Ice-
land system with large intercontinental differences, the

Canadian sample was excluded from all further analysis.

For exploration of the population structure within the

Greenland–Iceland system, we applied discriminant analysis

of principal components (DAPC; Jombart et al. 2010) as

implemented in R-package ADEGENET (Jombart 2008). Since

we did not a priori know howmany populations were repre-

sented by our data, we first used the find.clusters() function

to run successive K-means clustering of the individuals for

K = 1:20, and identified the best supported number of clus-

ters through comparison of the Bayesian Information Crite-

rion (BIC) for the different values of K. We then applied the

dapc() function to describe the relationship between these

inferred groups. This function constructs synthetic vari-

ables, discriminant functions (DFs), that maximize varia-

tion between while minimizing variation within groups, and

computes coordinates along these functions for each indi-

vidual. To avoid over-fitting, we retained only the 111 first

principle components (PCs) from the preliminary data

transformation step (indicated to be the optimal number

based on the optim.a.score() function), representing 46% of

the total variation in the data set (analysis including all PCs

yielded virtually identical results).

On the basis of the derived DFs, we obtained posterior

cluster membership probabilities for each individual. To

summarize the overall composition, we then for each sam-

ple computed the mean membership probability across all

individuals to the different clusters. We categorized sam-

ples with mean membership probability of >0.6 to one of

the clusters as ‘pure’ samples (for use in the outlier tests

and LD analyses) and the others as ‘mixed’ samples. To

cross-validate the robustness of cluster assignments, we

randomly selected half the individuals from each sample as

our training data and the other half as our hold-out data.

We then re-computed the clustering and DAPC analysis

based on the training data alone and applied the

predict.dapc() function to position the ‘hold-out’ individu-

als onto these new DFs. This way, posterior membership

probabilities for the hold-out individuals reflected how

reliably individuals that had not been used to define DFs

would assign to clusters.

To assess how much of the observed structure was driven

by loci under selection, we repeated all the analysis with a

subset of the data excluding loci that were spatial or tempo-

ral outliers (see below) or exhibited high LD (mean

r2 > 0.1 within ‘pure’ samples) with other loci (only three

LGs were generally characterized by high LD (see Fig. S1).

Spatial outlier detection

To identify loci that showed divergent patterns of differen-

tiation compared to neutral expectations, and therefore
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potentially have been affected by selection, we applied the

Bayesian approach of Beaumont and Balding (2004) as

implemented in the software BAYESCAN 2.1 (Foll and Gag-

giotti 2008). We set the prior odds for a model without

selection to 10:1 and ran the program with 20 pilot runs of

each 5000 iterations followed by an additional burn-in of

50 000 iterations and then 5000 samplings with a thinning

interval of 10. Correcting for multiple testing, the program

computes q-values based on the posterior probability for

each locus, and we considered loci with q < 0.05 consis-

tently in three independent runs significant outliers.

Because hierarchical structuring, as observed in our data,

can lead to an excess of false positives if not accounted for

in outlier tests (Excoffier et al. 2009), we supplemented the

BAYESCAN results with simulations under the hierarchical

fdist model as implemented in ARLEQUIN 3.5 (Excoffier and

Lischer 2010). For each run, we used 50 000 simulation iter-

ations with a null model with 10 groups, each containing

100 demes. Using the R-package QVALUE (Storey and Tibsh-

irani 2003), we computed q-values based on the derived

P-values to consider loci with q < 0.05 significant outliers.

For both outlier detection methods, we conducted a ser-

ies of tests with different subsets of the samples. Initially,

we examined the overall patterns with tests including all

samples at two cross-sections of time, contemporary and

historical, here basing the groupings for the hierarchical

model on the cluster of maximum membership probability

for each sample (Table 1). As we were particularly inter-

ested in loci under selection between the clusters, we fol-

lowed up with pairwise comparisons of the clusters (here

only including the ‘pure’ contemporary samples) and non-

hierarchical tests among the samples within each cluster

(historical and contemporary separately).

Temporal outlier detection

We also applied outlier tests to assess whether any loci

showed greater temporal differentiation than expected

under drift and sampling error alone within the locations

where the cluster membership of individuals was relatively

stable over time. Because the outlier tests applied above rely

on models of spatial variation between multiple popula-

tions, they are not directly suitable for examining variation

over time within a single population. We therefore adapted

the fdist approach (used for the hierarchical spatial tests),

so that it would better fit a temporal scenario (see Supple-

mentary methods). The key difference was that we here

generated the neutral expectation through simulations

under a Wright–Fisher model of drift over time within a

single population rather than as drift-migration equilib-

rium between multiple populations. Otherwise, the outlier

detection was conducted as in the original approach (Beau-

mont and Nichols 1996).

A required input parameter for the temporal null model

was the number of generations between samples, which we

estimated to be between 11 and 15 in the different locations

based on demographic data (see Data S1). A second

required input was the effective size (Ne) of the sampled

population, which we estimated for each location based on

the temporal variance in allele frequencies between sam-

pling points, and which appeared high at all locations

(lower 95% confidence limit consistently � 450, see Data

S1). For each run, we simulated 105 loci and computed

P-values for each observed locus, indicating the probability

that it showed greater temporal differentiation than expected

from the null model. The temporal outlier analyses were

completed with custom R-scripts available upon request.

Environmental correlations

To gain insights about what factors may drive selection in

this system, we tested for associations between the spatial

distribution of allele frequencies and a range of environ-

mental and seascape parameters. For this analysis, we used

the method implemented in the software BAYENV (Coop

et al. 2010), which accounts for the underlying population

structure when testing for locus-specific environmental

correlations in a Bayesian framework. The first step is to

estimate a covariance matrix from a set of presumably neu-

tral SNPs. Based on this matrix, the program then com-

putes a Bayes factor (BF) for each locus, reflecting the ratio

of posterior support for a model with a linear correlation

between an environmental variable and allele frequencies

versus a model including the covariance matrix only. Ana-

lyzing the historical and contemporary samples separately,

we estimated the covariance matrices from a subset of SNPs

(n = 618) excluding outliers and loci in strong LD (as rec-

ommended in the software manual) and used the mean of

the two final matrices obtained in two independent runs of

each 105 iterations of the Markov chain Monte Carlo pro-

cess. We considered locus-environment combinations with

a log10(BF) > 1.5 significant (‘very strong evidence’ accord-

ing to Jeffreys (1939) scale).

Environmental data were primarily obtained from the

Nucleus for European Modeling of the Ocean (NEMO)

shelf sea model. To obtain data that reflected long-term

conditions at the sampling locations, we used averages of

annual values for 1948–2011 within 7 9 7 km grid cells.

For some of the coastal positions that fell just outside the

geographic coverage of the model, data were interpolated

from the adjacent grid cells. The Disko Bay (ILL samples)

and the Nuuk area (AME, KAP, and QOR samples) were

not covered in the model. For Disko Bay, adequate obser-

vational data were not available, but for Nuuk, data on cer-

tain variables were compiled from historical CTD data

downloaded from the ICES Oceans database (http://ocean.

© 2013 The Authors. Evolutionary Applications published by Blackwell Publishing Ltd 6 (2013) 690–705 695

Therkildsen et al. Spatiotemporal SNP analysis reveals pronounced biocomplexity



ices.dk/) and retrieved from archived logbooks (Hedeholm

unpublished). We reduced the full set of variables initially

considered (Table S1, Supporting information) to a subset

including only relatively uncorrelated variables (rho < 0.8,

Spearman Rank Correlation Test). The variables considered

in the final analysis were latitude, longitude, distance to

nearest coastline, annual maximum, mean and range for

bottom spring temperature, annual mean, minimum and

range for surface spring temperature, and annual mean

bottom salinity. We retained multiple different tempera-

ture variables because they were not strongly correlated

(rho < 0.8) and could therefore potentially drive contrast-

ing selection patterns.

Results

Data quality and summary statistics

DNA extracts from a total of 847 individuals were ana-

lyzed with the SNP assay (231 historical samples were

discarded due to contamination or poor DNA quality).

In these samples, 1011 SNPs were successfully genotyped;

935 of these passed the quality criteria and were used for

analysis. The mean genotype concordance among repli-

cate samples was 98% and the mean call rate for samples

was 93%. The different samples were polymorphic for

between 86% and 99% of loci and He ranged from 0.25

to 0.32 (Table 1).

In single-locus tests for HWE, 1471 tests (of 28 050) had

P < 0.05, with the highest concentration in the samples

OWE10 and QAQ08 (with 87 and 77 of 935 loci having

P < 0.05, respectively). However, after FDR correction,

only 13 tests remained significant (q < 0.05) and these were

distributed among loci and samples. LD analysis revealed

variable numbers of significant associations among loci in

the different samples, but 1747 of the 436 612 possible

pairwise comparisons among loci had a mean r2 > 0.1

within ‘pure’ samples (Fig. S1). When discarding one locus

from each of these LD pairs, a set of 693 loci remained,

which was used for specific steps in the analysis as

described below.

Population structure

Pairwise FST estimates between the CAN08 and all other

samples ranged from 0.072 to 0.170. For comparisons

within the Greenland–Iceland system, estimates ranged

from �0.003 to 0.072 and were highest between ISC02 and

most other samples, except the other Icelandic and the

Nuuk inshore samples (Fig. S2). The majority of pairwise

comparisons (393 of 406) showed significant differences in

allele frequencies between samples after correction for mul-

tiple testing. Notable exceptions were among the Nuuk sam-

ples and among the west coast offshore samples (Fig. S2).

Consistent with these results, the K-means analysis

(excluding the divergent CAN08 sample) revealed that

clustering solutions with either three or four groups gener-

ated the lowest BIC-scores and therefore were best sup-

ported (Fig. S3A). Two groups were consistent in both

clustering solutions: one (the ‘East’ cluster) containing the

majority of individuals in the Icelandic offshore sample,

the east Greenland samples and the southernmost offshore

samples from western Greenland, and another (the ‘West’

cluster) containing the majority of individuals from the

remaining western Greenlandic samples except the fjord

samples from around Nuuk and portions of the contempo-

rary Sisimiut samples (Table 1). The three-cluster solution

grouped Icelandic and Nuuk inshore samples together,

whereas the four-cluster solution separated these groups

(Fig. S4A). Since this separation is geographically meaning-

ful and there is temporally stable significant differences

between the samples, we proceeded with the four-cluster

solution.

The samples exhibited considerable overlap between the

positions of individuals on the DFs. However, when exam-

ining the mean coordinates of each sample, it is evident

that the first DF (representing 61.7% of the discriminating

power) resolves a continuum from the Greenlandic inshore

through offshore West and East to Icelandic inshore

(Fig. 2). The second DF (representing 27.6% of the dis-

criminating power) separates inshore samples (in both

Greenland and Icelandic waters) from offshore samples

(Fig. 2A). The third function (representing 10.6% of the

power) separates both the inshore and offshore groups into

Icelandic and Greenlandic components, except from a few

Greenlandic samples that cluster with the Icelandic sam-

ples, likely due to the presence of migrants (see below;

Fig. 2B). Recoding of the coordinates on the first two DFs

into signal intensity of red and green color, respectively,

provides visualization of the geographic distribution of

these patterns (see plots of the resulting blended colors for

each sample position in Fig. 1). Inspection of the allele

loadings on the DFs revealed that a large number of SNPs

spread across different LGs drove the discrimination of the

first and the third function, whereas the strongest allele

contributions to DF 2 (that separated inshore from off-

shore) were almost exclusively dominated by SNPs in LG1

(Fig. S5).

With K-means clustering based on the full data set, 87%

of individuals showed posterior membership probability of

>0.95 to one of the four clusters. In the cross-validation

where only half of the individuals were used as training

data, the assignment power remained high, with 82% of

the hold-out individuals showing posterior membership

probability of >0.95 to one of the clusters and 94% of these

assigning to the same cluster as in the full data analysis.

The consistent results obtained when hold-out individuals
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were not used for defining clusters or DFs indicate that the

reported cluster configuration was well supported by the

data.

At the aggregate level, 20 of the 28 samples had mean

membership probability >0.6 to a single clusters, while the

remaining eight appeared to consist of mixtures of cod

from different clusters (Table 1). Both ‘pure’ and ‘mixed’

samples were primarily made up of individuals that

assigned with high probability to a single cluster (Fig. 3).

However, some individuals appear to be admixed, showing

relatively even membership probabilities between different

clusters. Of particular note, the majority of the Greenlandic

west coast offshore samples appeared to contain approxi-

mately even mixtures of fish with high assignment proba-

bility to the ‘East’ and the ‘West’ clusters, respectively.

Meanwhile, a vast majority fish in the coastal west coast

samples assigned to the ‘West’ cluster (Fig. 3). Two excep-

tions to this were the contemporary samples from SIS that

appeared to contain a considerable proportion of fish

assigning to the ‘Nuuk’ cluster, and contemporary samples

from PAA and QAQ that appeared to be made up of fish

from the ‘Iceland-inshore’ and the ‘East’ cluster, respec-

tively (Fig. 3). Since the historical samples from these latter

two locations contained almost exclusively ‘West’ individu-

als, the contemporary dominance of the alternate clusters

suggests complete population replacement in this region.

In contrast to these stark temporal changes, other locations

(UMM, ILL, KAP, and DAB) exhibited a high degree of

temporal stability, as evident both from assignment results

(Fig. 3) and from the tight clustering of temporal replicates

(Figs. 1 and 2).

When loci potentially under selection (see below) and

loci in strong LD were removed from the data, the pairwise

FST coefficients were considerably lower than with all loci

(ranging from 0.058 to 0.137 for the Canadian sample and

from �0.003 to 0.028 in comparisons among Greenlandic

and Icelandic samples), but 337 of 406 comparisons still

showed significant differences in allele frequencies (Fig.

S2). The K-means clustering clearly indicated that with this

data subset, a solution with only two clusters was best sup-

ported (Fig. S3B): One cluster containing the Icelandic

(both inshore and offshore), the east coast, the contempo-

rary QAQ and PAA as well as portions of the Nuuk sam-

ples, and a second cluster containing the remainder of the

Greenlandic samples (not a single Icelandic individual

assigned to this cluster). The three-cluster solution corrob-

orated this, except that it split the ‘Nuuk’ samples into their

own cluster (Fig. S4B).

Spatial outlier detection

In all analyses, BAYESCAN detected considerably more out-

liers than ARLEQUIN (often more than twice as many), but

ARLEQUIN outliers were almost exclusively a subset of BAYE-

SCAN outliers. Here, we describe only results on outliers

identified by both methods. In the comparison of all con-

temporary samples, 47 loci were either FST (differentiation

between all samples) or FCT (differentiation between clus-

ters) outliers (the majority both; Table S2), and all but six

of these loci were located in one of three regions character-

ized by significant LD across loci within LG1, 2, and 7,

respectively (see Fig. S1). Analysis of the Icelandic samples

alone identified a large proportion of the global outliers in
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Figure 2 Scatterplots of the mean sample coordinates on the first and

second (A) and the first and third (B) discriminant functions (DF) from

the discriminant analysis of principal components (DAPC) based on the

four inferred clusters. Contemporary sample names are plotted in white

and historical sample names in gray. The background shading of the

plot area illustrates the blended color gradient resulting from recoding

coordinates on the first and second DF to intensity of red and green,

respectively (see text).
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LG1 and LG7, but notably not LG2. Within Greenland, the

majority of global outliers from LG1 along with a number

of single loci in other LGs were outliers on a regional scale

(Table S2). Comparison with analysis of the historical

Greenlandic samples suggested that this pattern was stable

over time, although there were 30% fewer outliers among

historical samples (Table S2).

Pairwise comparisons between the clusters showed that

LG7 loci were only outliers in tests involving the Iceland-

inshore group (Fig. 4). The majority of global outliers in

LG1 were outliers in all comparisons involving the ‘Ice-

land-inshore’ and the ‘Nuuk’ clusters, but to a lesser degree

in the comparison of these two, indicating a common

divergence from the other clusters at this genomic region

(Fig. 4, Table S2). The smallest number of outliers was

found in the ‘West’–‘East’ comparison, but the outliers

here were in different LGs, thus likely representing inde-

pendent instances of genomic divergence. Few significant

outliers were detected within clusters, except from a few

cases in both the ‘East’ and ‘West’ historical samples.

Temporal outlier detection

The temporal outlier analyses revealed between three and

nine outlier loci, mostly spread over multiple LGs, showing

elevated levels of differentiation between time points within

a location (Fig. 5; Table S2). Interestingly, there was no

overlap between the loci that were temporal outliers in the

different locations and only three loci were both spatial and

temporal outliers. Uncertainty in the estimated parameter

input values appeared to only have minor influence on the

outlier detection. Assuming that the generation length was

7 years instead of five narrowed the confidence limits on

neutral expectations for temporal variation and produced a

few more outliers. Using the lower 95% confidence limit

rather than the point estimate for Ne generated slightly

wider confidence intervals and consequently removed a few

outliers. However, at least the top three temporal outliers

for all locations were highly robust to variations in parame-

ter inputs.

Environmental correlations

The BAYENV analysis identified between one and twenty

nine loci that were highly correlated with the environmen-

tal variables in the different comparisons (Table S2). All

but two of the significantly correlated loci were also identi-

fied as spatial or temporal outliers. The high-LD group on

LG1 that exhibited strong spatial outlier patterns corre-

lated with a number of variables, including distance to

shore, sea surface temperature range, and salinity. The spa-

tial outlier loci on LG7 were correlated with longitude,

which is expected given that these loci seemed divergent

only between the Iceland-inshore cluster and the rest.

However, a number of additional loci distributed across

LGs also correlated with longitude. Different sets of loci—
some on LG1—correlated with maximum and mean bot-

tom temperature, whereas a consistent set of 4 loci corre-

lated with minimum and mean surface temperature. Three

of these loci were involved in differentiation between

INC02 ISC02 ISO02 TAS10 OEA10 OSO10

OWE10 DAB34 DAB08 FYB54 LHB57 SHB50 QAQ47 QAQ08 PAA47 PAA08

AME08 QOR08 KAP43 KAP08 SIS32 SIS37 SIS05 SIS10 ILL53 ILL10 UMM45 UMM10

Figure 3 Plot of the posterior membership probabilities of each individual to the Iceland inshore (yellow), East (red), West (green), and Nuuk (brown)

clusters, respectively. Each vertical line represents an individual and is divided into color segments proportional to its posterior membership probability

to each of the geographic clusters derived from the discriminant analysis of principal components (DAPC) including only the ‘pure’ samples (see text).

The order of individuals within samples is random, but samples are ordered according to hydrographic distance from the easternmost sample.
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the Iceland inshore and particularly the Nuuk samples

(Table S2).

Discussion

This study identified four genetically distinct groups inhab-

iting a relatively small geographical area at the northern

range margin of the widely distributed Atlantic cod.

Genomic analysis of contemporary and historical samples

revealed that the groups exhibited different spatial distribu-

tions with considerable overlap and mixing and that the

genetic composition at some spawning grounds was stable

over time, whereas complete population replacement was

evident at others. Signatures of elevated differentiation in

certain genomic regions are consistent with adaptive diver-

gence between the groups and significantly increased tem-

poral changes at a subset of loci indicate that adaptation is

ongoing.
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Figure 4 Matrix of results from the BAYESCAN spatial outlier tests in pairwise comparisons of the clusters. Each cell shows the q-value for each locus

being under selection plotted against genome position (ordered by linkage groups LGs). Loci above the horizontal lines (representing q = 0.05) are

considered significant outliers and loci that were also outliers in the Arlequin analysis are marked by filled symbols. Circles represent loci with known

position within LGs, whereas triangles denote loci that were anchored to an LG but with unknown position within the LG. Loci in LG1, 2, and 7 are

highlighted in blue, purple, and red, respectively, whereas the remaining LGs are plotted in alternating shades of gray and loci that could not be

anchored to the linkage map are plotted in black.
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Population structure and degree of reproductive isolation

Our results suggest a relatively high degree of reproductive

isolation among the four identified groups, as the majority

of individuals assign to a single cluster with very high cer-

tainty. Although the posterior membership probabilities of

the DAPC analysis are not strictly equivalent to individual

admixture proportions as estimated through commonly

applied Bayesian clustering methods (e.g., Pritchard et al.

2000; Corander et al. 2008), they do reflect the proximity of

individuals to different clusters. Hence, individuals with rel-

atively even membership probabilities to multiple clusters

could either carry uninformative genotypes in relation to

cluster separation or be admixed. In contrast, population

samples that exhibit an intermediate average position

between clusters but are made up of individuals with high

membership probability to different clusters likely represent

first-generation or non-interbreeding mixtures. Our finding

that the latter scenario was much more common than the

former (Fig. 3) does not appear to be an artifact of model

over-fitting that would be able to distinguish any groupings

with high power, because re-analysis with randomized prior

groupings resulted in maximum individual membership

probabilities of only 0.3–0.5 for the vast majority of individ-

uals (Fig. S6). Therefore, the data strongly suggest that spa-

tial mixture among separate genetic clusters was common,

but individual admixture much less so in this system.

A high degree of reproductive isolation could appear at

odds with the relatively weak level of genetic structure

observed when outlier loci were removed (Fig. S2). How-

ever, the differentiation between clusters was highly signifi-

cant, and low levels of differentiation—a typical pattern for

marine fish (Waples 1998; Hauser and Carvalho 2008)—
does not necessarily reflect substantial ongoing gene flow.

Our analysis suggested that the Ne was very large in all pop-

ulations and previous ecological niche modeling coupled

with genetic analysis indicates that the split between Green-

landic and Icelandic/European cod populations postdates

the last glacial maximum (c. 21000 years ago; Bigg et al.

2008). Therefore, the low level of differentiation may be

better explained by limited accumulation of drift due to

recent divergence and large Ne’s.

The strong differentiation at non-outlier markers

between CAN08 and all other samples supports coloniza-

tion of Greenland from Iceland rather than from southern

refugia populations in North America. A DAPC analysis of

the present data set together with selected reference popu-

lations from throughout the North Atlantic (data previ-

ously presented in Nielsen et al. 2012) indicates that both

the Greenlandic and Icelandic samples cluster together with

European populations (Fig. S7), supporting earlier findings

of a deep split between North America and Europe (Bigg

et al. 2008; Carr and Marshall 2008; Bradbury et al. 2010)

and a likely colonization of Greenland from European/Ice-

landic sources (Bigg et al. 2008). However, of all analyzed

samples, those from West Greenland offshore showed the

greatest genetic affinity to Canada, which indicates some

postglacial gene flow. Observations of substantial egg trans-

port from the Greenland banks across the Davis Strait

(Wieland and Hovg�ard 2002), as well as occasional migra-

tion of adults from Canada to Greenland (Hansen 1949),

could provide a potential mechanism for this. Future anal-

ysis involving geographically more proximal samples from

the Canadian Arctic is expected to shed further light on the

connectivity between the regions.

The configuration of our inferred genetic clusters within

Greenlandic waters is consistent with previous hypotheses

about population structure based on tagging data, abun-

dance records, and egg distribution surveys, which also

have indicated the presence of four components: an inshore

west, offshore west, offshore east and inflow from Iceland

(summarized by Buch et al. 1994; Storr-Paulsen et al.

2004). Among the inshore west coast samples, the genetic

separation of the Nuuk region also corroborates insights

from egg surveys and historical records, which suggest that

this is one of the most important inshore spawning areas

(Storr-Paulsen et al. 2004). It is uncertain to what extent

the portions of other samples that assigned to the Nuuk

cluster represent related individuals from an inshore com-

ponent distributed all along the coast or show similarity

because of common adaptations to the inshore environ-

ment (see below).

Regardless of this uncertainty, this study provides impor-

tant confirmation of the genetic basis of previously

assumed population structure. Notably, the combination

of extensive sampling at the spawning grounds and a large

panel of SNP markers provided much greater power to

resolve these patterns than previous genetic studies in the

region have achieved (�Arnason et al. 2000; O Leary et al.

2007; Pampoulie et al. 2011). DAPC proved a powerful

approach for detecting the weak, but geographically and

biologically meaningful, signal of differentiation. The more

commonly applied Bayesian clustering algorithm STRUCTURE

(Pritchard et al. 2000; Falush et al. 2003) produced gener-

ally consistent, but somewhat less conclusive results for this

data set. With the no-admixture ancestry model, STRUCTURE

results were similar to DAPC (although there was slight

variation between runs), but with the admixture model—
that probably is more realistic for a species like Atlantic cod

—the clusters were not as clearly resolved (although reas-

suringly, the overall tendency in clustering was consistent

with DAPC; Fig. S8). Previous evaluations have also indi-

cated that STRUCTURE has limited power when the degree of

differentiation is low (e.g., Latch et al. 2006; Waples and

Gaggiotti 2006), as was the case here. Although DAPC is

still a relatively new method and additional testing and
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comparative evaluation is needed, our results indicate that

it can be a useful alternative to Bayesian methods when dif-

ferentiation is weak.

Temporal stability of population structure and

distribution

In addition to characterizing the number of cod popula-

tions around Greenland, our spatiotemporal analysis pro-

vided important insights into how the distribution of the

different components has changed over time. Perhaps,

most interesting was the demonstration of genetic continu-

ity on the west coast banks. After the stock collapse in the

late 1960s, cod were considered virtually extinct from the

offshore regions and it was hypothesized that influx from

Iceland would be the only viable source of replenishment

(R€atz et al. 1999; Stein 2007). Here, we show that recently

collected cod from these offshore areas (DAB08, OWE10)

represent an almost identical mixture of fish with western

and eastern Greenlandic heritage as was sampled there dur-

ing the period of maximum abundance (DAB34, FYB54,

LHB57). Although this population component probably

now is recovering from a severe reduction in population

size, our temporal analysis indicated that the Ne has

remained high and thus that the population is unlikely to

have suffered alarming loss of genetic diversity—a pattern

also observed in other large cod populations that have

undergone substantial population collapses (Ruzzante et al.

2001; Poulsen et al. 2006; Therkildsen et al. 2010b). Since

the distribution of the western Greenland cluster extends to

coastal areas where a lower level abundance was maintained

(Buch et al. 1994; Storr-Paulsen et al. 2004), it cannot be

ruled out that the offshore area was re-colonized by a pop-

ulation component that had resided inshore. However,

although Icelandic influx probably has played some role, it

appears highly unlikely that the offshore resurgence has

resulted exclusively from Icelandic influx.

Interestingly, all the historical coastal samples outside

the ‘Nuuk’ area show remarkable similarity (also with one

of the offshore areas [LHB, see Figs. 1, 2, and 3]), but in

contemporary time this ‘pure’ west coast cluster is only

represented at the northernmost locations. At SIS, recent

samples were more influenced by the ‘Nuuk’ cluster

although they still contained a considerable number of

individuals assigning to the ‘West’ cluster. Interestingly, the

5-year temporal replicates at both historical and contempo-

rary time in this location indicate that the proportional

representation of the different clusters maintained short-

term stability.

In the southern coastal locations (PAA and QAQ), that

historically showed genetic similarity to the other coastal

locations, the ‘West’ cluster became entirely replaced by

fish from the ‘Iceland-inshore’ and ‘East’ cluster. This shift-

ing pattern is consistent with observations of periodic larval

drift across the Denmark Strait (Wieland and Hovg�ard

2002), but the complete replacement is perhaps surprising.

Also, tagging studies have suggested that Icelandic fish

migrate back to Iceland to spawn and do not necessarily

contribute to recruitment in Greenland (Storr-Paulsen

et al. 2004). However, the fish analyzed here were in

spawning condition and thus a large proportion could

reproduce locally with uncertain consequences for future

separation and distribution of the genetic groups. Due to

the high mobility of adult cod, it is nevertheless also plausi-

ble that they may spawn in a location far from the sampling

site. In any case, the data clearly demonstrate highly

dynamic patterns with large temporal shifts in the distribu-

tion and overlap among clusters. Ongoing investigations

including samples collected at a finer spatial resolution

within key locations may reveal what factors drive these

changes.

Adaptive divergence and evolutionary potential

The consistent results from (i) the two independent outlier

tests, (ii) the loading plots from the DAPC, and (iii) the

correlations with seascape variables indicate strong effects

of divergent selection in this system. In some cases, the sig-

natures of selection were found within, but primarily they

were evident between the four clusters. This is consistent

with cluster-specific adaptations to local conditions. The

observation that contrasting genomic regions showed ele-

vated divergence across different cluster pairs in turn indi-

cates that different genes may underlay the adaptive

response to different environments.

The vast majority of outlier loci were located within

three genomic regions that span up to >20 cM on the link-

age map and exhibit strong LD within all samples (Fig. S1).

In some cluster comparisons, almost all loci within the

regions showed elevated divergence (Fig. S9), indicating a

pattern of ‘islands of genomic divergence’ against a back-

ground of lower levels of differentiation (Turner et al.

2005; Nosil et al. 2009). In other cluster comparisons, the

same regions showed a mix of outlier and non-outlier loci,

however (Fig. S9). In spite of this variation, the tight

clustering of outliers in the genome supports that our find-

ings reflect real patterns of localized genomic divergence,

not just spurious statistical outliers. Further, the identified

outlier regions—and in many cases the same particular

SNPs—have also been shown to exhibit highly elevated

divergence in other parts of the species range over both

small and large spatial scales (Nielsen et al. 2009; Bradbury

et al. 2010; Poulsen et al. 2011, loci highlighted in Table

S2), confirming their affiliation with local adaptation.

Identifying the specific targets of selection in these

regions that contain 100s of genes, and elucidating the
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mechanisms behind their fitness effects, will require tar-

geted follow-up studies (Stinchcombe and Hoekstra 2007;

Barrett and Hoekstra 2011). However, our analysis here

suggested that the allele frequencies of several loci correlate

with spatial variation for a number of environmental vari-

ables. The highest number of correlations was found for

longitude. Longitudinal patterns were strongly driven by

the difference between Iceland and Greenland and one of

the major differences between these two areas is the overall

temperature regime. The role of temperature in shaping

allele frequencies in these loci is further supported by a pre-

vious study that also reported temperature-associated

clines on both sides of the Atlantic for many of the same

loci (Bradbury et al. 2010, see Table S2). The direct tem-

perature variables included in the analysis correlated with

fewer SNPs than did longitude (though some very

strongly). However, as inherent to all correlation analyses,

it is difficult to know exactly whether a summarized vari-

able captures the biologically relevant aspect of environ-

mental variation.

A perhaps more robust proxy, distance to shore, showed

a very strong correlation with the outlier loci in LG1,

including the well-studied Pan-I polymorphism, for which

inshore-offshore divergence has also been demonstrated in

Iceland and Norway (Fevolden and Pogson 1997; Pampou-

lie et al. 2006; Wennevik et al. 2008). Here, this genomic

region shows parallel allele frequency differences between

inshore and offshore samples in both Iceland and Greenland

and the DAPC discrimination between these groups of sam-

ples were almost exclusively driven by loci from this group

(Fig. S5B). The pattern is so pronounced that with the full

SNP panel, the K = 3 clustering solution grouped the

‘Nuuk’ and ‘Iceland-inshore’ samples together. With strong

outliers and high-LD loci removed, the ‘Nuuk’ samples

show approximately equal affiliation with Greenlandic and

the Icelandic clusters (Fig. S4B). However, with the conser-

vative criteria for detecting outliers applied here, a number

of residual signatures of weaker selection may remain in this

presumably ‘neutral’ data set, leaving the demographic his-

tory of the Nuuk cluster somewhat confounded.

Although the specific drivers and mechanisms are only

partly resolved, our results indicate that the four clusters

may exhibit different adaptations and therefore could

respond differently to climate change. It should be noted

that the observed localized genomic divergence and the

correlations between genetic and environmental variation

in principle also could result from endogenous genetic bar-

riers rather than exogenous environmental selection acting

directly on the identified regions (although the pattern

does provide evidence of environmentally driven selection

acting somewhere in the genome; Bierne et al. 2011). How-

ever, although common outliers among the Iceland and

Nuuk inshore clusters indicate footprints of more ancient

selection, previous inter-disciplinary analysis has, as men-

tioned, suggested that Greenlandic cod only split from Ice-

land after the last glacial maximum (Bigg et al. 2008). The

recent divergence implies that most incompatibilities or

local adaptations (driven by environment or any other fac-

tors) separating these groups should have evolved over this

relatively short time scale. Thus, regardless of the underly-

ing driver of elevated divergence at the identified outlier

loci, the observed signatures suggest a high evolutionary

potential within the species. The observation of a higher

number of outliers in contemporary compared to historical

samples within Greenland could also indicate ongoing

response to selection over the study period, although this

pattern may also be partly caused by issues of statistical

power related to the not completely congruent sampling

schemes in time. Further evidence in support of ongoing

spatial adaptation was found in the increased temporal dif-

ferentiation at particular loci in the locations where the

presumably neutral genetic composition had been stable.

Since the set of temporal outliers was generally non-over-

lapping with spatial outliers (indicating lack of spatial vari-

ation in allele frequencies at these loci), migration is

unlikely to have caused the differentiation that exceeds

expectations based on drift and sampling error. Therefore,

ongoing selection seems the most parsimonious explana-

tion, indicating signs of adaptive changes over decadal time

scales.

Conclusions and management implications

Overall, our results illustrate the complex and dynamic

interactions of four genetically distinct groups of cod

inhabiting the northern range margin of the species. The

data are consistent with already existing adaptive diver-

gence between the groups and they also strongly indicate

potential for rapid response to ongoing changes in selection

pressures. Temporal variations in the genetic composition

at different locations suggest that the groups respond dif-

ferently to environmental variation, although the contin-

ued presence of all components despite major demographic

changes indicates considerable resilience.

Accordingly, the documented population diversity and

evolutionary potential should clearly be taken into account

in attempts to model or predict species-level shifts to more

northern habitats in the face of climate change. Similarly,

the findings are also highly relevant for fisheries manage-

ment. The observed population variability can generate

complementary dynamics among population components,

so-called portfolio effects (Schindler et al. 2010), which

may prove critical for ensuring the persistence and stability

of both the species and future fisheries yields (Hilborn

et al. 2003; Schindler et al. 2010). It is therefore important

to protect and acknowledge the full biocomplexity of the
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system as well as the connectivity across national borders.

Because the different population components appear to

exhibit independent dynamics, it is likely that separate

exploitation strategies targeted specifically to each compo-

nent will maximize the overall sustainability and yield from

this valuable resource. The spatiotemporal population ge-

nomics study presented here has made important progress

toward enabling such management by identifying the

genetic signature of distinct population components and

mapping the spatial distribution of spawning grounds over

time for each of these. These results are already being used

to revise the management plan for cod in Greenland and

they form an important baseline for ongoing investigations

that will elucidate the finer scale dynamics of the system

and reveal how the different clusters mix in the fishery.
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