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Pneumonia is a major cause of disease and death in foals. Rhodococcus equi, a Gram-positive facultative intracellular

pathogen, is a common cause of pneumonia in foals. This article reviews the clinical manifestations of infection caused by

R. equi in foals and summarizes current knowledge regarding mechanisms of virulence of, and immunity to, R. equi.

A complementary consensus statement providing recommendations for the diagnosis, treatment, control, and prevention

of infections caused by R. equi in foals can be found in the same issue of the Journal.
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Clinical Manifestations

Pyogranulomatous Pneumonia

The most common clinical manifestation of disease
caused by Rhodococcus equi infection is pyo-

granulomatous bronchopneumonia with abscessation
(Fig 1).1 Because ultrasonographic screening for early
detection has become a routine practice at many farms
endemic for pneumonia caused by R. equi (see consen-
sus statement), the most frequently recognized form of
R. equi infection on those farms is a subclinical form
in which foals develop sonographic evidence of periph-
eral pulmonary consolidation or abscessation without
manifesting clinical signs.2,3 On those farms, the cumu-
lative frequency of sonographically visible areas of
focal pulmonary consolidation or abscessation consid-
erably exceeds the historical frequency of clinical pneu-
monia attributed to R. equi2 suggesting that many
subclinically affected foals might spontaneously recover
without treatment. The proportion of such subclini-
cally affected foals that progress to clinically apparent
disease is currently unknown, and might vary by farm,
geographical region, and age at which foals are exam-
ined.3 When respiratory disease does become clinically
apparent, disease is frequently initially insidious,
becoming chronic and progressive. A small proportion
of affected foals develop a severe, subacute form of

pneumonia; these foals might be found dead or
develop severe, acute respiratory distress.

Usually, foals first manifest clinical signs of R. equi
pneumonia between 3 and 24 weeks of life, with most
foals showing signs before 16 weeks of age. Infections
are uncommon among horses older than 6 months of
age. Clinical signs of pneumonia are variable and are
dependent upon the stage and severity of pulmonary
lesions. Initial clinical signs might include fever, leth-
argy, and cough.4 As pneumonia progresses, clinical
signs might include anorexia, tachycardia, tachypnea,
flared nostrils, and increased effort and abdominal
excursion during respiration.4 Tachypnea and cough-
ing are sometimes exacerbated by exertion during
exercise or handling. Bilateral nasal discharge is an
inconsistent finding.5 Early in the course of disease,
body condition is generally normal; however, in foals
with chronic disease, weight loss or failure to grow
might be apparent. In a recent report of 161 foals
affected with R. equi pneumonia, the most common
clinical signs were cough (71%), fever (68%), lethargy
(53%), and increased respiratory effort (43%).5

Extrapulmonary Disorders (EPDs)

There are numerous EPDs that are associated with
R. equi infections, including extrapulmonary sites of
infection and immune-mediated disorders.6 In a study
of 150 foals with R. equi infections admitted to a teach-
ing hospital, at least 1 of 39 different EPDs were recog-
nized in 74% of foals, although some EPDs were
recognized only during necropsy examination.6 Survival
was lower among foals with EPDs (43%; 48/111) than
among foals without EPDs (82%; 32/39).6 EPDs might
occur concurrent with or independent of pneumonia,
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and some foals have multiple EPDs concurrently.1,6

Some EPDs are subclinical and can be difficult to
recognize antemortem.6 Some EPDs (eg, polysynovitis)
might be the 1st clinical manifestation of R. equi-associ-
ated disease, detected before signs of pneumonia. Some
EPDs (eg, abdominal abscesses) might negatively affect
prognosis, even in foals whose pneumonia responds to
treatment.6

Diarrhea might occur in foals infected with R. equi
either as an EPD caused by pyogranulomatous typhlo-
colitis or as a result of antimicrobial treatment.1,6–8

Abdominal lesions are identified in approximately
50% of foals with R. equi pneumonia that are pre-
sented for necropsy,1 and include any of the following,
alone or in combination(s): pyogranulomatous ent-
erotyphylocolitis (Fig 2); pyogranulomatous lymphade-
nitis of the mesenteric or colonic lymph nodes; large
intra-abdominal abscesses; and peritonitis.1,6 Intestinal
lesions can be difficult to detect antemortem, but
lymphadenitis and abdominal abscesses can be
detected sonographically in some foals.6 Interestingly,
of 31 foals with ulcerative enterotyphlocolitis identified
at necropsy, only 12 foals had diarrhea whereas 9 foals
had diminished growth.6 Abdominal abscesses are
uncommon, but typically are large and contain muco-
purulent material, sometimes with caseous centers, that
presumably originate from abdominal lymph nodes
infected with R. equi.6,9 Abscesses are frequently
adhered to other abdominal organs, including the
intestinal tract, liver, spleen, or body wall.6 Of 25 foals
with abdominal abscesses, clinical signs included diar-
rhea (9 foals), diminished growth (8 foals), and colic (1
foal).6 Some foals with abdominal lymphadenitis will
have lymphatic obstruction resulting in lymphangiecta-
sia.10 Foals with abdominal abscesses have a poor
prognosis.6

Polysynovitis occurs in approximately one fourth to
one third of foals with R. equi infections.6,11 Clinical
signs include effusion of one or more synovial struc-
tures, generally without apparent lameness. Multiple
joints are often affected, most commonly the stifles,
tarsocrural, carpal, and fetlock joints. Immunoglobulin

was detected within the synovial membrane of 3
affected foals and antibodies directed against autolo-
gous or heterologous Fc portion of immunoglobulin
were identified in the synovial fluid of 1 foal.12,13 These
findings suggest an immune-mediated process. How-
ever, heavy intrabronchial challenge with virulent R.
equi also results in polysynovitis without lameness.14

Culture of the synovial fluid of affected foals within a
few days of the onset of synovial effusion yields
growth of R. equi and histological examination of the
synovial membrane reveals suppurative inflamma-
tion.14 Therefore, an alternative and more likely expla-
nation is that septic polysynovitis results from
bacteremia, but that the infection is rapidly cleared
from the synovial structures resulting in chronic non-
septic inflammation at the time of diagnosis.

Some foals with R. equi infections develop ocular
lesions including uveitis, keratouveitis, and panoph-
thalmitis.6 Affected foals might display epiphora, pho-
tophobia, aqueous flare, hypopyon, iris discoloration,
miosis, and other ophthalmic abnormalities. The path-
ogenesis of uveitis is often unknown, but might include
dissemination of bacteria to the eye or immune-
mediated mechanisms. In 1 study, foals with uveitis
were less likely to survive than foals without uveitis.6

Rhodococcus equi can cause osteomyelitis, septic
synovitis, or both.6 Septic synovitis is differentiated
from polysynovitis (described above) by the severity of
lameness and by cytological evidence of septic synovial
fluid. Septic synovitis can involve only 1 joint, whereas
polysynovitis by definition involves more than 1 site.

Fig 2. Mucosal surface of colon of foal with pyogranulomatous

colitis caused by Rhodococcus equi.

Fig 1. Cross-section of a lung from a foal with pyogranuloma-

tous pneumonia caused by Rhodococcus equi. Courtesy of Dr

William Castelman.
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Vertebral osteomyelitis caused by R. equi has been
described in foals.6 Clinical signs might include stiff
gait, reluctance to move, palpable pain, and sometimes
soft-tissue swelling associated with paravertebral
abscessation.6 If the infection or associated swelling
spreads to the epidural space, neurological signs of
spinal cord disease or nerve root compression might be
apparent.6 Specific neurological signs are dependent
upon the specific region of the spinal cord that is
affected. Foals with vertebral osteomyelitis generally
have a poor prognosis, although a foal with disko-
spondylitis involving 3 sacral vertebrae responded to
surgical debridement of infected bone and long-term
antimicrobial treatment.15

Pyogranulomatous mediastinal lymphadenopathy
can result in compression of the trachea, and occasion-
ally an outward swelling of the pectoral region6; tra-
cheal compression might cause respiratory distress or a
respiratory noise. Few foals with R. equi pneumonia
develop pleural effusion.6,9 Pyogranulomatous R. equi
lesions also can develop in the liver, kidney, spleen, or
nervous tissue.6 Disease caused by such lesions is often
subclinical and only recognized during postmortem
examination. A foal with a brain abscess (recognized
via computed tomography) associated with R. equi
infection has been described.16

Intermittent or persistent bacteremia with R. equi
might be more common than recognized, and might
result in metastatic spread of infection. The proportion
of foals that are blood culture-positive and the stages
of disease during which bacteremia is most likely to
occur are ill-defined. Rhodococcus equi was isolated
from the blood of 11 of 19 foals;6 foals with positive
blood culture results were less likely to survive than
foals that were culture-negative.6

Other less common EPDs associated with metastatic
spread of R. equi include pericarditis, endocarditis, cel-
lulitis, dermatitis, subcutaneous abscesses, peripheral
lymphadenopathy, guttural pouch empyema, pleuritis,
sinusitis, myositis, stomatitis, pyometra and omphali-
tis.6 Other immune-mediated EPDs include immune-
mediated hemolytic anemia, immune-mediated throm-
bocytopenia, and telogen effluvium.6

Pathogenesis and Virulence

Pathogenesis

Inhalation of virulent R. equi is the major route
of pulmonary infection. The incubation period after
experimental intrabronchial challenge varies from
approximately 9 days after administration of a heavy
inoculum to approximately 2–4 weeks when a lower
inoculum is administered.14,17 Lung consolidation can
be detected as early as 3 days after heavy intrabronchial
challenge.14 The incubation period under field condi-
tions is unknown and likely depends on several factors
including the number of virulent bacteria in air samples
in the environment, age of the foal, and host defense
mechanisms. Ingestion of the organism is an important
route of exposure, and likely also of immunization, but

rarely leads to hematogenously acquired pneumonia
unless a foal has multiple exposures to large numbers of
bacteria.18

Epidemiological evidence suggests that most foals
on endemic farms become infected early in life.19 The
median age at the time of diagnosis is approximately
35–50 days on most endemic farms.5,20 Given the fairly
long incubation period of the disease, this finding
would also support the fact that many foals become
infected early in life. In 1 study, foals aged between 3
and 13 days (mean 6.4 days) were more susceptible to
experimentally induced R. equi pneumonia than foals
aged between 14 and 36 days (mean 25 days).87 Collec-
tively, these findings indicate that many foals on ende-
mic farms become infected at a young age and that
younger foals are more susceptible to infection caused
by R. equi. However, these findings do not necessarily
indicate that foals are only susceptible to R. equi dur-
ing the neonatal period. Older foals are also suscepti-
ble to experimental infection with R. equi. In 1 study,
intratracheal administration of R. equi to 10 foals
between 27 and 67 days (mean 49 days) of age resulted
in disease in all foals including those receiving a low
dose challenge.21

Virulence

Twenty years ago, independent laboratories reported
the seminal finding that strains of R. equi isolated from
foals with pneumonia contained a plasmid of 80- to 90-
kb in size.22,23 Subsequently, the association between
plasmid possession and virulence was established by
demonstrating that plasmid curing or loss yielded a
bacterial strain unable to cause disease in mice and
foals.14,21,24 Furthermore, the plasmid was shown to
enable intracellular replication in macrophages.14,25

Sequencing and annotation of the virulence plasmid
revealed 73 coding sequences (CDSs),26,27 and that it
was divisible into 4 discrete areas based upon open
reading frame (ORF) amino acid sequence similarity
and predicted protein function. The “backbone”
sequence of the plasmid is highly similar to that of a
plasmid found in the environmental organism Rhodo-
coccus erythropolis and consists of regions for replication/
partitioning, conjugation, and unknown functions.26

The 4th plasmid region is an approximately 21-kb
pathogenicity island (PAI) that is crucial for virulence
of this bacterium for foals.26,27 The PAI likely was
acquired through horizontal gene transfer from a bacte-
rial source of unknown origin, an insertion event which
probably took place in the soil and dramatically
increased the in vivo survival capabilities of the host
bacterium.

The 26 CDSs of the PAI include the unique and R.
equi-specific family of proteins, the virulence-associated
protein family (Vap family).27 There are 6 full-length
vap genes, (vapA, -C, -D, -E, -G, -H) and 3-truncated
vap pseudogenes (vapF, -I, and -X).26 To date, vapA,
which encodes an immunodominant, temperature-
inducible, and surface-expressed lipoprotein,28,29 is the
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only vap gene with a demonstrated role in virulence,30

whereas Vaps C, D, E, F, G, I, and X appear to be
dispensable.30,31 VapA is required for establishment of
a persistent infection in severely immunodeficient mice
and for intracellular growth in macrophages,30 where
it aids in preventing maturation of the phagosome to
the stage of fusion of R. equi-containing vacuoles with
lysosomes.32 The functions of the other Vap proteins
are unknown. Interestingly, R. equi strains isolated
from pigs with lymphadenitis also contain a plasmid
with a similar backbone, but distinct PAI-encoded vap
genes, suggesting that the specific Vaps present some-
how dictate host species tropism.26

Although vapA is necessary for virulence, it is not
sufficient.14 Additional virulence determinants reside
within the PAI.31 Two of these, virR and orf8, each
encode a regulatory protein.33,34 Loss of either regula-
tor results in decreased vapA transcription and also in
attenuation of the organism.33,34

A 2nd major advance in the understanding of
R. equi virulence was the recent sequencing and anno-
tation of the genome of R. equi strain 103.35 The
5.04-Mb R. equi genome is most similar to that of the
environmental bacterium Rhodococcus jostii (RHA1)
and then to Nocardia farcinica and Mycobacterium
tuberculosis.35 As with these other Actinomycetes, a
large number of the 4,598 genes of R. equi appear to
be involved in lipid metabolism (both anabolism and
catabolism). Like M. tuberculosis, lipids are a key com-
ponent of the outer cell envelope of R. equi.36 This
mycolic acid-containing glycolipid barrier might serve
to protect the peptidoglycan and plasma membrane
from the damaging effects of host-generated enzymes
and immune-mediated reactive intermediates. Mycolic
acid carbon chain length varies among R. equi isolates
and, notably, it was observed that strains with longer
mycolic acids were more lethal to mice.37 Furthermore,
it has been established that host lipids are a preferred
in vivo carbon source for M. tuberculosis38 and such
also is likely to be true for R. equi. The finding that a
mutant of R. equi possessing a defective glyoxylate
shunt enzyme activity, isocitrate lyase, necessary for
growth on fatty acids, was unable to multiply in
macrophages and was attenuated in mice and foals, is
consistent with this contention.39

Analysis of the genome sequence reveals that R. equi
has 23 complete 2-component regulatory systems (TCS)
apart from the PAI-encoded orphan response regulator
(orf8). TCS represent the most common type of regula-
tion system found in bacteria. The more complicated an
organism’s lifestyle, the greater is the number of TCS
needed to allow for genetic adaptation to specific envi-
ronmental changes. Recently, it has been determined
that the TCS sensor kinase MtrB of R. equi is needed
for adaptation to and growth within the intramacro-
phage environment.40 It is likely that other TCS also
participate in the expression of virulence traits.

Some of the most exciting recent data in the R. equi
field is the recognition of molecular “crosstalk”
between the virulence plasmid and the R. equi chromo-
some. Microarray analysis of chromosomal gene

expression patterns of the virulence plasmid-containing
strain 103 and a plasmid-free derivative were com-
pared under vap gene-inducing (37°C; pH 6.5) and
noninducing conditions (30°C; pH 8.0) showed that
the virulence plasmid enhanced the expression of a
number of chromosomal genes when the bacteria were
cultured under vap gene-inducting conditions.35 This
suggests that a gene or genes on the plasmid directly
or indirectly regulate chromosomal gene expression
patterns, and that the 2 regulators in the PAI region
could be involved. Two chromosomal genes,
REQ23860 and REQ23850, encoding a chorismate
mutase and a bifunctional anthranilate synthase,
respectively (enzymatic components of the aromatic
amino acid biosynthesis pathway), were most strongly
co-induced with the vap genes.35 Independent mutation
of each of these genes decreased the capacity of the
bacterium to replicate in macrophages. Interestingly,
the R. equi genome contains 4 chorismate mutase
genes, 1 of which is located in the virulence plasmid
PAI region. In general, aromatic amino acids are likely
limiting in the macrophage intracellular vacuolar envi-
ronment, and thus an enhanced ability to synthesize
aromatic amino acids via increased utilization of the
chorismate precursor could translate to improved
intracellular survival.

Although R. equi is considered an obligate aerobe,
mutation of narG, encoding nitrate reductase, was
found to be severely attenuating to the pathogenicity
of the bacterium in infected mice. 41 The latter finding
might indicate an inability of the mutant to assimilate
nitrate in vivo in the absence of NarG, or might sug-
gest that R. equi uses nitrate as a terminal electron
acceptor in the hypoxic and possibly anaerobic granu-
lomatous environment it faces in vivo.

Immunity

Rhodococcus equi-Phagocytic Cell Interactions

Once inhaled, R. equi is taken up by alveolar macro-
phages through a process of receptor-mediated phago-
cytosis. One of the receptors used by macrophages to
engulf complement opsonized R. equi is complement
receptor 3 (CR3 or Mac-1).42 In addition, R. equi
might utilize the macrophage mannose receptor for
entry which might recognize lipoarabinomannan
(LAM), an outer surface component of the bacterium,
either directly or via mannose binding protein or sur-
factant molecules adhered to LAM.43 Once engulfed
by resident macrophages, virulent R. equi are able to
modify the phagocytic vacuole to prevent acidification
and subsequent fusion with lysosomes.32,44–46 Bacterial
gene expression patterns are altered to accommodate
survival in the intracellular environment and allow
acquisition of essential nutrients such as iron, as
well as to promote resistance to host-derived reactive
oxygen intermediates.47,48 Uncontrolled intracellular
replication of R. equi leads to necrosis of the
macrophage.49 If opsonized with R. equi-specific anti-
body, presumably promoting bacterial entry via the
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macrophage Fc receptor, the fate of the R. equi-
containing phagosome is altered and lysosome fusion
occurs.50 This might explain how the presence of
R. equi antibody might aid in the prevention of infec-
tion. Killing of R. equi by mouse macrophages is
dependent upon the presence of interferon (IFN)-c,
which activates macrophages to produce both reactive
oxygen and reactive nitrogen intermediates. These 2
radicals combine to form peroxynitrite, which effi-
ciently kills R. equi.51 Neither reactive oxygen nor
reactive nitrogen intermediates alone are sufficient to
mediate killing of R. equi.51 Additional cytokines such
as TNF-a might have similar effects on macrophages,
because both IFN-c and TNF-a are both required for
clearance of virulent R. equi in mice.52 Neutrophils
play an important role in early host defense against
virulent R. equi.53 As opposed to macrophages, neu-
trophils from foals and adult horses are fully able to
kill R equi.54–56 As seen with macrophages, killing of
R. equi by neutrophils is considerably enhanced by
specific opsonizing antibody.57,58

Adaptive Immunity

Immunity to R. equi pneumonia in foals probably
depends on both the antibody and cell-mediated

components of the immune system, but its exact basis
remains to be determined. The strongest evidence for a
role of antibody in protection against R. equi is the
partially protective effect of passively transferred anti-
R. equi hyperimmune equine plasma (summarized in
the consensus statement in this issue). Because of the
facultative intracellular nature of R. equi, cell-mediated
immune mechanisms are thought to be of major
importance in resistance to infection (Fig 3). A large
part of the knowledge of cell-mediated immunity to
R. equi infections comes from infection of mice. Defi-
ciencies in the complement component C5 and NK
cells in mice do not impair the pulmonary clearance of
virulent R. equi.59 In contrast, functional T lymphocytes
are absolutely required for the clearance of virulent
R. equi in mice.60–62 However, mice lacking functional
T lymphocytes clear plasmid-cured derivatives from
their lungs within 1 week of infection, suggesting that
clearance of avirulent plasmid-negative strains in mice
does not require functional lymphocytes and depends
mainly on innate defense mechanisms.61

The 2 major mechanisms by which T lymphocytes
mediate clearance of intracellular pathogens are secre-
tion of cytokines and direct cytotoxicity. Although
both CD4+ (helper) and CD8+ (cytotoxic) T cells
contribute to host defense against R. equi in mice,

Fig 3. Paradigm for adaptive immunity: The current working hypothesis is that an effective vaccine to prevent rhodococcal pneumonia

will need to drive a foal’s immune response to Rhodococcus equi toward a protective Type 1 response. Type 1 responses are characterized

by the production of antigen-specific Th1 lymphocytes, which allow for clearance of intracellular R. equi via the production of interferon

(IFN)-c and the activation of macrophages, and by antigen-specific cytotoxic T lymphocytes, which recognize and kill R. equi-infected

cells. In contrast, foals that respond to infection with a Th2 response are predicted to develop potentially life-threatening pulmonary

lesions. As shown via dashed lines, innate immune responses, including the responses of dendritic cells, strongly influence the ensuing

adaptive response. The role of suppressive regulatory T cells (Tregs) remains unknown. However, these cells are prevalent and functional

in neonates of other species. Likewise, there has been little work to investigate the role of the Th17 subset of T lymphocytes. Th17 cells

develop under the influence of interleukin (IL)-23 and TGF-b and are defined by the signature cytokine IL-17. Th17 cells and IL-17 are

known to play roles in autoimmune diseases and immune clearance of other intracellular pathogens, and so are likely to be involved in

immunity to R. equi as well.
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CD4+ T lymphocytes probably play the major role
and are absolutely required for complete pulmonary
clearance.62–64 Studies in mice have clearly shown that
a Type 1 response, characterized by IFN-c production
by T helper lymphocytes, is sufficient to effect pulmo-
nary clearance of R. equi whereas a Type 2 response,
characterized by IL-4 production, is detrimental.60,65

As opposed to foals, adult horses are typically resis-
tant to R. equi infections. Immune adult horses have
been used as a relevant model to better understand
what responses are necessary for immunologic protec-
tion. Clearance of virulent R. equi in immune adult
horses is associated with lymphoproliferative responses
to R. equi antigens, development of R. equi-specific
cytotoxic T lymphocytes (CTL), and IFN-c induc-
tion.66–68 Interestingly, R. equi-specific CTL, which are
apparently present in all immune adults, are major his-
tocompatibility complex (MHC) class I-unrestricted
and appear to recognize unique bacterial lipids from
the cell wall.69,70 The current thought is that these lipid
antigens might be presented to T lymphocytes via the
CD1 system, as has been well described in M. tubercu-
losis.71 How these findings in mice and adult horses
relate to the foal is an area of active research.

Immunity to R. equi in Foals

Virtually all newborn mammals are immunologically
immature and have an assortment of immunologic def-
icits compared to older animals. In general, neonates
and perinates have diminished innate immune
responses, decreased antigen-presenting cell function,
and are less able to mount type-1 immune responses.72

As a result, neonates of various species demonstrate
an increased susceptibility to certain infections.

A number of relative immunologic deficits have been
demonstrated in foals. In conjunction with the lack of
immunologic memory in newborns, these are postu-
lated to account for the unique age-associated suscepti-
bility of foals to rhodococcal pneumonia. Age-related
deficiencies in R. equi-specific CTL activity has been
documented in 3-week-old foals.70 Activity of CTLs is
improved by 6 weeks of age and is similar to that of
adult horses by 8 weeks.70 Antigen-presenting cells
from foals have significantly lower CD1 and MHC
class II expression compared to that from adult
horses.71,73 In addition, several studies have demon-
strated that the ability of equine lymphocytes and neu-
trophils to produce or upregulate various cytokines, or
both, is strongly influenced by age.72–77 In particular,
the finding that young foals are deficient in their abil-
ity to produce IFN-c in response to mitogens has led
to the hypothesis that an IFN-c deficiency and Th2
bias might be at the basis of their peculiar susceptibil-
ity to R. equi infections.74,75 However, recent data
demonstrate that foals are also deficient in their ability
to produce IL-4 in response to stimulations with mito-
gens and after vaccination with a killed adjuvanted
vaccine, suggesting that a clear polarization toward a
Th2 response is unlikely in neonatal foals.78–80 Consis-
tent with these findings, experimental infection of

young foals with virulent R. equi results in IFN-c
induction and antibody responses similar to or greater
than that of adult horses undergoing the same experi-
mental challenge.81

Recent studies have investigated various immuno-
stimulants that might enhance host defense mecha-
nisms during the relatively narrow period of
susceptibility to R. equi. Inactivated Parapoxvirus ovis,
Propionibacterium acnes, and unmethylated CpGs
enhance ex vivo or in vitro phagocytic cell function or
cytokine induction in foals.82–84 However, despite
successfully enhancing IFN-c production in foals, inac-
tivated P. ovis failed to decrease the cumulative
incidence of pneumonia at an R. equi-endemic farm.
In the same study, IFN-c and IL-4 secretion at birth
was not associated with subsequent development of
pneumonia.85

Spontaneous resolution of R. equi pneumonia after
experimental challenge has been recognized.86–88 Many
foals on farms where the disease is endemic do not
develop disease or develop subclinical disease that
resolves without intervention. In addition, intragastric
administration of live, virulent R. equi to newborn
foals confers complete protection against subsequent
heavy intrabronchial challenge.89,90 Oral inoculation
with virulent R. equi results in accelerated development
of R. equi-specific CTL,91 providing a potential mecha-
nism for the protection conferred by oral inoculation.
Collectively, these findings unequivocally demonstrate
that most foals have the ability to mount protective
immune responses to R. equi. The basis for the pecu-
liar susceptibility of foals to infection with R. equi is
likely complex and multifactorial rather than involving
a simple and single explanation. Similarly, it is
unknown why some foals develop EPDs and others
do not.

Attempts at Active Immunization

It would be convenient to control R. equi pneumo-
nia on endemic farms by active immunization of mares
or foals with a protective antigen. To date, however,
this approach has been largely unrewarding. The role
of antibody in partial protection against R. equi infec-
tion would suggest that vaccination of mares could
confer at least some degree of protection. However, in
both a field study and an experimental challenge, vac-
cination of mares did not provide protection against
R. equi pneumonia despite a significant increase in
colostral R. equi-specific antibody and transfer of these
antibodies to foals.92,93 More recently, vaccination of a
small number of mares with VapA associated with a
water-based nanoparticle adjuvant led to high anti-
VapA IgG concentrations in mares and foals and
might have conferred protection against natural
challenge compared to nonvaccinated controls.94

Large-scale studies at endemic farms will be necessary
to confirm these preliminary findings before wide-
spread vaccination of mares can be recommended.

Because cell-mediated immunity is of paramount
importance for protection against R. equi, active
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immunization of foals probably will be required for
complete protection. Oral immunization with Salmo-
nella enterica Typhimurium expressing the VapA anti-
gen protects mice against R. equi infection.95 Recent
studies in mice indicate that DNA immunization with
vapA protects against R. equi infection and that the
IgG subisotype response is consistent with a Th1-based
immune response.96 A similar DNA vaccine containing
the vapA gene has been shown to induce strong
cell-mediated immune responses in adult horses, but
responses were poor in foals.97 Intrabronchial immuni-
zation of neonatal foals with a live, fully attenuated,
riboflavin auxotrophic strain of R. equi stimulated
immune responses but did not confer protection
against subsequent intrabronchial challenge with live
R. equi.98 The fact that live, avirulent plasmid-cured
R. equi does not elicit adaptive immunity and is
cleared rapidly indicates that replication is needed for
induction of strong cell-mediated immune responses.66

Intrabronchial immunization with a deletion mutant of
R. equi lacking the chromosomal genes isocitrate lyase
(icl) and cholesterol oxidase (choE) conferred pro-
tection against subsequent challenge in 3 foals.99

However, 2 foals developed pneumonia caused by the
mutant strain.99 Collectively, the aforementioned stud-
ies indicate that there is a fine line between sufficient
replication of R. equi for induction of strong cell-medi-
ated immune responses and disease from the vaccine
strain. Additional challenges are that immunization in
foals will need to be initiated very early in life and an
effective vaccine will have to overcome the relative
immaturity of the naive neonatal immune system.

There are several critical areas in need of further
study to develop a vaccine against R. equi, including
(1) determining immunologic correlates of protection;
(2) defining limitations of foal immunity; and (3) speci-
fying antigens that confer protective immunity. These
3 issues are considered below.

Although much has been learned from mice and
immune adult horses, the immunologic correlates of
protection against R. equi in foals (ie, “the responses
an effective vaccine must induce in foals”) are only
vaguely defined. Moreover, foals are clearly different
from both mice and adult horses in their inherent sus-
ceptibility, immunologic capabilities (discussed above),
and lack of immunologic memory. An important need
that remains is a broad and cost-effective repertoire
of standardized immunologic tests to measure the
responses of horses to infection and immunization.
With these tools, veterinary scientists could better
define what constitutes a protective response and mea-
sure the ability of new vaccines to induce those
responses in foals. Immunogens could then be designed
or modified to induce better protection.

Researchers have begun to define the immunologic
capabilities of neonatal and perinatal foals. The pri-
mary focus has been on immunologic deficits that
might contribute to susceptibility to R. equi infection
or that are likely obstacles to vaccination of horses
early in life. A problem with these studies is that most
examine transcription of cytokine mRNA, rather than

protein expression. Moreover, differences among stud-
ies relative to the nature of the immune stimuli, time-
points examined, and methods make comparison diffi-
cult. As a result, the relevance of these data to what
occurs in vivo is not always clear. As noted above,
improved tools to measure relevant immune responses
in standardized ways would be a significant step for-
ward. Perhaps more importantly, there needs to be
more research focused on methods to induce strong
innate and Type 1 immune responses in neonatal foals.
In other words, we must devise means to overcome the
inherent age-associated immune limitations of early
life. This might involve investigation of new immuno-
stimulants, improved adjuvants, and novel approaches
such as targeting the common mucosal immune system
via the gut.

We still have little knowledge of which bacterial
antigens are targets of protective immune responses.
Although much work has focused on proteins encoded
by the virulence plasmid, it remains to be determined
whether or not a subunit approach can be successful.
Given the complicated life-style of this bacterium and
the complexity of the organism, a modified live vaccine
might prove to be more appropriate. For example, evi-
dence exists that immune adult horses recognize
secreted antigens of R. equi.100 Moreover, all immune
adult horses have CTL that appear to recognize
unique lipid antigens in the bacterial cell wall.68,69 A
live attenuated vaccine could provide for at least lim-
ited intracellular replication, expression of selected vap
genes, translation of secreted proteins, and immune
presentation of bacterial lipids. Newer methods for
genetic manipulation of R. equi are providing a means
to strategically produce mutants that can be tested for
their ability to induce protective responses in
foals.98,101 The goal will be to generate strains that are
attenuated enough to be safe and yet immunogenic
enough to protect against challenge. In summary,
active immunization to prevent rhodococcal pneumo-
nia remains a very real possibility, but additional
research is needed.

Summary

Rhodococcal infection in foals is a complicated
problem. An ill-defined proportion of foals with pul-
monary infection will remain free of clinical signs and
eventually clear the infection, whereas other foals
might have either an insidiously progressive pneumo-
nia or an acute onset of severe respiratory distress that
is generally fatal. A wide array of EPDs can occur
either alone or concurrent with pneumonia. Some
EPDs (eg, intra-abdominal abscesses, osteomyelitis)
markedly worsen the prognosis for survival, and can
develop in the face of successful management of pneu-
monia. There is great need to develop means for pre-
venting disease. Understanding the mechanisms of
virulence of R. equi is critical for developing preventive
strategies. It is clear that interactions occur between
gene products of the virulence-associated plasmid and
chromosomal gene products that modulate virulence.
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The picture that has emerged is one of a soil bacterium
whose disease-causing capabilities were dramatically
expanded through the acquisition of foreign DNA that
provided critical novel virulence factors and further
altered the expression of pre-existing chromosomal
genes to promote adaptation as a pathogen of foals.
These virulence factors represent target candidates for
developing live attenuated vaccines. Finally, develop-
ment of a vaccine against R. equi is dependent upon
stimulating an effective immune response to key anti-
gens of the organism. Unfortunately, an effective vac-
cine remains elusive because of the complexity of the
immune response to R. equi and the challenges posed
by limitations of some elements of the immune
response of young foals. Despite these challenges, there
are observational and experimental data that allow
hope for the development of an effective vaccine. A
recent manuscript indicates that genes involved in the
steroid catabolic pathway are promising targets for
the development of a live-attenuated vaccine against
R. equi infections.102
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