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Abstract

Conservation policy requires reliable estimates of extinction rates that consider
the interactions between population size (N) and habitat area. Current ap-
proaches to estimating extinction from the endemics–area relationship (EAR)
estimate only the minimum number of species that can become extinct be-
cause of habitat loss (instantaneous extinction). EARs will therefore under-
estimate extinction if small populations and/or habitat area (SPHA) commit
species to future extinction. We demonstrate this mathematically, by assum-
ing species require a minimum population size of two individuals, and by ran-
domly sampling habitat loss within stem-mapped forest plots. We then develop
a general framework for incorporating SPHA effects into EARs that builds upon
recent advances introducing N into estimates of extinction. By accounting for
effects that modify N, our framework explains extinction debt and reduces the
uncertainty associated with future estimates of extinction through carefully
qualifying the spatial and temporal context of predictions.

Introduction

Species extinctions are accelerating as humans appro-
priate ever greater proportions of the earth’s habitats
(Myers 1989; MEA 2005). Policies seeking to halt or slow
extinctions through conservation are controversial be-
cause they challenge the dominant contemporary eco-
nomic paradigm, powerful vested development interests,
and embedded norms of human enterprise and consump-
tion (e.g., Parenteau 1998). It is therefore important for
ecological science to provide policy with reliable predic-
tions of the rates at which species extinctions will oc-
cur, and how conservation policies and actions will alter
species persistence. However, the question of how best to
estimate rates of extinction remains unresolved.

Traditional approaches for estimating extinction have
used the species–area relationship (SAR), which describes
the number of unique species that accumulate as a power
of increasing area (Rosenzweig 1995). The reverse of the

power-law SAR, i.e., the backward SAR, has often been
used to predict the numbers of unique species that will
be lost as habitat area is increasingly eroded from a land-
scape but it can overestimate extinction compared with
observed rates (Pimm & Askins 1995; Brooks et al. 1997,
1999). A prevailing explanation for this discrepancy is
that there is a time lag before extinction reaches species
that survive habitat loss with small and fragmented pop-
ulations (Heywood et al. 1994; Brooks et al. 1999). The
difference between instantaneous and future extinction
has been termed “extinction debt” (Tilman et al. 1994).

The backward SAR will overestimate instantaneous ex-
tinction rates from habitat loss because of a feature of
sampling: the area required to contact a species for the
first time is always less than the area required to contact
a species for the last time when species are nonrandomly
distributed (He & Hubbell 2011). The number of species
immediately lost if an area of habitat is removed is in-
stead described by the endemics–area relationship (EAR),
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which calculates the number of species whose individu-
als are confined to the lost habitat (Harte & Kinzig 1997;
Kinzig & Harte 2000). By linking species distributions to
sampling theory, the random placement model of He &
Hubbell (2011) provides a simple and mechanistic expla-
nation for the EAR that produces lower estimates of ex-
tinction than the backward SAR. Importantly, however,
the EAR calculates only the number of species whose
populations are entirely and immediately destroyed by
habitat loss (He & Hubbell 2011), ignoring species that
are committed to future extinction. These EAR-based es-
timates are therefore of limited value to policy makers
concerned with future extinctions and not merely instan-
taneous effects (Brooks et al. 2011).

The EAR will provide unbiased estimates of extinction
rates if species are unaffected by small population and/or
small habitat area (SPHA) after habitat loss, but this is
unlikely to be a biologically realistic assumption. Habi-
tat loss reduces the size of species populations, which
increases their susceptibility to extinction from demo-
graphic, genetic, and environmental stochasticity (Lande
1988, 1993; Hubbell 2001). Communities in small, iso-
lated fragments also receive fewer immigrant species, as
predicted by island biogeography theory (MacArthur &
Wilson 1967), and the persistence of individual species
populations is reduced by changes associated with habi-
tat fragmentation, e.g., increased edge effects; disrupted
competitive, reproductive, and trophic interactions; and
lower resistance and resilience to disturbance (Laurance
2008 and references therein). Habitat loss, fragmentation,
and the loss of some but not all individuals within a pop-
ulation can thus commit a species to extinction before all
individuals in a population have died. Often, species re-
quire a minimum number of hundreds or thousands of
individuals to avoid extinction arising from such SPHA
effects (Shaffer 1981; Traill et al. 2007). EARs that ignore
SPHA effects, and assume that extinction occurs only in-
stantaneously (e.g., He & Hubbell 2011), will systemati-
cally underestimate future extinction; i.e., they estimate
the minimum number of species that will become extinct.

Here, we demonstrate mathematically how predictions
of species loss from random placement EARs underesti-
mate species loss in the presence of SPHA effects. We first
sample five stem-mapped forest plots and compare pre-
dictions from the EAR without SPHA effects to those de-
rived from the backward power-law SAR. We then test
two specific SPHA scenarios that assume species are com-
mitted to extinction when: (1) population size falls below
a minimum threshold; or (2) individuals are separated
from their nearest conspecific neighbor by a given dis-
tance. Our approach demonstrates how the EAR can be
extended to incorporate SPHA effects, providing a robust
framework for calculating future extinction rates.

Methods

Derivation of generalized EAR

The probability of encountering the last individual of a
species at a random location can be derived from sam-
pling theory to calculate a random placement EAR (He
& Hubbell 2011). If we assume that species occur ran-
domly, then their distributions can be described by a Pois-
son probability distribution, of which the binomial is a
special case when a finite area is studied. The binomial
model describes the probability of a sampling area of size
a containing at least n individuals of species i when Ni in-
dividuals are located within the total area A (Eberhardt
1967)

Fi,n(a) =
Ni∑

j=n

[(
Ni

j

) ( a

A

) j (
1 − a

A

)Ni − j
]

, (1)

where Fi,n(a) is a function of a for species i summed across
each potential population size from n to the species-
specific Ni and varying from 0 to 1 as a increases from
0 to A. The random placement model for multiple species
all containing at least n individuals in an area a is then
the sum of Fi,n(a) across species i to S

Sa,n =
S∑

i=1

Fi,n(a), (2)

where Sa,n is the expected number of species with n in-
dividuals remaining in an area of size a. To sample all Ni

individuals of a species i within an area a, which will re-
sult in extinction if that area is lost, n = Ni and Equations
(1) and (2) respectively simplify to

Fi,Ni (a) =
( a

A

)Ni

, (3)

and

Sa,Ni =
S∑

i=1

( a

A

)Ni

. (4)

Although we assume species are distributed at random,
despite evidence that they are generally not, predictions
from Equation (1) will be remarkably similar to those
from a negative binomial model that captures spatial ag-
gregation. Broadly, as the size of the sampling area used
to count individuals increases, the negative binomial for a
finite area approaches the binomial function (Zillio & He
2010), and so the EAR based on random sampling dis-
tributions, i.e., Equation (4), will be invariant to spatial
aggregation (He & Hubbell 2011). The negative binomial
model also requires prior knowledge of spatial distribu-
tions for all species, which is impractical at large scales,
and so will limit the generality of the EAR derived from
this function.
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The remarkable advantage of the random placement
model is that it simplifies to a form that estimates ex-
tinction by considering species’ population sizes (Ni) in
addition to traditional measures of habitat area (a and
A; Equation (4)). Consequently, ecological processes that
affect Ni can now be incorporated into estimates of
extinction.

Incorporation of SPHA effects into the EAR

Following from Equation (1), it is easy to incorporate an
effect that assumes species become extinct when popula-
tion size falls below a minimum threshold. To illustrate,
we use a simple scenario that assumes a species is com-
mitted to extinction when its population falls to less than
two individuals, i.e., species reproduce sexually, there are
no reproductive barriers, and there is no immigration.
Under this condition, the expected number of species in
a given area with less than two individuals (Sa,Ni −1) is the
sum across all species i to S in a sample area a for which
n is exactly equal to either Ni or Ni – 1. By substituting
n = Ni – 1 into Equation (2)

Sa,Ni −1 =
S∑

i=1

a−1
( a

A

)Ni

(ANi − Ni a + a). (5)

Larger extinction estimates will always be obtained
from Equation (5), which includes an SPHA effect, than
from Equation (4), which assumes that extinction oc-
curs when the last individual of a species is removed.
This can be demonstrated mathematically by the inequal-
ity for a single species between Equations (4) and (5):
a−1( a

A)N(AN − Na + a) > ( a
A)N . The inequality simpli-

fies to A > a, which will always be true because by defi-
nition a is a subsample of A.

SPHA effects with empirical datasets

We analyzed five publicly available datasets ranging in
area from 2 to 50 ha. Plots were from temperate and
tropical forests and contained mapped coordinates of live
trees, such that each species was represented by at least
two individuals (Table S1). We superimposed 25 m ×
25 m grid cells onto each plot and randomly sampled cells
ranging in area from 625 m2 to the full extent of the plot,
without requiring cells to be nested within each other
(i.e., cell congruency). Within each sample of grid cells,
we counted species: (1) entirely confined to a sampling
area (EAR without SPHA effects); (2) with <2 individuals
outside the sampling area (EAR with SPHA scenario 1);
and (3) with pairwise distances among individuals out-
side the sampling area all >100 m (EAR with SPHA sce-
nario 2); and repeated sampling 50 times. SPHA scenarios
1 and 2 respectively incorporate into the EAR assump-

tions that species are committed to extinction when their
populations fall below a minimum threshold of viability
or are separated from their nearest neighbor such that
they become reproductively isolated, giving rise to in-
breeding depression (Angeloni et al. 2011), which sub-
sequently elevates extinction risk (Spielman et al. 2004).
We also assume: (1) habitat loss renders a patch per-
manently unavailable for species establishment, so ex-
tirpated species cannot reinvade it; and (2) each plot is
isolated, such that populations in remaining habitat do
not receive immigrants (after He & Hubbell 2011). Lo-
cal patches exposed to habitat loss within a larger matrix
are unlikely to have global endemics or experience strong
SPHA effects because of the ability of species to recolo-
nize remaining area, so EARs are inapplicable in these
contexts.

We also calculated the SAR by averaging counts of en-
demic species within all grid cells superimposed on each
plot, and increasing the sizes of grid cells in increments
of 25 m along each axis. We fitted the power-law SAR,
S = cAz , to species counts using maximum-likelihood to
estimate c and z (nlme function in R ver 2.13; R Devel-
opment Core Team 2011), and reversed this relationship
to plot the backward SAR. The power-law model over-
estimates z values at small spatial scales, so we fitted our
model only to areas >0.2 ha (He & Hubbell 2011).

Finally, for each site, we plotted the theoretical EAR:
(1) without SPHA effects (Equation (4)); and (2) with
the effect of SPHA scenario 1 (Equation (5)). We only
present results from random sampling and not a theoret-
ical expectation for SPHA scenario 2; its mathematical in-
corporation into an EAR is relatively intractable because
it assumes that species are not distributed at random, i.e.,
variation in distances among individuals.

Results

The EAR underestimates extinction in the presence of
SPHA effects when it is assumed that extinction occurs
when the last individual of a species dies. Differences
in predicted species loss between the theoretical-derived
EAR with and without SPHA scenario 1, which assumed
that species required a minimum population size of two
individuals to persist, were greatest between 25% and
90% habitat loss (gray vs. green lines; Figure 1). SPHA
scenarios also predict greater species loss than the EAR
without SPHA effects (gray lines beneath overlapping
colored regions; Figure 1). Although the backward SAR
based on the power-law lacks a theoretical basis for es-
timating extinction because of habitat loss, its predic-
tions are surprisingly similar to the EAR that incorporates
SPHA effects (Figure 1).
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Figure 1 Species–andendemics–areacurves for fivemapped forestplots

(Table S1). Dots represent species accumulation within contiguous grid

cells 25m× 25m; solid and dashed black lines are forward and backward

maximum-likelihood fit of the power-law SAR. The gray line is random

placement EAR without SPHA effects (Equation (4)), whereas the green

line considers SPHA scenario 1 (extinction= <2 individuals; Equation (5)).

Shaded green and blue regions are observed ranges for 50 samples of

random habitat loss under SPHA scenarios 1 and 2 (extinction= pair-wise

distances among individuals of a species >100 m), respectively.

Discussion

SPHA effects are pervasive in ecological systems
(Shaffer 1981; Lande 1988, 1993; Andrén 1997; Hubbell
2001; Laurance 2008), and our results show that failure

to incorporate them into the EAR leads to underestimates
of future extinction. We also demonstrate that incorpo-
rating SPHA effects into the EAR explains the lag between
instantaneous and future extinction from habitat loss
(Simberloff 1992; Hanski & Ovaskainen 2002; Bulman
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et al. 2007). Although the random placement method that
links sampling theory to species distributions is a theo-
retical advance on traditional power-law approaches for
predicting extinction, incorporation of SPHA effects into
an EAR produces similar predictions of future extinction
to those derived from a backward power-law SAR. We
emphasize that this finding is entirely coincidental and
should not be taken as support for the backward power-
law SAR method, which clearly lacks any theoretical ba-
sis and should not be used in predicting extinction (He &
Hubbell 2011). However, it cannot be automatically as-
sumed that all previous studies have overestimated future
extinction by reversing the power-law SAR (e.g., Pimm &
Askins 1995; Brooks & Balmford 1996; Brooks et al. 1997,
1999), contrary to the claim by He & Hubbell (2011) that
SARs “always” overestimate extinction.

Fragmentation elevates extinction of small
populations at intermediate habitat loss

Our finding that in the presence of SPHA effects more ex-
tinction arises at intermediate habitat loss (i.e., 25–90%)
than predicted by the EAR without SPHA effects (e.g.,
He & Hubbell 2011) is consistent with known effects of
fragmentation. Increasing habitat fragmentation creates
habitat islands that are progressively smaller and more
distant from mainland source populations, ultimately re-
ducing population sizes of species (after MacArthur &
Wilson 1967). For the simple case of no SPHA effects,
the probability of extinction (pi) of a single species i with
loss of habitat of area a is equal to the EAR in Equation
(3). The change in pi as habitat area is proportionally lost,
defined by h = a/A, is then dpi/dh = Ni hNi −1. Because the
slope of the EAR, i.e., dpi/dh, depends on Ni and h, re-
ductions in Ni that arise from habitat loss will lead to
relatively larger slopes at all but the largest values of h,
causing pi to increase more rapidly when relatively less
area is lost (Figure 2). Conversely, in larger populations,
slopes will be less than 1 and approach zero at all but the
highest levels of habitat loss, so pi will increase rapidly
only where h is large (Figure 2). The EAR without SPHA
effects, however, ignores how habitat loss affects popu-
lation size, i.e., Ni is independent of h, and so underes-
timates extinction of rare species at intermediate h. Our
results do demonstrate an increase in pi compared with
the EAR without SPHA effects at between ca. 25% and
90% habitat loss as dpi/dh → 1, lending support to the
argument that smaller populations have a greater proba-
bility of extinction as habitat loss fragments a landscape
into progressively smaller increments (Laurance 2008).

Although our example shows the greatest variation in
extinction occurs from Ni = 1–5 (Figure 2), Ni implicitly
represents relative population size (Nr,i), and so will vary

Figure 2 Effects of increasing habitat loss on species extinction. (A) EAR

foronespecies iwithoutSPHAeffectswhenpopulationsize (Ni) varies from

1 to 100. For the single-species case, the EAR (Equation (4)) corresponds to

the probability of extinction pi. (B) Change in the probability of extinction

with habitat loss, equal to the slope dpi/dh in (A). Increasing habitat loss

that simultaneously reducesNi will change the slope of the plotted curves;

arrow in (A) shows direction of change in curves with decreasing Ni.

Reduced Ni in (B) causes pi with habitat loss (h) to increase: (1) faster

when little area in the landscape is destroyed (small values of h, positive

arrow) and (2) slower when most of the landscape is lost (large values of

h, negative arrow). dpi/dh estimated for species with Ni of 1, 5, or 10;

Ni = 100 omitted for clarity.

with assumptions of the number of individuals required
to commit a species to extinction. For example, charac-
teristics of each species i reproductive potential, such as
sex ratios (Ri), age-specific fecundity (Fi), and propagule
pressure from the surrounding landscape (Pi), along with
their respective effects α, β, and γ , may be linear predic-
tors of Nr,i, such that Nr,i = Ni + αRi + βFi + γ Pi. By sub-
stituting Ni for Nr,i in d SE/dh = Ni hNi −1 (Figure 2), vari-
ation in extinction may arise over much larger absolute
population sizes than 1–5 individuals.

Placing the EAR into spatial and temporal
contexts

An EAR excluding SPHA effects is misleading because
it captures only instantaneous and not eventual (i.e.,
future) extinction, thereby ignoring the spatial and tem-
poral contexts that influence species’ persistence. Specifi-
cally, instantaneous extinction underestimates future ex-
tinction because it excludes species that are committed to
extinction while immigration and extinction rates reach
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a new equilibrium state (Rosenzweig 1995). Our frame-
work advances the work of He & Hubbell (2011) that
links sampling theory to species’ distributions by also
demonstrating how the EAR can explicitly incorporate
spatial and temporal context into predictions of species
loss that account for future species loss. The EAR and SAR
fundamentally depend on the size of species’ populations
(Ni), so modifications of these relationships that allow Ni

to vary in specific contexts will offer better predictions of
species loss than those derived simply from considering
instantaneous extinction.

The EAR framework can readily incorporate spatial
context to better predict extinction rates. Specifically, we
can assume that species’ population sizes Ni are a direct
function of habitat area, whereby the population size of
species i follows a power function with the area of a land-
scape after habitat destruction (A – a)

Ni (a) = αi (A − a)βi , (6)

where αi and β i are estimated coefficients. The EAR
is then: Sa,Ni = ∑S

i=1 ( a
A)αi (A−a)βi

. This formulation also
allows us to consider how spatial processes, such as
composition of the matrix surrounding habitat patches,
nonrandom habitat loss, edge effects, and patch isolation,
can accelerate extinction (Seabloom et al. 2002; Laurance
2008; Koh & Ghazoul 2010). For example, if A is the total
area of a landscape, and is equal to the sum of the indi-
vidual areas of H habitats (A = ∑H

k=1 Ak), then Ni can be
expressed for each species i as a function of the favora-
bility (γ k) and amount of area lost (ak) of each habitat
type k:

Ni (A, a) = βi + αi

H∑
k=1

γi,k(Ak − ak)∑H
k=1 (Ak − ak)

.

The EAR can then be rewritten as:

Sa,Ni =
S∑

i=1

( a

A

)Ni (A,a)
.

Such an approach allows the EAR to be extended be-
yond estimates of extinction arising from the conversion
of habitat into inhospitable matrices to predict how par-
ticular land-use changes and conservation initiatives will
influence species loss (e.g., Koh & Ghazoul 2010).

Predictions of extinction from the backward SAR also
have no theoretical basis for incorporating the timescale
over which species will be lost, but the EAR again allows
this to be estimated explicitly. Returning to the exam-
ple of the EAR in the absence of SPHA effects, Equa-
tion (6) can be modified to express the size of species’
populations (Ni) as a function of time t in addition to
remaining habitat. If we assume, e.g., that Ni increases
linearly as a function of t for each species i, such that
Ni (α, t) = tαi (A − α)βi and αi and β i are estimated coef-

ficients, then the EAR will be: Sa,t,Ni = ∑S
i=1 ( a

A)tαi (A−a)βi
.

Models from population ecology and conservation genet-
ics of how Ni varies with t and a can provide estimates of
αi and β i, enabling the EAR to provide more realistic pre-
dictions of timescales of extinction arising from habitat
loss.

Policy implications of predicting extinction
with SPHA effects

Estimates of species extinction enter a contested politi-
cal context (Parenteau 1998), and vested interests may
exploit scientific uncertainty to stall and prevent imple-
mentation of controversial policies, such as those re-
lated to biodiversity conservation (Oreskes & Conway
2010). He & Hubbell (2011) asserted that the backward
SAR based on the power-law “always” overestimates ex-
tinction from habitat destruction, casting doubt on pre-
vious estimates. Here, we show that performance of
the backward SAR depends on the temporal context of
predictions, which is not always explicitly identified. Our
findings agree that the backward power-law SAR overes-
timates instantaneous extinction, but show that its alter-
native, a random placement EAR, poorly estimates future
extinction unless it is modified to incorporate the ecologi-
cal effects that commit species to extinction in SPHA. The
random placement model does, however, provide a ro-
bust framework for incorporating SPHA effects, allowing
distinction of instantaneous and future extinction. Tem-
porally and spatially explicit predictions of extinction de-
rived from the EAR that incorporates SPHA effects are
ultimately needed to guide conservation policy.

Adding SPHA effects to the random placement EAR
also reveals approaches for minimizing extinction debt in
response to habitat loss. Specifically, the model demon-
strates that population sizes within remaining fragments,
in addition to habitat area, influence whether a species
is committed to extinction. Interventions that increase
species’ populations will thus complement interventions
focused on habitat area, e.g., protection and restora-
tion (Kuussaari et al. 2009), thereby reducing future
extinctions.

Conclusions

Underestimates of extinction may harm biodiversity by
understating the need for, and urgency of, conservation
intervention, whereas overestimates may brand scien-
tists as alarmists. Our results demonstrate that the EAR
provides a robust foundation for estimating extinction,
but that it will underestimate future extinction unless
it is modified to incorporate the ecological effects that
commit species to extinction in small populations and/or
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small areas of habitat. Predictions of future extinction
that are needed to guide policy will require incorpora-
tion of spatiotemporal context and empirical data into
the EAR from fields such as conservation genetics (Lande
1988), population ecology (Traill et al. 2007), and spa-
tial ecology (Andrén 1997; Matter et al. 2002; Koh &
Ghazoul 2010), and we have demonstrated how this
might be achieved.
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