Non-local modelling on the buckling of a weakened nanobeam
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In the framework of the theory of non-local elasticity, a model on the buckling of a weakened nanobeam subjected to constant axial load is
presented. Based on this model, the characteristic equation for a simply supported weakened nanobeam is obtained, through which the value of
buckling load can be determined. The influences of small length scale and weakened junction on the buckling load are discussed. It is shown
that the buckling load is dependent upon the scale coefficient, junction stiffness and junction location.

1. Introduction: In the last two decades, structures with nanosizes
have received tremendous attention from various branches of
science. By the use of varieties of experimental, theoretical and
computer simulation approaches, extensive research studies of
properties of nanostructures have been carried out [1—13].
Structural beams fabricated from nanomaterials and of nanometre
dimensions are referred to as nanobeams (viz. nanowires,
nanorods, nanotubes etc.). In nanoelectromechanical systems,
nanobeams play key roles of mechanical components.
Consequently, a thorough understanding of the mechanical
responses of individual nanobeams is of great importance for
their potential applications.

Owing to the difficulties of experimental operation at nanoscale
and being time consuming for atomistic simulations, classic
(local) continuum models have been widely employed to study
the mechanical behaviour of nanobeams [14—20]. However, it
has been indicated from experimental and atomistic simulations
that there exist significant size effects in the physical and mechan-
ical properties for structures with nanosizes. Although the classic
continuum models are efficient in mechanical analysis of nanostruc-
tures to some extent, the length scales associated with nanotechno-
logy are often sufficiently small to call the applicability of classical
local continuum models into question as they cannot consider the
size effects. This has raised a major challenge to the classic con-
tinuum mechanics. It is a possible solution to extend the classic con-
tinuum approach to smaller length scales by incorporating
information regarding the behaviour of material microstructures.
It is accomplished quite easily by the use of the theory of non-local
continuum mechanics [21—23]. Peddieson et al. [24] pointed out
that nanoscale devices would exhibit small-scale effects and the
non-local continuum mechanics could potentially play a useful
role in analysis related to nanotechnology applications.

In recent years, small-scale effects on the buckling behaviour of
nanostructures have been extensively investigated on the basis of
the theory of non-local continuum mechanics [25—39]. For the
buckling of nanobeams, various non-local models have been pre-
sented for the consideration of small-scale effects. Aydogdu [40]
proposed a generalised non-local beam theory to study the buckling
of nanobeams. The effects of non-locality and length of beams were
investigated in detail for each considered problem. Niu et al. [41]
developed a third-order non-local beam theory for the buckling of
nanobeams. The buckling of nanobeams with a simply supported
boundary condition was analysed. The effect of the non-local
scale parameter on the buckling loads of nanobeams was discussed.
Murmu and Adhikari [42] studied the axial instability of double-
nanobeam-systems on the basis of Eringen’s non-local elasticity.
The small-scale effects arising at the nanoscale were considered.
Sahmani and Ansari [43] established non-local elastic beam
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models by incorporating Eringen’s equations of non-local elasticity
into the classical beam theories for the buckling of nanobeams with
a rectangular cross-section. The critical buckling loads including
size effects can be predicted by the use of these developed beam
models. Roque et al. [44] utilised the non-local elasticity theory
to investigate the buckling properties of Timoshenko nanobeams,
and the numerical solution was obtained based on a meshless
method. Thai [45] proposed a non-local shear deformation beam
theory for the bending, buckling and vibration of nanobeams
using the non-local differential constitutive relations of Eringen.
The theory accounts for both small-scale effects and the quadratic
variation of shear strains and shear stresses through the thickness
of the beam.

It should be pointed out that nanobeams are not always defect
free. They could have vacancies and defects that are introduced in
the synthesis and fabrication process, and thus their mechanical
properties may be weakened. Wang et al. [46] studied the buckling
problem of a weakened column with macrosize. The present Letter
presents a model which investigates the elastic buckling of a
weakened nanobeam under constant axial load on the basis of the
Bernoulli-Euler beam theory and non-local elasticity. Exact buck-
ling load values are obtained for the weakened nanobeam with
simply supported ends.

2. Non-local elastic beam model for a weakened nanobeam: The
treatment of beam flexure developed here is on the basis of the
Bernoulli-Euler theory. Using the Bernoulli-Euler beam theory,
the deflection curve of an elastic beam under constant axial
compressive load is expressed by

d*w d*w

where x is the axial coordinate, w is the deflection of the beam, EI
denotes the bending stiffness of the beam and N represents the
constant axial compressive force.

The fundamental assumption behind the Bernoulli-Euler beam
model is that the beam consists of fibres parallel to the x-axis,
each in a state of uniaxial tension or compression. Adopting the
Eringen non-local elasticity model, the classic Hooke’s law for a
uniaxial stress state is replaced by [24, 25]

2d20'
o— (eoa) o Ee 2)

where o is the axial stress, £ is the axial strain, £ is Young’s
modulus, ey is a non-local parameter incorporating the small-scale
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effect and a is an internal characteristic length (e.g. lattice para-
meter, C—C bond length and granular distance).

The equilibrium of forces in the vertical direction and the
moment on a free body diagram of an infinitesimal element of a
beam structure is given by [47]

ds
—=0 3
dx )
dmM dw

S=—-—N— 4
dx dx )

where S is the resultant shear force, and M is the resultant bending
moment, which can be obtained by

M:LWM )
4
where y is the transverse coordinate measured positive in the direc-

tion of deflection and 4 is the cross-sectional area. In addition, for
small deflections we have

s:-ygg ©)
Combination of (2), (5) and (6) results in
M- (eoa)z(:;—l‘z/[ = —Eli—f (7)
It follows from (3), (4) and (7) that
[EI - (eoa)zN] % + N‘;%” —0 @®)

which is the expression for the deflection curve of an elastic nano-
beam under constant axial compressive load on the basis of non-
local elasticity. It is noted that when the small-scale parameter e
vanishes, the above equation reduces to the classical Bernoulli-
Euler expression (1).

For generality, dimensionless formulation is often adopted for the
deflection curve of a beam.

Introducing dimensionless quantities into (8), we have

d'w  &w
& e =’ ©
where w = w/L is the normalised lateral deflection of the beam
with length L, X = x/L and

N

1 — a?N (10)

n

where N = NL?/EI is the non-dimensional axial compressive load,
and a=eya/L is the non-dimensional scale coefficient.
From (3), (4) and (7), the bending moment can be expressed as

2
M= [(eoa)zN—E]]ix—v; (11)

Using the dimensionless quantities, the above equation becomes
2 —

W= [N 1] (12)
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where M = ML/EI is the mnormalised bending moment.
Substituting (11) into (4), we obtain

3
5 = [(eoa)'n —£1] T2 NS (13)

With the introduction of the dimensionless quantity, the above equa-
tion can be rewritten as

5= [azN—l]——N—_ (14)

where § = SL* /EI is the normalised shear force.

In what follows, a nanobeam weakened at an interior location is
considered. The weakness can be modelled by a rotationally
restrained junction [46, 48—50]. The beam is separated by the junc-
tion into two segments. To analyse the mechanical behaviour of the
weakened beam, it can be regarded as two segments connected at
the weakened section by a rotational spring. The value of the
spring stiffness ranges from zero to infinite. When the value of
the spring stiffness is zero, the two segments are connected by a
frictionless free hinge. When the value of the spring stiffness is in-
finite, the beam is completely continuous. In addition, the continu-
ity of displacement, bending moment and shear force is required at
the junction. The restraining moment of the rotational spring is to be
proportional to the difference of the junction slopes of the two
segments.

Assume that the junction is located at X = / and the subscripts 1
and 2 denote the segments 0 < x </ and / < X < 1, respectively.
Thus, w, should match the boundary conditions at the end x = 0,
and w, should match the boundary conditions at the end X = 1.
At the junction, the following conditions should be satisfied. It is
required by the continuity of deflection that

wi(l) = wy () (15)

It follows from the continuity of bending moment and (12) that

&y () dwy ()

= 16
dx? dx? (16)
Combination of (14) and shear continuity yields
Ew () dm@) ) | din()
= 17
dx3 T dx & T {an

As the moment at the junction is proportional to the difference in the
slope of the deflection, we have

(18)

() ko [din®) ()
dw? _1—a2N[ [ dx]

where k= yL/EI is the junction stiffness parameter, and y is the ro-
tational spring constant.

3. Solution of the problem: The solution to (9) is given by
w = C, sin(\/7%) + C, cos(/7x) + C3x + C,4 (19)

where C;, C,, C; and C, are constants determined using boundary

103
© The Institution of Engineering and Technology 2013



conditions. As a consequence, for the segment, 0 <X < 1, we have

i, = Cysin(ynx) + Cycos(yMx) + C;x+ C,  (20)

For the segment, / < X < 1, the solution can be expressed as

W, = Cssin(/7x) + Cocos(/Mx) + Cx+Cg  (21)
where Cs, Cg, C7 and Cg are constants, which can be determined by
the boundary conditions.

Assuming that the two ends of the beam are simply supported,
the boundary conditions are given by
#,(0) = y(1) = 0 (22)

and

M\ (0) = My(1) = 0 (23)

It follows from (12) and (23) that

d*w,(0)  d*wy(1)
a2 de

=0 (24)

Using (20) and (21) in the eight conditions described by (15)—(18)
and (22) and (24), a homogeneous set of linear algebraic equations
for the eight constants is obtained. To allow a non-trivial solution,
the determinant of the coefficient matrix should vanish.
Consequently, the corresponding characteristic equation can be
obtained as

cos /1 — cos[(1 — 21) /7] + Zk%ﬁsin J1=0 (25

Through this characteristic equation, the buckling load can be deter-
mined by the use of the bisection method for the smallest eigen-
value N for given values of /, k and a.

4. Discussion: When the scale coefficient a=ega/L is set to be
zero, (25) reduces to

cos \/]T\f - cos[(l - 21)\/ﬁ] + j—kﬁsin\/f\f =0 (26)

which is the classical (local) results ignoring the effect of small
length scale [46].

When the value of the junction stiffness parameter £ is infinite,
the weakness of the nanobeam is absent, and thus (25) reduces to

sin/n=0 27)

It follows from (10) and (27) that

~ m* m* L*
N=—"T (28)
L2 + (ega) m*

where m is a positive integer. This is the non-local result for a
defect-free nanobeam [25].

Moreover, when the scale coefficient ¢ vanishes and the junction
stiffness parameter £ is simultaneously infinite, the buckling load
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N = 77 for a classical Euler beam with simply supported ends can
be recovered from (25).

It should be pointed out that the choice of value for e, or ega is of
great importance to ensure the validity of non-local models. For a
specific material, the magnitude of e, can be determined experi-
mentally or approximated by matching the dispersion curves of
plane waves with those of atomic lattice dynamics. For nanosized
beams or tubes, 0 <epa <2 nm is often chosen to discuss the
scale effects [30, 40].

With the junction stiffness parameter k=5, Fig. 1 gives the vari-
ations of the non-dimensional buckling load N with the junction lo-
cation / for various scale coefficients or. With the scale coefficient o
=0.05, Fig. 2 shows the variations of the non-dimensional buckling
load N with the junction location / for various junction stiffnesses.
Owing to the symmetry of the beam, only the range 0 </<0.5 is
plotted. It can be seen from Figs. 1 and 2 that the buckling load
is dependent upon the scale coefficient and junction stiffness,
which shows the significance of applying non-local continuum
mechanics in structures with nanosize.

When the junction location is constant, it is indicated from Fig. 1
that the value of the buckling load decreases with the increase of the
scale coefficient. In other words, the classic solution of the buckling
load ignoring the scale effect could overestimate the buckling load
of the nanobeam. As a consequence, it is of great necessity to give
an evaluation of the size of the structure on which the non-local the-
ories of continuum mechanics are essential. It is found from Fig. 1
that the values of the buckling load with o= 0.05 are very close to
those with a=0. For example, when the junction location /=0.1,
the relative error between non-local results (o=0.05) and local
results (o= 0) for the buckling load is about 2.2%, and when the
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Figure 1 Variations of the non-dimensional buckling load N with the
Junction location [ for various scale coefficients o
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Figure 2 Variations of the non-dimensional buckling load N with the
Junction location [ for various junction stiffnesses k
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junction location /=0.5, the relative error is about 1.3%. If we
suppose ega =2 nm, the length of the nanobeam at a=0.05 is esti-
mated to be 40 nm by a simple calculation. Consequently, it can be
concluded that when the length of the nanobeam is over 40 nm, the
scale effect is small enough to be ignored and the classic (local)
beam models may be directly applied to study the properties of
buckling of the weakened nanobeam with very small relative errors.

Furthermore, it can be observed from Fig. 2 that the value of the
buckling load diminishes rapidly with decrease of junction stiff-
ness. When the junction stiffness vanishes, the buckling load
becomes zero. The reason is that when the value of the junction
stiffness is equal to zero, there exists no resistance at the junction
and a frictionless linkage is formed. In addition, it can be found
from Figs. 1 and 2 that the buckling load becomes smaller until a
minimum load is reached at /=0.5 as the junction moves away
from the beam end.

5. Conclusions: In the framework of the theory of non-local
continuum mechanics, a model on the buckling of a weakened
nanobeam subjected to constant axial load is presented. Based on
this non-local model, the elastic buckling of a weakened
nanobeam under constant axial load is analysed. The
characteristic equation for a simply supported weakened
nanobeam is obtained, through which the value of the buckling
load can be determined. The influences of small length scale and
weakened junction on the buckling load are investigated. It can
be concluded that the buckling load is dependent upon the scale
coefficient, the junction stiffness and the junction location. When
the junction location is constant, the value of the buckling load
decreases with the increase of the scale coefficient and increases
with the increase of junction stiffness. When the junction moves
away from the beam end, the buckling load diminishes until a
minimum load is reached at /=0.5.

This non-local beam model can be applied for column buckling
(beam-like buckling) of both a non-hollow weakened structure of
nanowires/rods and the hollow weakened structure of single-walled
nanotubes. It is known that only the nanotubes with high aspect
ratio (>7.5 for carbon nanotubes) may buckle in a beam-like
pattern, whereas the shell-like buckling (local buckling) will dom-
inate the shorter nanotubes for their compressive instability [51].
Thus, this non-local beam model is suitable for weakened nano-
tubes with a high aspect ratio, whereas the local buckling of
weakened nanotubes with a low aspect ratio cannot be simulated
by it. In addition, the non-local multi-beam model for the buckling
of weakened multi-walled nanotubes with a high aspect ratio needs
to be developed as the non-local beam model in this present study
does not consider the interaction between non-bonded atoms such
as the van der Waal interaction pressure in multi-walled nanotubes.
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