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Quantum-dot cellular automata (QCA) is a novel computational paradigm which utilises the quantum mechanism to encode and process bit
information. The switching characteristics of the QCA majority gate are evaluated by using the proposed probability model. All kinds of
probabilities are achieved by solving the time-independent Schrodinger equation. The simulation results reveal that the majority gate
switches at a higher correct probability when the cell distance and the size decrease. Cell miniaturisation would raise a significant
implication in how to realise reliable QCA fabrication. In addition, the results also illuminate that majority output has different
probabilities when the inputs change. Therefore, to analyse the QCA circuit reliability by using the probability model, all the input
combinations must be considered.

1. Introduction: The conventional transistor based on CMOS saturation, which are consistent with the cell–cell response function
Figure 1 QCA wire
a QCA layout
b Bayesian model
technology faces great challenges as it was predicted as Moor’s
Law [1, 2]. Bottlenecks, such as quantum effects, short channel
effects, integration and power dissipation, may hinder further
progress in scaling microelectronics [1, 2]. Quantum-dot cellular
automata (QCA) is a new paradigm, which encodes the binary
information with Coloumbic interaction instead of current
switching [3, 4]. Such characteristics make it possible to achieve
circuit densities and clock frequencies beyond the limits of the
existing CMOS technology [5–7]. QCA is regarded as one of the
candidates to replace modern silicon circuitry [5–7]. In the QCA
cells, Coloumbic interaction between cells is sufficient to
accomplish the computation, and there are no current flows
among the cells [3, 8, 9]. Features such as low power dissipation,
high device density and high switching speed, were presented by
the QCA, and attracted much attention.

Nanoelectronic systems are extremely likely to demonstrate high
defects and fault rates [10–12]. As a nanoelectronic system, the
QCA are also faced with the challenge of providing reliable compu-
tation. A high percentage of probabilistic errors have been shown
because of factors like engineering techniques and signal noise
[13–16]. As a quantum device, to characterise the reliability of the
QCA circuits, it is not sufficient only to specify just the binary
states (0 or 1) of the individual cells, but also the probabilities of
being in these states. Largely, for this reason, the probability
models have been studied by a number of research groups with dif-
ferent methods. Patel presented probabilistic transfer matrix (PTM)
for tolerance analysis at the circuit level [17]. Krishnaswamy et al.
[18] employed algebraic decision diagrams to improve the efficiency
of the PTM operations. Ganesh showed interest in the Bayesian net-
works (BNs) for obtaining the probability of correct output at the
logic level [19]. Thara and Sanjukta [20] formed a complete joint
probability model for probabilistic computing. However, to our
knowledge, how the cell size and the cell–cell distance affect the
switching characteristics has not received much attention.

As demonstrated in this Letter, a vast amount of work has been
conducted in order to study the relationship between the QCA
switching characteristics and the cell size. We founded the
Bayesian model of the majority with the Bayesian radius r = 2.
To study the relation between the inputs and the switching probabil-
ities clearly, simulations with different inputs are performed by uti-
lising the probability model. The probabilistic model has
demonstrated its validity by its nonlinear response and rapid
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presented in previous works. The simulations also reveal that the
majority gate will switch more reliably when the cell size and the
distance become smaller. The results would raise a significant im-
plication in how to realise reliable QCA fabrication.

The rest of the Letter is organised as follows. Section 2 provides
the application of the BNs theory to the QCA devices. The model
of the majority gate Bayesian is shown in Section 3. Section 4
presents the computation of the condition probability. In Section 5,
the simulation results are shown and analysed. Section 6 concludes
this Letter.

2. Bayesian model for computation: Fig. 1a shows a QCA wire
with five cells shown in, {x1, x2, x3, …, x5}. r denotes the
Bayesian radius. The foregoing cells marked as xi, xi + 1, xi + 2, …,
xi + r−1 are the inputs, and xi + r is the output. Each cell can be
observed to be in two possible states: 0, or 1 [3]. The probability
of state 0 is donated by P{xi = 0}, and for 1, by P{xi = 1}.

BNs are graphical probabilistic models representing the joint
probability function over a set of random variables by using a dir-
ected acyclic graphical (DAG) structure [20]. The nodes describe
the random variables, and the node to node arrowheads denote
the direct causal dependencies. For a linear arrangement of the
five QCA cells shown in Fig. 1b, keeping the Bayesian radius as
r = 1, the exact joint probability distribution can be given by the fol-
lowing equation

P x5 = 1, x4 = 1, . . . , x1 = 1
{ }
= P{x5 = 1|x4 = 1} · P{x4 = 1|x3 = 1}

· P{x3 = 1|x2 = 1} · P{x2 = 1|x1 = 1} · P{x1 = 1} (1)
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3. Majority model: It is a notable characteristic that the quantum
devices work based on quantum effects instead of statistical
theories. As for the majority, the quantum effects are shown by a
phenomenon where the correct probability of the output varies
when the inputs do not remain the same. By taking the majority,
for example, when the inputs change from ‘000’ to ‘001’, the
correct probability of the output does change at some degree
though the output remains at state ‘0’. There are eight kinds of
inputs for the majority, hence eight kinds of correct probabilities
of output exist. However, in fact we only need one correct
probability. The simplest way to obtain the probability is to
compute the mean of the eight probabilities.
P{X7 = 1}, P{X8 = 1} and P{X9 = 1} are the probabilities where

x7, x8 and x9 stay at the correct state. These probabilities will
become more accurate if the Bayesian radius increases. However,
most of the previous reports utilised BNs with radius r = 1. In this
Letter, to balance the operational complexity and the precision,
the Bayesian radius is taken as r = 2. Fig. 2 shows the Bayesian
model for the BN analysing to calculate the proper probability.
P{X7 = 1}, P{X8 = 1} and P{X9 = 1} can be achieved

P X7 = 1
{ } =

∑64
i=1

P x7 = A|eve7i
{ } · P eve7i

{ }
(2)

P{X8 = 1} =
∑16
i=1

P x7 = A|eve8i
{ } · P{eve8i} (3)

P X9 = 1
{ } =

∑4
i=1

P x7 = A|eve9i
{ } · P{eve9i} (4)

There are six cells that can perturb x7, marked as {x1, x2, x3, x4, x5,
x6}. {x1, x3, x5} act as fixed cells. Hence, the amount of the events is
23 = 8. eve7i is one of the events. To simplify the computation, only
eight events were taken into consideration: {0, 0, 0, 0, 0, 0}, {0, 0,
0, 1, 0, 0}, {0, 1, 0, 0, 0, 0}, {0, 1, 0, 1, 0, 0},{0, 0, 0, 0, 0, 1}, {0, 0,
0, 1, 0, 1}, {0, 1, 0, 0, 0, 1} and {0, 1, 0, 1, 0, 1} (here, {0, 0, 0, 0, 0,
0} is corresponding to {x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0}).
Figure 2 Bayesian model of the majority
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Hence, (2) can be modified as

P{X7 = 1} = P{x7 = 1|111100} · P{111100}
+ P{x7 = 1|111111} · P{111111}
+ P{x7 = 0|001100} · P{001100}
+ P{x7 = 1|001111} · P{001111}
+ P{x7 = 0|110000} · P{110000}
+ P{x7 = 1|110011} · P{110011}
+ P{x7 = 0|000000} · P{000000}
+ P{x7 = 0|000011} · P{000011} (5)

Here, P{x7 = 0|000000} corresponds to P{x7 = 0|x1 = 0, x2 = 0, x3 =
0, x4 = 0, x5 = 0, x6 = 0}. Obviously, {x1 = 0, x2 = 0}, {x3 = 0, x4 = 0}
and {x5 = 0, x6 = 0} are independent of each other, and exploit an
approximate arithmetic, P{x1 = 0, x2 = 0}, P{x3 = 0, x4 = 0} and P
{x5 = 0, x6 = 0} are close to P{x1 = 0}, P{x3 = 0} and P{x5 = 0}.
Hence, (5) is equal to

P{X7 = 1} = P{x7 = 0|000000} · P{x2 = 0}

· P{x4 = 0} · P{x6 = 0}

+ P{x7 = 0|000011} · P{x2 = 0}

· P{x4 = 0} · P{x6 = 1}

+ P{x7 = 0|001100} · P{x2 = 0}

· P{x4 = 1} · P{x6 = 0}

+ P{x7 = 1|001111} · P{x2 = 0}

· P{x4 = 1} · P{x6 = 1}

+ P{x7 = 0|110000} · P{x2 = 1}

· P{x4 = 0} · P{x6 = 0}

+ P{x7 = 1|110011} · P{x2 = 1}

· P{x4 = 0} · P{x6 = 1}

+ P{x7 = 1|111100} · P{x2 = 1}

· P{x4 = 1} · P{x6 = 0}

+ P{x7 = 1|111111} · P{x2 = 1}

· P{x4 = 1} · P{x6 = 1} (6)

P{x1 = 0}, P{x3 = 0} and P{x5 = 0} are the correct probabilities of
the three inputs. As for x8, by adopting the conclusion to deal
with (2), we have

P{X8 = 1} = P{x8 = 0|0000} ·P{x7 = 0|000}
·P{x2 = 0} · P{x4 = 0} · P{x6 = 0}

+ P{x8 = 0|0010} ·P{x7 = 1|001}
·P{x2 = 0} · P{x4 = 0} · P{x6 = 1}

+ P{x8 = 0|0100} ·P{x7 = 1|010}
·P{x2 = 0} · P{x4 = 1} · P{x6 = 0}

+ P{x8 = 1|0111} ·P{x7 = 1|011}
·P{x2 = 1} · P{x4 = 1} · P{x6 = 0}

+ P{x8 = 0|1000} ·P{x7 = 1|100}
·P{x2 = 1} · P{x4 = 0} · P{x6 = 0}

+ P{x8 = 1|1011} ·P{x7 = 1|101}
·P{x2 = 1} · P{x4 = 0} · P{x6 = 1}

+ P{x8 = 1|1101} ·P{x7 = 1|110}
·P{x2 = 1} · P{x4 = 1} · P{x6 = 0}

+ P{x8 = 1|1111} ·P{x7 = 1|111}
·P{x2 = 1} · P{x4 = 1} · P{x6 = 1} (7)
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where P{x8 = 0|0000} is corresponding to P{x8 = 0|x2 = 0, x4 = 0, x6
= 0, x7 = 0}, and P{x7 = 0|000} is corresponding to P{x7 = 0|x2 = 0,
x4 = 0, x6 = 0}, and as for x9, there is

P{X9 = 1} = P{x9 = 0|00} ·P{00}
+ P{x9 = 0|11} ·P{11} (8)

P{x9 = 0|00} is the same as P{x9 = 0|x7 = 0, x8 = 0}. P{X9 = 1} is the
probability needed radically.
4. Condition probabilities computing: In the preceding Section,
condition probabilities are needed to compute P{X7 = 1}, P{X8 =
1} and P{X9 = 1}. P{x7 = 0|000} is calculated as an example in
this Section. The Hamiltonian of x7 is

H cell
7 = H cell

0 + Hkink (9)

H cell
0 is the Hamiltonian of an isolated cell [21]. Hkink is the

Hamiltonian donated by x2, x4 and x6

Hkink = −E2,7
kink − E4,7

kink − E6,7
kink 0

0 E2,7
kink + E4,7

kink + E6,7
kink

[ ]
(10)

E2,7
kink, E

4,7
kink and E

6,7
kink are the kink energies and E

2,7
kink can be gained as

follows

E2,7
kink = E2,7

opposite polarisation − E2,7
same polarisation (11)

E2,7
opposite polarisation stands for the Coulombic potential energy because

of the electrons of x2 and x7 when they have the same polarisation,
and the E2,7

same polarisation represents the Coulombic potential energy
caused by the electrons of x2 and x7 when they have the opposite
polarisation. A time-independent Schrodinger equation is used to
achieve the states of x7. The ground state is corresponding to the
lower energy. |ℑ0l is represented in this basis as

|ℑ0l = a · |f1l+ b · |f2l (12)

|φ1〉 and |φ2〉 are the basis vectors of the QCA [7]. In the QCA
structures, since the information is stored in the physical systems
close to their ground states, the coefficients are valuable for the
Figure 3 Cell switching probabilities response to the kink energy
nonlinearly
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condition probabilities computation

a2 = P x7 = 0|x2x4x6
{ }

(13)

b2 = P x7 = 1|x2x4x6
{ }

(14)

5. Simulation and analysis
5.1. Switching probabilities dependence on the kink energy: It has
been proved that the polarisation of one cell is strongly coupled to
the polarisation of the neighbouring cell [3]. The probability model
must demonstrate its validity by computing consistent simulation
results with the previous research. We show in the inset of Fig. 3
that two nearby cells are taken into consideration. The cell size is
20 nm. Assume that the input polarisation is fixed at 1 or 0. The
probabilities of the output cell being at 1 or 0 are computed as
the distance (d ) between the input and the output ranges. Fig. 3
reveals that very tiny kink energies can cause the output cell to
switch to the same state as the input cell at probabilities of about
100%. As the Figure shows, the probabilities saturate very
quickly. This nonlinear response and the rapid saturation are
consistent with the cell–cell response function presented by Lent,
which proves the validity of the probability model proposed.

5.2. Switching probabilities of the majority: The probability model
is performed to gain the probabilities of x7, x8 and x9 being at each
Figure 4 Switching probabilities of x9
a Inputs 000
b Inputs 111
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state as discussed in Section 3. Here, our main concern is the
probabilities of x9 and the relationship between the output
probability and the cell size. Some universal parameters are taken
as follows: E0 =−4 meV, γ = 0.3 meV, the distance between the
two cells is two times the cell size, εr = 10.
Fig. 4a shows that x9 has a higher probability to stay at state 0

when the majority has an input 000. However, this probability
decreases as the cell size increases. This is quite acceptable; the
cell–cell Coulomb coupling becomes stronger when the cell size
and the distance become smaller. According to the nonlinear func-
tion presented in Fig. 3, the condition probabilities will go higher
along with the cell size and the decreasing distance, which results
in x9 having a higher probability to stay at state 0.
To study the relation between the inputs and the switching prob-

abilities clearly, another simulation was performed by utilising the
probability model. Fig. 4b shows that x9 has different probabilities
to stay at state 1 when the majority inputs change to 111. In Fig. 4a,
the cell size is 20 nm, and x9 will be 0 with the probability at 80%.
Although the inputs change to 111, x9 will be 1 with the probability
at 62%. This is because different inputs donate different kink ener-
gies to x8 and x9. Hence, the Hamiltonian of the output cell does not
remain invariable. According to the results in Section 4, the output
cell gains different probabilities when the Hamiltonian changes.
Thus, to analyse the QCA circuit reliability by using the probability
model, all the input combinations must be considered.

6. Conclusions: In this Letter, the method for the QCA switching
characteristics probabilistic model, has been developed. In
addition, the characteristics of the majority gate with different
inputs are studied. A few observations and conclusions based on
the experimental simulations are as follows:

1. The probabilistic model has been proposed as a method to
analyse the QCA cell’s switching. The probabilistic model has
demonstrated its validity by its nonlinear response and rapid sat-
uration, which are consistent with the cell–cell response function
presented in previous works.

2. The probabilities of the majority output being at 0 or 1 have been
computed by using the probability model. The simulations reveal
that the majority gate will switch more reliably when the cell size
and the distance become smaller. Cell miniaturisation would raise
a significant implication in how to realise reliable QCA fabrication.

3. The probability model also illuminates that the majority output
has different probabilities when the inputs change. Thus, to
analyse the QCA circuit reliability by using the probability
model, all the input combinations must be considered.
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