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In this reported work, the vibration response of a double-piezoelectric-nanoplate-system (DPNPS) under an external electric voltage is
investigated. The two piezoelectric nanoplates are coupled by a polymer matrix. Small scale effects are taken into consideration using the
non-local elasticity theory. Hamilton’s principle is employed to derive the differential equations of motion. Explicit closed-form
expressions are derived for the natural frequencies and critical electric voltages of the DPNPS. The numerical results are presented for
both in-phase and out-of-phase vibrational modes. It is shown that the natural frequencies of the DPNPS are quite sensitive to the
vibrational mode and non-local parameter. The present work is likely to prove very useful in the designing of micro-/nanodevices using
smart nanocomposite.
Figure 1 Continuum model for DPNPS
1. Introduction: After the invention of ZnO piezoelectric nanowires
[1], many research works have been carried out focusing on the
mechanical, electrical and thermal properties of piezoelectric
nanostructures. It has been reported that piezoelectric nanomaterials
have potential applications as building blocks for
microelectromechanical systems and nanoelectromechanical systems
including nanogenerators [2], piezoelectric gated diodes [3],
nanoresonators and nano-oscillators [4] because of their superior
properties. Furthermore, recently, Lian et al. [5] have shown that
the (ZnO)x(MgO)1−x nanoplates have high photocatalytic
performance and thus would be promising candidates for polluted
water treatment. Owing to these potential applications,
understanding the vibration response of piezoelectric nanostructures
under thermo-electromechanical loading is an important problem.

In recent years, the non-local elasticity theory [6] has been
widely used in the theoretical investigations of nanostructural ele-
ments such as carbon nanotubes [7, 8], nanorods [9, 10] and
graphene sheets [11–14]. The non-local elasticity theory is based
on the assumption that the stress tensors at an arbitrary point in
the domain of nanomaterial depends not only on the strain tensor
at that point but also on strain tensors at all other points in the
domain. Both atomistic simulation results and experimental obser-
vations on phonon dispersion have shown the accuracy of this ob-
servation [6, 14]. A review of the literature shows that compared
with the carbon nanotubes and graphene sheets, few research
works have been reported on the continuum based analysis of
piezoelectric nanostructures. Based on the Euler-Bernoulli beam
model, Wang and Feng [15] studied the surface effect on the vibra-
tion and buckling of piezoelectric nanowires. Furthermore, the
influences of surface elastic modulus, residual surface stress and
surface piezoelectricity on the electromechanical response of a
curved piezoelectric nanobeam were investigated [16]. The non-
local effects on the vibration characteristics of piezoelectric nano-
beams were also studied using the non-local Timoshenko beam
theory [17]. Arani et al. [18] presented the buckling analysis of
double-walled boron nitride nanotubes surrounded by a bundle of
carbon nanotubes. Yan and Jiang [19] studied the electroelastic re-
sponse of a thin piezoelectric plate with nanoscale thickness consid-
ering surface effects. In another work, Liu et al. [20] investigated
the thermo-electro-mechanical free vibration of a single-
piezoelectric nanoplate (PNP) without an elastic medium based
on the non-local theory.

In a composite nanostructure, PNPs may be coupled to each other
by bonding resins to form a complex-piezoelectric-system. A
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simple example of these systems is made of two PNPs which are
bonded by a polymer matrix. Double-PNP-systems (DPNPS) are
important in view of practical design applications. Recently,
Murmu and Adhikari [21] investigated the vibration of bonded
double-nanoplate-systems without piezoelectric properties using
the non-local elasticity theory.

In the present Letter, an attempt is made to study the transverse
vibration of a DPNPS under an external electric voltage. Using non-
local elasticity theory and Hamilton’s principle, the differential
equations of motion of the DPNPS are derived. The influence of
the coupling polymer matrix is taken into consideration employing
the Winkler foundation model. Exact solutions for the natural fre-
quencies and critical electric voltages of a simply supported
DPNPS are obtained. The results are presented for both in-phase
and out-of-phase vibration modes. The effect of small size and
the elastic foundation parameter on the natural frequencies of the
system through considering various parameters such as the non-
local parameter, mode number, thickness and aspect ratio are exam-
ined and discussed.

2. Non-local plate model for DPNPS: A rectangular DPNPS
coupled by a polymer matrix is shown in Fig. 1. The Cartesian
coordinate frame with axes x, y and z used for the DPNPS is also
shown in the Figure. It is assumed that the upper and lower
piezoelectric nanoplates are subjected to the same external
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electric voltage. The length and width of each nanofilm are denoted
by ℓx and ℓy, respectively.
The mechanical behaviour of the nanostructures depends consid-

erably on their size. The non-local elasticity theory of Eringen [6]
will be used to account for the effect of small scale. This theory
is based on a simple physical concept that the components of a
stress tensor at a given point are a function not only of the strain
tensor at that point but also are a function of strain tensors at all
other points in the domain. According to the non-local elasticity
theory, the basic equations for Hookean piezoelectric solids
neglecting the body force are expressed by the following
relationships

sij =
∫∫∫

V
c x′ − x

∣∣ ∣∣, x( )
cijkl1kl(x

′)− ekijEk (x
′)

[ ]
dx′ (1)

Di =
∫∫∫

V

c x′ − x
∣∣ ∣∣, x( )

eikl1kl(x
′)+ kkijEk (x

′)
[ ]

dx′ (2)

sij,j = rüi, Di,j = 0 (3a, b)

1ij =
1

2
(Ui,j + Uj,i), Ei = −F,i (4a, b)

where σij, εij, Di, Ei, Ui and Φ are the components of the non-local
stress tensor, strain tensor, electric displacement vector, electric
field vector, displacement vector and electric potential, respectively.
Also, the terms cijkl, ekij, κkij and ρ are the components of a fourth-
order elasticity tensor, piezoelectric constants, dielectric constants
and mass density, respectively. The function ψ is the non-local
modulus, which contains the small scale effects. |x− x′| is the dis-
tance between points x and x′ and χ = e0li/le is defined where li is
an internal characteristic length and le is an external characteristic
length. Choice of the value of parameter e0 is vital for the validity
of non-local models. This parameter can be determined by matching
the dispersion curves based on the atomic models. It is difficult to
apply (1) and (2) for solving the non-local elasticity problems.
Therefore the following differential equations are often used [6]

sij − e0li
( )2∇2sij = cijkl1kl − ekijEk

Di − e0li
( )2∇2Di = eikl1kl + kkijEk

(5a, b)

where ∇2 is the Laplacian operator. e0li is the non-local parameter
incorporating the small scale effects into the constitutive equations.
Let u, v and w be the components of the displacement vector of ma-
terial point (x, y, 0) in the middle surface of the plate (mid-plane)
along the x, y and z directions, respectively. Applying the strain–dis-
placement relation (4a) and using the Kirchhoff plate theory, one
obtains the following equations

1xx =
∂u

∂x
− z

∂2w

∂x2
, 1yy =

∂v

∂y
− z

∂2w

∂y2
,

1xy =
1

2

∂u

∂y
+ ∂v

∂x

( )
− z

∂2w

∂x∂y

(6)

Now, we need to know the distribution of electric potential
through the thickness of the PNP. Recently, Yan and Jiang [16]
investigated the influence of surface energy on the electromechan-
ical response of a curved piezoelectric nanobeam. They obtained
results for the linear distribution of electric potential along the
thickness direction of nanobeams. This assumption does not
satisfy the Maxwell equation. To satisfy the Maxwell equation,
Ke and Wang [17] studied the thermoelectric-mechanical vibration
of piezoelectric nanobeams using the non-local theory based on the
assumption that the electric potential distribution is a combination
of a cosine and linear functions. Thus, following Ke and Wang
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[17], the electric potential can be expressed as follows

F(x, y, z, t) = −cos
pz

h

( )
f(x, y, t)+ 2zV0

h
eivt (7)

where φ(x, y, t) is the electric potential of point (x, y, 0) in the mid-
plane at time t; V0 is the external electric voltage; and ω represents
the natural frequency of the system. Using (4b) and (7), the com-
ponents of the electric field can be written as

Ex = cos
pz

h

( ) ∂f
∂x

, Ey = cos
pz

h

( ) ∂f
∂y

Ez = −p

h
sin

pz

h

( )
f− 2V0

h
eivt

(8)

Using (5), the non-local constitutive relations of thin PNP in the
Cartesian coordinates can be approximated as

sxx

syy

txy

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭− e0li

( )2∇2

sxx

syy

txy

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ =

c̃11 c̃12 0

c̃12 c̃11 0

0 0 c̃66

⎡
⎢⎣

⎤
⎥⎦

1xx

1yy

21xy

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

−
0 0 ẽ31
0 0 ẽ31
0 0 0

⎡
⎢⎣

⎤
⎥⎦

Ex

Ey

Ez

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ (9)

Dx

Dy

Dz

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭− e0li

( )2∇2

Dx

Dy

Dz

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ =

0 0 0

0 0 0

ẽ31 ẽ31 0

⎡
⎢⎣

⎤
⎥⎦

1xx

1yy

21xy

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

+
k̃11 0 0

0 k̃11 0

0 0 k̃33

⎡
⎢⎣

⎤
⎥⎦

Ex

Ey

Ez

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭
(10)

where

c̃11 = c11 −
c213
c33

, c̃12 = c12 −
c213
c33

, ẽ31 = e31 −
c13e33
c33

c̃66 = c66, k̃11 = k11, k̃33 = k33 −
e233
c33

(11)

Using Hamilton’s principle, the following differential equations of
motion can be obtained [20]

∂Nxx

∂x
+ ∂Nxy

∂y
= rh

∂2u

∂t2
(12)

∂Nyy

∂y
+ ∂Nxy

∂x
= rh

∂2v

∂t2
(13)

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+ ∂2Myy

∂y2
+ q+ Nel

xx
∂2w

∂x2
+ Nel

yy
∂2w

∂y2
= rh

∂2w

∂t2

(14)

∫h/2
−h/2

cos
pz

h

( ) ∂Dx

∂x
+ cos

pz

h

( ) ∂Dy

∂y
+ p

h
sin

pz

h

( )
Dz

[ ]
dz = 0

(15)

where Nel
xx = Nel

yy( = 2ẽ31V0) are the in-plane loads caused by the
applied electric voltage and q is the transverse distributed load.
Nij and Mij are, respectively, the stress resultants and stress
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couples and are defined as follows

kNxx, Nyy, Nxyl =
∫h/2
−h/2

ksxx, syy, sxyldz

kMxx, Myy, Mxyl =
∫h/2
−h/2

ksxx, syy, sxylzdz

(16)

Multiplying (9) by zdz, integrating from −h/2 to h/2 and using (16),
one can obtain

Mxx − e0li
( )2∇2Mxx = −D̃11

∂2w

∂x2
− D̃12

∂2w

∂y2
+ F̃31f

Myy − e0li
( )2∇2Myy = −D̃12

∂2w

∂x2
− D̃11

∂2w

∂y2
+ F̃31f

Mxy − e0li
( )2∇2Mxy = −2D̃66

∂2w

∂x∂y

(17a−c)

Similarly, from (10), we have

∫h/2
−h/2

cos
pz

h

( ) ∂Dx

∂x
− e0li

( )2∇2 ∂Dx

∂x

( )[ ]
dz = X̃ 11

∂2f

∂x2∫h/2
−h/2

cos
pz

h

( ) ∂Dy

∂y
− e0li

( )2∇2 ∂Dy

∂y

( )[ ]
dz = X̃ 11

∂2f

∂y2∫h/2
−h/2

p

h
sin

pz

h

( )
Dz − e0li

( )2∇2Dz

[ ]
dz

= −F̃31
∂2w

∂x2
+ ∂2w

∂y2

( )
− X̃ 33f

(18a−c)

where

kD̃11, D̃12, D̃66l =
h3

12
kc̃11, c̃12, c̃66l

kF̃31, X̃ 11, X̃ 33l = k2p ẽ31h,
k̃11h

2
,
p2k̃33
2 h
l

(19a, b)

Here D̃11 and D̃12 are the flexural rigidities of the PNP. D̃66 is
called the torsional stiffness of the PNP. Substituting (17) and
(18) into (14) and (15), one can obtain the non-local governing dif-
ferential equations of motion for the transverse vibration of piezo-
electric nanoplates under electrical loading

− D̃11
∂4w

∂x4
− 2 D̃12 + 2D̃66

( ) ∂4w

∂x2∂y2
− D̃11

∂4w

∂y4
+ F̃31

∂2f

∂x2
+ ∂2f

∂y2

( )

+ q− e0li
( )2∇2q+ 2ẽ31V0 1− e0li

( )2∇2
( ) ∂2w

∂x2
+ ∂2w

∂y2

( )

= rh 1− e0li
( )2∇2

( ) ∂2w
∂t2

(20)

X̃ 11
∂2f

∂x2
+ ∂2f

∂y2

( )
− F̃31

∂2w

∂x2
+ ∂2w

∂y2

( )
− X̃ 33f = 0 (21)

Now, let us consider a DPNPS consisting of two piezoelectric
layers which are coupled by a polymer matrix (Fig. 1). The
Winkler model can be used to describe the effects of the polymer
matrix on the vibration characteristics of the DPNPS. According
to the Winkler model, the foundation consists of a system of vertical
closely spaced springs that resist normal pressure. Based on this
model, the resisting force of the polymer matrix acting on each
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nanoplate, that is, qpf
i (i = 1, 2) can be expressed as

qpf
i = −(−1)i+1kw w1 − w2

( )
(22)

where kw denotes the Winkler modulus parameter of the elastic
medium. It is assumed that the two piezoelectric layers are flat
and have the same thickness, width, length and material properties.
Substituting for the transverse load in the governing (20) from rela-
tion (22), the non-local governing equations of the rectangular
DPNPS can be obtained as follows

D̃11
∂4w1

∂x4
+ 2 D̃12 + 2D̃66

( ) ∂4w1

∂x2∂y2
+ D̃11

∂4w1

∂y4

+ 2ẽ31V0

( )
e0li
( )2 ∂4w1

∂x4
+ 2

∂4w1

∂x2∂y2
+ ∂4w1

∂y4

( )[

− ∂2w1

∂x2
+ ∂2w1

∂y2

( )]
+ kw w1 − e0li

( )2 ∂2w1

∂x2
+ ∂2w1

∂y2

( )[ ]

− F̃31
∂2f1

∂x2
+ ∂2f1

∂y2

( )

− kw w2 − e0li
( )2 ∂2w2

∂x2
+ ∂2w2

∂y2

( )[ ]

+ rh
∂2w1

∂t2
− e0li

( )2 ∂4w1

∂x2∂t2
+ ∂4w1

∂y2∂t2

( )[ ]
= 0

(23)

F̃31
∂2w1

∂x2
+ ∂2w1

∂y2

( )
− X̃ 11

∂2f1

∂x2
+ ∂2f1

∂y2

( )
+ X̃ 33f1 = 0 (24)

D̃11
∂4w2

∂x4
+ 2 D̃12 + 2D̃66

( ) ∂4w2

∂x2∂y2
+ D̃11

∂4w2

∂y4

+ 2ẽ31V0

( )
e0li
( )2 ∂4w2

∂x4
+ 2

∂4w2

∂x2∂y2
+ ∂4w2

∂y4

( )[

− ∂2w2

∂x2
+ ∂2w2

∂y2

( )]
+ kw w2 − e0li

( )2 ∂2w2

∂x2
+ ∂2w2

∂y2

( )[ ]

− F̃31
∂2f2

∂y2
+ ∂2f2

∂x2

( )

− kw w1 − e0li
( )2 ∂2w1

∂x2
+ ∂2w1

∂y2

( )[ ]

+ rh
∂2w2

∂t2
− e0li

( )2 ∂4w2

∂x2∂t2
+ ∂4w2

∂y2∂t2

( )[ ]
= 0

(25)

F̃31
∂2w2

∂x2
+ ∂2w2

∂y2

( )
− X̃ 11

∂2f2

∂x2
+ ∂2f2

∂y2

( )
+ X̃ 33f2 = 0 (26)

As seen from the above relations, the thermo-electromechanical
vibration of a DPNPS is described by a system of four coupled dif-
ferential equations.
3. Out-of-phase vibration of DPNPS: In this Section, the explicit
expressions of natural frequencies are presented for the
out-of-phase vibration of DPNPSs. Similar to double-layer
graphene nanoribbons [13], the vibrational mode of the DPNPS is
divided into the in-phase and out-of-phase modes (OPMs). In the
case of the OPM, that is, w1−w2≠ 0, the non-local governing
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differential equations can be written as

D̃11
∂4w′

∂x4
+ 2 D̃12 + 2D̃66

( ) ∂4w′

∂x2∂y2
+ D̃11

∂4w′

∂y4

+ 2ẽ31V0

( )
e0li
( )2 ∂4w′

∂x4
+ 2

∂4w′

∂x2∂y2
+ ∂4w′

∂y4

( )[

− ∂2w′

∂x2
+ ∂2w′

∂y2

( )]

+ 2kw w′ − e0li
( )2 ∂2w′

∂x2
+ ∂2w′

∂y2

( )[ ]
− F̃31

∂2f′

∂x2
+ ∂2f′

∂y2

( )

+ rh
∂2w′

∂t2
− e0li

( )2 ∂4w′

∂x2∂t2
+ ∂4w′

∂y2∂t2

( )[ ]
= 0

(27)

F̃31
∂2w′

∂x2
+ ∂2w′

∂y2

( )
− X̃ 11

∂2f′

∂x2
+ ∂2f′

∂y2

( )
+ X̃ 33f

′ = 0 (28)

where

w′ = w1 − w2, f′ = f1 − f2 (29)

Without losing the generality, we assume that the boundary
conditions are simply supported at all edges of the DPNPS. In
addition, the value of the electric potential is equal to zero at the
edges. In order to satisfy these boundary conditions, the solutions
of (27) and (28) can be expressed as

w′(x, y, t) =
∑1
n=1

∑1
m=1

W ′
nm sin

mp

ℓx
x

( )
sin

np

ℓy
y

( )
eivt

f′(x, y, t) =
∑1
n=1

∑1
m=1

F′
nm sin

mp

ℓx
x

( )
sin

np

ℓy
y

( )
eivt

(30)

where m and n are the half-wave number in the x and y directions,
respectively, and ω is the natural frequency of the DPNPS.
Substituting (30) into (27) and (28) leads to

V2
OP = 1

1+ p2x2 m2 + b2n2
( )

× p4 m4 + 2 D̃
∗
12 + 2D̃

∗
66

( )
b2 m2n2 + b4n4

[ ]{
+ 1+ p2x2 m2 + b2n2

( )[ ]
2�kw + p2N̂el m

2 + b2n2
( )[ ]

+ 12p4 F̃
∗
31

( )2
m2 + b2n2
( )2

X̃
∗
33 + p2h− 2X̃

∗
11 m2 + b2n2
( )

}

(31)

Here the non-dimensional parameters are defined as

b = ℓx
ℓy

, h− = h

ℓx
, x = e0li

ℓx
,

�kw = kwℓ
4
x

D̃11

, N̂el =
2ẽ31V0ℓ

2
x

D̃11

f0 =
"""""
c̃11h

X̃ 33

√
, D̃

∗
12 =

D̃12

D̃11

, D̃
∗
66 =

D̃66

D̃11

, F̃
∗
31 =

F̃31f0

c̃11h
2

X̃
∗
11 =

X̃ 11f
2
0

c̃11h
3
, X̃

∗
33 =

X̃ 33f
2
0

c̃11h
, V = vℓ2x

""""
rh

D̃11

√

(32)
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It should be noted that the natural frequencies given by (31) reduce
to those obtained by Murmu and Adhikari [22] for the out-of-phase
vibration of double-nanoplate-systems when the piezoelectric
effects are neglected. By setting ΩOP = 0 in (31), the following
expression is obtained for the critical buckling voltages of the
DPNPS for out-of-phase vibration

(V0)
OP
cr = D̃11

2 ẽ31
∣∣ ∣∣ℓ2x 1+ p2x2 m2 + b2n2

( )[ ] p2

m2 + b2n2
( )

{

× m4 + 2 D̃
∗
12 + 2D̃

∗
66

( )
b2 m2n2 + b4n4

[ ]
+ 12p2 F̃

∗
31

( )2
m2 + b2n2
( )

X̃
∗
33 + p2h− 2X̃

∗
11 m2 + b2n2
( )

}
+

�kwD̃11

p2 ẽ31
∣∣ ∣∣ℓ2x m2 + b2n2

( )
(33)

4. In-phase vibration of DPNPS: Similarly, a closed-form
solution can be obtained for the in-phase mode (IPM) in which
the relative displacement between two piezoelectric nanofilms is
ignored (w1−w2 = 0). Using the Navier method, the natural
frequencies of the DPNPS can be found for the synchronous
vibration

V2
IP = 1

1+ p2x2 m2 + b2n2
( )

× p4 m4 + 2b2 m2n2 D̃
∗
12 + 2D̃

∗
66

( )+ b4n4
[ ]{

+ p2N̂el m
2 + b2n2

( )
1+ p2x2 m2 + b2n2

( )[ ]
+ 12p4 F̃

∗
31

( )2
m2 + b2n2
( )2

X̃
∗
33 + p2h− 2X̃

∗
11 m2 + b2n2
( )

}
(34)

Furthermore, from the above relation, we can derive the critical
voltage of the DPNPS

(V0)
IP
cr =

D̃11

2 ẽ31
∣∣ ∣∣ℓ2x 1+ p2x2 m2 + b2n2

( )[ ] p2

m2 + b2n2

( ){

× m4 + 2 bmn
( )2

D̃
∗
12 + 2D̃

∗
66

( )+ bn
( )4[ ]

+ 12p2 F̃
∗
31

( )2
m2 + b2n2
( )

X̃
∗
33 + p2h− 2X̃

∗
11 m2 + b2n2
( )

} (35)

It can be seen that the natural frequencies and critical electric
voltages of the DPNPS are independent of the Winkler modulus
parameter when the relative distance is equal to zero in the IPM.

5. Results and discussion: In the presented analysis, it is assumed
that the DPNPS is made of PZT-4 with the following material
properties [20]

c11 = 132 GPa, c12 = 71 GPa, c13 = 73 GPa, c33 = 115 GPa

c66 = 30.5 GPa, e31 = −4.1 C/m2, e33 = 14.1 C/m2

k11 = 5.841× 10−9 C/Vm, k33 = 7.124× 10−9 C/Vm

Unless noted otherwise, the length, width and thickness of the
piezoelectric nanoplates are taken as ℓx = ℓy = 50 nm and h =
5 nm, respectively. To illustrate the influence of the Winkler
modulus parameter of the coupling elastic medium on the natural
frequencies of the DPNPS, the variation of the fundamental
frequency parameter with the external electric voltage is plotted
in Fig. 2 for various values of stiffness of the connecting springs.
The small scale coefficient is set to χ = 0.1. It is observed that the
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Figure 3 Variation of frequency parameter with applied voltage for the first
two modes of oscillation (x = 0.4, �kw = 100)

Figure 2 Variation of fundamental frequency with applied voltage for dif-
ferent Winkler parameters (χ= 0.1)

Figure 5 Variation of critical electric voltage with scale coefficient for dif-
ferent aspect ratios ( h = 5 nm, ℓx = 50 nm, �kw = 200)

Figure 4 Variation of dimensionless fundamental frequency with applied
voltage for different values of thickness (x = 0.2, �kw = 200)
fundamental natural frequencies of the DPNPS depend strongly on
the elastic medium parameter in the OPM, whereas the natural
frequencies of the IPM are independent of �kw. The frequency
parameter increases with increasing the stiffness of the coupling
springs from 0 to 400. Furthermore, the fundamental frequencies
decrease by increasing the applied voltage and become zero
(buckling state) for a critical value of the external electric voltage.
These critical values increase as the Winkler elastic modulus
increases.

A comparison between the results of non-local and classical plate
theories (NPT and CPT) for in-phase and out-of-phase modes is
presented in Fig. 3. The results are plotted for the first two vibration
modes (i.e. m = n = 1 and m = 1, n = 2). From the Figure, it is found
that the non-local parameter has a decreasing effect on the dimen-
sionless frequencies of the DPNPS. In addition, non-local effects
are higher at higher vibration modes. The difference between the
IPM and OPM is lower at higher mode numbers. Another interest-
ing result is that the non-local critical voltages in which the buck-
ling occurs are always smaller than their local counterparts. Fig. 4
shows the effect of the nanoplate’s thickness on the non-
dimensional natural frequencies of the DNPS for the OPM. It can
be concluded that the frequency parameter decreases with increas-
ing thickness for negative values of the external electric voltage, but
the thickness of the piezoelectric nanofilm has an increasing effect
on the frequency parameter for positive values of the applied
voltage.

Fig. 5 depicts the variation of the critical electric voltage with
small scale coefficient (x = e0li/ℓx) for in-phase and out-of-phase
modes. Computations have been performed considering different
values of aspect ratio. The dimensionless stiffness of the connecting
springs is assumed to be �kw = 200. From Fig. 5, it can be seen that
the critical electric voltage decreases with increasing small scale co-
efficient from 0 to 0.5. A greater value of aspect ratio leads to higher
small scale effects. This means that aspect ratio has an increasing
effect on the non-local effects when the length of each PNP is
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constant. By increasing the aspect ratio, at constant length, the
width of the DPNPS decreases and thus non-local effects increase.
Furthermore, the difference in critical electric voltage between the
IPM and OPM is lower for greater values of the aspect ratio.

6. Conclusions: Based on the non-local plate theory, the small
scale effects on the transverse vibration of rectangular
double-PNPs under external electric voltage are studied. Explicit
expressions are derived for natural frequencies and critical
buckling voltages in the in-phase and out-of-phase modes. It is
found that the small scale effect has a significant role in the
vibration behaviour of a DPNPS and cannot be neglected. The
non-local parameter has a decreasing effect on the frequency
parameter. Furthermore, the effect of small scale is higher for
higher mode numbers. The natural frequencies of the OPM are
always greater than their IPM counterparts.
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