Design of non-restoring binary array divider in quantum-dot cellular automata

Huanging Cui, Li Cai, Xiaokuo Yang, Chaowen Feng, Tao Qin

Science College, Air Force Engineering University, Xi'an 710051, People’s Republic of China

E-mail: 13678146019@163.com

Published in Micro & Nano Letters; Received on 14th March 2014; Revised on 18th May 2014; Accepted on 10th June 2014

Quantum-dot cellular automata (QCA), a promising candidate nanotechnology for the next generation computers, has attracted the interest of
researchers all over the world since 1993. The divider is a major component of arithmetic logic unit, which has a remarkable impact on the
performance of the central processing unit. The widely used algorithm in the divider is the non-restoring division, but there is no work which
has reported the implementation of non-restoring dividers based on QCA. Presented is the design of a non-restoring binary array divider in
QCA and its validity is verified using QCADesigner software. The proposed non-restoring divider has the advantage of time-saving and is easy

to control when compared with the existing restoring dividers.

1. Introduction: Quantum-dot cellular automata (QCA) [1, 2] is
an alternative nanotechnology that may solve the problems
encountered in complementary metal-oxide semiconductor
(CMOS) technology because of the smaller and smaller feature
size of the transistor. QCA relies on electron confinement in
quantum dots. The fundamental element in QCA, namely the
QCA cell, represents a bit by the configuration of electrons in the
cell [3]. The most frequently used components in QCA [4] such
as the wire and logic gates appear in Fig. 1. Actually, a QCA
circuit is partitioned into four sequential clock zones 0, 1, 2 and
3 [5], and the computations are done under the control of the
clock signals. As it is difficult to design sequential circuits in
QCA [6], little research has concerned realising QCA iterative
computational units, such as dividers.

Among all the arithmetic units, the divider is the most compli-
cated and time-consuming one. Therefore engineers and algorithm
designers always try their best to circumvent using the division op-
eration. However, with the development of precise instrument,
spaceflight and radar technology, the application of the divider is
unavoidable. Till now, many algorithms can be used for the imple-
mentation of the divider, such as the restoring, non-restoring,
Sweeney, Robertson and Tocher methods and the Newton iterative
algorithm [7]. Restoring and non-restoring algorithms are based on
addition and subtraction, which are suitable for integrated circuit
implementation. Work by Kim and Swartzlander [8] has led to a
restoring divider (RD) design for QCA. To the best of our knowl-
edge, there has been no prior work on the implementation of a
QCA non-restoring divider (NRD). In this Letter, we report for
the first time a non-restoring binary array divider using the emer-
ging QCA nanotechnology.

The reminder of this Letter is organised as follows. In Section 2,
the principles of the non-restoring binary division algorithm are
explained. In Section 3, a QCA implementation of the non-restoring

€

a b

Figure 1 Basic QCA components
a QCA wire

b Majority gate

¢ Inverter

d Coplanar wire crossing

464
© The Institution of Engineering and Technology 2014

array divider is presented. In Section 4, both the simulation results
and analysis of the design are presented. Finally, we draw conclu-
sions in Section 5.

2. Non-restoring binary divider: First, we explain what is the
restoring division algorithm [8], since it will be helpful to
understanding the non-restoring division later. Throughout this
Letter, the following notations are used for easy understanding:

N numerator or dividend

Y denominator or divisor

R; partial remainder after ith iterations
i number of iterations

n number of bits

q quotient set for the algorithm

0 quotient for the division

The restoring algorithm is the most basic method of division,
and the details of it can be presented by the following set of
equations:

1, if 2R >Y)
417 V0, if 2R <Y
Ry =2R, — gy, - Y 2

We can get the partial remainder through a left shift of R; and a
subtraction: R;+;=2R;— Y. If R;+, is positive, then ¢, =1, else
¢i+1=0 and a restoring addition is needed. The addition is used
to restore the proper partial remainder, R,y =R;+1 + Y=2R,.

Although the restoring division algorithm is really simple, it
incurs excess delay introduced during the restoration process [7],
which also leads to unnecessary power dissipation because the
partial remainder remains the same at the end of the two cycles.
Another problem is that we do not know how many times the restor-
ing addition is needed and we also do not know when to do the re-
storing addition before a particular operation of the divider, which
makes the control logic difficult to realise.

To overcome the problems presented by the restoring division,
we can undertake an alternative method of binary division, the
non-restoring division [9], also known as add—subtraction alternate
algorithm, and the relevant divider is called the NRD. In this algo-
rithm, if a negative partial remainder is produced at the end of a
certain cycle, no restoration is executed.

Micro & Nano Letters, 2014, Vol. 9, Iss. 7, pp. 464-467
doi: 10.1049/mnl.2014.0148

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

Non-restoring division is performed in a procedure by the follow-
ing formulas:

I, if R,>0
qiy1 _{0’ if Ri<0 (3)
2R, — it R, >0
Rip1 = {2R +Y, if Ri<0 @
27".R, if R,>0)
27" (R, +Y) if R, <0

where i=0, 1, ..., n—1 is the recursion index. The initial partial
remainder R, equals the dividend, and r is the final remainder.

Thus, from (1) to (5) above, it is easy to see that every time the
negative partial remainder appears, the non-restoring algorithm
takes one addition step less than the restoring method. Hence,
there will be a quite significant saving in the number of clock
cycles over the entire division process.

In binary non-restoring division, partial remainders are obtained
by a subtraction or an addition between the dividend and the succes-
sively right-shifted versions of the divisor. The quotient bit is deter-
mined by the sign of the partial remainder which also decides
whether to add or subtract the shifted divisor in the next cycle.

A two-dimensional array of pipelined 2’'s complement adder/
subtractor cells (CAS cells) can be used to implement the non-
restoring algorithm [10]. Fundamentally, the array consists of
columns of carry propagate adders with one controlled input bit
P. Figs. 2a and b illustrate a array divider with a 2-bit divisor
(0.y1 y») and an 4-bit dividend (0.x; x, x3 x4). The first bit ‘0” of
both the divisor and dividend are their signs, it is used to represent
a positive number. Each logic cell is made up of a full adder and an
EXCLUSIVE-OR gate. The EXCLUSIVE-OR gate provides the
divisor input to the full adder. The control signal P determines
the function of the CAS cell, namely whether an addition or a sub-
traction is to be executed. The 2-bit divisor and the double-length

Fl Bi
| T T T] N
P | '[I | L P
| 4 |
| VAR
| |
| |
C | one-bit | C:
= full adder !
[N
A\
S B;
a
0 0 Y X1 ¥ X
v v '
P — S e
% CAs || cas [| cas
X2
| I N %
cas [| cas [] cas
! NN N
e cAs [| cas |] cas]
v v v
I r; ry

Figure 2 Binary array divider
a CAS cell
b 4-bit dividend, 2-bit divisor

Micro & Nano Letters, 2014, Vol. 9, Iss. 7, pp. 464-467
doi: 10.1049/mnl.2014.0148

B clock 3

Figure 3 QCA layout of the CAS cell

4-bit dividend are imported at the top and right edges of the
array, respectively. A 3-bit quotient is produced at the left side of
the array, then every quotient bit is transported to the next row as
the control signal P and the low carry of the rightmost cell. The
3-bit final reminder appears at the bottom of the array.

3. Divider implementation: The non-restoring array divider is
composed of CAS cells that have one full adder and one
EXCLUSIVE-OR gate. Fig. 3 shows the CAS cell layout. The
EXCLUSIVE-OR gate [11] shown in the dashed box can be
designed using only four majority gates and one inverter, its
delay is a full clock cycle. The rest of the cell is a 1-bit full
adder; it can be constructed using only three majority gates and
two inverters [12]. The full adder takes three inputs, (XOR_OUT,
A and C;) and gives two outputs [S;=4A @ B P C; and C,=MAJ

1
(4, B, C))]. Both the outputs have a latency of 14_1 clock cycles.

The different colours in the layout are used to distinguish
different clock zones.

An n-bit divider is formed by combining n*> CAS cells to the
regular array shown in Fig. 4, only n =3 is presented here for sim-
plicity. All the wire crossings in this layout are processed by the

gt e e

i = ? S o
L uil -:lT.-
ir‘“’ﬂ *ﬁ*ﬂ

ﬁh-L-ﬂ - hﬁm =
m"“‘:;‘l.s“‘? ““' — 0] e
= ::E"%— e
H. e |

E‘Q‘Ei

|
(T L_ oy | o=l | B
im- oomfl o lﬁ ?L-]fgl FL..ﬂI s apz-:nj

TNl] f
o ‘:“-'—-'.'A:l':r-IT mj - Fl1':- o

Figure 4 QCA layout of the 3 x 3 non-restoring array divider

465
© The Institution of Engineering and Technology 2014

technique proposed in [13], because there is no interference
between the data transmitted in wires which are clocked in two non-
adjacent clock regions. The total number of QCA cells is 3742 and
the area of the divider layout is 6.22 um?.

Furthermore, we can find that the 8-bit NRD implemented by the
45 nm CMOS technology has an area of 2015.64 um? [9]. It is very
easy to see that the QCA NRD is much more area efficient than the
normal divider because the area of the 8-bit QCA NRD is
56.98 um>, which also shows the advantage of the QCA device
over traditional transistors.

4. Simulation and comparison: Simulation results are presented
in this Section. The simulations were done using the bistable

s 11000 0 12000, 1080, 008 00,1 000,00 00N, 000 0 100 e e |
g {I 1 -~

' 1,0 OO, 0,000 90,
dividend]I[

| 110 I 10] 101 1 '[=~

i

Rmian : ! I 00,0 1000, 19000 1 o, 00811110601, I1ao00
divisor Il T 53

't 11 l 10 I 11 I ~

s 4{ }—llnf—lmnl.—' 1}.— o110

s %10}—{?}—@}—. 105— X llll)l u—\—'lu'—:nu
} 1 - | I Ll - |

% 4 T8 JA000, 1o 1000y, (19000 11060, 0 112090
=T i 5 e & E‘I_ i A S AW B
mameany) | [} [VT VT T Y A Y Lo
a
- - — !
P | 1 -~
'| ~
. [0)'r 11 I 111 [1001 I -
I i 1 il [958 beicl 15098,y 114398,]ml
divisar Ill 7 I 10 [o I ~
resen —{m}—(0| 'fnll'rj!un 2“[. 0 ::— 11'—ln i
| i . A fece WO OO O W I T]_ml |
reminder T T T 1 T
—acJ 11)—%101' 10 2~f111|:—|o H—t1d—tof
L | { L

Y - N T T Y W 0 Y i
b
39 1999 m 2119090 0 T1999) 113999,
I |: 1 ~
R UL T L T
dividend [=
| 100 | 111 (1010 [1011 1 ~

divisor f

t 11
a0, 000, 1O 0000 0, 0O 000, 58081
quotient T I
4{ >—{ }_{uu)—{n}—:: 1
reminger
e)_{1; A

wD&h-ﬂ?JII T]l ‘II
T e s e e s

Figure 5 Simulation results of the QCA 3 x 3 NRD

a Dividend (0.0110, 0.0010, 0.0101, 0.0001), divisor (0.11, 0.10, 0.11,
0.11)

b Dividend (0.0000, 0.0011, 0.0111, 0.1001), divisor (0.01, 0.01, 0.10,
0.11)

¢ Dividend (0.0100,0.0111, 0.1010, 0.1011), divisor (0.11,0.11,0.11, 0.11)

466
© The Institution of Engineering and Technology 2014

approximation engine of QCADesigner v2.0.3 [14] on a
computer with a 2.8 GHz central processing unit and 1 GB RAM.
The parameters of the simulation were as follows: cells in our
design are set at 18 nm x 18 nm whereas the quantum dots in it
have a diameter of 5 nm. The adjacent cells are placed with a
centre-to-centre distance of 20 nm. In the bistable approximation
options, the number of samples is 12 800, convergence tolerance
is 0.001, radius effect is 65 nm, relative permittivity is 12.9,
clock high is 9.8 x 10722, clock low is 3.8x107%, clock
amplitude factor is 1, layer separation is 11.5 and maximum
iterations per sample is 100. To verify the performance of the 3 x 3
NRD, we did the test using all possible input vectors and various
sequences of the vectors. However, those vectors that can lead to
overflow must be taken out. According to the non-restoring
algorithm, if the first two bits of the dividend are larger than the
divisor or equal to the divisor, an overflow will happen. Totally,
24 groups of input vectors have been tested. For a clear view,
only half of the simulation results are provided in Fig. 5, each
Figure contains four groups of input vectors.

Correct output data, namely quotient vector and reminder vector,

come out after 26) clock cycles as shown in the red boxes of Fig. 5.

In Fig. Sa, the quotient vector is (0.10, 0.01, 0.01, 0.00) and the
reminder vector is (0.0101, 0.0000, 0.0010, 0.0110). In Fig. 5b,
the quotient vector is (0.00, 0.11, 0.11, 0.11) and the reminder
vector is (0.0111, 0.0000, 0.0001, 0.0000). In Fig. 5¢, the quotient
vector is (0.01, 0.10, 0.11, 0.11) and the reminder vector is (0.0001,
0.0110, 0.0001, 0.0010). The first three rows of Fig. 5 are P,
dividend vector and divisor vector, respectively. The last row is
the clock signal of the output cells. It takes 406 s to run each
simulation.

Table 1 shows the comparison of the proposed QCA NRD and
the RD proposed in [8].

In general, the NRD has a latency of 3n% — 0.75, where # is the
operand size of the divider, and the counterpart of the RD in [8]
is 4n*+ 1. Fig. 6 shows the latency comparison of them with the

Table 1 Comparison of dividers

Dividers Latency Cell amount Area, um?
3 x3 NRD 26% 3742 6.22
4 x4 NRD 47% 6865 10.95
3x3 RD in [8] 37 6451 15.05
6% 6 RD in [8] 145 42 236 86.22

latency, clock cycles

Q 10 20 30 40 50 60 70 80 a0 100
operand size, bits

Figure 6 Latency comparison of restoring and non-restoring dividers for
various operand sizes

Micro & Nano Letters, 2014, Vol. 9, Iss. 7, pp. 464-467
doi: 10.1049/mnl.2014.0148

increasing operand size. As operand size becomes larger, the super-
iority of the NRD over RD is more obvious.

5. Conclusion: In this Letter, a non-restoring binary array divider
has been implemented in QCA technology for the first time. It is
constructed by CAS cell blocks. In the parallel array, data are
processed in a pipelined style. When the operand size is fixed,
the number of computing steps of the NRD is a constant, no
matter what the dividend and divisor are. However, the RD does
not have this characteristic. Hence, the control logic is easier to
realise for the NRD. Furthermore, compared with the RD, the
NRD demonstrates more advantages, such as fewer cell amounts,
smaller layout area and lower latency. Thus, the NRD is more
suitable for large operand size computation.

6. Acknowledgments: This work was supported by the National
Natural Science Foundation of China (Grant No. 61172043), the
Key Program of Shaanxi Provincial Natural Science for Basic
Research (Grant No. 2011JZ015) and the Graduate Innovation
Fund of Science College (Grant No. 2014LXYCXJJ002).

7 References

[1] LentC.S., Tougaw P.D., Porod W., Bemnstein G.H.: ‘Quantum cellular
automata’, Nanotechnology, 1993, 4, pp. 49-57

[2] Lent C.S., Tougaw P.D.: ‘A device architecture for computing with
quantum dots’, Proc. IEEE, 1997, 85, (4), pp. 541-557

[3] Kunal D., Debashis D., Mallika D.: ‘Realisation of semiconductor
ternary quantum dot cellular automata’, Micro Nano Lett., 2013, 8,
(5), pp. 258-263

Micro & Nano Letters, 2014, Vol. 9, Iss. 7, pp. 464-467
doi: 10.1049/mnl.2014.0148

[4]

[3]

(6]

(7]
(8]

]

[10]

(11]

[12]

[13]

[14]

Tougaw P.D., Lent C.S.: ‘Logical devices implemented using
quantum cellular automata’, J. Appl. Phys., 1994, 75, (3), pp.
1818-1825

Yang X., Cai L., Zhao X.: ‘Low power dual-edge triggered flip-flop
structure in quantum dot cellular automata’, Electron. Lett., 2010, 46,
(12), pp. 825-826

Huang J., Momenzadeh M., Lombardi F.: ‘Design of sequential
circuits by quantum-dot cellular automata’, Microelectron. J., 2007,
38, pp. 525-537

Stuart F.O., Michael J.F.: ‘Division algorithms and implementations’,
IEEE Trans. Comput., 1997, 46, (8), pp. 833-854

Kim S.-W., Swartzlander E.E.: ‘Restoring divider design for
quantum-dot cellular automata’. 11th IEEE Int. Conf.
Nanotechnology, Portland Marriott, USA, 2011, pp. 1295-1300
Kihwan J.: “‘Modified non-restoring division algorithm with improved
delay profile’. Thesis for the degree of Master, University of Texas at
Austin, 2011

Maurus C., Hamacher V.C.: ‘An augmented iterative array for high-
speed binary division’, [EEE Trans. Comput., 1973, ¢-22, (2),
pp. 172-175

Mohammad R.B., Mohammad M., Firdous A.: ‘Performance evalu-
ation of efficient XOR structure in quantum-dot cellular automata
(QCAY’, Circuits Syst., 2013, 4, pp. 147-156

Heumpil C., Swartzlander E.E.: ‘Adder and multiplier design in
quantum-dot cellular automata’, [EEE Trans. Comput., 2009, 58,
(6), pp. 721-727

Shin S.-H., Jeon J.-C., Yoo K.-Y.: ‘Wire-crossing technique on
quantum-dot cellular automata’. Proc. 2nd Int. Conf. Next
Generation Computer and Information Technology, 2013, 27,
pp. 52-57

Walus K., Dysart T.J., Julliein G.A., Budiman R.A.: ‘QCADesigner:
arapid design and simulation tool for quantum dot cellular automata’,
IEEE Trans. Nanotechnol., 2004, 3, (1), pp. 26-31

467
© The Institution of Engineering and Technology 2014

	1 Introduction
	2 Non-restoring binary divider
	3 Divider implementation
	4 Simulation and comparison
	5 Conclusion
	6 Acknowledgments

