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In this reported work, the free axial vibration response of carbon nanotubes (CNTs) with arbitrary boundary conditions is studied based on the
non-local elasticity theory. Using Fourier sine series together with Stokes’transformation, the general frequency determinant of CNTs is
obtained. The main advantage of this method is its capability of dealing with rigid or restrained boundary conditions. Comparisons
between the results of the presented method and previous works in the literature have been performed. Good agreement is obtained when
enough terms are included in the Fourier series expansion. The effects of spring parameters on the vibration frequencies are discussed in
detail. The proposed analytical method can be utilised for dynamic analyses of nanorods (CNTs) with arbitrary boundary conditions.
1. Introduction: Carbon nanotubes (CNTs) are found to have
exceptional physical, chemical, mechanical, thermal, electrical
and electronic properties, which leads to a variety of engineering
applications in nanomechanical systems, nanobiological devices
and nanoelectronics. Experimental studies related to CNTs [1–6]
have shown that CNTs have an extremely high aspect ratio, low
weight, high stiffness and are extremely sensitive to their
environment changes. These superior features of CNTs make
them promising candidates for new sensors, ultra-capacitors,
microbial detection, ultra-high strength composite materials and
for diagnostic devices [7, 8].
Eringen [9] presented a new size-dependent theory known as the

non-local elasticity theory. This theory states that stresses at a refer-
ence point are a function not only of the strains at that point but also
a function of the strains at every point in the domain. This non-
classical approach is in accordance with predictions from atomic
lattice dynamics. The non-local elasticity theory is a popular tech-
nique for modelling the mechanical behaviour of CNTs [10–13].
Some of the researchers have investigated the static behaviours of
single-walled, double- and multi-walled CNTs, e.g. in [14, 15].
Reddy and Pang [16] presented Timoshenko beam and the Euler-
Bernoulli theories using the non-classical constitutive relations of
Eringen and Edelen [17]. Pradhan and Murmu [18] presented a
single non-local beam model to investigate the static and dynamic
characteristics of a nanocantilever beam. The vibration behaviours
of CNTs embedded in an elastic medium have been examined by
some researchers, e.g. [19, 20]. Also the free vibration behaviours
of CNTs have been considered by some researchers [21–23]. The
free axial vibration of nanorods was considered by Aydogdu [24].
The small size effects on free axial vibrations of heterojunction
CNTs based on the classical and non-classical rod theories were
investigated by Filiz and Aydogdu [25].
A short review of the literature reveals that the conducted experi-

mental and theoretical works on nanorods are based on the assump-
tions that the boundary conditions are rigid. A very limited amount
of literature is available for nanorods with elastical restraints. The
study reported in this Letter is concerned with the derivation of
the general formulation for the free axial vibration analysis of
CNTs (nanorods) modelled as Eringen’s non-local elasticity
theory [9]. The general frequency determinant is obtained by a com-
bination of the basic equations and Stokes’ transformation. Its
utility lies in the ability to solve any possible combination of bound-
ary conditions. For the nanorods with rigid or restrained boundary
conditions, the influence of the non-locality parameter and axial
springs on the natural frequencies is examined in some numerical
examples. There are very good agreements between this Letter
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and the previous results, indicating the accuracy and validity of
the presented method. The purpose of this Letter is mainly to
present a new analytical method for the axial vibration analysis of
nanorods with rigid or restrained boundary conditions rather than
to investigate a specific problem. The presented formulation can
be helpful in the design of nanorods.

2. Free axial vibration of nanorods with deformable boundary
conditions: Consider a nanosized rod of diameter d and length L.
The following non-local differential equation is often used [9]

snl
ij − (e0a)

2∇2snl
ij = C:e (1)

where ε and C are the fourth-order strain and elasticity tensors,
respectively. a denotes the internal characteristic length and e0 is
a material constant. Equation (1) can be approximated to the
following one-dimensional (1D) form

snl
xx − (e0a)

2 ∂
2snl

xx

∂x2
= Eexx (2)

where E is the elasticity modulus. The equation of motion for the
free axial vibration can be obtained as

∂Nl

∂x
= m

∂2u(x, t)

∂t2
(3)

where m is the mass per unit length, u(x, t) denotes the axial
displacement and Nl is the axial force for classical elasticity. Nl

can be expressed as

Nl =
∫
A
sxx dA (4)

where A is the cross-sectional area of the nanorod. Using (2)–(4),
the following equation can be found in terms of axial force

Nnl − (e0a)
2 ∂

2Nnl

∂x2
= Nl (5)

By substituting (5) into (3), the equation of motion of the non-local
nanorod model in terms of the axial displacement is as follows [24]

EA
∂2u(x, t)

∂x2
− 1− (e0a)

2 ∂2

∂x2

{ }
m
∂2u(x, t)

∂t2
= 0 (6)
807
& The Institution of Engineering and Technology 2014

mailto:
mailto:
mailto:
mailto:
mailto:


Figure 1 Schematic of the atomic force microscope
where m denotes the mass per unit length. Equation (6) is the linear
partial differential equation of the non-local rod model for the free
axial vibration of nanorods.

3. Modal displacement function: In non-local elasticity, Fourier
series expansion together with Stokes’ transformation will be
used to represent the axial vibration response of nanorods. This
method gives more flexibility to treat various boundary
conditions. Assuming harmonic vibrations, u(x, t) can be
represented as

u(x, t) = f(x) cos (vt) (7)

where φ(x) denotes the modal displacement function and ω is the
natural frequency. The modal displacement function φ(x) is
described in three separate regions, two for supporting points and
the other for the intermediate places between the supporting points

f0 x = 0 (8)

fL x = L (9)

f(x) =
∑1
n=1

Cn sin
npx

L

( )
0 , x , L (10)

with

Cn =
2

L

∫L
0
f(x) sin

npx

L

( )
dx (11)

It is not necessary that the Fourier sine series satisfies any particular
boundary conditions since (8) and (9) allow freedom in choosing
the modal displacement function for the natural frequencies.
Term-wise differentiation of (10) yields

f′(x) =
∑1
n=1

np

L
Cn cos

npx

L

( )
(12)

If φ′(x) is piecewise smooth, then it can be represented by a Fourier
cosine series

f′(x) = b0
L
+

∑1
n=1

bn cos
npx

L

( )
(13)

The coefficients are given by

b0 =
2

L

∫L
0
f′(x) dx = 2

L
[f(L)− f(0)] (14)

bn =
2

L

∫L
0
f′(x) cos

npx

L

( )
dx n = 1, 2, . . . (15)

Integration by parts

bn =
2

L
f(x) cos

npx

L

( )[ ]L
0

+ 2

L

np

L

∫L
0
f(x) sin

npx

L

( )
dx

[ ]
(16)

bn =
2

L
[(−1)nf(L)− f(0)]+ np

L
Cn (17)

The second derivative can be computed using the above similar
procedure. The derivatives of φ(x) can be separately determined
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by employing Stokes’ transformation as follows

df(x)

dx
= fL − f0

L
+

∑1
n=1

cos (bnx)
2((− 1)nfL − f0)

L
+ bnCn

( )

(18)

d2f(x)

dx2
= −

∑1
n=1

bn sin (bnx)
2((− 1)nfL − f0)

L
+ bnCn

( )
(19)

where

bn =
np

L
(20)

Equation (19) is substituted into (6) to result in

∑1
n=1

1

L
( cos (vt) sin (bnx)LCm(b

2
n(mmv

2 − EA)

+ mv2)+ 2bn(f0 − (−1)nfL)(EA− mmv2) = 0

(21)

The Fourier coefficient Cn can be written in terms of φ0 and φL as
follows

Cn =
2

L

(L2 − l2(e0a)
2)bn(f0 − (− 1)nfL)

−l2 + (L2 − l2(e0a)
2)b2

n

(22)

where

l2 = mv2L2

EA
(23)

The axial displacement function for the free vibration of a nanorod
having no axial restraints at both ends becomes

u(x, t) =
∑1
n=1

2

L

(L2 − l2(e0a)
2)bn(f0 − (− 1)nfL)

−l2 + (L2 − l2(e0a)
2)b2

n

× cos (vt) sin (bnx) (24)

The inclusion of the non-locality parameter (e0a)
2 in the above

equation takes into account the non-local effects.

4. General frequency determinant in non-local elasticity: It
should be noted that the nanorods (CNTs) may be used as the
atomic force microscope (see Fig. 1). During an experiment,
nanosized samples can behave as masses attached by a linear
spring to the testing device and this may affect the vibration
behaviour of the atomic force microscope.
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Figure 2 Nanorod elastically restrained by means of axial springs

Table 2 Comparison of the first three axial frequency parameters of
nanorods with clamped-free ends obtained using local elasticity theory

Mode Clamped-free S̃0 = 10 000, S̃L = 0

Ref. [24] λi Ref. [26] λi Present λi

1 1.571 1.570 1.57697
2 4.712 4.712 4.73090
3 7.854 7.850 7.88480

Table 1 Comparison of the first three axial frequency parameter, of
nanorods with clamped ends obtained using local elasticity theory

Mode CC S̃0 = S̃L = 10 000

Ref. [24] λi Ref. [26] λi Present λi

1 3.141 3.141 3.14096
2 6.284 6.283 6.28193
3 9.425 9.424 9.42289
To overcome this difficulty, it is assumed that the nanorod is elas-
tically restrained by means of axial springs at the ends, as shown in
Fig. 2. The non-local boundary conditions are mathematically
written as

EA
∂u

∂x
+ (e0a)

2m
∂3u

∂x∂t2
= s0f0, x = 0 (25)

EA
∂u

∂x
+ (e0a)

2m
∂3u

∂x∂t2
= −sLfL, x = L (26)

where s0 and sL denote the stiffnesses of the springs at the ends of
the nanorod. After some mathematical manipulations, the substitu-
tion of (18) and (22) into (25) and (26) leads to the two homo-
geneous simultaneous equations

1+ S̃0 −g2l2 +
∑1
n=1

2l2 − 2g2l4

l2 + p2n2(g2l2 − 1)

( )
f0

+ −1+ g2l2 −
∑1
n=1

2l2(−1)n − 2g2l4(−1)n

l2 + p2n2(g2l2 − 1)

( )
fL = 0

(27)

−1+ g2l2 −
∑1
n=1

2l2(−1)n − 2g2l4(−1)n

l2 + p2n2(g2l2 − 1)

( )
f0

+ 1+ S̃L −g2l2 +
∑1
n=1

2l2 − 2g2l4

l2 + p2n2(g2l2 − 1)

( )
fL = 0

(28)

where

g = e0a

L
(29)

S̃0 =
s0L

EA
(30)

S̃L = sLL

EA
(31)

and one can obtain the following system of equations in the matrix
form to be solved for the constants (φ0, φL)

c11 c12

c21 c22

[ ]
f0

fL

[ ]
= 0 (32)

where

c11 = 1+ S̃0 −g2l2 +
∑1
n=1

2l2 − 2g2l4

l2 + p2n2(g2l2 − 1)
(33)

c12 = −1+ g2l2 −
∑1
n=1

2l2(−1)n − 2g2l4(−1)n

l2 + p2n2(g2l2 − 1)
(34)

c21 = −1+ g2l2 −
∑1
n=1

2l2(−1)n − 2g2l4(−1)n

l2 + p2n2(g2l2 − 1)
(35)
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c22 = 1+ S̃L −g2l2 +
∑1
n=1

2l2 − 2g2l4

l2 + p2n2(g2l2 − 1)
(36)

Equation (32) defines a standard eigenvalue problem. The eigen-
values (λn) can be computed by setting the following determinant
in (32) to zero

cij

∣∣∣ ∣∣∣ = 0 (i, j = 1, 2) (37)

The characteristic equation of this determinant can be derived by
assigning the different values of S̃0 and S̃L corresponding to the
end constraints.

5. Results and discussion: Here, analytical solutions for the axial
vibration analysis of CNTs are presented, considering the effects of
deformable boundary conditions and small-scale effects. However,
before venturing into more complicated and time-consuming
calculations with all the parameters, it is desirable to assess the
accuracy of the Fourier expansion procedure when applied to
some special cases of boundary conditions. The results using
these boundary conditions are then compared with the available
results reported in the literature.

Tables 1 and 2 show the comparison between the first three
modes of the vibration frequency parameter computed using the
present formulation and that obtained in [24, 26]. In this numerical
validation, the frequency parameters are obtained by the present ap-
proach using the first 50 terms of the infinite series. The non-
locality parameter (γ2) of the nanorod is zero and the axial spring
parameters are taken as S̃0 = S̃L = 10 000

( )
for the clamped–

clamped (CC) case. It is observed from the Table that when the
stiffnesses of springs are infinitely large S̃0 = S̃L = 10 000

( )
, the

results are very close to those calculated for the CC case. The can-
tilever solutions in [24, 26] are also compared with the present ap-
proach for S̃0 = 10 000, S̃L = 0 values to show the validation.
S̃L = 0 means that there is no axial constraint at x = L, namely,
the nanorod is free for axial displacement. As seen from Tables 1
and 2, good agreement is found between the three results. After val-
idation of the present method, the effects of various axial spring
parameters on the vibration response are discussed.

To investigate the effects of the deformable boundary conditions
on the free vibration response of the nanorod, frequency parameters
are listed in Table 3 for various values of spring coefficient and
809
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Table 3 Effect of spring constants on the first frequency parameter of
nanorod

e0a S̃0 = S̃L CC ends

1 10 100 1000 10 000 Ref. [24]

0 1.310 2.628 3.080 3,135 3.140 3.141
0.1 1.310 2.627 3.078 3.133 3.139 3.140
0.2 1.309 2.625 3.074 3.129 3.134 3.135
0.3 1.309 2.620 3.066 3.121 3.127 3.127
0.4 1.308 2.614 3.056 3.110 3.116 3.117
0.5 1.307 2.606 3.044 3.097 3.102 3.103
0.6 1.306 2.596 3.028 3.081 3.086 3.087
0.7 1.304 2.585 3.010 3.062 3.067 3.068
0.8 1.303 2.572 2.990 3.041 3.046 3.046
0.9 1.301 2.558 2.968 3.017 3.022 3.023
1.0 1.299 2.542 2.943 2.991 2.997 2.997
different non-local parameters. In this case, the nanorod’s length is
taken as 10 nm. Based on the results in Table 3, small-scale effects
are more significant for the nanorods with hard spring supports.

To illustrate the non-local effect on the axial vibration response,
the frequency parameter ratio (FPR) is defined as

FPR = frequency parameter (non-local theory)

frequency parameter (local theory)
(38)
Figure 3 Small-scale (non-local) effect on nanorods with elastically
restrained ends at various spring parameters

Figure 4 PD against the non-locality parameter of the nanorod for different
spring parameters
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A variation of the first frequency parameter ratio with the non-
locality parameter is given for different spring parameters in
Fig. 3. It is seen that axial frequency parameters calculated using
the non-local elasticity theory are always smaller than when using
classical ones. The frequency ratio decreases as the non-locality
parameter increases.

To assess the small-scale effect on the axial vibration response of
the nanorods for different spring constants, the percentage differ-
ence (PD) in the frequency parameter ratio is defined as follows

PD = FPR (local theory)− FPR (nonlocal theory)

FPR (local theory)
(39)
Figure 5 Small-scale (non-local) effect on clamped-spring nanorods at
various non-local parameters for different spring constants

Table 4 Effect of axial spring and non-local parameter on the frequencies
of nanorods for S̃= 10 000

S̃L C-F ends

e0a 10 000 1000 100 10 0 Ref. [24]

0 3.140 3.138 3.110 2.863 1.576 1.570
0.1 3.139 3.136 3.108 2.862 1.576 1.570
0.2 3.134 3.131 3.104 2.858 1.576 1.570
0.3 3.127 3.124 3.096 2.852 1.575 1.569
0.4 3.116 3.113 3.086 2.844 1.573 1.567
0.5 3.102 3.100 3.073 2.834 1.572 1.565
0.6 3.086 3.083 3.057 2.821 1.569 1.563
0.7 3.067 3.065 3.039 2.807 1.567 1.561
0.8 3.046 3.043 3.018 2.791 1.564 1.558
0.9 3.022 3.020 2.995 2.772 1.561 1.555
1.0 2.997 2.994 2.969 2.752 1.557 1.551
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In Fig. 4, the variation of PD with the non-locality parameter is
depicted. It is seen that the non-local effects are more significant
for large spring parameters when compared with small ones.
In Table 4, variation of the first frequency parameter of the

nanorod is given for constant values of S̃0 = 10000 and different
values of S̃L, (e0a). Increases are observed for the first frequency
parameter with increasing S̃L. Sensitivity of the first frequency
parameter is more significant for larger (e0a) values. It is concluded
that the hard elastically restrained end is more affected from
small-scale (non-locality) parameters.
The first frequency parameter ratio against the non-locality par-

ameter of the nanorod is given in Fig. 5 for different spring para-
meters of S̃L. According to this Figure, it is seen that
approximately for S̃L ≥ 1000 all results converge to the CC case.
It means that when S̃L is large, the vibrational results are very
close to those calculated for the CC case.

6. Conclusion: On the basis of the non-local elasticity theory, the
free axial vibrational response of nanorods under various
boundary conditions has been investigated. A unified analytical
method has been developed, which can be used for a nanorod
with any types of boundary conditions. The general frequency
determinant is obtained by a combination of the Fourier series
expansion and Stokes’ transformation. The main advantage of
this determinant is the capability of considering each combination
of boundary conditions. The validity of this method is established
for CC and clamped-free boundary conditions. The influence of
the non-locality parameter and axial springs on the natural
frequencies is examined in some numerical examples. The
non-local effects are significant when the nanorod length to the
length scale parameter ratio is a small quantity. On the basis of
the results of this study, small-scale effects are more significant
for the CNTs (nanorods) with hard elastic restraints. It is
suggested that by controlling the spring parameters and natural
frequencies, the structure of nanotubes can be produced for
nanosized devices. The non-local (small scale) parameter should
also be considered in the free axial vibration analysis of nanorods
with restrained boundary conditions.
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