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In this reported work, surface effects and non-local two variable refined plate theories are combined on the shear/biaxial buckling and vibration
of rectangular nanoplates. A silver sheet is selected as the case study to investigate the numerical results. Surface effects are considered by
Gurtin‐Murdoch’s theory. The differential quadrature method is used to solve the governing equations. Differential quadrature solutions
are verified by Navier’s method. The influences of the non-local parameter on the surface effects of shear/biaxial buckling and vibration
are investigated for various boundary conditions. Results show that by increasing the non-local parameter, the effects of surface on the
buckling and vibration increase. This result is in contrast with the works of other researchers in the field. Moreover, the non-local effects
on the shear buckling and vibration are more important than that of biaxial, whereas the surface effects on the biaxial buckling and
vibration are more notable than that of shear.
1. Introduction: Nanoscale structures such as nanoplates and
nanobeams have been widely studied by many research groups
because of their superior mechanical properties for applications in
micro/nanoelectromechanical systems. The main feature of
nanostructures is their high surface-to-bulk ratio, which makes the
elastic response of their surface layers to be different from
macroscale structures. Therefore the classical continuum
mechanics cannot describe the surface energy effects. For this
reason, some researchers studied surface effects on the bending,
buckling and vibration of rectangular nanoplates [1–4] and
circular nanoplates [5, 6] based on classical plate theory (CPT).
They reported that surface effects could have significant effects
on the nanostructures. In addition, increases in the thickness
causes reduction of the surface effects. In these works [1–6], the
effects of small scale were not taken into account, and because of
using classical solutions, for example, Navier’s method as used
for simply-supported boundary conditions, the above-mentioned
researchers were not able to study other boundary conditions.
Recently, Ansari et al. [7] and Wang and Wang [8] investigated
surface effects on the bending, buckling and vibration of
nanoplates based on first order shear deformation theory (FSDT)
but without considering the non-local effect. They indicated that
the significance of surface effects on the response of a nanoplate
would rely on its size, type of edge supports and the selected
surface constants.

In nanoscale, the non-local effects cannot be ignored. For this
reason, some researchers investigated the surface effects on the
bending, buckling and vibration of rectangular nanoplates [9], cir-
cular nanoplates [10, 11] and nanobeams [12, 13] considering non-
local theory. They showed that the deflections and frequencies of
nanostructures had a dramatic dependence on the surface effects.
In recent years, Mohammadi et al. [14, 15] studied the small
scale effect on the vibration of nanoplates under biaxial and shear
in-plane loads based on CPT. Moreover, Mohammadi et al. [16]
investigated the shear buckling of orthotropic rectangular nano-
plates based on CPT. In these works [14–16], the effects of
surface were not considered.

An accurate buckling and vibration analysis of a nanoplate
depends closely on the employed plate theory. One of these theor-
ies, two variable refined plate theory (TVRPT), was developed by
Shimpi [17]. In this regard, Narendar and Gopalakrishnan [18],
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Narendar [19] and Malekzadeh and Shojaee [20] investigated
the buckling and free vibration of rectangular nanoplates based on
the non-local elasticity theory. In these works [18–20], surface
effects and shear in-plane loads were not investigated. Malekzadeh
and Shojaee [21] analysed the influences of non-local and surface
effects on the vibration of nanoplates by modifying the original
TVRPT. It is interesting to note that they ignored the displacement
corresponding to shear, us, instead they retained the shear correction
factor to the theory.Moreover,Wang andWang [22, 23] analysed the
buckling and vibration of nanoplates combining both surface energy
and non-local elasticity theory via FSDT and CPT. They showed
[21–23] that by increasing the value of the non-local parameter, the
surface effects on the buckling and vibration could decrease. In
this Letter, we conclude a reverse result.

We have noted that although some studies have been carried out
to analyse surface effects on the buckling and vibrations of nano-
plates, with and without including non-local elasticity theory
based on the CPT and FSDT, there are no investigations regarding
surface effects on the shear/biaxial buckling and vibrations of nano-
plates based on TVRPT. In this Letter, surface effects and non-local
two variable refined plate theories are combined and investigated
regarding the shear/biaxial buckling and vibration of rectangular
nanoplates. Small scale and surface effects are considered by the
Eringen’s non-local and Gurtin‐Murdoch’s theories, respectively.
The differential quadrature method is applied to solve the governing
equations for simply-supported and clamped boundary conditions
accompanied with their various combinations. For validating the ac-
curacy of the differential quadrature solution, the governing equa-
tions are also solved by the classical Navier’s method. Moreover,
the non-local effects on the surface effects of shear/biaxial buckling
and vibration are investigated for various boundary conditions.

2. Formulation: According to Eringen [24], the non-local
constitutive behaviour of a Hookean solid can be defined by the
following differential constitutive relation

(1− g2∇2)snl
ij = Cijkl1kl (1)

where snl
ij , εkl and Cijkl are the stress, strain and fourth-order elastic

tensor, respectively. ∇2 is the Laplacian. g2 = (e0a)
2 is a non-local
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parameter where a is an internal characteristic length and e0 is a
constant. The displacement components in the x, y and z
directions consist of bending, b, and shear, s, as follows [18–20]

u(x, y, z) = ub + us, v(x, y, z) = vb + vs

w(x, y, z) = wb(x, y)+ ws(x, y)
(2)

where
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The displacement field can be obtained using (2) and (3) as
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It should be noted that unlike the FSDT, this theory does not require
a shear correction factor. The linear strain can be obtained from
kinematic relations as
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For an isotropic nanoplate, the stress–strain relation of a bulk
material are expressed by
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where the elastic constants Cij are in terms of the Young’s modulus,
E, and Poisson’s ratio, ν

C11 = C22 =
E

1− n2
, C12 = C21 =

nE

1− n2

C44 = C55 = C66 = G

(7)

where G is the shear modulus. The constitutive relations of the
surface layers s+ and s‒, as given by Gurtin and Murdoch [25],
can be defined as

s s+

ab
= t s+(dab + ua,b)+ (ms+ − t s+)(ua,b + ub,a)
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h
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where δαβ is the Kronecker delta and α = β = γ = x, y. ts±, λs± and μs±

are the residual surface tension under unconstrained conditions, and
the surface Lame constants on the s+ and s− surfaces, respectively.
If the top and bottom layers have the same material properties, the
stress–strain relations become
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The resultant stresses are defined as

Mb
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where Mαβ and Qαβ are the bending moment and transverse
shear force, respectively. Using (1), (4)–(10), the stress resultant
can be expressed in terms of the displacement components as
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Figure 1 Geometry of rectangular nanoplate with surface layers showing
biaxial loading (a) and shear loading (b)
(see (11)) where Aij and Dij are called extensional and bending
stiffness, respectively
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12(1− n2)
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5

6
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Gh3

12
(12)

Using Hamilton’s principle, the equations of motion, considering
both the non-local and surface effects, can be written as [18–21]
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where Nxx, Nyy, Nxy and q are the in-plane and out-of-plane applied
loads, respectively. m0 and m2 are the mass inertias defined as

(m0, m2) =
∫h/2
−h/2
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The vibration response is harmonic; therefore the deflection because
of vibrations of a thin plate can be expressed as

wb(x, y, t) = W b(x, y)eivt

ws(x, y, t) = W s(x, y)eivt
(15)

where ω is the natural frequency and i2 =−1. Using (11)–(15) and
assuming q = 0, the equations of motion for rectangular nanoplates
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can be expressed in terms of displacements Wb and Ws, as follows
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where Es = 2μs+λs. Fig. 1 shows the geometry of the rectangular
nanoplate and the loading conditions.
3. Solution procedure
3.1. Navier’s method: Based on Navier’s method, the exact
solutions for biaxial buckling and vibration, regarding the
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simply-supported boundary condition, are expressed by
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where α =mπ/a and β = nπ/b. m and n are the half-wave number
along the x and the y direction. Substituting (17) into (16), the
following system of equations are obtained
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The determinant of the coefficient matrix in (19) must be zero.
Therefore the buckling load and fundamental frequency under
in-plane biaxial loads are obtained.

3.2. Differential quadrature method: The differential quadrature
method reckons partial derivatives of a function at a specific
point, as a linear weighted sum of function values at all of the
discrete points along the corresponding direction for the variable
over the entire domain of that variable. The mth-order derivative
of a single variable function f(x) at a given grid point i can be
approximated by the differential quadrature solution by N grid
points as
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ij

represents the corresponding weight coefficient related to the
RSnl/nl =
buckling load with no

buckling load with non-local

RSnl/l =
buckling load with non-l

buckling load without both no

VSnl/nl =
natural frequency with

natural frequency with non-loca

Micro & Nano Letters, 2015, Vol. 10, Iss. 6, pp. 276–281
doi: 10.1049/mnl.2014.0651
mth-order derivative. For example, if m = 1, the first-order
derivative is obtained as

C(1)
ij = p(xi)

(xi − xj)p(xj)
, i, j = 1, 2, ..., N , i = j

C(1)
ii = −

∑N
j=1
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where

p(xi) =
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(xi − xj), i, j = 1, 2, ..., N , i = j (22)

The weight coefficients for second- and higher-order derivatives are
obtained by using the following simple recursion relationship
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The number of grid points and their distribution can be selected
arbitrarily in the implementation of the DQM. Based on the
Gauss‐Chebyshev‐Lobatto grid point distribution [26], the
coordinates of the grid points are obtained, as follows

xi =
a

2
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2
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where N and M are the numbers of grid points in the x and y
directions, respectively.

4. Results and discussion: The material properties are taken as
those of silver nanoplate. The material properties of the nanoplate
are: E = 76 GPa, ν = 0.3, ρ = 2250 kg/m3, Es = 1.22 N/m and ts =
0.89 N/m. Suppose h = 2 nm, μs = 0.47 N/m and λs = 0.28 N/m.

For buckling analysis, the buckling ratios are defined as (see
(25)), where the buckling load is introduced by Ncr. For biaxial
buckling Nxx = Nyy = Ncr, Nxy = 0, and for shear buckling Nxx =
Nyy = 0, Nxy = Ncr. For vibration analysis, the natural frequency
ratios are expressed as (see (26)).

The dimensionless in-plane compressive loadings are introduced
by P = N a2/D. The in-plane compressive load for biaxial loading is
Nxx = Nyy = N, Nxy = 0, and and for shear loading is Nxx = Nyy = 0,
Nxy = N. For the sake of brevity, a six-letter symbol is used to rep-
resent the boundary conditions for the following four edges of the
rectangular nanoplate, as shown in Fig. 2.
n-local+ surface effects

effects but without surface effects

ocal+ surface effects

n-local and surface effects

(25)

non-local+ surface effects

l effects but without surface effects
(26)
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Figure 2 Combinations of boundary conditions
S: simply-supported, C: clamped

Figure 3 Buckling ratio, RSnl/l, against non-local parameter for various
boundary conditions, (a = b = 30 nm)
a Biaxial buckling
b Shear buckling

Figure 4 Buckling ratio, RSnl/nl, against non-local parameter for various
boundary conditions, (a = b = 30 nm)
a Biaxial buckling
b Shear buckling
In the FSDT presented by [22, 23], the non-local effect is consid-
ered only for nanoplate bulk, while in the NFSDT presented by
Malekzadeh and Shojaee [21], and the presented TVRPT, the
local effect is considered for both nanoplate bulk and surface. In
addition, in NFSDT, the two theories of FSDT and TVRPT are
combined such that the displacement corresponding to shear, us,
is ignored and instead, the shear correction factor, Ks, is added in-
directly. However, in the presented TVRPT, the displacement, us, is
implemented directly. Consequently, the surface effect for shear is
considered in the formulation directly. Tables 1 and 2 indicate the
dimensionless biaxial buckling load and natural frequencies of
simply-supported square nanoplates considering the surface
effects, respectively. From these Tables, it is observed that the pre-
sented results are in good agreement with those of others reported in
the literature.

From the authors’ viewpoint, a RSnl/nl-type parameter for studying
the influence of non-localness on the surface effect needs to be
defined. Only the surface effect appearing in both the numerator
and the denominator of the RSnl/nl-type parameter would be variable,
while in the RSnl/l-type parameter, both non-local and surface effects
are variables in its numerator and denominator. Thus, increasing the
non-local parameter in the RSnl/nl-type parameter, means that the
effects of surface parameter need to be observed. In comparison,
for the RSnl/l-type parameter, the degree of changes for both para-
meters would inevitably need to be observed. We should note that
Table 1 Comparison of dimensionless biaxial buckling load (Ncra
2/D) for

square nanoplates with all edges simply-supported (a = 10 nm)

g2, (nm2) References a/h = 2 5 10

0 [22] FSDT 8.4543 19.8741 45.8043
[21] NFSDT 8.5249 19.9869 45.8842

present TVRPT 8.6052 19.9950 45.8849
1 [22] FSDT 7.1039 17.2182 42.7225

[21] NFSDT 7.1533 17.2191 42.5363
present TVRPT 7.2204 17.2258 42.5369

Table 2 Comparison of dimensionless natural frequencies (ωa2(ρh/
D11)

0.5) for square nanoplates with all edges simply-supported (a = 10 nm,
P = 0)

g2, (nm)2 References a/h = 2 5 10

0 [23] FSDT 12.4500 19.3883 29.8513
[21] NFSDT 12.4942 19.4378 29.8757

present TVRPT 12.5359 19.4412 29.8759
1 [23] FSDT 11.4139 18.0474 28.8200

[21] NFSDT 11.4448 18.0417 28.7651
present TVRPT 11.4828 18.0446 28.7652

Figure 5 Natural frequency ratio, ΩSnl/nl, against non-local parameter for
various boundary conditions, (a = b = 30 nm, P = 10)
a Biaxial in-plane load
b Shear in-plane load
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some authors [21–23] used the RSnl/l-type parameter and mentioned
that by augmenting the non-local parameter, the surface effects on
both buckling and vibration would diminish.

Figs. 3–5, respectively, show the effects of the non-local parameter
on the RSnl/l, RSnl/nl andΩSnl/nl-type parameters of a square nanoplate
for the above-mentioned boundary conditions. From Fig. 3, it can be
seen that by augmenting the non-local parameter, theRSnl/l-type para-
meter reduces. Moreover, it is observed that the non-local effects are
more pronounced for the CCCC boundary condition, as compared
with the SSSS boundary condition. Therefore the effect of the non-
local parameter seems to show itself in the following order of magni-
tude for different in-plane loading and different boundary conditions
Micro & Nano Letters, 2015, Vol. 10, Iss. 6, pp. 276–281
doi: 10.1049/mnl.2014.0651



in buckling problems, respectively: biaxial and shear, and SSSS,
SSSC, SCSC, SSCC, SCCC and CCCC. For biaxial buckling prob-
lems, the in-plane compressive loading is applied from all four sides
of the plate, while for shear buckling problems, this in-plane shear
loading could be equivalent to two uniaxial compressive and
tensile crossing loads on the principal planes and directions. Thus,
the plate stiffness should be the highest for the shear buckling case,
and the lowest for the biaxial case.
From Figs. 4 and 5, it is found that as the boundary conditions

become more rigid, the RSnl/nl and ΩSnl/nl-type parameters decrease.
Therefore the surface effects would reduce. In addition, as the value
of the non-local parameter rises, the RSnl/nl and ΩSnl/nl-type para-
meters would advance; therefore the surface effects would also
rise. Therefore the degree of surface effect seems to exhibit itself
in the following order of magnitude for different in-plane loading
and different boundary conditions, respectively: shear and biaxial,
and CCCC, SCCC, SSCC, SCSC, SSSC and SSSS. The non-local
parameter would seem to have a compliant effect on the structural
behaviour of a plate, while the surface effect parameter would have
a stiffening effect. Having this in mind, by increasing the non-local
parameter, both the numerator and denominator of the RSnl/nl and
ΩSnl/nl-type parameters would decrease simultaneously, but
because of the presence of the surface effect parameter in the nu-
merator, it would be decreased less than its denominator. Thus,
the RSnl/nl and ΩSnl/nl-type parameters would be raised.
Consequently, by augmenting the non-local parameter further,
these RSnl/nl and ΩSnl/nl-type parameters would get larger and the
surface effect would show itself more. As far as switching from
the boundary conditions having the property of completely free
rotations, such as simply-support, towards the boundary conditions
having more restraint on the rotations, for example, clamped, as
well as switching from biaxial loading towards shear loading, the
non-local effect would indicate itself more strongly since this
effect could have an inherent compliant property. It is noted that
biaxial loading is classified as the worst loading, but shear
loading as the most stable loading, because of producing more stiff-
ness in the plate during buckling and vibration. On the contrary, the
surface effect would manifest itself weaker, since it could have an
inherent property of stiffening.

5. Conclusions: In this Letter, surface effects and non-local two
variable refined plate theories are combined and investigated
on the shear/biaxial buckling and vibration of a rectangular
nanoplate. The differential quadrature method was applied to
solve the governing equations for buckling and vibrations of a
nanoplate. The non-local effects on the surface effects of shear/
biaxial buckling and vibration were investigated for various
boundary conditions. It was found that non-local parameters were
significant regarding the surface effects. In addition, the surface
effects on the buckling and vibration were remarkable such that
they cannot be ignored. From the results of the present study, the
following conclusions are important:

† As the boundary conditions become stiffer, that is, moving from
SSSS towards CCCC, the non-local effects would increase, but the
surface effects on the buckling and vibration reduced.

† The effects of the non-local parameter on the shear buckling and
vibration were more notable than that of the biaxial, while the
values of surface effects on the biaxial buckling and vibration
were more important than that of shear.

† By increasing the non-local parameter, the values of surface
effects on the buckling and vibration were enhanced. This result
was in contrast to the works of other researchers in the field.
Micro & Nano Letters, 2015, Vol. 10, Iss. 6, pp. 276–281
doi: 10.1049/mnl.2014.0651
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