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The nonlinear dynamics of a bistable micro/nano-electro-mechanical system resonator composed of an arch-shaped microbeam is investigated.
The initially curved microbeam is actuated through a combined DC and AC electrostatic parallel plate field. A single degree of freedom model
obtained using the Galerkin’s decomposition method with distributed electrostatic force is implemented in order to investigate the resonator
dynamics near its primary resonance. According to the shape of the potential energy function which depends on the system parameters, the
nonlinear dynamics of the system are classified into certain categories. The appearance of various nonlinear phenomena including dynamic
snap-through, dynamic pull-in, chaotic or large amplitude vibrations, hysteresis and softening-type behaviours are discussed within the
introduced categories. A typical case scrutinised on detail, showing consequent snap-through instabilities which are responsible for
transitions between the present stable configurations of the arch-shaped microbeam. Details of the resulting hysteresis loop governing
these transitions are discussed. Moreover, discussion is provided about the formation of the hysteresis loops which can affect the filtering

functionality of the proposed bistable MEMS resonator.

1. Introduction: Bistable MEMS devices have attracted a growing
attention in the research community in recent years. Numerous
investigations were motivated by the interesting applications of
bistable MEMS devices such as microrelays [1], actuators [2],
switches [3], MEMS-based mechanical memory [4] etc. The
system capability to operate in more than one stable configuration
at fixed values of the parameters is referred to as bistability.
A MEMS device comprised of an initially curved shallow
microbeam can be categorised as in the so-called family of
bistable devices. These mechanically bistable MEMS devices are
vulnerable to a nonlinear phenomenon, namely, snap-through,
which is responsible for the mechanical transitions of the micro
arch between its stable configurations.

Some researchers have investigated the static snap-through re-
sponse in electrostatically actuated bistable MEMS devices.
Zhang et al. [5] studied experimentally the bistability of an initially
curved micro-machined beam. They introduced snap-through as a
no-power-consuming mechanical jump without pull-in which can
be implemented in the development of highly sensitive sensors.
Krylov et al. [6-9] have reported analytical and experimental inves-
tigations on the dynamics of initially curved MEMS. Finite element
and boundary element methods were implemented in the work of
Das and Batra [10], as part of treat as an attempt to study pull-in
and snap-through instabilities. Mohammad and Ouakad [11] have
recently discussed the dynamics of a free-of-pull-in arch MEMS
actuated by fringing electrostatic fields.

A few groups have focused on the resonant behaviours of
bistable arch-shaped microbeams. Casals-Terre ef al. [12] presented
an arch-shaped double clamped microbeam under combined DC
and AC electrostatic actuations. Quakad and Younis [13] studied
an arch-shaped MEMS resonator. They studied the dynamic behav-
iour of the resonator by the Galerkin projection method. Moreover,
they implemented the multiple scales method to study the response
of the resonator under small DC and AC actuations. Younis et al.
[14] investigated theoretically and experimentally an arch-shaped
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MEMS resonator. They studied various nonlinear phenomena in-
cluding dynamic snap-through and pull-in, via their simulations
and the reported experimental data. They also suggested these
types of MEMS to be used as low-powered switches or bandpass
filters. In recent investigations, Ouakad [15] and Ouakad and
Younis [16] have reported further discussion on the application of
these types of MEMS as bandpass filters. Furthermore, the present
authors have proposed an analytical approach, namely, the homotopy
analysis method, for the study of the nonlinear frequency response of
arch MEMS resonators [17]. Moreover, in a recent work [18], we
have focused only on the possibility of chaotic vibrations in arch
MEMS resonators, and we have discussed the effects of various
parameters on the formation of chaotic behaviours.

The above state-of-the-art summary of the dynamics of arch-
shaped MEMS resonators reveals a need for a further and deep
study of the nonlinear dynamics of these micro-systems. In other
words, comprehensive work seems to be needed in order to verify
the conditions in which various nonlinear phenomena can possibly
take place. These phenomena include dynamic snap-through,
dynamic pull-in, hysteresis, softening behaviour and large ampli-
tude limit cycles or chaotic vibrations. Note that the present
Letter is clearly different from the authors’ previous works since
only bistable [17] and chaotic [18] vibrations are proposed in our
previous works, while the possibility of the appearance of all
other nonlinear phenomena is discussed in this Letter.

In this Letter, we present a classification for the non-linear
dynamics of an arch-shaped resonator. For this, we classify the
dynamic behaviours according to the shape of the resonator’s po-
tential energy function. It is assumed that a double clamped
micro arch under combined DC and AC electrostatic actuations
acts as a resonator near its first fundamental frequency. The shape
of the potential energy function, which helps to classify the non-
linear dynamics of the micro arch depends on its geometrical para-
meters and the applied DC voltage. Other parameters such as the
damping and the AC load are determinant in the formation of the
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behaviour of the micro-system. The possibility of the appearance of
nonlinear phenomena is studied in each classification category. We
show that, for each of the nonlinear behaviours, certain conditions
need to be satisfied. For instance, requirements for the filtering
functionality of the investigated bistable MEMS are satisfied only
in one of the investigated categories. Moreover, we propose the
formation of hysteresis loops in the frequency response of the
system, and show that such a nonlinear behaviour can critically
affect the recently proposed filtering functionality of the system.
This Letter continues with the presentation of the mathematical
model in Section 2. Classifications of the nonlinear dynamics of
the investigated curved microbeam are given in Section 3. This
Letter ends with our conclusions in Section 4.

2. Mathematical modelling: An initially curved microbeam, as
schematically shown in Fig. 1, is considered in this Letter. An
electrostatic load imposes a lateral deflection of the arch which is
governed by a partial differential equation on the basis of the
Euler-Bernoulli and shallow arch assumptions. Implementing the
first-mode Galerkin projection method, one is left with a
nonlinear ordinary differential equation governing the first modal
displacement of the arch g as a function of non-dimensional time 7

dq  dq
—_— —_— F =
g2 thg, TF@=0,

B(1 4+ 2R cos (w,7)) M

2000v/(1 +h — q)°

where @ is the non-dimensional stretching parameter, o is a constant and u
represents damping effects. Moreover, 4, 8, R and @, stand for the
non-dimensional initial elevation, DC voltage, DC-AC voltage ratio and
actuation frequency, respectively. For definition of the so-called
parameters as a function of the resonator’s geometry and material, and for
details of its derivation, see [17, 18].

For the study of the resonance behaviour of the arch near its first
fundamental frequency, we assume that o, is given by

F(q) = (1 + 2h*a)q — 3ahg* + aq” —

oF
wy=A+0, N> =— )
0l

It will be shown later in this investigation that the potential function
plays an important role in the initiation of various nonlinear
dynamic behaviours of the micro-arch resonator. Before further dis-
cussing this, we start by calculating the potential function of the
micro-resonator in this Section. To derive this function, we first
eliminate the damping term from (6) as well as the AC loading
term. Then, the potential function U(g) can easily be calculated
by integrating F(g) neglecting the effect of R

1 _ a B
U =|s+ah’ )¢ —ahg +—¢' — —————= (3
(@) <2+a )q ahq” + 4 an /T =7 (3)

It is clear that the shape of potential function depends on S and 4.

fixed electrode |

Figure 1 Schematic of the arch resonator
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Figure 2 Classification of the shapes of potential function

Moreover, extremums of U(g) are equal to the fixed points of (1).
Thus, for various values of § and /4, various numbers of minima
and maxima appear in the potential function. For certain values
of h> h* for which bistability occurs [9], different shapes of U(g)
are possible depending on the applied DC voltage parameter. We
classify the possible potential function shapes into four major cat-
egories in Fig. 2. Note that both go; and go, address the stable
fixed points, where ¢, and g, represent unstable fixed points relating
to the snap-through and the pull-in instabilities, respectively.

3. Classification of dynamic behaviour: For certain values of the
arch initial rise 4 and an applied DC voltage S, the shape of the
potential function is qualitatively similar to one of the four cases
of Fig. 2. However, the exact dynamic behaviour of the system
depends on the other parameters including the AC voltage load
described by parameter R, its forcing frequency detuning parameter
o and the damping coefficient 4.

In the next subsections, we discuss the various dynamic beha-
viours of the system for each of the four categories of Fig. 2. For
each case, we examine various dynamic forcing conditions of the
applied AC load and damping. Then we study a micro arch-shaped
beam of length L =1000 um, thickness d =3 um, width =30 um
and gap go=10pum, which contribute to the constants of
a=7.993 and a;,=198.436.

3.1. Category A: As shown in Fig. 2, category A represents the
condition for which either 4 is lower than 4*, forming only one
stable fixed point or B is lower than the bistability condition. In
other words, in the phase plane of the system a centre
representing the stable fixed point and a saddle representing the
unstable fixed point exist. In this case, for sufficiently low values
of R and high values of u, vibrations in the phase plane are
enclosed by the homoclinic orbit corresponding to the pull-in
saddle node. Hence, the maximum allowable response amplitude
amax 18 equal to the amplitude of the homoclinic orbit. Fig. 3
shows the frequency response in this case for #=0.38, § =90,
R=0.02 and ¢ =0.02. Note that for obtaining these frequency
responses, only values of o changing from a negative value to a
positive value and vice versa are considered. Hence, the
steady-state amplitude as well as the arch mean vibration value is
recorded at each step.

3.2. Category B: The phase plane corresponding to category B
consists of two centres representing the stable fixed points as well
as two saddle nodes representing snap-through and pull-in
instabilities as in Fig. 2. In this particular case, which is typically
represented by £=0.34 and B =130, the potential function
possesses a larger potential at the pull-in saddle node than that of
the snap-through saddle node. Thus, the snap-through instability
occurs first without any pull-in instability. Hence, snap-through
instability is possible to occur over and over, making it a possible
configuration undergoing a chaotic vibration. Depending on the
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Figure 3 Typical frequency response for Case A

a Ratio of the output amplitude to input amplitude parameter R against
frequency of the applied AC load

b Corresponding mean of the vibration against frequency

forcing amplitude as well as the damping coefficient, four types of
dynamic behaviours are possible in this particular category, which
can be summarised as follows.

Case B.1: For small values of R (AC load) or high values of u
(damping), the amplitude of the arch dynamic response does not
exceed the critical amplitude of the snap-through homoclinic
orbit. This behaviour is qualitatively similar to that discussed in cat-
egory A and shown in Fig. 3, with some differences in the jump
frequencies.

Case B.2: For relatively high values of R (AC load), the arch
dynamic response amplitude exceeds the critical snap-through
homoclinic amplitude, making it possible for the snap-through to
occur. Since the potential of the two centres are almost same, it is
possible for the system to snap back to the domain of attraction
of the initial centre. This may lead to a possible steady-state
chaotic behaviour as discussed in detail previously [18].

Case B.3: It is possible for the dynamic response amplitude to
exceed the critical snap-through value while being lower than the
pull-in critical value. This allows a larger amplitude of vibrations
to appear by passing the two fixed points periodically as shown
in Fig. 4 which is obtained for values of R=0.032, u1 =0.013
and o=—0.21.

Under forward and backward frequency sweeps, hardening be-
haviour of the system under large amplitude vibrations is depicted
in Fig. 5, where for the system parameters of Case B.3, simulations
are performed to obtain the steady-state frequency response. For
this, only the forcing frequency is tuned in backward and forward
directions. Then, for each frequency, the mean as well as the
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Figure 4 Time series response and corresponding phase plane for the large
amplitude vibrations for the Case B.3

amplitude of dynamic vibrations are recorded. It is clear that the
system shows a hardening type of behaviour for large amplitude
vibrations corresponding to a larger mean of vibration. This can
be a justification for what has been reported in previous works
[13, 14].

Case B.4: With further increasing the amplitude of the AC actuation
or decreasing the value of damping parameter, big values of the
dynamic response amplitude are recorded. This causes the system
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Figure 5 System response under backward and forward frequency sweeps

for Case B.3

a Amplitude ratio
b Mean of vibrations
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to reach the critical amplitude imposed by the pull-in homoclinic
orbit, and consequently leads to pull-in.

3.3. Category C: As shown in Fig. 2, category C represents the
condition for which two centres and two saddle nodes exist in the
phase plane. The key feature of this particular case, which is
represented by typical values of #=0.38 and =117, is that the
potential of the pull-in saddle node is larger than that of
snap-through saddle node. Moreover, the potential of one of the
stable centres is lower than the other. This leads to a possible
snap-through motion without any pull-in and with possible
transition between the stable points. Now, depending on the
forcing amplitude as well as the damping coefficient, three types
of dynamic behaviour are possible in this particular category,
which can be summarised as follows.

Case C.1: For relatively small values of R (AC load) or for high
values of i (damping), the dynamic response amplitudes for this
category do not exceed the snap-through critical value. As a conse-
quence, a classical softening behaviour is expected in this particular
case.

Case C.2: When R is selected sufficiently large to cause the reson-
ance response amplitude to reach the critical snap-through ampli-
tude, it is possible for the resonator to jump to the domain of
attraction of the next centre due to the snap-through motion.
Moreover, it is possible for the system to jump between the two
stable domains of attraction. To study these stable transitions in
detail, we have proposed four types of simulations for this particular
case [17]:

1. Around the lower fixed point starting with large frequencies.

2. Around the higher fixed point starting with large frequencies.
3. Around the lower fixed point starting with small frequencies.
4. Around the higher fixed point starting with small frequencies.

In all of the above considered different simulations, the applied
forcing frequency is selected close to the fundamental natural fre-
quency of the arch. Fig. 6 displays the mean of the dynamic vibra-
tions against applied forward and backward frequency sweeps for
the above four simulation cases. Values of #=0.38, § =157, R=
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Figure 6 Mean of the vibrations against applied frequency in forward and
backward frequency sweeps of Case C.2

a Type 1 simulations

b Type 2 simulations

¢ Type 3 simulations

d Type 4 simulations
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Table 1 Critical frequencies and their definitions for Case C.2

Critical Explanation

frequency

o= 0.86 jump from the lower to higher fixed point in the

forward frequency sweep path

o yr=0.92 jump from lower to higher fixed point in the backward
frequency sweep path

oy =1.03 jump from higher to lower fixed point the forward
frequency sweep path

oy r=1.20 jump from higher to lower fixed point in the backward

frequency sweep path

0.022 and ¢ =0.03 are used in these cases. Fig. 6 shows interesting
dynamic behaviour of the transitions between the two stable solu-
tions. These transitions are due to the dynamic snap-through occur-
ring due to the resonance around each stable configuration. The
other interesting behaviour is the sharp roll-off frequencies shown
in Fig. 6. Tajaddodianfar et al. [17] have proposed the so-called
sharp roll-off frequencies in four types, as given in Table I;
values of which are associated with simulations of Fig. 6.

For detailed description of each simulation see [17].

Analysis of the given four types of simulations reveals the fol-
lowing points for these types of behaviours:

1. It seems that there exist two softening type frequency responses,
each one corresponding to one of the stable fixed points. The total
frequency response is obtained by combination of the two fre-
quency responses. Transition between the branches of the two
responses occurs in the neighbourhood of the critical frequencies.
Note that the necessary condition for these transitions is that the re-
sponse amplitude given by each of the frequency response reaches
the critical amplitude of the homoclinic orbit. For an analytical ap-
proach for the derivation of these frequency responses, see [17].
2. The whole frequency responses shown in Figs. 6a and d are the
same, and constitute a closed hysteresis loop which can be passed
repeatedly only by varying the actuating frequency. However, the
frequency responses shown in Figs. 6b and ¢ do not form a
closed cycle. The other result is that, in case of repeating the actu-
ating cycle in Figs. 6b or ¢, they are transformed to what is shown in
Figs. 6a or d. Thus, we can infer that the response shown in Fig. 6a
is dominant.

3. For development of the interesting behaviour in Case C.2, the
potential function value of one of the fixed points should not be
too small with respect to the other one. Otherwise, the critical am-
plitude of the snap-through homoclinic orbit grows and hence
would be unreachable by the fixed AC load value. This definitely
can prevent repeatable transitions between the stable fixed points.
4. When the response of the resonator obtained either at the back-
ward frequency sweep in Fig. 6b or at the forward frequency sweep
in Fig. 6¢ is considered, the functionality of the resonator as a band-
pass filter is concluded. However, the four types of simulations per-
formed in this Section suggest that the total behaviour of the system
is different, forming a hysteresis loop which can affect the filtering
functionality. This is a critical point which should be considered in
the application of bistable MEMS as bandpass filters [15, 16].

5. Simulations show that the system response in forward and back-
ward frequency sweeps is can possibly to be different. This has
been observed experimentally by Oukad and Younis [16]. Thus,
the proposed simulations can be interpreted as the justifications
for what is already observed experimentally.

Case C.3: For certain values of parameters R, o and y, it is possible
to form a condition for which the dynamic response amplitude
would be larger than the critical values of the snap-through homo-
clinic orbits, but less than that of the pull-in instability. In this case,
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Figure 7 Time series response and corresponding phase plane for Case C.4
undergoing dynamic pull-in
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Figure 8 Time series response and corresponding phase plane for Case
D.2 undergoing dynamic pull-in

a large periodic amplitude behaviour is expected. This is qualita-
tively similar to what is depicted in Fig 4 and discussed. The
large amplitude vibrations were basically obtained for the following
values: R=0.03 4 =0.015and 0 = —0.19.

Case C.4: With further increase in R or decrease in u with respect to
Case C.3, dynamic vibrations reach the critical amplitude of the
pull-in homoclinic orbit. This case is mainly describing the
pull-in instability scenario that we got using the following values:
R=0.04, u=0.01 and =—-0.19. This is shown in Fig. 7.

3.4. Category D: As shown in Fig. 2, the main characteristic of this
category is that the potential of the pull-in saddle node is less than
that of the snap-through saddle nodes. For instance, for values of
h=0.4 and S=180 this particular case appears. Two types of
behaviours are possible in this case, as follows.

Case D.1: For small values of R or high values of u, and provided
that the dynamic response amplitude does not reach the critical
values imposed by the snap-through homoclinic orbits, the
system acts, in this case, as a regular resonator with a softening-
type behaviour. The frequency response behaviour in this case is
qualitatively similar to that of Case A.1 shown in Fig. 3.

Case D.2: When values of 1 and R are appropriately selected to
make the dynamic response amplitude to reach the snap-through
critical value, the dynamic snap-through instability occurs.
However, since the potential of the pull-in saddle is lower than
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that of the snap-though one, the system undergoes a direct
pull-in. In other words, it is not possible in this case to have
stable snap-through, and any dynamic instability will result in a
dynamic pull-in. This is also the case when the response approaches
the pull-in homoclinic orbit shown in Fig. 8, for values of R=0.02,
£=0.03 and o=-0.16.

4. Conclusions: A single degree of freedom reduced-order model is
used to perform dynamic behaviour analysis of a shallow
arch-shaped microbeam used as a MEMS resonator. Possible
dynamic behaviours of the resonator are classified based on the
shape of its potential function. Conditions for the appearance of
various scenarios such as softening frequency response, dynamic
snap-through, dynamic pull-in, large amplitude and chaotic
vibrations are discussed.

It is shown that for small values of R (ratio of the AC voltage
to DC voltage) the proposed arch acts as a typical resonator
showing softening behaviour near its primary resonance. Once
the response amplitude reaches the amplitude of the corresponding
snap-through homoclinic orbit, the resonator undergoes either a
chaotic behaviour (Case B), a dynamic snap-through (Case C) or
a definite dynamic pull-in (Case D). In all cases, as the response
amplitude reaches the pull-in homoclinic orbit, the dynamic
pull-in instability occurs. Large amplitude of vibrations due to
limit cycles in the phase planes are also possible for some types
of potential function and excitation parameters (as discussed in
cases B and C).

We have shown that in certain conditions the arch MEMS can
possibly undergo chaotic vibrations. Moreover, we showed that
the large amplitude vibrations of the resonator, which are practically
important because of the enhanced gain of the resonator in such
case, are possible to take place at Case B.3. Moreover, we have
shown the hardening behaviour of the resonator in this case; the
given discussion can be a justification for the already reported be-
haviour of the system [13, 14].

It is also shown that stable transitions between the fixed points
are possible at certain conditions (Case C.2). According to the
simulations of this particular case, vibrations of the resonator may
jump from the vicinity of one stable point to the other due to reson-
ance. This takes place only by the sweeping of the actuating AC fre-
quency. This case was shown to be practical and interesting,
especially for MEMS-based filters. We have shown that the
system response in forward and backward frequency sweeps can
differ. This phenomenon, which was recently observed experimen-
tally [16], can be justified by the proposed simulations in Case C.2.
Moreover, through the proposed simulations, we have shown that
the hysteresis loops are the dominant behaviour of the bistable res-
onator. Therefore this nonlinear phenomenon can significantly
affect the recently proposed filtering functionality of the bistable
MEMS resonator, and should be considered in the design procedure
of this family of MEMS-based filters.

Finally, we have shown that, in Category D, although the system
is statically bistable, any snap-through motion will be immediately
followed by the pull-in instability. Therefore, the bistable nature of
the resonator in this case cannot be functionally beneficial.
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