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The buckling of elastically restrained embedded microbeam under axial compression load is researched. The effects of small size, axial
compression load and surrounding elastic medium are taken into account at the same time. Winkler elastic foundation approach is used to
simulate the interaction between microbeam and elastic medium. Fourier sine series is employed for the simulation of microbeam
deflections. A coefficient matrix is obtained with the aid of applying Stokes’ transformation to corresponding boundary conditions. The
buckling characteristics of elastically restrained embedded microbeams are investigated in some numerical examples. There are very good
agreements between this study and the previous results indicating the validity of the presented method.

1. Introduction: Microbeams have been widely used in nano and
micro-electro-mechanical systems. The characteristic dimensions
of microbeams are typically on the order of microns and
sub-microns. It has been shown in some experimental studies that
the structures become stiffer in smaller sizes [1-3]. The
experimental results reveal that classical elasticity theories do not
have the ability to predict the size-dependent deformation
behaviour of nano- and micro-sized structures. In order to be able
to understand the mechanical behaviours of these structures,
several non-classical continuum theories have been developed
such as micropolar theory [4], couple stress theory [5-7], strain
gradient theories [8, 9] and non-local elasticity theory [10, 11].

Non-local elasticity theory states that stresses at a reference point
are a function not only of the strains at that point but also a function
of the strains at every points in the domain [11]. This theory is a
popular technique for modelling mechanical behaviour of carbon
nanotubes (CNT) [12, 13]. Reddy and Pang [14] have presented
Timoshenko beam and the Euler-Bernoulli theories using the non-
classical constitutive relations of Eringen [11]. Some of researchers
have investigated the static behaviours of single walled, double and
multi-walled CNT such as [15, 16]. Pradhan and Murmu [17] have
presented a single non-local beam model to investigate the static
and dynamic characteristics of a nanocantilever beam. Dynamical
behaviour of CNT embedded in an elastic medium has been exam-
ined by some researchers such as [18, 19]. Free vibration behaviour
of CNTs have been considered by some researchers [20, 21]. Free
axial vibration of the nanorods has been considered by Aydogdu
[22]. The small size effects on free axial vibrations of heterojunc-
tion CNTs based on the classical and non-classical rod theories
have been investigated by Filiz and Aydogdu [23].

Yang et al. [24] have proposed the modified couple stress theory
in which only one material length scale parameter is introduced.
Thereafter, the modified couple stress and strain gradient elasticity
theories have been widely applied to the static, stability, and
dynamic analysis of microbeams [25-27].

A short review of literature reveals that most of the theoretical
works devoted to the buckling problem are based on the assump-
tions that the boundary conditions are non-deformable. In this
work, stability analysis of embedded microbeam with deformable
boundary conditions is performed. Fourier sine series is employed
for the simulation of microbeam deflections. A coefficient matrix is
obtained with the aid of applying Stokes’ transformation to corre-
sponding boundary conditions. A detailed parametric study is per-
formed to indicate influences of material length scale parameter,
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spring and Winkler parameter on critical buckling loads of embed-
ded microbeams. There are very good agreements between this
study and the previous results indicating the validity of the
presented method.

2. Problem definition and modelling: It can be noted that the
microbeams could be used as atomic force microscope (see
Fig. 1). During an experiment, micro-sized samples may behave
as attached linear spring to the testing device and this may affect
the buckling (stability) behaviour of the atomic force microscope.

Unfortunately, the previous gradient elasticity beam models
based on Euler Bernoulli beam theory mostly faces the following
problem: The well-known gradient elasticity models are mostly
based on microbeams with rigid boundary conditions (simply sup-
ported, clamped-clamped, clamped-pinned). There are only a few
reports on the microbeams with restrained boundary conditions.
However, in practical engineering, the end supports of microbeam
is not limited to rigid boundary conditions. In this work, elastic
buckling behaviour of size dependent microbeams resting on
elastic foundation under deformable boundary conditions is
studied based on a gradient elasticity theory. Consider a microbeam
which is subjected to an in-plane axial load P, and the both side of
the microbeam is movable in a vertical direction.

Strain gradient elasticity theory proposed by Papargyri-Beskou
et al. [28] is used in this Letter. According to this theory, the gov-
erning differential equation of a microbeam embedded in elastic
medium is given by

d*w dw d*w
El— —ElyY—+4+P—+kw=0 1
ot 3,2 oo + o2 + M

where x is an independent variable, w denotes the vertical displace-
ment of the microbeam. E7 is the flexural stiffness of the microbeam
and y is the material scale parameter. / represents the moment of
inertia, k represent the constant of the foundation, known as
Winkler’s constant. The microbeam is made of homogeneous iso-
tropic linearly elastic material with Youngs’ modulus £ (Fig. 2).

3. Modal displacement function: In the strain gradient elasticity,
Fourier sine series expansion together with Stokes’ transformation
will be used to represent the lateral deflection of microbeam. This
method gives more flexibility to treat deformable boundary
conditions. The modal displacement function W(x) which is
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Fig. 1 Schematic drawing of atomic force microscope
analytically equal to vertical displacement w(x) of the microbeam is

described in three separate regions, two for supporting points and
the other for the intermediate places between the supporting points

wix) =W, x=0, )
wx)=W, x=1L, (3)
w(x) = W(x) = iA,, sin(?) 0<x<lL, )
n=1
with
4 -2 - o sin(™™) dr s
n= ZJ.O (x) sm(T) . 5)

It should be noted that the two boundary points, x=0 and x=1L,
have been excluded in (4) since the Fourier sine series may not
converge to the true displacement values in the boundary points.
Equations (2) and (3) allow freedom in choosing the lateral
displacement function. Term wise differentiation of (4) yields

> nw namx
W =Y 4, c0s(" ), 6
(=3 T A eos(") ©)
W'(x) can be represented by a Fourier cosine series
, by narx
W) =2+ ;bn cos<T>. %)

The coefficients (by, b,) in (7) are given by
2(F 2
by=7| Wkydy =7 [W(L)— W(0)], ®)
0

b, = %j W(x)cos(

X
L L

)dx n=1,2..., )

F P
_—

41%%55 = §E?§ ===

Fig. 2 Microbeam embedded in an elastic medium with deformable bound-
ary conditions
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by applying integration by parts

b= [rooe("T],

2 Tna (* . /NTX
+7 [T L W(x) sm(T) dx], (10)
2 " nm
b, = Z[(—1) W(L) — W(0)] +TA,1. (11)

The above procedure is known as Stokes’ transformation. To
compute the series expressions for the higher order derivatives of
a Fourier sine series, Stokes’ transformation should be utilised.
The present solution method (Fourier series and Stokes’
transformation) will be helpful when dealing with microbeams
with deformable conditions. The first-sixth derivatives of W(x)
can be determined by applying Stokes’ transformation as follows

dW(x)y W, —Ww,

de L

+ Zcos a,x) (%jL anAn>, (12)
2

d W(X) Za SlIl a, X

(TR ) )
L
Ewey  wi—wy
o3 L
+ ; cos (e, x) (—2((_ D VZL —Wo)

2 (2((_1)nim —) Aﬂ))) (14)

4 ) 1y %
WD 5 e (2«—1) Wi —W5)
n=1

dx*

L
_a2<w_{_an‘4n>)’ (15)

dS W(X) B WZ/// _ W(;///
s L

+ Zcos(xa )( (w+ anAn>
— 2an((_ 1)7: WL/, - Wé/) n 2((— 1)" WL”” _ W(;”/)>
L L 9

(16)

6
d dvzgx) Z a, sin(xa,) x < (W_F anAn>

20D W) AW~ Wé”’))

L L
(17

where
o, =—. (18)

The main objective is to seek series solutions for the displacements.
To do this, the Fourier coefficients which simultaneously satisfy the
governing equation need to be determined. Therefore, substituting
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(4), (13), (15) and (17) into (1), the Fourier coefficients 4, can be
written in terms of different parameters as follows

20,(=B, + (1" (EIg, + W,P,) + WP,

A = . , 19
n 15, (19)

where
B, =Y EIW;" + W (Y Ela, +EI), (20)
Go=—V W+ VWi, + W, @1
P, =P—Ela,(Ya,+1), (22)
P,=YEld,+Ela, —P, (23)
P.=YEld}+Ela)+k— P, (24)

The lateral displacement function of a microbeam having no axial
restraints at both ends becomes

W iZan( —B, +(— 1)"(E1~¢,, + WP+ W,P,)
LP,

n=1

x sin(a,,X).

25

It should be note that the above equation is reduced to that of the
classical relation wherein the small scale parameter is set to zero.

4. Boundary conditions: A microbeam of length L and with
deformable boundary conditions is considered as in Fig. 1. Based
on the strain gradient elasticity it is then seen that the following
force boundary conditions at the spring locations can be written as

w &Ew ‘w
m%:Pd—w( —fi—) x=0,  (6)

dx dx3 dx?
dw &wo L dw
XLWL—PE—EI(W— $>, x:L, (27)

where y, and y; denote the stiffnesses of the springs at the ends of
the microbeam. Moreover, the other boundary conditions are also
presented as [28, 29]

We=wy"=0, x=0, (28)
wi=w/"=0, x=L. (29)
After some mathematical manipulations, the substitution of (12),

(14), (16) and (19) into (26)—(29) leads to the two homogeneous
simultaneous equations

> P, + 7 & n* + 7n?
P,,+)(0+Z 2K (P, > ) W,
— 2P, + K + 7081 4 mn

. wZK_lnﬁ+482 +22
+<_Ph_z ( ~)(b ™ n 77-}1) WLZO,

~ 2P, + K + 7680 + mint

(30)
» i 2K(=1)" (P, + 7 &n* + 7°n’) -
b — —n2P, + K + 78 n + mnt 0
> 2K(P, + &t + 772112)
+( Py + 3+ =0,
< bt X Z — 2Py + K + 7806 4 mnt
(€3]
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where
5=7, (32)
. PL?
Pb = ﬁ’ (33)
KL}
K="r (34)
3
N (12
%o =5 (35)
3
x.L
X = —fw , (36)

where Y, and }; are the dimensionless stiffnesses of springs. If ¥,
and Y, approache 0, these boundaries degenerate to free ends, while
if X, and %; approache infinity, they degenerate to simply supported
ends. One can obtain the following system of linear equations in
matrix form to be solved for the constants (W, W;)

b1 ‘f’lz][ ]_
|:¢21 ) O G7)

where
2 2K(Py + 780 + wn?)
=P+ ¥+ , (8
o » T Xo Z —mn2P, + K + 7581t 4 whn %)
by, = —F ffﬂ—wm+ﬁ§”+*ﬂ (39)
BT L Pe2P, + K+ w08t + it
b =P =\ 2K(=1)'(Py + 7' 80’ + ) (40)
1 — b —ﬂznzi’b+K+7T652n6+7T4n4,
i ZK(}N)b + m*&nt + 772”2) (41)

=Py +x + . :
P =Ft ; — 2P, + K + 78808 4 mn

Equation (37) defines an eigenvalue problem. The critical buckling
loads can be computed by setting the following determinant to zero.

,j=1,2). (42)

The characteristic equation of above determinant can be solved by
assigning the different values of ¥, and }; corresponding to the end
springs.

5. Results and discussions: In this section, some numerical
examples will be presented. The accuracy and validity of the
suggested method is checked by comparing the calculated results
with those given in the literature. Moreover, the effects of the
main parameters including Winkler modulus, the small scale
parameter and the boundary conditions on the critical buckling
loads of the microbeam are also studied. A computer code is
developed in MATLAB based on (42). As eigenvalues of
coefficient matrix are sensitive to truncated terms, a convergence
test is performed to determine the minimum number of terms
required to obtain accurate results for (42). In this numerical
validation, the critical buckling loads are obtained by present
approach using the first 150 terms of the infinite series. The small
scale parameter of the microbeam is =0, 1/20, 1/10 and the
spring parameters at the ends are taken as (y, = X, = 10%) for
simple supported case. It is observed from Table 1 that when the
stiffnesses of springs are infinitely large (}, = X; = 10%), the
results are exactly match with those reported by Artan and
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Table 1 Comparison of the critical buckling loads of simple supported
microbeam obtained using gradient elasticity theory

6 Simple supported microbeam Xo=X. = 10°

Ref. [29] Ref. [30] Present
VP P,

0 3,1416 3,1416 3,1416

1

— 3.1801 3.1801 3,1801

20 ’

1

T 3.2930 3.2930 3.2930

Table 2 Effect of elastic medium and small scale parameters on the
critical buckling parameter of microbeam

S

1 1 1 1 1
K 0 20 1s 10 7 5
1 9971 10,215 10,404 10,945 11,959 13,867
3 10,174 10,417 10,610 11,148 12,162 14,070
5 10,377 10,620 10,811 11,351 12,365 14,273
7 10,579 10,823 11,012 11,554 12,567 14,476
10 10,884 11,127 11,317 3,110 12,872 14,780
13 11,188 11,431 11,621 11,858 13,176 15,084

Toksoz [29]. According to Table 1, present analytical solution is
convergent. From this table it is clearly seen that 150 terms of
infinite series are sufficient to obtain the accurate results for the
present analysis.

To more clarify the convergence of the critical buckling load par-
ameter P, , the analytical results for different elastic medium param-
eter and small scale parameter are listed in Table 2. The spring
parameters Y, = X; = 10° are considered in the computation.
Table 2 obviously indicates that the elastic medium parameter K
has an important influence on the critical buckling loads. The in-
creasing rates of the critical buckling loads become faster by in-
creasing in the small scale parameter.

To investigate the effects of the small scale parameter on the crit-
ical buckling loads, variation of normalised critical buckling loads
with K values are schematically plotted in Fig. 3 for various values
of elastic medium parameters. Based on the results in Fig. 3, the in-
creasing value of the elastic medium parameter leads to an increase
in the magnitude of critical buckling load. As expected, the stiffen-
ing effect of elastic medium parameter is to increase the critical
buckling load. The increasing value of small scale parameter (6)
leads to an increase the buckling load.

Fig. 3 Effects of small scale parameter for different elastic medium
parameter
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Fig. 4 Comparisons between classical and gradient elasticity results

Fig. 5 Effects of elastic medium for different small scale parameter (5 =0,
1/20, 1/15)

Fig. 6 Effects of elastic medium for different small scale parameter (6 =
1/10, 1/7, 1/5)

Comparisons between classical and gradient elasticity results are
presented in Fig. 4. The index CE denotes classical elasticity and
the index GE denotes gradient elasticity. The increasing value of
length scale parameter leads to an increase in the magnitude of crit-
ical buckling load. It is noted from Fig. 4 that if a microbeam is

critical buckling

Fig. 7 Effects of dimensionless spring parameters at the ends for different
small scale parameter (6 =10, 1/20, 1/15)
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rested on Winkler’s elastic medium with length scale parameter 6 =
y/L =0, the critical buckling load is constant with respect to the
variation of length scale parameter-to-length ratio.

The effects of Winkler’s elastic medium on the critical buckling
load parameter is presented in Figs. 5 and 6 for a microbeam with &
=0, 1/20, 1/15, 1/10, 1/7, 1/5 and ¥, = X; = 10°. The increasing
value of the elastic medium parameter increases the stiffness of
the microbeam. It can be seen that increasing value of the small
scale parameter leads to an increase in the magnitude of dimension-
less critical buckling load.

To illustrate the effect of spring parameters at the ends on buck-
ling responses of microbeam, Fig. 7 plots the critical buckling loads
with respect to dimensionless material length scale parameter for a
elastically restrained microbeam with K= 5. The increasing value of
the spring parameters leads to a decrease in the magnitude of critical
buckling load. It is also seen that the small scale effects are more
significant for large 6 = y/L values when compared with small ones.

6. Conclusion: On the basis of the gradient elasticity theory, an
analytical approach is presented for the stability analysis of
embedded microbeams with deformable boundary conditions.
The lateral displacement function is sought as the superposition
of a Fourier sine series and Stokes’ transformation that is used to
take care of the deformable boundary conditions. The validity of
this method is established for simple supported boundary
conditions. Various boundary conditions are considered and
solved in several parametric examples. The influence of the small
scale parameter and end springs on the critical buckling loads is
examined in some numerical examples. It can be concluded that
the small scale effects are significant when the microbeam length
to the length scale parameter ratio is a small quantity.
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