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The buckling analysis of a cantilever single-walled carbon nanotube embedded in an elastic medium with an attached spring is researched. The
effects of axial compression load, attached spring, small size and surrounding elastic medium are taken into account at the same time.
Theoretical formulation is carried out on the basis of the Bernoulli-Euler beam theory in conjunction with Eringen’s non-local elasticity
theory. Fourier sine series is selected for the simulation of single-walled carbon nanotube deflections. Winkler elastic foundation type is
used to simulate the interaction between single-walled carbon nanotube and elastic medium. 2 x 2 coefficient matrix is derived with the
aid of applying Stokes’ transformation to corresponding non-local boundary conditions. The critical buckling loads are calculated by using
this coefficient matrix. Different validation studies are performed to endorse and corroborate the usefulness of the presented analytical method.

1. Introduction: Single-walled carbon nanotubes have aroused
great interest in the scientific community because of their
exceptional electrochemical, electronic, mechanical, and thermal
properties [1]. They are thin and long cylinders of molecules
composed of atoms in a periodic hexagonal arrangement and they
have been widely used in nanomechanical systems. Much effort
has been recently devoted to the study of the various aspects of
carbon nanotubes such as mechanical, bending, buckling,
electrical, and chemical properties. Study of buckling and
vibrational behaviour of single-walled carbon nanotubes is of
practical interest for better understanding of stability and
dynamical responses of single-walled carbon nanotubes [2, 3].

The experimental studies reveal that classical elasticity models
do not have the ability to predict the size-dependent mechanical
behaviour of nanosized structures. It has been seen in some experi-
mental results that the structures become stiffer in smaller sizes
[4-6]. To be able to understand the nanomechanical characteristics
of these type structures, different continuum mechanic theories
have recently attracted researchers’ attention such as couple stress
theory [7-9], micropolar theory [10], strain gradient theories
[11, 12] and non-local elasticity theory [13, 14]. Several research
papers have been published during the last years investigating the
higher-order continuum models [15-22].

In non-local continuum theory, the small size effects are captured
by assuming that the stress at a point as a function not only of the
strains at that point, but also a function of the strains at every points
of the domain [14]. This size-dependent elasticity theory is a
growing popular technique for modelling nanomechanical behav-
iour of carbon nanotubes [23, 24]. Pradhan and Murmu [25] have
proposed a single non-local beam model to investigate the static
and dynamic characteristics of a nanocantilever beam. Reddy and
Pang [26] have investigated Timoshenko beam and the Euler—
Bernoulli theories using the non-classical constitutive relations of
Eringen and Edelen [14]. Dynamical characteristics of carbon nano-
tubes embedded in an elastic medium have been examined by some
of the researchers like [27, 28]. The static behaviours of single-
walled and multi-walled carbon nanotubes have been investigated
by some of the researchers in [29, 30]. Some researchers have con-
sidered free vibration behaviour of single-walled carbon nanotubes
like [31-33].

In this work, a stability model is proposed to analyse the critical
buckling loads of single-walled carbon nanotube embedded in an
elastic medium with an attached spring using Eringen’s non-local
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elasticity theory and Euler—Bernoulli theory. A Winkler foundation
model is assumed for simulating the interaction of the single-walled
carbon nanotube and the elastic medium. A coefficient matrix is
calculated with the aid of applying Stokes’ transformation to
corresponding non-local boundary conditions. The influence of
non-local effects, attached spring and Winkler modulus parameter
on the critical buckling load is investigated and discussed.

2. Theoretical formulation of the research problem: This
theoretical formulation is carried out on the basis of the
Bernoulli-Euler beam theory in conjunction with the non-local
elasticity theory of Eringen and Edelen [14]. The constitutive
equation is represented by the following relation:

(1 —puVie" =4, )]

where w is the non-local parameter which is a factor to consider the
effect of small length scale; & is the local stress tensor. o™ denotes
the non-local tensor related to strain

o = k(x):e (), )

where «(x) is the fourth-order tensor of elasticity. The : symbol
denotes the double dot product. € (x) denotes the deformation.
The following equilibrium equations in terms of the lateral
deflections can be written:

T =k, ®)
dm dw

- p 4
dx + dx ’ @)

where V represents the shear force and M is the bending moment. P
is the in-plane axial load. k, represents the constant of the
foundation, known as Winkler’s constant. w denotes the lateral
displacement of the carbon nanotube. The constitutive relation in
non-local elasticity is given by

&M d*w

Consequently substituting (1) and (2) in shear force and bending
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moment is written as

Ew dw dw dw
V= _—E[—— Pk, —| P 6
dx3+“[ dx3+wdx] d’ ©)
&w &w
M= Eldx2+pb[de2+kw] (7

Further considering (6) and (7), the fourth-order governing
differential equation of a single-walled carbon nanotube
embedded in the elastic medium is given by [34, 35]

d*w d*w d*w d*w

3. Deformable boundary conditions: In the case of the
deformable boundary conditions, the analytical solution of (8) is
difficult to obtain, so Fourier series expansion together with
Stokes transformation will be adopted in this Letter for the
solution of governing equation. The displacement function is
described here in three separate regions, two for boundary points
and the other for the intermediate places between the boundary
points

wx)y=26, x=0, 9)

wx)=90, x=1L, (10)
w(x) = 6(x) = i C, sin<kTm> 0<x<IL, (11)
k=1

with

L
C, = %L 6(x) sin (k%'x> dx. (12)

It can be clarified that the two boundary points, x = L and x = 0,
have been excluded in (11) since the Fourier series cannot
converge to the true displacement values in the boundary points
(cantilever with end spring). Equations (9) and (10) allow
freedom in choosing the displacement function. In the contrast to
rigid supported non-local beam models, this method can model
nanostructures  having any arbitrary restrained boundary
conditions. Term wise differentiation of (11) yields

=k kx
=) —C cos(—), (13)
kg« L F L

&'(x) can be represented by cosine series

, b d kmx
8(x)=f0—|— ;bkcos(7>. 14
The (b, b,) coefficients in are written conveniently as follows:

L
by = %jo 8 (x)dx = % [8(L) — 50)], (15)

2 (t k
b,{:zj0 3’(x)cos<%“>dx n=1,2, ..., (16)
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by applying integration by parts

L
b, :%[6(x)cos<kfm):|o+L|:kTqTJ 80x) m(kL )dx], (17)
2 k
b = 7[(=1)8(0) - 80)] +T7TC’<' (18)

The above transformation procedure is known as Stokes’
transformation. Then the first derivative of lateral deflection
function is calculated as follows:

o0 k
d6(X) = —6L z 60 + ZCOS(akX) <—2((_ 1) 6L — 60) + aka> .

dx = L
19)
The higher-order derivatives of lateral deflection function 8(x) can

be separately obtained by employing Stokes’ transformation as
follows [24]:

2 Vs
d B(X) = Zak sin(ayx <(( A + akck)7 (20)

L
3 0 k
d digx) _ 5,/ — by, ZCOS @) (2«—1) SLL — &)

—a (2((—1) ZL — ) n akck))’ @1

d*s N 2((=1)F8, — 8y

deX) = - ;ak sin (akx)(—(( ) LL )

k
- ai<2«—1) AL akck>>, )
where
k

a :TW‘ 23)

The coefficients which simultaneously satisfy the governing
equation need to be determined. Therefore, substituting (11), (20)
and (22) into (8), the Fourier coefficients C; can be written in
terms of end displacements as follows:

20y <Pkw,;l.(60 + (=1 5L)
L(kW + Pkw’ﬂai + PEI,y“i)
20, (P, (0(8y + (= 1)'**5))
L(kw + P 0+ PE,!Ma§>
L 20(Pr By + (= 18,

, 24
L(kw + Pkw,p,a% +PEI,‘u,ai>
where
Pkw,,u = kw/“L - P, (25)
Py, = EI — Pp. (26)

The lateral deflection function for the buckling of a single-walled
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carbon nanotube having no restraints and supports becomes

) = i( 20, Py 00 + (= 1)"8@
H\Ltky + Py 08+ Py o)

N 205 (P (@ (8y + (= 1)'8)))
L(kw + Pkw#a,% + PEI,#“%)

20,(Ppy (8 + (= 1)°8,)

L(ky + Py .0} + Py )

) x sin (a,x). 27)

The above equation is the more general, fundamental equation
describing the lateral deflection.

4. Eigenvalue-based formulation: Consider an embedded
cantilever single-walled carbon nanotube with an attached spring
at free the end (see Fig. 1). Based on the non-local elasticity, it is
then seen that the following force boundary conditions at the
ends can be written as:

daw

50:0,520, x=0, (28)
&*w
‘“'[/LSL :EIW, BL :0, x:L, (29)

where i, denotes the stiffness of the spring at the free end of the
carbon nanotube. After some mathematical manipulations, the
substitution of (19), (21) and (24) into (28) and (29) leads to the
two homogeneous simultaneous equations

= 2(— Dk, L?
<L * k; “DRPT + P El — Py ko f, )

RS 2L(— VK> 7 (P — EI) _
+ ( k; —L2K2P7 + kA7 (El — Pp) + k, By o =0,

(30)

[ i 2( — 1k, LI s
El & —DRPm + K (EL — Pp) + kB )

0 ko712 2 2
. <l_Z2L(— V(2P + k(L + Kk P#M))>6L o,

L~ & —DRPw + K ahEl — Pu)+ kyBy

€3]

where

B, = L' + L’k 7 . (32)

K

Fig. 1 Cantilever single-walled carbon nanotube embedded in an elastic
medium with an attached spring
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One can obtain the following system of linear equations in matrix
form to be solved for the constants (5, 0;):

a4 50]: 33
|:‘121 a22]|:6L ’ 33)

where
1 & 2(— )k, L
1 w 34
an=pt ; —L2k*Pm + k*m*(El — Pp) + kB o9
i 2L(— 1)K 7 (P — EI) (35)
app = ’
£ — 2P + kA (EL — Pp) + k, By
RS 2= 1)k, L7
W 36
=g kg’ —L2k2Pm + k*mH(El — Pp) + ko By ©o
1 E2L(— D P + k(L + KPP
dy = L Z — ( . Gn

— —L2 kP + kA mH(El — Pp) + kB
Equation (33) defines an eigenvalue problem. The critical buckling
loads can be computed by setting the following determinant to zero:

‘aij’ -0 (i,j=1,2). (38)

Then the characteristic equation in (38) can be solved by assigning
the proper values of i, . Present eigenvalue approximations can be
degenerate to the rigid supported carbon nanotube (clamped-
pinned, clamped-free) in the cases of assigning the infinity and
zero values to the attached spring. This is a new eigenvalue approxi-
mation for the determination of the critical buckling loads of a can-
tilever single-walled carbon nanotube embedded in an elastic
medium with an attached spring subjected to a comprehensive
load. The buckling responses of cantilever non-local beams,
whether they have restrained (supported) or free ends, can be pre-
dicted using this formula.

5. Results and discussions

5.1. Verification of the present results: The present critical buckling
loads of single-walled carbon nanotubes are compared with those of
Senthilkumar ef al. [34] and Pradhan and Reddy [35]. For the
comparison purposes, the following quantities are used in
computing the numerical results: E = 1.06 TPa, d = 1nm,
Y, = 10.000nN/nm and k, = 0. It should be noted that, by
giving larger values to spring coefficient at the end
(i, = 10.000 nN/nm), (38) will automatically degenerate into the
clamped-pinned case. The numerical study has been done and the
problem has been solved by using different number of truncated
terms. 150 terms of infinite series are used to obtain the accurate
results. The critical buckling loads predicted by the present

Table 1 Verification of the proposed method for a clamped-hinged carbon
nanotube without elastic medium (. = 0 nmz)

Length, nm Pexacty IN Pyrvy nN Psg), nN
Senthilkumar Pradhan and Present
et al. [34] Reddy [35]
10 9.887 9.887 9.937
12 6.886 6.886 6.901
14 5.044 5.044 5.070
16 3.862 3.862 3.882
18 3.052 3.052 3.067
20 2.472 2.472 2.484
257
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Table 2 Verification of the proposed method for a clamped-hinged carbon
nanotube without elastic medium (u = 1 nm?)

Length, nm Pexacty TN Pprmy, 1N Pgsgy, 1N
Senthilkumar Pradhan and Present
et al. [34] Reddy [35]
10 8.229 8.229 8.292
12 6.023 6.023 6.072
14 4.574 4.574 4.612
16 3.580 3.580 3.611
18 2.873 2.873 2.897
20 2.353 2.353 2.373

Table 3 Verification of the proposed method for a clamped-hinged carbon
nanotube without elastic medium (u = 2 nm?)

Length, nm Plexacty TN Pprmy, 1N Prsgy, nN
Senthilkumar Pradhan and Present
et al. [34] Reddy [35]
10 7.048 7.048 7.102
12 5.365 5.365 5.403
14 4.184 4.184 4216
16 3.337 3.337 3.363
18 2.714 2.714 2.736
20 2.245 2.245 2.264

solutions based on non-local elasticity theory are also provided in
Tables 1-3. These tables summarise the achieved results for the
buckling of clamped-pinned single-walled carbon nanotubes.
Good agreement is observed between the present solutions and
the results given in [34, 35]. This clearly shows the reliability of
the present solution method for the buckling analysis of carbon
nanotubes.

5.2. Numerical results and discussions: Figs. 2—-5 demonstrate
critical buckling load versus length of single-walled carbon
nanotube for various values of elastic medium parameter. For the
single-walled carbon nanotube, critical buckling load decrease
nonlinearly by increasing of L. As expected, the softening effect
of non-local parameter is to decrease the critical buckling load.
The increasing value of non-local parameter (u) leads to an
increase the buckling load. It is also seen from these figures that
the stiffening effect of Winkler coefficient is to increase the
critical buckling load.

critical buckling load

12 14 16 18 20
length, L

Fig. 2 Effects of elastic medium parameter for p = 0.5
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critical buckling load

12 14 16 18 20
length, L

Fig. 3 Effects of elastic medium parameter for p = 1.0

critical buckling load
B

12 14 16 18 20
length, L

Fig. 4 Effects of elastic medium parameter for p = 1.5

R
S =)

critical buckling load
-9
o

35
30}
25}
12 14 16 18 20
length, L

Fig. 5 Effects of elastic medium parameter for p = 2.0

Comparisons between classical and non-local elasticity results
are presented in Figs. 6 and 7. The increasing value of non-local
parameter leads to a decrease in the magnitude of critical buckling
load. It can be concluded from Fig. 7 that if a cantilever carbon
nanotube is rested on Winkler’s elastic medium with non-local par-
ameter u = 0, the critical buckling load ratio is constant with
respect to the variation of length. The increasing value of the non-
local parameter leads to a decrease in the magnitude of critical
buckling load.

In fact, this Letter is focused in presenting an efficient analytical
method that can model restrained boundary conditions in nanostruc-
tures. Also, this method is capable to capture the stability behaviour
of cantilever beams by using a zero-stiffness spring at the end.
Although the results are presented only for single-walled carbon
nanotube embedded in an elastic medium with an attached spring
the coefficient matrix in (33) is applicable for carbon nanotubes
with different kinds of boundary conditions.
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Fig. 7 Critical buckling load ratio versus length for various non-local
parameters

6. Conclusion: The buckling response of a cantilever single-walled
carbon nanotube embedded in an elastic medium with an attached
spring is investigated on the basis of non-local elasticity theory in
conjunction with Euler-Bernoulli beam theory. A coefficient
matrix is derived by implementing Stokes’ transformation to
non-local boundary conditions. The buckling characteristics of
single-walled carbon nanotubes embedded in an elastic medium
with an attached spring are investigated. The calculated results
are compared with the results of non-local beam theory with no
elastic foundation and attached spring effects. A detailed
numerical study is performed to determine effects of material
length scale parameter, attached spring and Winkler parameter on
critical buckling loads of embedded single-walled carbon
nanotubes.  Size-dependency on buckling behaviour of
single-walled carbon nanotubes is more considerable for lower
values of length-to-non-local parameter.
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