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Phosphorene as an innovative structure that can be exfoliated similarly to the graphene with a direct, inherent and suitable bandgap presents
exceptional prospects for future generations of electronic devices. Phosphorene possess high carrier mobility, therefore, in this work its carrier
statistics in the form of monolayer phosphorene in the non-degenerate limit is analytically modelled and the mobility relation with carrier
relaxation time is investigated. Energy dispersion relation is used to develop and calculate the required parameters for carrier relaxation
time model which is an important parameter in conduction theory. On the other hand, the dependency of carrier velocity and mobility to
voltage, normalised Fermi energy and temperature are modelled. Finally, the carrier relaxation time as a function of carrier mobility is
modelled and its dependency towards temperature and normalised Fermi energy is discussed. It is shown that the relaxation time is
strongly dependent on the carrier mobility which increases by increasing the mobility.
1. Introduction: To overcome the limitations of conventional
silicon-based devices, numerous studies have been conducted
on new two-dimensional (2D) monolayer materials for use in
the next generation of electronic devices [1, 2]. One of
the advantages of the phosphorene as a 2D material is ultra-thin
structure which allows electrostatic control by a gate when
implemented as a channel in field effect transistor geometry [3].
Due to their interesting electrical, chemical and optical
characteristics, the 2D materials such as MoS2 and graphene have
been the subject of great interest [4–6]. However, some properties
in single layer or a few layer materials are not demonstrated by
their bulk counterparts, such as the massless Dirac fermion behav-
iour in graphene [7–9]. Graphene possess very high mobility of
carriers (∼20,000 cm2/V/s at room temperature) which enables
it to reach ballistic transport at large length scales; but the lack
of inherent finite energy bandgap severely limits its application
in nanotransistors [2, 10]. Monolayer MoS2 has a direct energy
bandgap of 1.8 eV. The carrier mobility of monolayer MoS2 has
been reported to be ∼200 cm2/V/s [11] and may reach up to
500 cm2/V/s [1]. However, a few recent experimental studies indi-
cate that because of the capacitive coupling between the gates,
the value of the mobility must be overestimated [12, 13], thus
challenging its common application in electronics.

Most recently, phosphorene, a new 2D semiconducting material
with a direct energy bandgap, has been successfully exfoliated
from black phosphorus [14–16]. Black phosphorus is a layered
three-dimensional material in which individual atomic layers are
stacked by van der Waals interactions, similar to graphite [17].
Phosphorene is a single layer of phosphorus which has a puckered
honeycomb structure where each atom is covalently bonded to three
adjacent atoms [18–20], as shown in Fig. 1. The three bonds engage
to all three electrons of phosphorus. Thus, unlike graphene [21, 22],
phosphorene is a semiconductor with a direct bandgap of 0.9–2 eV
at the G point of the first Brillouin zone [15, 23, 24]. The bandgap
can be controlled by the number of layers. By adding each layer to
a single layer, interlayer interactions reduce the bandgap and ulti-
mately reach 0.3 eV [25–28] for bulk black phosphorus [15]. As
a consequence, the direct bandgap moves to the Z point [29, 30].
Such a band structure enables its wide application in field effect
transistor [15]. Therefore, phosphorene is a great candidate which
can overcome the limitations of all other 2D materials for ultra-thin
transistor structure, thereby revolutionising the electronic industry.
758
& The Institution of Engineering and Technology 2017
The phosphorene-based field effect transistor indicates relatively
high carrier mobility of 286 cm2/V/s and remarkable high on/off
ratio, up to 104 [10, 14]. The value of carrier mobility is dependent
on thickness and can reach even 1000 cm2/V/s at ∼10 nm thickness
[15]. A recent experimental work demonstrated a hole mobility
exceeding 650 cm2/V/s at room temperature along the light effect-
ive mass direction (x) and 1000 cm2/V/s at 120 K temperature [31].
Meanwhile, it has been reported that in bulk black phosphorus,
electron and hole mobilities can exceed 1000 and 50,000 cm2/V/s
at 300 and 30 K, respectively [32].

However, research on phosphorene is in its initial steps and
demands wide and deep investigation of electrical and physical
characteristics before implementing for industrial purpose. Thus,
the behaviour of the carriers in phosphorene should be studied
and analysed. Relaxation time is an important factor which
plays prominent role in the conductivity of the semiconductors.
Studying carrier relaxation time may guide us to evaluate the behav-
iour of the carriers in different aspects. In order to investigate carrier
relaxation time, we should study the mobility and velocity of elec-
trons first. In this Letter it is started with the energy dispersion re-
lation to calculate the density of states and carrier density
relations for further analysis. Then, the velocity and mobility of
the electrons in non-degenerate regime for parabolic band energy
and the electron relaxation time are modelled and investigated.
The modelling mechanism is briefly explained and discussed step
by step in the following sections.

2. Results and discussion: The dispersion relation of electrons
through the whole Brillouin zone of the one-dimensional
phosphorene is given by [33]

E(kx) = Eg +
h− 2

2m0
− P2

x2

E1
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x1

Eg

( )
k2x (1)

where Px1 = (2ph− 2/m0ax), Eg is the bandgap at the Г-point, h− is the
reduced plank constant, Px1 and Px2 are the momentums in the
x direction and E1 is the energy difference between neutrality
points. As reported by Li and Appelbaum [33], the magnitude of
the Eg + E1 + E2 ≃ 5 eV. On the other hand, E1 is roughly equal
to E2 which means for bandgap around Eg = 2 eV [15], the magni-
tude of E1 is calculated to be E1 = 1.5 eV, and the magnitude of
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Fig. 1 Illustration of a monolayer phosphorene with puckered honeycomb
structure
Px2 which is roughly equal to E1 is extracted to be Px2 = 1.5 eV.
Based on the energy equation, the E–k relation of the monolayer
phosphorene is plotted as shown in Fig. 2 which indicates that the
narrow width phosphorene as a one-dimensional material demon-
strates parabolic band structure near the minimum energy.
According to Fig. 2, energy dispersion of narrow width mono-

layer phosphorene shows non-zero energy bandgap and makes a
distance between conduction and valance bands. The size of the
gap depends on the number of layers; by increasing the number
of layers the energy bandgap decreases [25–28]. Based on the one-
dimensional behaviour of the phosphorene which has been reported
by Li and Appelbaum [33], the density of states [34] as a funda-
mental parameter is defined which indicates available energy
states with Δn quantum number in the length of L per energy ΔE
[34], and the effect of the electron spin is considered as well.
By calculating the wave vector as kx = (
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Density of states is an essential parameter to calculate carrier con-
centration. The number of carriers (electrons) with energy, E, has
been calculated to be DOS(E)f (E) dE. Therefore, carrier concentra-
tion in a band can be extracted by integrating the Fermi distribution
function over the energy band [35]:

n =
∫
DOS(E)f (E)dE (3)

where f (E) = (1/(1+ e(E−EF/kBT ))) is the Fermi–Dirac distribution
function, kB is the Boltzmann constant, EF is the one-dimensional
Fig. 2 Parabolic band structure of phosphorene in the vicinity of minimum
energy (k = 0) with conduction and valence bands separated by the
bandgap Eg
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Fermi energy and T is the temperature [36]. The Maxwellian
approximation ℑi = eh [37] is applied in the non-degenerate
domain to evaluate the mobility of electrons. The position of
Fermi level specifies the definition of non-degenerate and degen-
erate regimes. The non-degeneracy occurs when Fermi energy
level located higher than 3kBT from either valence band or con-
duction band edge, or in other words when E − EF ≥ 3kBT .
Meanwhile, if Fermi level located inside conduction band
(valence band) for electron (hole), or when EF − E ≤ 3kBT degen-
eracy happens [38]. The carrier concentration can be calculated
for an n-type black phosphorene as

n =
�����
kBT

√
4

����
Ap

√ ℑ−(1/2) h
( )

(4)

where ℑ−(1/2) h
( )

is the Fermi–Dirac integral [39] of order −1/2.
By implementing achieved equations for density of states and

carrier concentrations, the carrier velocity and mobility can be cal-
culated which are required to model the electron relaxation time.

2.1. Carrier velocity distribution: In a semiconductor, free electrons
can propagate along the crystal while colliding with atoms,
the energy (kinetic energy) of which emerges from lattice
vibrations. In equilibrium condition, electrons display random
motions inside the crystal; while, on average electrons do not go
anywhere. Usually, velocity depends on the carrier concentration
and temperature. Therefore, the average velocity of the carriers
can be obtained by

vav =
�
v| |DOS E( )f E( )dE

n
(5)

where v| | = (2(E − Eg)/m)
( )(1/2)

is the magnitude of velocity and
n is the carrier density. In the absence of external field, electrons
have completely random motion with ultimate velocity per
electron equal to vi. Therefore, by using the carrier–concentration
relation and simplifying the final equation the intrinsic velocity
for phosphorene can be achieved:

vi = 16p(3/2)

������
2kBT

m
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where ℑ0 h
( )

is the is the Fermi–Dirac integral [39] of order
zero and with h ≃ ((VG − VT)/kBT/L) [40]. Fig. 3 indicates the
carrier velocity versus potential difference between two contacts
which is considered in the form of applied voltage. It can be seen
that velocity increases with rising the voltage, especially for
V ≥ −1.2V. It is needed to be highlighted that the velocity is
Fig. 3 Variation of electron velocity versus voltage
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saturated for high applied voltages as shown in Fig. 3 in the
logarithmic scale.

On the other hand, the dependency of carrier velocity on normal-
ised Fermi energy is presented in Fig. 4. Based on the simulated
results, it is shown that, as the value of η increases the velocity of
electrons increases as well. The increment is strongly severe after
η =−1.5 where after this point the slope of the curve increases
sharply. It is needed to be emphasised that in the logarithmic
scale velocity indicates a saturation around 106 m/s which has
been confirmed as a velocity limit in non-degenerate limit known
as Fermi velocity [37].

Velocity is a function of η, so it is a function of T and con-
sequently has an inverse relation with temperature [40]. As reported
in [40], the normalised Fermi energy specifies inverse relation
with temperature as shown in Fig. 5 which emphasises that
carrier velocity decreases by increasing the temperature.

This is because of the increase in the number of collisions which
occur for electrons due to the temperature rising. In a low carrier
concentration, velocity is independent of carrier concentration and
follows T1/2 behaviour. By increasing the carrier concentration
to the degenerate regime, carrier velocity will be independent of
temperature and strongly depends on carrier concentration. In the
non-degenerate limit, the intrinsic velocity vi saturates at thermal
velocity Vth, as shown in the logarithmic scale of Figs. 3 and 4.
2.2. Mobility of electrons in black phosphorene: Without any
external electric field, carriers in a semiconductor will have
a random motion. Thereby, due to collisions of the carriers the
Fig. 4 Velocity dependency of electrons to the normalised Fermi energy

Fig. 5 Electron velocity variation versus temperature for monolayer
phosphorene
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energy and momentum of carriers will be randomised in order
to remain in equilibrium state [41]. However, under non-zero
applied electric field, the path of carriers between collisions will
deviate leading to unidirectional motion and giving them drift
velocity, vd, in electric force, qE direction [41, 42], therefore the
conduction carriers generate current. If the mean time between
collisions is tsc, the average velocity of carriers, vav, for any
value of field, E [42] then the effective mobility can be obtained
which relates the velocity to this field [35]:

vav = mE = qtsc
m∗ E (7)

This indicates the relation of the carrier velocity with mobility, μ,
as well as electric field, E, the effective mass, m*, and charge
carrier, q. Where the carrier mobility m is the effective mobility
which needs to be clarified that effective mobility can be written as

m = m0P = m0

1+ t(VG − VT)
(8)

When (VG − VT) = VGT = 0 � m0P = m0 the effective mobility
can be replaced by equilibrium mobility [where the applied voltage
is zero VGT = 0 (this phenomenon is known as gate-field induced
mobility degradation)]. On the other hand, it has been reported
that the equilibrium mobility is under control of the thermal velocity
(vth), because in the equilibrium condition applied voltage is zero
therefore the temperature effect is more dominant [43]:

m0 =
qt

m∗ =
ql0
m∗vth

(9)

where l0 is the mean free path in the equilibrium condition which
has been reported around 10 nm in the room temperature [44],
and vth is the thermal velocity. By bridging the thermal energy to
the intrinsic velocity through the conservation of energy, the mobil-
ity for phosphorene is obtained, m0P given by

m0P = ql0
m∗vth

× vi (10)

By substituting intrinsic velocity relation from (6), the electron
mobility for phosphorene is obtained as

m0P = 16ql0p
2 �����������

(2kBT/m)
√

m∗vth
��
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√ ℑ0 h
( )

ℑ−(1/2) h
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The variation of the electron mobility in terms of the normalised
Fermi energy in non-degenerate domain is illustrated in Fig. 6. The
normalised Fermi energy is commonly a function of temperature.
Thus, in non-degenerate domains, mobility strongly depends on
the temperature and rises with increasing the η.

It can be seen that mobility increases by increasing η, especially
after η≃1.5 in which mobility dramatically increases for higher
values of the normalised Fermi energy. Also, Fig. 7 shows the
relationship between mobility and voltage. The variation of the
mobility under applied voltage is severe after 1.5 V which highly
increases by increasing voltage; it is because of increasing the vel-
ocity of the carriers under applied voltage. Since, the research
on phosphorene is in initial steps, there are a few studies on phos-
phorene carrier statistics.

However, according to the theoretical and mathematical calcula-
tions, the presented models can be validated based on the trend of
the figures clearly. The carrier mobility variations with respect to
normalised Fermi energy, which is presented in Fig. 6, is compar-
able with the study of carrier mobility in graphene nanoribbon con-
ducted by Amin et al. [45]. They showed that, mobility of carriers in
graphene increases by increasing normalised Fermi energy [45].
Their findings are similar to the mobility of carriers in phosphorene
Micro & Nano Letters, 2017, Vol. 12, Iss. 10, pp. 758–762
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Fig. 6 Mobility dependency to the normalised Fermi energy in non-
degenerate limit

Fig. 7 Phosphorene carrier mobility in terms of voltage

Fig. 9 Relaxation time of carriers as a function of normalised Fermi energy

Fig. 8 Electron mobility changes versus temperature
as shown in Fig. 6. The mobility in the non-degenerate regime was
found to decrease with increasing temperature, based on the simu-
lation result as plotted in Fig. 8. The reduction occurs because of the
higher rate of acoustic-phonon scatterings. By increasing tempera-
ture, concentration of the phonon in semiconductor increases and
leads to increased scattering. Therefore, lattice scattering lowers
the mobility of electrons more and more at higher temperatures.
Upon reaching high temperatures, the calculated temperature
value dependent on the charge mobility based on the presented
model is found to become progressively weaker, as shown in Fig. 8.
The result of the mobility versus temperature for phosphorene

can be compared with carrier mobility study in graphene by
Amin et al. [45]. In the reported work, the mobility also decreases
for higher values of the temperature in which the trend is quite
similar to the mobility of carriers versus temperature in the phos-
phorene [45]. Furthermore, based on the first principle study by
Liao et al. [44], phosphorene mobility was found to decrease by in-
creasing the carrier concentrations for different temperatures. It was
also demonstrated that the decrease of mobility is severe for lower
temperatures. Their finding is consistent with our result in Fig. 8.
Since as the temperature increases, the number of the carriers also
increases, which induces decrease in the electron mobility.
On the other hand, based on (10), mobility has direct relation

with velocity. Therefore, it can be concluded that the achieved
results for the velocity variation in terms of temperature in Fig. 7
can be validated by the achieved results for the mobility. Our find-
ings are also consistent with the results in the work by Liu et al.
(2014), where they reported that mobility of the carriers in phos-
phorene was decreased by increasing the temperature [24].
Micro & Nano Letters, 2017, Vol. 12, Iss. 10, pp. 758–762
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2.3. Relaxation time model: The collision of electrons led to unex-
pected changes in the electron velocity with 1/t probability per unit
time. This indicates that the electron collision probability in any
infinitesimal time interval of length dt is equal to dt/t. Therefore
the time, t, is the average time between two successive scatterings
of carriers. This is known as the relaxation time, and plays an im-
portant role in the metallic conduction theory. It is based on this
assumption that a randomly selected electron at a given moment,
on the average, before its net collision will travel for a time t.

Based on (7), the following expression is used to model the relax-
ation time of the electrons as a function of mobility (or normalised
Fermi energy) in the monolayer phosphorene:

tsc =
m× m∗

q
(12)

The electron relaxation time as a function of normalised Fermi
energy is shown in Fig. 9. The electron relaxation time has
increased with high slope for positive values of η. This indicates
that carrier relaxation time is a function of temperature. In other
words, as temperature decreases (η increases) carrier relaxation
time increases. Since the lack of studies on the relaxation time of
carriers in phosphorene, the obtained results for carrier relaxation
versus normalised Fermi energy in Fig. 9 can be verified by the
achieved results for the phosphorene carrier mobility. It was demon-
strated that mobility of carriers increases by increasing the normal-
ised Fermi energy. In other words, by increasing η, mobility and
velocity of the carriers will be increased which leads to more colli-
sions of carriers. The increment of collisions increases the relax-
ation time which is consistent with the trend of the results shown
in Fig. 9.
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The proposed models provide compact analytical relations which
can be readily employed for investigation of basic parameters of
phosphorene carrier statistics and their dependency on temperature
in electronic devices.

3. Conclusion: The carrier relaxation time and carrier statistics
of the monolayer phosphorene are analytically modelled for
non-degenerate domain. The obtained results indicate that the
carrier mobility and carrier velocity strongly depend on the
temperature in non-degenerate regime in which mobility and
velocity decrease by increasing the temperature from 100 to
300 K, which can be explained by the number of carriers resulting
in a higher rate of collision between electrons. Nevertheless, for
temperatures above 300 K, the mobility and velocity are less
affected due to the acoustic phonon existence which is the dominant
mobility limiting factor. Furthermore, it is found that the mobility
highly increases for voltages above 1.5 V, which can be explained
in the form of carrier concentration incremental effect. Also, the
numerical simulation results for the velocity confirm same results.
Finally, the carrier relaxation time as a function of normalised
Fermi function is modelled. It can be seen that the relaxation time
increases as the normalised Fermi energy rises (temperature
decreases) which emphasises that by decreasing the temperature
the number of collisions decreases.
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