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Fundamental frequency analysis of rectangular piezoelectric nanoplates via the surface layer and non-local small-scale hypotheses is
investigated in the present work. The piezoelectric nanoplate is under in-plane forces. The equilibrium governing of piezoelectric
nanoplates is attained via the two variable refined plate hypothesis, and then the equations of motion are achieved utilising Hamilton’s
principle. To solve these equations, the finite difference method is employed. To verify the exactness of the finite difference method, the
governing equations are tested by the Navier’s solution. Numerical results show a good accuracy among the outcomes of the present work
and some accessible cases in the literature. The numerical results show that for negative residual surface stress, as the boundary condition
becomes stiffer the effect of surface layer increases, while for positive one that phenomenon is inverse.

1. Introduction: In recent years, nanoelectromechanical systems
(NEMSs) have been utilised to create diverse smart equipment
due to their inherent electromechanical influences such as
actuators, sensors, harvesters, resonators, transducers, narrow
band filtering, mass and force detection, atomic force
microscopes, and so on. Thanks to their inherent characteristics,
NEMSs have brought about a huge attention owing to their
potential requests and excellent physical attributes in current
technology and science [1].

The classical continuum hypothesis neglects the influences of the
dependence of material traits and small scale in nanosize structures.
Therefore, including the small-scale effects has been recommended
by Eringen and Edelen [2]. Eringen developed the non-local hy-
pothesis in the continuum models for precise prediction of mechan-
ical behaviours of nanosize structures. The non-local hypothesis is
via this presumption that the stress at a reference point is included as
a purpose of the strain field at all reference points in the continuum
mass.

Since the nanostructures have the high proportion of the surface
to volume, the surface stress effects have an important role in their
mechanics behaviour of these structures. The effect of the residual
surface stress on the nanostructures gives the distributed loading on
the two surfaces. Hence, Gurtin and Murdoch [3] have considered
surface stress effects. In this theory, the surface is considered as a
part of the two-dimensional body with zero thickness which has
covered the total volume.

There are many theories to derive structural equation of piezo-
electric and graphene nanoplate. Therefore, the piezoelectric nanos-
tructures and graphene sheets have been investigated via classical
plate hypothesis [4-8], first-order shear deformation hypothesis
[9-11]. While few efforts were also conducted to examine both
the influences of non-local elasticity and the surface layer on the
piezoelectric nanosize structures via refined plate hypothesis. It
has been indicated that the examination of vibration of nanoplates
completely relates to the implemented plate hypothesis. The two
variable refined plate hypothesis was introduced by Shimpi [12].
This hypothesis has a strong analogy with the classical plate
theory, in terms of some equations and expressions. Moreover, in
contrast to first-order shear deformation hypothesis, there is not a
shear coefficient. Therefore, recently, some scholar derived the
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governing equations of graphene sheets via refined plate theory
[13-16].

In recent years, Farajpour et al. [17] studied the vibration
of piezoelectric nanofilm via electromechanical sensors based
on higher-order strain gradient and non-local theories. They indi-
cated that the frequency shifts of piezoelectric nanofilm could
enhance or diminish depending on the values of small-scale
parameters. In addition, Nazemizadeh and Bakhtiari-Nejad [18]
analysed the size-dependent free vibration of nano and microbeams
with piezo-layered actuators utilising classical plate theory.
They found that the non-local parameter, length ratio, and
thickness ratio have profound impacts on the free vibration of
systems. In these papers [17, 18], the surface energy effect is not
considered.

None of the above researchers has included refined plate theory
to investigate the influences of the surface layers (the surface elas-
ticity, surface density, and residual surface stress), non-local effect,
and in-plane forces on the fundamental frequency of rectangular
piezoelectric nanoplate. Owing to the importance of effects of the
surface layer, small scale, and refined plate hypothesis, analysing
the fundamental frequency behaviour of piezoelectric nanoplates
can be included as a powerful scientific need and its investigation
seems to be essential.

In the current work, an effort has been made to study the natural
frequency of piezoelectric nanoplates via refined plate theory.
To include the non-local and surface layer influences on the piezo-
electric nanoplates, the Eringen’s non-local elasticity, and Gurtin—
Murdoch’s theories are implemented. On the top and bottom of
nanoplate, two similar surface layers are covered. Utilising
Hamilton’s principle, the governing equations are attained for the
free vibration of the piezoelectric nanoplates. To solve the equa-
tions, the finite difference method is employed. The governing
equations are solved by the Navier’s solution for validating the pre-
cision of the finite difference solution. These numerical results can
be a criterion for future investigation of piezoelectric nanoplate. The
emphasis of the current survey is via studying the influences of
diverse parameters such as the mechanical and electrical in-plane
forces, nanoplate thickness, aspect ratio, residual surface stress,
non-local parameter, boundary condition, and biaxial and uniaxial
in-plane loading.
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2. Formulation: The formation of the problem is indicated in
Fig. 1. The piezoelectric nanoplate has length [, width [,
thickness #, and surface layers s*. The materials of piezoelectric
are presumed uniform. It is presumed that the upper and lower of
piezoelectric nanoplate are under the equal external electric
voltage, Vy. According to the non-local piezoelectricity
hypothesis, the tension tensor and the electric displacement at a
material point relied not only on the strain and electric-field
components at an equal place but also on all other points
of the mass. Therefore, for the piezoelectric material, the
non-local equivalent differential constitutive equations can be as
follows [2]:

(1- (eoa)zvz)%- = Cyuen — ewEy

M

(- (eoa)zvz)Di = eyen — KiyEy

where oy, &;, E;, and D; are, respectively, the components of
the non-local stress tensor, strain tensor, electric-field vector,
and electric displacement vector. In addition, ¢, Kiy, and eg;
are, respectively, the components of a fourth-order elasticity
tensor, dielectric constants, and piezoelectric constants. V2 s
the Laplace operator and also epa is the non-local parameter.
Using the Hamilton’s principle, the governing equations
of motion for the piezoelectric nanoplate are derived as follows
[19, 20]:
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Fig. 1 Symbolic of the piezoelectric nanoplate considering the surface
layers
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where (N, Ny) and (N, N,.) are the electric and mechanical
forces for the x and y directions, respectively. M,z and Qs are,
respectively, the bending moment and shear forces. Thus, the
resultant stresses are introduced as

/2 A
M‘I;B = j zaj;ﬁdz + (0_;;5+ — 02’57)5 a, B=x,y

—h/2
h/2 1 5 /z\2
S S
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The electric field is taken to be present only in the z-direction
(E,=E,=0), and it is pertained to the electric potential ¢ by

dp
E =——
z 0z

®)

where p is the mass density of the piezoelectric nanoplate.
By using (1), (5) and electric boundary conditions ¢(h/2)= "V,
#(—h/2)=0, the electric potential ¢ can be achieved as
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Using (5), (6), the electric field is obtained as follows:
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Therefore, the bending and shearing electric field is stated as
follows:
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Based on reference [19, 20], the stress resultants are written in
terms of the displacement components as follows:

N, =N, N,, =N, (forbiaxial in-plane force)

N,,=N, N, =0,

m o (for uniaxial in-plane force)
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Cijiki» Krij» and ey are, respectively, the components of a fourth-
order elasticity tensor, dielectric constants, and piezoelectric
constants. Cj;, ej, and 7° are, respectively, the surface elastic
constant, piezoelectric constant, and residual surface tension.
s' and s~ are the surface layers for upper and lower of a
nanoplate, respectively. Given the fact that the vibration
response is harmonic, the deflection owing to the vibrations

of thin nanoplates are mentioned by

W,y 1) =W e, Wiy, )= Wi e (1)
where i*=—1 and o is the natural frequency. By using (2),
(9), and (11), the equations of motion for the piezoelectric
nanoplates are written in terms of displacements W° and W*
as follows:
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3. Solution procedure

3.1. Navier’s method: According to the Navier’s solution, the
accurate method for the free vibration of piezoelectric nanoplates,
with reference to SS boundary condition can be indicated as
follows:

= f i W, sin (ax) sin (By),
m=1 n=

o (13)
=YD Wy, sin(ax)sin(By)

m=1 n=1
where a=mn/a and B=nn/b. In this case, m and n are half-wave

numbers along the x and y directions. Replacing (13) into (12),
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the current system of equations are attained
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The fundamental frequency is obtained under in-plane loading if the
determinant of the coefficient matrix in (14) gets zero.

3.2. Finite difference method: The finite difference solution is a
robust method which is implemented to solve differential equations
of motion of piezoelectric nanoplates. The method substitutes the
differential equations with equivalent differences equations. Fig. 2
depicts a rectangular nanoplate and the grid points which will be
utilised in the finite difference solution. By implementing this
method, (12) conjectures with the derivative of the transverse
bending displacement, W?, for the i, jth point as a function of its

R R
1 i 1
L3 . - 13

wig?

Fig. 2 Grid points for the finite difference method
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Here, R, and R, are, respectively, the distance between two grid
points in the x and y directions. It should be mentioned that for shear
displacement the W? converts to W* in (16). By substituting (16)
into (12) and expanding a code in MATLAB software, the equa-
tions of motion are solved.

3.3. Boundary conditions: The SS and clamped boundary
conditions are investigated in this paper. These boundary
conditions will be defined as follows [19, 20].

3.3.1 SS boundary condition: The SS boundary conditions are indi-
cated as follows:

yws_aw dwh yw

s b
e R —0 Wwr=w=0 (17

3.3.2 Clamped boundary condition: The clamped boundary condi-
tions are defined by

aws  ows  awt  aw?
== =——=0, W'=Ww'=0 (I8
ox ay ox ay

4. Results and discussion: This segment, the numerical
simulations are performed for the case study of the Piezoelectric
lead Zirconate Titanate (PZT-5H) nanoplate, with physical
properties put in Table 1 [4].

Here, the accuracy and convergence of the present formulation
and methods of solution are investigated through different numeric-
al examples of piezoelectric nanoplate. Therefore, the accuracy of
both Navier and finite difference solutions is demonstrated by com-
paring the fundamental frequency ratio of a single piezoelectric
nanoplate for SS boundary condition with those of obtained by
Yan and Jiang [4] in Table 2.
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Table 1 Physical properties of the nanoplate

C11=102 GPa, C, =102 GPa, C;,=31 GPa, C46=35.3 GPa,
Caq=Cs5=23 GPa, e3; =—17.05 C/m?, k33=1.76x10"% C/Vm,

C5, =7.56 N/m, C5, = 7.56 N/m, C}, = 3.3 N/m, C; = 2.13 N/m,
& =—-3x10"° C/m, =1 N/m

Table 2 Comparison of the current numerical outcomes for the
fundamental frequency ratio of a piezoelectric nanoplate with SS boundary
condition (/,=/,=20 nm, epa=0nm, V5,==0.1V, and Ny =N, =0 N/m)

Solution Theory length to thickness ratio, /,/A
40 20 10 5 2.5
[4] Classical Plate  1.503 1.524 1.415 1.225 1.112

Theory (CPT)

Finite Difference Two Variable  1.503 1.517 1.386 1.178 1.075

Method (FDM) Refined Plate
Theory (TVRPT)
Navier TVRPT 1.502 1.516 1386 1.178 1.075

The fundamental frequency ratio is presented as follows:

fundamental frequency ratio

fundamental frequency with surface effect (19)

~ fundamental frequency without surface effect

The in-plane load and non-local parameter are equal to zero. From
Table 2, it can be seen that in all cases, the current results are in suit-
able match with those reported by Yan and Jiang [4].

To illustrate the influence of boundary conditions on the funda-
mental frequency of piezoelectric nanoplate, the variations of fun-
damental frequency ratio with the external electric voltage, aspect
ratio, length to thickness ratio, and residual surface stress for
various boundary conditions are plotted in Figs. 3—6, respectively.
The width and small-scale coefficient of the piezoelectric nanoplate
are /,=20 nm and epa = 0.5 nm, respectively. The effect of mechan-
ical in-plane load is not taken into account. For briefly, six diversity
boundary conditions are introduced: (i) SSSS: all borders SS;
(if) SSSC: clamped parallel with y =5 and SS parallel with x=0,
x=a, and y=0; (iii)) SCSC: clamped parallel with x=a and y=0>,
and SS parallel with x=0, y=0; (iv) SSCC: clamped parallel
with y=0 and y=b, and SS parallel with x=0 and x=a;
(v) SCCC: clamped parallel with x=a, y=0, and y=»b, and SS
parallel with x=0; and (vi) CCCC: all borders clamped.

As seen from these figures, the non-local fundamental frequency
ratios also depend strongly on the boundary conditions. When the
boundary conditions get more solid, the fundamental frequency
ratio decreases. Thus, the influences of surface layers reduce.
Therefore, the degree of surface layers on the fundamental

fundamontal fragquancy ritia

[l
30 abs ase 404 002 © a6z 0a4 Boe 004 A0

xtermal slectric voltags, V,

Fig. 3 Variation of the fundamental frequency ratio with the external elec-
tric voltages of the piezoelectric nanoplate under different boundary condi-
tions (I, =1,=20 nm, h=1nm, eya = 0.5 nm, Ny, =N,,, =0 N/m)
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frequency of piezoelectric nanoplates system seems to display
itself in the subsequent order of weakness: SSSS, SSSC, SCSC,
SSCC, SCCC, and CCCC. Converting the boundary conditions
with quite free rotations such as simply support to the boundary
conditions with restraint on the rotations, e.g. clamped, the
surface layer will show itself weaker. Since the surface layers
have an intrinsic stiffness.

In Fig. 3, the nanoplate thickness and length are =1 nm and
[,=20 nm. From Fig. 3, it is found that by enhancing the external
electric voltages, the fundamental frequency ratio would enhance;
therefore, the influence of surface layer rises. In addition, by
raising that parameter to critical values the fundamental frequency
of the nanoplate would get zero. It is meant that the out-of-plane
plate resilient gets zero. This incident transpires sooner in lower ex-
ternal electric voltage for SSSS as compared with CCCC.

In Fig. 4, the nanoplate thickness and external electric voltages
are #=1nm and V,=0 V. From Fig. 4, it can be seen that by in-
creasing the aspect ratios, the fundamental frequency ratio would
augment. Thus, the value of surface effect could enhance.
Moreover, in the higher value of plate aspect ratio, the effect of
boundary condition is important, since the vertical distance
between curves of different boundary conditions is raised. Also,
for the higher value of aspect ratio, the curves with various bound-
ary conditions converge together. In addition, it is seen that by
rising the aspect ratio to /,//,= 1.5, the surface layer effects would
increase drastically, while for aspect ratio larger than 1.5, [//,> 1,
the surface energy on the fundamental frequency have no signifi-
cant effects.

In Fig. 5, the nanoplate length and external electric voltages are
[,=20nm and V=0 V. From Fig. 5, it is can be found that the
degree of surface layers increases by augmenting length to thick-
ness ratio. Moreover, after a critical length to thickness ratio, the in-
fluence of surface layer extremely raises. In addition, for the higher
value of length to thickness ratio, the surface layer effect is more
dependent on boundary condition.

In Fig. 6, the nanoplate length, thickness, and external electric
voltage are /,=20 nm, =1 nm, and V=0V, respectively. From
this figure, it is understood that the influences of surface layers
augment by enhancing the residual surface stress. Moreover, for
negative residual surface stress, when the boundary condition gets

fundamental frequency ratio

aspect rati, 11,

Fig. 4 Variation of the fundamental fiequency ratio with the aspect ratio of
the piezoelectric nanoplate under different boundary conditions (I, = 20 nm,
h=1nm, ega=0.5nm, Vy=0V, Ny, =N,,, =0 N/m)

[—e—ss83 |
—+—S55C
s} | ——scsc

48 SCCC
|——eccc |

fundamental frequency ratio
w

i 18 20 28 30 38 40
length-tothickness ratio, |/h

Fig. 5 Variation of the fundamental frequency ratio with the length to
thickness ratio of the piezoelectric nanoplate under different boundary con-
ditions (I, =1,=20 nm, eja=0.5 nm, Vy=0V, Ny, =N,,, =0 N/m)
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residual surtace stress, & (Nim)

Fig. 6 Variation of the fundamental frequency ratio with the residual
surface stress of the piezoelectric nanoplate under different boundary

conditions (le=1,=20 nm, epa =0.5 nm, h=1nm, Vo=0V,
Ny =Ny = 0 N/m)
LT
5,’ s
£ 2
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external electric voltage, ¥,

Fig. 7 Variation of the fundamental frequency ratio with the external elec-
tric voltages of the SS piezoelectric nanoplate under different nanoplate
thicknesses (1. =1, =20 nm, ega = 0.5 nm, Ny,, =N,,, =0 N/m)

= biaxial in-plane force, No=Nm=N

- - - -umniaxial in-plane force, N =N, N;qlﬂ
¢ ® h=1nm

* h=1.5nm
g » h=2 nm

fundamental frequency ratio

ET] 1 H 3 4 4
in-plass force, N (Nim}

&
kL
&
'y

Fig. 8 Variation of the fundamental frequency ratio with the mechanical
in-plane force of the SS piezoelectric nanoplate under different nanoplate
thicknesses and biaxial and uniaxial in-plane forces (I,=1,=20nm,
epa=0.5nm, Vy=07V)

more solid the effect of surface layer increases, while for positive
one that phenomenon is vice versa. Since in negative residual
surface stress, the nanoplate has inherent softening, while for the
positive one, the nanoplate has inherent stiffness. Therefore, by in-
creasing stiffness of boundary condition, the influence of surface
layer increases and decreases; respectively, for negative and posi-
tive surface residual stresses.

The effect of external electric voltage on the SS fundamental fre-
quency ratio of piezoelectric nanoplate demonstrated in Fig. 7
versus thickness nanoplate. In this figure, the effect of mechanical
in-plane force is not taken into account. It is observed that the
effect of surface layer declines by augmenting thickness nanoplate.
Moreover, by increasing the thickness of nanoplate the effect of ex-
ternal electric voltage decreases. It meant that the sudden change in
curves transpires later, since the stiffness of nanoplate has been
increased.

Fig. 8 shows the influences of biaxial and uniaxial mechanical
forces on the SS fundamental frequency ratio of piezoelectric nano-
plate for various nanoplate thicknesses. The external electric
voltage is zero. It is found that by increasing biaxial and uniaxial
mechanical forces, the fundamental frequency ratio raises. Thus,
the effect of surface layer enhances. Moreover, for a critical value
of mechanical force the out-of-plane stiffness of nanoplate
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Fig. 9 Variation of the fundamental frequency ratio with the non-local
parameter of the piezoelectric nanoplate under diverse external electric
voltages  and  boundary  condition  (I,=1,=20nm, h=1nm,
Nuw =N, =0 N/m)

becomes zero. This phenomenon happens sooner for nanoplate in
the case of biaxial in-plane force as compared with uniaxial one.
Since in the case of biaxial, the stiffness of nanoplate is less than
the case of uniaxial.

Fig. 9 represents the non-local parameter effect on the clamped
and SS fundamental frequency ratio of piezoelectric nanoplates
for diverse external electric voltage. It can be seen that the effect
of the surface layer would increase by augmenting non-local param-
eter. Since the non-local parameter has inherent softening; there-
fore, the effect of surface layer could exhibit itself more.
In addition, for the higher value of non-local small scale, the type
of boundary condition is not important.

5 Conclusions: In this paper, fundamental frequency analysis of
rectangular piezoelectric nanoplates via surface layers and
non-local elasticity hypothesis were studied. The piezoelectric
nanoplate was under mechanical and electrical in-plane forces.
The governing equation of piezoelectric nanoplate was achieved
via two variable refined plate theory. To solve the equations of
motion, the finite difference method was employed. To verify the
exactness of the finite difference solution, the governing equations
of motion were tested by the Navier’s solution. Result
demonstrated that by augmenting the external electric voltage,
biaxial, and uniaxial mechanical forces, plate aspect ratio, length to
thickness ratio, residual surface stress, and non-local parameter, the
influence of surface layer increased, while by increasing the
nanoplate stiffness and thickness the effects of surface decreased in
the fundamental frequency of piezoelectric nanoplates. Moreover,
in the higher value of plate aspect ratio and length to thickness
ratio, the surface layer effect was dependent on boundary
condition, while for the higher value of small scale the type of
boundary condition was not remarkable. In addition, for negative
residual surface stress, when the boundary condition got solid, the
effects of surface layer increased, while for positive one that
phenomenon was inverse. The out-of-plane stiffness of nanoplate
became zero sooner for biaxial mechanical forces as compared
with uniaxial one. Also, that incident happened for SSSS boundary
condition as compared with CCCC one.
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