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Free vibration analysis of a restrained carbon nanotube in an elastic matrix subjected to rotationally restrained boundary conditions is
investigated based on Eringen’s non-local elasticity. The analytical solution for free vibration frequencies and corresponding mode shapes
of single-walled carbon nanotubes are established. Using Fourier series and Stokes’ transformation, a useful coefficient matrix is derived.
The present analytical formulation permits to have more efficient coefficient matrix for calculating the vibration frequencies of carbon
nanotubes with different boundary conditions (rigid or restrained). The eigen values of this matrix give the vibration frequencies.
Comparisons between the free vibration frequency results of the present solutions and previous works in the literature are performed. The
calculated results show an excellent agreement with other solutions available in the literature.
1. Introduction: Single-walled carbon nanotubes and
nanostructures have attracted attention of researchers because of
their superior properties, mechanical, exceptional electrochemical,
thermal and electronic properties [1]. Making experiments with
nanoscale sized structures is found to be expensive and difficult.
Consequently, development of analytical models for carbon
nanostructures might be an important research points concerning
application of this type of structures.

Nanostructures possess extraordinary thermal, mechanical,
chemical and electrical properties that are superior to classical
ones. The classical continuum mechanics theory does not take
into account the small size effect in nanostructures. The classical
elasticity-based models over predict the real responses of nanostruc-
tures. So, a new non-classical elasticity model that captures size
effect is required. It has been shown in some published papers
that the nano-sized structures become stiffer [2–4]. Several
researchers have investigated the higher order elasticity theories
[5–14]. Different non-classical elasticity theories have attracted
researchers attention such as micropolar theory [15], strain gradient
theories [16, 17], couple stress theory [18–20] and non-local elasti-
city theory [21, 22].

In non-local elasticity theory, the size effects are included in the
constitutive equation by assuming that the stress is a function of the
strains at every points in the explored domain [23]. Wang and Liew
[24] have investigated static analysis of nanostructures based on
non-local elasticity using Timoshenko and Euler Bernoulli beam
theories. Pradhan and Murmu [25] have presented a non-classical
beam model and have investigated the vibration analysis of rotating
nano-sized cantilevers. Differential quadrature method has been
used to calculate the numerical analysis of non-dimensional fre-
quencies. Vibration behaviour of single-walled carbon nanotubes
has been explored recently by different researchers using wave
propagation approach [26, 27]. Free vibration behaviour and mech-
anical properties of a single-walled carbon nanotubes have been of
interest to scientific researchers due to its practical applications. The
static analysis of carbon nanotubes has been performed by some of
researchers [28, 29]. Thai [30] has presented a non-local higher
order beam model for stability, static and vibration of nano-sized
beams using the non-local elasticity theory. Free vibration behav-
iour of single-walled carbon nanotubes has been investigated by
some researchers [31–35].

In this work, an attempt is made to investigate the free vibration
of the simply supported single-walled carbon nanotubes with rota-
tional restrained boundary conditions using non-local elasticity
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theory. Both the Fourier sine series and Stoke transformation
have been incorporated in the vibration analysis. The proposed
method can be extended to the analysis of carbon nanotubes with
rigid boundary conditions. Influence of small-scale effects, rotation-
al restraints and Winkler modulus coefficient on the free vibration
frequencies are investigated and discussed.

2. Theoretical formulation: According to Eringen’s [22] non-
local elasticity theory, the constitutive equation is represented by

(1− l∇2)snl = sl , (1)

where l is the small-scale parameter (non-local parameter), sl is the
local stress tensor and snl is the non-local stress related to strain
matrix

sl = h(x):e(x), (2)

where h(x) is the elasticity tensor. The ‘:’ symbol is the double dot
product. e(x) is the deformation. The moment equation in non-local
elasticity may be derived by

M − l2
∂2M

∂x2
= −EI

∂2w

∂x2
. (3)

It is seen clearly from (3) that small-scale parameter enters into
the present problem through the constitutive relation, where w is
the lateral deflection. Displacement field in classical elasticity is
given by

u = −z
∂w

∂x
= 0, (4)

w = w(x, t) = 0, (5)

v = 0, (6)

where u represents the in-plane axial displacement. The stress–strain
equations according to classical beam theory can be written as
follows:

exx =
∂u

∂x
= −z

∂2w

∂x2
, (7)

sxx = −Ez
∂2w

∂x2
, (8)

M =
∫
A
zsxxdx. (9)
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By applying Hamilton’s principle [36] and taking the first variation
of resulting functional, the following equation is derived:

∂2M

∂x2
= rA

∂2w

∂t2
+ kww(x, t) (10)

where kw is the Winkler coefficient. Bending moment in non-local
elasticity can be found as follows:

M = l2 rA
∂2w

∂t2
+ kww(x, t)

( )
− EI

∂2w

∂x2
(11)

The equation of motion can be obtained by substituting (11) into (3)

rA
∂2w

∂t2
+ ∂2

∂x2
l2 rA

∂2w

∂t2
+ kww(x, t)

( )
− EI

∂2w

∂x2

[ ]

− kww(x, t) = 0

(12)

The above equation is the non-local governing equation of the
present carbon nanotube (nanobeam) in terms of the displacements.

3. Fourier series with Stokes transformation: Navier type
of solutions can be applicable simply supported boundary
conditions. In case of the spring boundary conditions, the
solution of (12) is difficult to obtain, so Fourier series expansion
together with Stokes transformation will be adopted in this work
for the solution of (12). The displacement function is described
in three separate regions as follows:

W (x, t) = w(x) cos [vt]. (13)

w(x) = D0 x = 0, (14)

w(x) = DL x = L, (15)

w(x) =
∑1
n=1

Zn sin
npx

L

( )
0 , x , L, (16)

with

Zn =
2

L

∫L
0
D(x) sin

npx

L

( )
dx. (17)

It should be noted that the points x= 0 and x= L are not included in
(16) since this function cannot converge to the second derivative of
lateral displacement function. Equations (14) and (15) allow
freedom in second derivatives of this function. In the contrast to
simply supported non-classical beam theories, present analytical
method can be used nano-sized structures having different
deformable boundary conditions. First derivative of (16) yields

D′(x) =
∑1
n=1

np

L
Zn cos

npx

L

( )
, (18)

(D′(x)) can be shown by cosine series

D′(x) = b0
L
+

∑1
n=1

bn cos
npx

L

( )
. (19)

The Fourier coefficients in (19) are written properly as follows:

b0 =
2

L

∫L
0
D′(x)dx = 2

L
D(L)− D(0)
[ ]

, (20)

bn =
2

L

∫L
0
D′(x) cos

npx

L

( )
dx n = 1, 2 . . . , (21)
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Applying the partial integration rule

bn =
2

L
D(x) cos

npx

L

( )[ ]L
0
+ 2

L

np

L

∫L
0
D(x) sin

npx

L

( )
dx

[ ]
, (22)

bn =
2

L
(− 1)nD(L)− d(0)
[ ]+ np

L
Zn. (23)

This is a mathematical procedure known as Stokes’ transformation
[37–39]. The following derivatives of lateral displacement function
are obtained:

dw(x)

dx
= DL − D0

L
+

∑1
n=1

cos anx
( ) 2 (− 1)nDL − D0

( )
L

+ anZn

( )
,

(24)
d2w(x)

dx2
= −

∑1
n=1

an sin anx
( ) 2 (− 1)nDL − D0

( )
L

+ anZn

( )
, (25)

d3w(x)

dx3
= D′′

L − D′′
0

L
+

∑1
n=1

cos (anx)
2((− 1)nD′′

LL − D′′
0)

L

( )

− a2
n

2((− 1)nDL − D0)

L
+ anZn)

( )
,

(26)

d4w(x)

dx4
= −

∑1
n=1

an sin (anx)
2((− 1)nD′′

L − D′′
0)

L

( )

− a2
k

2((− 1)nDL − D0)

L
+ anZn)

( )
,

(27)

where

an =
np

L
. (28)

4. Solution procedure: The Navier’s-type solution of the
equation of motion for the free vibration of a pinned–pinned
nanobeam with rotational restraints is presented. The lateral
displacement function is chosen to satisfy the equation of motion
and the simply-supported conditions. Substituting (16), (25) and
(27) into (12), the unknown Zn can be found as follows:

Zn = − 2pEIL2n (− 1)n+1DL′′ + D0′′
( )

L2 L2 + p2g2n2
( )

k − Arv2
( )+ p4EIn4

. (29)

The deflection function of a non-local beam having free boundaries
becomes

w(x) =
∑1
n=1

− 2pEIL2n (− 1)n+1DL′′ + D0′′
( )

L2 L2 + p2g2n2
( )

k − Arv2
( )+ p4EIn4

( )

× sin (anx).

(30)

5. Non-local boundary conditions: Consider a non-local beam
with rotational restraints and simply supported boundary
conditions (see Fig. 1). Following relations can be written as

V0
dw(x)

dx
= l2 rA

∂2w

∂t2
+ kww(x, t)

( )
− EI

∂2w

∂x2
, x = 0, (31)

w = 0, x = 0, (32)

VL
dw(x)

dx
= l2 rA

∂2w

∂t2
+ kww(x, t)

( )
− EI

∂2w

∂x2
, x = L, (33)

w = 0, x = L, (34)

whereV0 andVL denote the spring coefficient at the ends of carbon
nanotube. The substitution of (24) and (29) into (31)–(34) leads two
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Fig. 1 Simply supported carbon nanotube embedded in elastic medium with
rotational restraints

Fig. 2 Effects of rotational spring parameters on the first frequency param-
eter for different non-local parameters K= 1.0
simultaneous homogeneous equations as follows:

−
∑1
n=1

2EILV0p
2n2

EIp4n4 + L2(L2 + p2n2l2)(kw − rAv2)

( )
D′′
0

−
∑1
n=1

2EI(− 1)1+nLV0p
2n2

EIp4n4 + L2(L2 + p2n2l2)(kw − rAv2)

( )
D′′
L

− EID′′
0 = 0,

(35)

−
∑1
n=1

2EI(− 1)1+nLVLp
2n2

EIp4n4 + L2(L2 + p2n2l2)(kw − rAv2)

( )
D′′
0

−
∑1
n=1

2EILVLp
2n2

EIp4n4 + L2(L2 + p2n2l2)(kw − rAv2)

( )
D′′
L

− EID′′
L = 0.

(36)

Following dimensionless quantities are defined as

K = kwL
4

EI
, (37)

R0 =
V0L

EI
, (38)

RL = VLL

EI
, (39)

44 = v2rAL4

EI
, (40)

g2 = l2

L2
, (41)

then following two equations are obtained in dimensionless form:

−1−
∑1
n=1

2R0p
2n2

Kn + p4n4 −44 −44p2n2g2

( )
D′′
0

−
∑1
n=1

2(− 1)1+nR0p
2n2

Kn + p4n4 −44 −44p2n2g2

( )
D′′
L = 0,

(42)

∑1
n=1

2(− 1)1+nRLp
2n2

Kn + p4n4 −44 −44p2n2g2

( )
D′′
0

− −1−
∑1
n=1

2RLp
2n2

Kn + p4n4 −44 −44p2n2g2

( )
D′′
L = 0,

(43)

where

Kn = K + Kp2n2d2. (44)
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Equations (42) and (43) may be written in a matrix form:

F11 F12

F21 F22

[ ]
D′′
0

D′′
L

[ ]
= 0, (45)

where

F11 = −1−
∑1
n=1

2R0p
2n2

Kn + p4n4 −44 −44p2n2g2
, (46)

F12 = −
∑1
n=1

2(− 1)1+nR0p
2n2

Kn + p4n4 −44 −44p2n2g2
, (47)

F21 = −
∑1
n=1

2(− 1)1+nRLp
2n2

Kn + p4n4 −44 −44p2n2g2
, (48)

F22 = −1−
∑1
n=1

2RLp
2n2

Kn + p4n4 −44 −44p2n2g2
. (49)

The vibration frequencies can be obtained by following deter-
minant:

Fij

∣∣∣ ∣∣∣ = 0 (i, j = 1, 2). (50)

Setting above polynomial to zero gives the dimensionless
frequencies.

6. Numerical results and discussions: In this section, free
vibration analysis of carbon nanotubes is examined employing
present method considering non-local effects. The variations of
the first and second frequencies of the carbon nanotubes versus
uniform rotational spring parameter rises are, respectively, shown
in Figs. 2 and 3 for different non-local parameters (l/L = 0.05,
0.10, 0.15). It should be noted that rotational spring parameter
may lead to nanobeam vibrating at high circular frequencies. It
is revealed that for rotational restrained nanobeams, increasing
non-local parameter with constant values of elastic medium
parameter leads to increase in first two frequencies.

Fig. 4 shows the variation of the first frequency parameter with
the mode number for different cases of rotational spring parameter
(R0 = RL = R = 0, 1, 2, 3). The results for the frequency parameter
are in the dimensionless form. From Fig. 5, it can be observed that
as the scale coefficient increases frequencies. This implies that
for increasing mode number the value of frequency parameter
increases.

To illustrate the influence of non-local parameter with different
stiffness of the rotational springs on the vibration frequencies,
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Fig. 4 Effects of vibration modes on the first frequency parameter K=1.0

Fig. 3 Effects of rotational spring parameters on the second frequency par-
ameter for different non-local parameters K= 1.0

Fig. 5 Effects of vibration modes on the second frequency parameter
K=1.0

Fig. 6 Effects of vibration modes on the frequencies for equal rotational
spring parameter (R0 = RL = 0.8), constant elastic medium parameter
(K=1.0)

Fig. 7 Effects of vibration modes on the frequencies for equal rotational
spring parameter (R0 = RL = 1.0), constant elastic medium parameter
(K=1.0)

Fig. 8 Comparison of first frequency parameters with different non-local
parameter and constant elastic medium parameter (K= 1.0)
curves in Figs. 6 and 7 have been plotted for the constant value of
elastic spring parameter against the mode number. As the rotational
stiffness parameter of the springs increases the frequencies
increases.
Fig. 8 shows the variation of first vibration frequency versus the

non-local parameter a carbon nanotube with fixed value of K= 1. As
concluded earlier, it is again seen that smaller natural frequency
parameter can be obtained at lower rotational restraint parameters.
Micro & Nano Letters, 2018, Vol. 13, Iss. 2, pp. 202–206
doi: 10.1049/mnl.2017.0463
7. Conclusion: In this work, application of non-local elastic theory
is extended to free vibration behaviour of simply supported carbon
nanotubes with rotational restraints. Fourier sine series is selected
as a displacement function. An efficient coefficient matrix is
derived by using Stoke transformation to non-local boundary
conditions. Eigen values of this matrix give the free vibration
frequencies of simply supported carbon nanotubes with rotational
restraints.
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Effect of (i) rotational restraints, (ii) stiffness of Winkler founda-
tion of the single-walled carbon nanotube and (iii) non-local para-
meter on non-dimensional vibration frequencies is investigated
in detail. Size-dependency on free vibration behaviour of the
carbon nanotubes is more considerable for higher values of rota-
tional restraint parameters and lower values of length to non-local
parameter. It is revealed that for rotational restrained nanobeams,
increasing non-local parameter with constant value of elastic
medium parameter leads to increase.
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