
Nonlinear microstructure-dependent Bernoulli–Euler beam model based on the
modified couple stress theory and finite rotation of section

Kun Huang ✉, Benning Qu, Ze Li, Ji Yao

Department of Engineering Mechanics, Faculty of Civil Engineering and Architecture, Kunming University of Science
and Technology, Kunming 650500, People’s Republic of China
✉ E-mail: 2008kunhuang@tongji.edu.cn

Published in Micro & Nano Letters; Received on 24th October 2017; Revised on 10th December 2017; Accepted on 18th December 2017

Based on Hamilton’s principle and the modified couple stress theory, a Bernoulli–Euler microbeam model is developed with the finite rotation
of the cross-section. The present model includes three couple-stress-induced nonlinear terms, and these nonlinear terms have a significant
influence on the mechanic response of the beam.
1. Introduction: In the microelectromechanical systems, the
elements of the structure are in the microsize [1]. In this size,
the scale effect will occur and modify macroscopic mechanical prop-
erties considerably [2–7]. In fact, the classical continuum mechanics
may not be applied to the micro and sub-microscale directly because
the theory cannot interpret the small scale effect [3–7]. Therefore, the
strain gradient theory and the modified couple stress theory are pro-
posed to consider the scale effect in the constitutive of the continuum.
The experiments and theories show that the two theories are success-
ful to deal with the topic at the microscale [7, 8]. On the other hand,
the researches of the dynamics of the microbeams are insufficient in
comparison with the statics. In most studies of the microbeam, it is
supposed that the rotation angles of the cross-section are small and
its effect can be neglected [9–11]. The recent development, which
the modified couple stress is applied to the microbeams and plates,
can be found in [12–18]. In fact, a small but finite bending deform-
ation may bring about a significant rotation angle of the section in
the microbeam, and the rotation may significantly influence
the mechanic response of the microbeam. In this Letter, a new non-
linear dynamic modal of Bernoulli–Euler microbeam is developed
using the modified couple stress theory. The model takes account
of the finite bending deformation, the finite section rotation and the
scale effect. Then the static bending and the frequencies of the free
vibrations will be investigated through the new model.

2. Formulation: The potential density of the modified couple stress
theory is given by [6]

U = 1

2
s0 + s
( )

:1+m:x
[ ]

(1)

Here s0 is the initial stress, and

s = ltr 1( ) + 2G1, m = 2Gl2x,

1 = 1

2
u∇+ ∇u+∇u · u∇( )

(2)

Here ∇ is the Hamiltonian differential operator. u is the position
vector of the beam, and u = u1i + u2j + u3k, i, j and k are the
unit vectors in the directions of x, y and z axes, respectively. s is
the stress tensor. 1 is the strain tensor. G, l are Lame parameters,
G = E/ 2 1+ n( )[ ], and E, n are Young’s modulus and Poisson
ratio, respectively. l is a material length scale parameter acquired
from experimentations and the value is about 1− 20mm [6–10].
In fact, it is an open question how to determine the length scale. In
most cases, the length scale may be determined using a bend test
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for a clamped-clamped or cantilever microbeam [19]. Here m is
the component of the deviatoric part of the couple stress tensor,
and x is the symmetric part of the curvature tensor, and are
defined as

x = 1

2
∇v+ ∇v( )T[ ]

, v = 1

2
∇× u (3)

For establishing the equation of motion of the beam, as shown in
Fig. 1, three hypotheses are employed as follows: (i) the plane sec-
tions perpendicular to the undeformed reference line remain plane
and perpendicular to the deformed reference line (Bernoulli–Euler
hypothesis); (ii) neglect the longitudinal displacement (This means
that the present model may apply to the beam hinged or clamped
at two ends, but it cannot be employed to the simply supported or
cantilevered beam.); (iii) the cross-section of the beam is symmetrical
about the y and z axes. So the displacement field is written as

u1 = −y sin u, u2 = w x, t( ) − y 1− cos u( ), u3 = 0 (4)

Here u is the rotation angle of the cross-section, as shown in Fig. 2.
Expanding cos u, sin u and keeping up with cubic terms, have

u1 = −y
∂w

∂x
− 1

2

∂w

∂x

( )3
[ ]

, u2 = w− y

2

∂w

∂x

( )2

(5)

Neglecting the nonlinear terms of (5), it becomes classical displace-
ments field [20]. Using the von-Karman strain tensor [20] and
keeping up to cubic terms, the axial strain is obtained as

1xx =
∂u1
∂x

+ 1

2

∂u2
∂x

( )2

= −y
∂2w

∂x2
+ ∂w

∂x

( )2
∂2w

∂x2

[ ]
+ 1

2

∂w

∂x

( )2

(6)

The stress may write as sxx = E1xx. And have

xxz = xzx = 2
∂2w

∂x2
− ∂w

∂x

( )2
∂2w

∂x2
− y

∂2w

∂x2

( )2

+ 3

2
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∂x

∂3w

∂x3

[ ]
,

xyz = xzy = − ∂w

∂x

∂2w

∂x2

(7)

Using the strain tensor and the curvature tensor, the potential energy
of the beam, U, can be calculated. Let U = U1 + U2 −W . U1 is the
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Fig. 3 Static deformation as a function of the loads

Fig. 4 Frequencies varying with vibration amplitudes

Fig. 1 Modal of the structure

Fig. 2 Rotation angle of the cross-section
strain energy, U2 is the potential energy due to the initial axial load,
and the external force potential energy is W. So have

U =
∫L
0

∫
A

1

2
E12xx + 2Gl2 x2zx + x2zy

( )[ ]
dA dx

+
∫L
0

∫
A
s0
xx1xx dA dx−

∫L
0
f̄ x, t( )w dx

(8)

where f̄ x, t( ) is an external load. The velocity is obtained using
the displacement field (5). For a slender microbeam, the radius of
gyration of the section is small, so the nonlinear inertia terms are
negligible and the kinetic energy is written as

T = m

2
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0
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( )2
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[ ]
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(9)

Here the equation of motion is established by the Hamiltonian prin-
ciple. The principle can be described as follows [20]: the actual
movement between the initial state at the time t0 and the final
state at a time t takes the least possible value of the Lagrangian
action, namely d

�t
t0

T − U( ) dt = 0. So the motion equation is
obtained as

m
∂2w

∂t2
+ EI + Gl2A
( ) ∂4w

∂x4
− N0

∂2w

∂x2
− 3EA

2

∂w

∂x
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− 2EI + 5Gl2A

4
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∂4w

∂x4
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( )3[
+ 4

∂w
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∂2w

∂x2
∂3w

∂x3

]
= f̄

(10)

Here A and I are the area and the moment of inertia of the section,
respectively. Equation (10) shows that the scale effect induces
three nonlinear terms that come from the finite rotation of the
section. However, these terms are neglected in [10–18, 21]. In fact,
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some nonlinear terms may arise from the scale effect if the transverse
shear effect is considered [22]. However, the shear stress is generally
ignored in the slender beam [20]. Compared with cantilevered
microbeams [23, 24], there is a nonlinear term 3/2

( )
EA ∂w/∂x

( )2
∂2w/∂x2
( )

in (10). This term has remarkable consequence in
microbeams for A ≪ I , as shown in Figs. 3 and 4. A linear modified
couple stress model may be obtained by omitting all nonlinear terms
of (10). Neglecting the scale-related terms in (10), let l = 0, one may
obtain a classical dynamic model that is consistent with (4.5.32)
in [20] with the longitudinal displacement u = 0. When the longitu-
dinal displacement of the beam cannot be ignored, the dynamic
model will become nonlinear partial differential equations with two
unknown displacement functions. We will research this case in
another paper. Besides, the effect of damping is important in the
microscale, but it is not clear whether the classical damping model
can be applied to the microstructure directly. So the effect of the
damping is neglected in this Letter.

Equation (10) may be written in the dimensionless through defin-
ing the quantities x̃, w̃( ) = x/L, w/L

( )
, and t̃ = v̄0t. Here

v̄0 = p2
�������������
EI( )/ mL4

( )√
is the nature frequency of the hinged-hinged

beam. Substituting these dimensionless quantities into (10), and
drop the cap of x̃, w̃ and t̃, have
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+4
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∂x
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]
= F

[ (11)

Here

H0 =
EI + Gl2A

mL4v̄2
0

, H1 =
N0

mL2v̄2
0

,

H2 =
3EA

2mL2v̄2
0

, H3 =
8EI + 5Gl2A

4mL4v̄2
0

, F = f̄ x, t( )
mLv̄2

0
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For a hinged-hinged beam, the boundary conditions of (11) are

w 0( ) = w 1( ) = ∂2w

∂x2
0( ) = ∂2w

∂x2
1( ) = 0 (12)
3. Example and discussion: In this section, the static bending and
the frequencies of free vibrations of the hinged–hinged beam is con-
sidered. It is difficult to solve the equation analytically, so the
Galerkin method is employed to discrete (11) as an ordinary differ-
ential equation. Assuming the first-order mode is C x( ) = sinpx
for a hinged–hinged beam, so have w = C x( )h t( ). Substituting w
into (11) and then multiplying C x( ) at both sides of the equation
and integrating in 0, 1[ ] (the truncation of the Galerkin method), have

ḧ+ v2
0h+ ah3 = f (13)

The dot represents the differentiation to dimensionless time t.
Equation (13) is a forced Duffing equation and its coefficients are

v2
0 = 1+ p4GAl2

mL4v̄2
0

+ p2H1, a = p4H2 + p6H3

4
, f = 2F

p

(14)

Here the physical parameters of the polymeric nanofibres are used
as an example. They are E = 1.44 GPa, G = 0.523GPa, and
density r = 2× 103 kg/m3 [19, 25]. It is necessary to note that
the length scale is about l = 0.69mm in [19], but l = 17.6mm in
[21]. In this Letter, l = 10mm is used. Assuming the cross-section
is a tube, its diameter and thickness are R = 20mm and h = 1mm.
Other parameters are L = 100mm, N0 = 0.002N. Then, there
are A = pRh = 62.8 mm

( )2
, I = phR3/8 ≃ 3.14× 103 mm

( )4
,

m = Ar = 1.256× 10−7 kg/m and v̄2
0 = 3.50× 1013.

For the static bending, the bending amplitudes as a function of
the loads can be obtained by neglecting the inertia term in (13),
as shown in Fig. 3. The finite rotation accounts for the nonlinear
terms in the displacement field (5), therefore the couple stress
induce the three nonlinear terms in (10) and (11). From Fig. 3,
it is observed that the couple stress increases the rigidity of
the beam. And the nonlinear terms, which are induced by the
couple stress, have an increasing influence on the enlargement of
bending amplitudes. Comparing the red line and the green line in
Fig. 3, the effect of the finite rotation of the section can be found
because the finite rotation of the section makes small scale effect
appear in the nonlinear terms of (10). Here the model, present
without couple-stress-induced nonlinear terms, neglect the non-
linear terms that are induced by both the finite section rotation
and couple stress.

Generally, the vibration frequency with cubic nonlinear terms is a
function of the vibration amplitudes. Letting f = 0 and using the
perturbation method in (13), the function can be obtained as [26]

v = v0 1+ 3aL2/8
( )

(15)

Here L is the dimensionless vibration amplitude. Using (15), it is
found that the finite rotations make the nonlinear frequencies
increase, and this effect will more apparent accompanying with
the vibration amplitudes enlargement, as shown in Fig. 4. When
the beam appears a big deformation, Figs. 3 and 4 indicate too
that the nonlinear terms in the classical model have a more signifi-
cant influence than the couple-stress-induced linear term. This
can be found by comparing the blue line and the yellow line in
Figs. 3 and 4. The recent research of the microbeam, which the
couple-stress-induced nonlinear terms are neglected, can be found
in [27–30].
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4. Conclusions: In this Letter, a new nonlinear model of the
Bernoulli–Euler microbeam is developed based on the modified
couple stress theory. The results show that the nonlinear terms,
which are induced by the scale effect and the finite rotation of the
section, have significantly influence on the static bending and the
vibration frequency of the microbeam.
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