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In this work, torsional vibration of nanorods with torsional elastic boundary conditions is presented via non-local elasticity theory. The present
model developed based on non-local elasticity theory gives the opportunity to interpret size effect. Two torsional elastic springs are attached to
a nanorod at both ends. A mathematical transformation known as ‘Stoke transformation’ is utilised to work out the Fourier series for the
nanorods with torsional restraints. A coefficient matrix including torsional coefficients is determined by using non-local boundary
conditions. A comparison is performed to validate numerical simulations with those given in the literature and the results agree with each
other exactly. The non-local effects of torsional end restraints on the free torsional vibration response are investigated for both deformable
and rigid boundary conditions.
1. Introduction: Experimental investigations related to nano-sized
structures and machines have shown that these type of structures
have extremely low weight, high aspect ratio and high stiffness.
In recent decades, several scientific investigations have been
performed to analyse micro/nano-sized structures and its
correlates, using different approaches and definitions [1, 2]. It is
agreed that the classical continuum theories are not suitable for
modelling of nano-sized structures and machines. In order to
design nano-sized structures and machines, size-dependent
different elasticity models have been used such as strain and
stress type gradient elastic models, peridynamics and modified
couple stress theory.
There are different approaches developed for the analyses of

sized effect on the mechanical behaviours of nano-sized structures
and machines. In recent years, a wide range of higher-order elasti-
city theories have been utilised for several engineering applications,
such as screw dislocations, modelling of micro- or nano-scaled
structures, analysis of nanoelectromechanical systems and micro-
electromechanical systems, modelling of carbon nanotubes, ana-
lysis of ultrathin films and atomic force microscope, and
dynamical control for micromachines.
Due to the smooth variation of material scale parameter, the

nanorods have many advantages in different areas of application,
including enhanced thermal and corrosion resistance. Potential
applications of nanorod (carbon nanotube) have been made to
various engineering fields on account of its specially properties
[3, 4], such as graphene transistors, chemical sensors, field-effect
transistor, gas detection, solar cells, logic circuits with filed-effect
transistor, diagnosis devices, ultracapacitors, transparent and con-
ductive films, ultrastrength composite materials. Since classical
continuum theories cannot predict the characteristic behaviours of
nanorods, higher order elasticity theories have been proposed man-
aging to predict mechanical properties of nanorods in recent years
[5–10]. Application of non-local elasticity (NE) theory to static ana-
lysis of micro and nano-structures has been performed byWang and
Liew [10]. Recently, several higher order elasticity theories have
been utilised to help the researchers to understand the effect of
the small size [11–19].
Literature review reveals that the conducted theoretical and ex-

perimental studies on the torsional free vibration of nanorods are
based on the assumptions that the boundary conditions are classical
and rigid (fixed-free). Very few studies have been conducted to
examine the effects of torsional restraints. The present work is con-
cerned with the derivation of a general eigenvalue solution for the
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torsional vibration analysis of nanorods modelled as NE theory [20,
21]. This model bridges the gap between rigid and the restrained
boundary conditions. A mathematical procedure known as ‘Stoke
transformation’ is employed to work out the Fourier series for the
nanorods with general elastic torsional boundary conditions. The
direct analytical expressions of the torsional vibrational responses
with elastic springs are derived by using the NE theory.

2. NE theory: For isotropic and homogenous elastic solids, the NE
theory is described by the following equations [20, 21]:

skl,l + r fl −
∂2ul
∂t2

( )
= 0 (1)

skl(x) =
∫
V

a x− x′
∣∣ ∣∣, x( )

tkl(x
′) dV (x′) (2)

tkl(x
′) = lemm(x

′)dkl + 2mekl(x
′) (3)

ekl(x
′) = 1

2

∂uk (x
′)

∂x′ l
+ ∂ul(x

′)
∂x′k

( )
(4)

in which, r is the mass density of the body, skl is the non-local
stress tensor, ul is the displacement vector, fl is the applied force
density, 1kl(x

′) is the strain tensor, tkl(x
′) is the Cauchy stress

tensor at any point x′, V is the volume occupied by the body, t
denotes the time, m and l are Lame constants, a x− x′

∣∣ ∣∣ is the
distance form of Euclidean. a x| | can be displayed by a linear
differential operator. This could be shown as the following
compact form [20, 21]:

<a x− x′
∣∣ ∣∣( ) = d x− x′

∣∣ ∣∣( )
, (5)

the following relation can be deduced from (2):

<skl = tkl (6)

Furthermore, following partial differential equation can be obtained
from (1):

tkl,l + < fl − rük
( ) = 0 (7)

the linear differential operator has been proposed by Eringen
given as

< = (1− (e0a)
2∇2 = 0 (8)
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where a denotes internal characteristic length and e0 is a material
constant, ∇2 is the Laplacian. Then constitutive equation in NE
can be written in terms of non-local parameter

1− (e0a)
2∇2[ ]

skl = tkl. (9)

3. Governing equation of torsional vibration: By using the
relation in (9), the equation of the motion of the NE theory in
terms of the angular rotation is as follows [22]:

GJp
∂2f(x, t)

∂x2
+ (e0a)rJ

2
p
∂4f(x, t)

∂x2∂t2

− rJp
∂2f(x, t)

∂t2
= 0,

(10)

where f denotes the angular rotation about the centre of twist, Jp is
the polar moment of inertia, G is the shear modulus of elasticity

G = E

2(1+ n)
, (11)

in which, n is the Poisson’s ratio and E is the Young’s modulus.
Equation (10) is the partial differential equation for the free
torsional vibration of nanorod.

4. Free torsional vibration with general elastic boundary
conditions: In this section, a nanorod with torsional restraints
(see Fig. 1) for a torsional free vibration is investigated based on
Eringens’ NE theory. The main idea of the proposed analytical
method is to derive an eigenvalue problem including the torsional
spring coefficients.

4.1. Angular rotation function about the centre of twist: By
employing the separation of variables technique, f(x, t) in (10)
could be rewritten as the following form:

f(x, t) = u(x)eivt , (12)

where u(x) is the rotation function about the centre of twist and v is
the angular frequency. By substituting the (12) into equation (10)
yields

GJp
d2u(x)

dx2
− (e0a)v

2rJ 2p
d2u(x)

dx2
+ rJpv

2u(x) = 0, (13)

the angular rotation function u(x) in (13) is defined as follows:

u(x) =
u0 x = 0
uL x = L∑1

n=1
An sin (bnx) 0 , x , L

⎡
⎢⎢⎣

⎤
⎥⎥⎦, (14)

where

bn =
np

L
. (15)
Fig. 1 Nanorod with torsional springs at both ends
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4.2. Stokes’ transformation: In this Letter, in order to see the
influences of torsional restraints, a mathematical transformation
known as ‘Stokes’ transformation’ is applied to the boundary
conditions and the governing equation [6, 23–26]. The
coefficients An

( )
in (14) read as

An =
2

L

∫L
0
u(x) sin (bnx) dx. (16)

Taking the first derivative of (14) with respect to x gives

u′(x) =
∑1
n=1

anAn cos (anx). (17)

By combining Fourier cosine series and (17), the following
equation can be obtained:

u′(x) = f0
L
+

∑1
n=1

fn cos (bnx). (18)

Fourier constants (f0, fn) read as

f0 =
2

L

∫L
0
u′(x) dx = 2

L
u(L)− u(0)
[ ]

, (19)

fn =
2

L

∫L
0
u′(x) cos (bnx) dx(n = 1, 2 . . . ), (20)

by integrating parts of (20), the following relations are derived:

fn =
2

L
u(x) cos (bnx)
[ ]L

0+
2

L
bn

∫L
0
u(x) sin (bnx)dx

[ ]
, (21)

fn =
2

L
(− 1)nu(L)− u(0)
[ ]+ bnAn. (22)

The present method (Fourier series to gather with Stokes’
transformation) will be useful when dealing with torsional
deformable boundary conditions. Similarly, first and second
derivatives of u(x) can be calculated as

du(x)

dx
= uL − u0

L

+
∑1
n=1

cos bnx
( ) 2 (− 1)nuL − u0

( )
L

+ bnAn

( )
,

(23)

d2u(x)

dx2
= −

∑1
n=1

bn sin bnx
( ) 2 (− 1)nuL − u0

( )
L

+ bnAn

( )
. (24)

Substituting (14) and (24) into (13), the coefficient An and the
angular rotation function f(x, t) can be written in terms of u0 and
uL as follows:

An =
2 (− 1)n+1uL + u0
( )

(e0a)
2rv2 − Gbn

( )
L −Gb2

n + g2rv2bn + rv2
( ) (25)

f(x, t) = 2 (− 1)n+1uL + u0
( )

(e0a)
2rv2 − Gbn

( )
L −Gb2

n + g2rv2bn + rv2
( )

× sin (bnx)e
ivt ,

(26)

5. Non-local boundary conditions: By using the relations for rigid
boundary conditions in [22], the non-local boundary conditions for
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deformable boundary conditions can be written as

GJp
du

dx
− (e0a)

2Jprv
2 du

dx
= V0u0, x = 0 (27)

GJp
du

dx
− (e0a)

2Jprv
2 du

dx
= VLuL, x = L (28)

in which, V0 and VL are the torsional spring coefficients. After
some mathematical manipulations, the substitution of (23) and
(25) into (27) and (28) leads to two equations

(
−GJp

L
+ (e0a)

2Jprv
2

L
−V0

+
∑1
n=1

2JpLrv
2 (e0a)

2rv2 − G
( )

Lrv2 L+ p(e0a)
2n

( )− p2Gn2

)
u0

+
(
GJp
L

− (e0a)
2Jprv

2

L

+
∑1
n=1

2JpL(− 1)n+1rv2 (e0a)
2rv2 − G

( )
Lrv2 L+ p(e0a)

2n
( )− p2Gn2

)
uL = 0

(29)

(
GJp
L

− (e0a)
2Jprv

2

L

+
∑1
n=1

2JpL(− 1)n+1rv2 (e0a)
2rv2 − G

( )
Lrv2 L+ p(e0a)

2n
( )− p2Gn2

)
u0

+
(
−GJp

L
+ (e0a)

2Jprv
2

L
−VL

+
∑1
n=1

2JpLrv
2 (e0a)

2rv2 − G
( )

Lrv2 L+ p(e0a)
2n

( )− p2Gn2

)
uL = 0

(30)

and above systems of equations can be written in a matrix form

a11 a12
a21 a22

[ ]
u0
uL

[ ]
= 0 (31)

where

a11 = −GJp
L

+ (e0a)
2Jprv

2

L
−V0

+
∑1
n=1

2JpLrv
2 (e0a)

2rv2 − G
( )

Lrv2 L+ p(e0a)
2n

( )− p2Gn2

(32)

a12 =
GJp
L

− (e0a)
2Jprv

2

L

+
∑1
n=1

2JpL(− 1)n+1rv2 (e0a)
2rv2 − G

( )
Lrv2 L+ p(e0a)

2n
( )− p2Gn2

(33)

a21 =
GJp
L

− (e0a)
2Jprv

2

L

+
∑1
n=1

2JpL(− 1)n+1rv2 (e0a)
2rv2 − G

( )
Lrv2 L+ p(e0a)

2n
( )− p2Gn2

(34)

a22 = −GJp
L

+ (e0a)
2Jprv

2

L
−VL

+
∑1
n=1

2JpLrv
2 (e0a)

2rv2 − G
( )

Lrv2 L+ p(e0a)
2n

( )− p2Gn2

(35)
Micro & Nano Letters, 2018, Vol. 13, Iss. 5, pp. 595–599
doi: 10.1049/mnl.2017.0751
The torsional frequencies in NE can be computed by requiring the
determinant of the coefficient matrix to zero

aij

∣∣∣ ∣∣∣ = 0(i, j = 1, 2) (36)

6. Results and discussions: In this section, analytical solutions for
free torsional vibration analysis of nanorods are presented,
considering the non-local effects and torsional restraints.
However, before venturing into mathematical calculations, it is
desired to evaluate the accuracy of the present model when
implement to some special cases of the torsional restraints. To
verify the mathematical results calculated in this Letter, free
torsional frequencies are compared predicted by the current
method for NE theory with those predicted by following
expression available in the literature. The free torsional
frequencies according to NE theory and the classical elasticity
(CE) theory can be calculated from following two formulations
(37) and (38) for fixed-fixed boundary conditions [22, 27]:

4NE
k = p

��
G

√
k

L
����������������������������
r ((p2(e0a)

2k2)/L2)+ 1
( )√ , (37)

4CE
k = pk

L

��
G

r

√
, (38)

For numerical illustration, the following properties of nanorod
are used in this Letter: Poisson ratio n = 0.25, Young’s modulus
E = 0.72 TPa, density = 2.3 g/cm3 [28], inner radius R1 = 2.16 nm
and outer radius is R2 = 2.50 nm., the length L= 10 nm and the
thickness of the nanorod t = 0.34 nm [28]. It should be pointed
out that non-local parameter e0a should be smaller than 2 nm for
carbon nanotubes [29]. Consequently, the non-local parameter e0a
is selected in the range 0–2 nm [30]. Polar moment of inertia of
the cross-section and area could be written as

Jp =
p

2
R4
2 − R4

1

( )
, A = p R2

2 − R2
1

( )
, (39)

Fixed-fixed supports are special case of a nanorod with torsional
springs of infinite stiffness. In this Letter, to obtain the solution of
fixed-fixed supports, torsional spring coefficients are taken as
V0 = 90× 109N/mm and VL = 90× 109N/mm. A comparison
study is performed to validate numerical simulations with those
given in the literature (37) and (38) and the results agree with
each other exactly.

Next, the influence of non-local parameter, mode numbers on tor-
sional vibration behaviours of the nanorods is studied. Herein, the
non-dimensional vibration frequencies (normalised frequencies)
are defined as the form of Dk = 4NE

k /4CE
k , k = 1, 2, 3, 4....( ).

The index k indicates the mode number. The parameter Dk is
used to give a better illustration of the non-local effects in torsional
vibration response of nanorods.

Figs. 2 and 3 show the variation of the first five normalised fre-
quencies Dk

( )
versus the non-local parameter e0a

( )
for different

two values of the torsional spring coefficients.
The mathematical results in each figure are calculated for a given

symmetrical torsional spring coefficients (V0 = VL = 5 nN/nm,
20 nN/nm). It can be observed, with increasing non-local parameter
e0a
( )

the normalised frequencies Dk

( )
decrease for all modes. In

addition, for a given torsional spring coefficients, the effect of the
non-local parameter in decreasing the normalised frequencies for
the higher modes is larger than those of the lower ones.

Figs. 4 and 5 display the variation of frequencies with dimension-
less length L/e0a

( )
change for frequencies computed from classical

continuum theory (38) and the Eringens’ NE theory: as the increase
597
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Fig. 3 First five torsional frequency ratios Dk

( )
for different non-local

parameter with V0 = 20 nN/nm, VL = 20 nN/nm

Fig. 4 Influence of non-local effects on the first five frequencies with
V0 = 5 nN/nm, VL = 5 nN/nm

Fig. 5 Influence of non-local effects on the first five frequencies with
V0 = 20 nN/nm, VL = 20 nN/nm

Fig. 7 Effect of mode number on the first five normalised frequencies with
V0 = 20 nN/nm, VL = 20 nN/nm

Fig. 2 First five torsional frequency ratios Dk

( )
for different non-local

parameter with V0 = 5 nN/nm, VL = 5 nN/nm

Fig. 6 Effect of mode number on the first five normalised frequencies with
V0 = 5 nN/nm, VL = 5 nN/nm

Fig. 8 Influence of torsional end restraints on the first mode

Fig. 9 Influence of torsional end restraints on the fifth mode
in length of nanorod decreases the non-local effects. As found
earlier, the NE theory frequencies are always smaller than the CE
results.

In Figs. 6 and 7, it can be concluded that the non-local effects in-
crease with increasing mode number, or larger non-local effects
result in higher order torsional vibration modes. It is also seen
from Figs. 4 and 7, the torsional frequencies of the NE theory are
smaller than those of classical continuum theory.
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The variations of the first and fifth non-dimensional frequencies
of the torsionally restrained nanorod versus uniform non-local par-
ameter rises are, respectively, shown in Figs. 8 and 9 for different
torsional spring coefficients (V0 = VL = 20 nN/nm, 5 nN/nm). It
is found from these figures that increasing non-local parameter
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leads to reduction in the normalised frequencies at a fixed torsional
spring coefficients.
One of the chief contributions of this Letter is the derivation of a

eigen value problem including both non-local and spring para-
meters for calculating the frequencies.

7. Conclusion: On the basis of the NE theory, torsional vibrations
of nanorods under elastic torsional boundary conditions are
investigated. A simplified method is proposed which can be used
for a nanorod with any types of elastic torsional boundary
conditions. This new method is virtually different from other
methods where, instead of classical rigid boundary conditions
(free-fixed), deformable boundary conditions (torsional restraints)
are used by considering the torsional spring coefficients. Angular
rotation is sought as the superposition of Stokes’ transformation
and Fourier sine series that is used to take care of the torsional
supports. A coefficient matrix is obtained with the aid of
non-local boundary conditions. The eigenvalues of this matrix
give the torsional vibration frequencies. To show the advantages
of the proposed analytical method, some numerical examples are
solved and investigate the effects of several parameters, such as
the non-local parameter and spring coefficients on the torsional
responses of the nanorod. It is revealed that for torsional
restrained nanorods, increasing non-local parameter with constant
value of length leads to decrease.
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