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Phonon Boltzmann transport equation and consequently the Equation of Phonon Radiative Transfer govern the conductive heat transfer in
semiconductors at the nanoscale. Here a semiconducting nanoparticle composite, consisting of cubic Si nanoparticles in a Ge substrate is
considered. A detailed three-dimensional heat transfer analysis is done, the temperature distributions are generated, the Effective Thermal
Conductivity (ETC) of the nanocomposite is obtained, and the effect of the Si nanoparticle size and the constituents’ atomic percentage on
the ETC is explored. As the most comprehensive study, the effect of the interface density on the ETC is investigated and the results are
compared with those obtained using the Monte Carlo simulation. The results show that at a fixed atomic percentage, as the dimensions are
decreased, the ETC reduces and the temperature jumps become larger. At a fixed Si nanoparticle size, as the Ge atomic percentage
increases, the ETC also increases, and the ETC reduces as the interface density increases. Reducing the ETC is a way to improve the

thermoelectric energy conversion.

1. Introduction: The solid state nanoscale heat transfer can be
modelled at three different levels of descriptions that are micro-
scopic, mesoscopic and macroscopic [1]. Microscopic methods
provide atomic scale information like the first-principle method
and the molecular dynamics (MD) simulation. Mesoscopic
methods produce statistical information such as the particle distri-
bution function and are mostly derived from Boltzmann transport
equation such as the equation of phonon radiative transfer
(EPRT), Monte Carlo (MC) simulation, and the lattice Boltzmann
method (LBM). Finally, the macroscopic methods use only several
state variables for continuum media such as phonon hydrodynamic
model [2], dual-phase-lag model, ballistic—diffusive model, and
thermon gas model.

According to the case, one or more than one [3—5] of the afore-
mentioned methods have been used to study the thermal properties
of the semiconductor structures, namely the best thermoelectric
materials. The efficiency of the thermoelectric devices is deter-
mined by the dimensionless figure-of-merit as follows:

ZT = S*oT/k M

where S is the Seebeck coefficient, s is the electrical conductivity,
and k is the thermal conductivity [6, 7]. According to (1), the
thermal conductivity reduction enhances the figure-of-merit.
Whereas the phonons have the major role in thermal conductivity
of semiconductor structures, phonon transport, and its scattering
have been investigated in the past [8—13]. Raisi and Rostami [14]
investigated the unsteady heat transport in a GaAs/AlAs superlattice
in the direction perpendicular to the layers by means of the EPRT.
Yang and Chen [15] modelled the Effective Thermal Conductivity
(ETC) of a SiGe nanocomposite consisting of squared silicon
nanowires in a germanium host. They solved the EPRT and
obtained the thermal conductivity of the nanocomposite in the
direction of heat transfer, which is perpendicular to the nanowires.
Lukes and Tien [16] used MD simulation to achieve thermal con-
ductivity in a thin nanoporous layer. Yang et al. [17] obtained
the thermal conductivity of a nanocomposite consisting of circular
silicon nanowires in a germanium host longitudinally. Minnich
et al. [18] used the Boltzmann transport equation considering the
relaxation-time approximation to calculate the thermoelectric
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properties of n-type and p-type SiGe nanocomposites. Zhou et al.
[19] presented a semiclassical model for thermoelectric transport
in nanocomposites. They developed a semiclassical electron
transport model based on the Boltzmann transport equation to
describe the thermoelectric transport processes in semiconductor
nanocomposites. Also, the LBM has been employed to study the
phonon transport in various nanostructures [20, 21]. Garg and
Chen [22] employed the density functional perturbation theory
to compute the thermal conductivity of a SiGe superlattice.
Hua and Cao [23] employed the phonon Boltzmann transport
equation to derive a model for the ETC of multiple-constrained
silicon-based nanostructures. Zhou et al. [24] investigated the
thermoelectric  transport properties of n-type silicon-based
superlattice-nanocrystalline heterostructures by first-principles and
MD simulations combined with the Boltzmann transport theory.
Their results show that nanostructuring the superlattice structure
can further reduce the thermal conductivity while the electrical
transport properties remain approximately at the bulk level, and
provides a new way for enhancing the thermoelectric performance
of the silicon-based nanostructures.

In this research, for the first time, we study the three-dimensional
(3D) conductive heat transfer in a nanocomposite consisted of
Si nanoparticles in a Ge substrate by solving the EPRT numerically.
The influence of the size of Si nanoparticles and the atomic per-
centage of the constituents on the temperature distributions and
on the ETC will be explored. Finally, the ETC of the nanoparticle
composite is obtained as a function of the interface density and
the results are compared with the MC simulation.

2. Research perspective: A nanocomposite consisting of cubic
Si nanoparticles located in the Ge substrate regularly is shown
in Fig. 1. It is assumed that the heat is forced to flow only in one
direction, namely x. To study this nanocomposite, we can select a
periodic unit cell consisting of the Si cubic particle located in the
centre of a cubic Ge particle as shown in Fig. 2.

3. Governing equations: Conductive heat is transferred in solids
by means of electrons and phonons. In the semiconductors the
most effective carriers of the thermal energy are phonons. In
conventional conductive heat transfer where the spatial and time
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Fig. 1 Si—Ge nanoparticle composite and the heat flow direction, in the
Cartesian coordinates
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Fig. 2 Periodic unit cell of the nanocomposite, considered as the domain of

the heat transfer study

dimensions and scales are macroscopic, the Fourier’s law of
thermal conduction is valid and the thermal conductivity relation,
based on the kinetic theory is as follows:

k = (%) CvA )

where C is the volumetric specific heat, v isthe phonon group
velocity, and A is the phonon mean free path (MFP). If the
characteristic length is nearly equal or smaller than A, due to the
ballistic nature of phonons, (2) is not valid, and also the Fourier’s
law is not applicable.

In this research, we assume that the wave features of the phonons
are negligible and they behave as particles. Thus the phonon
Boltzmann equation (PBE) is used as the fundamental governing
equation. Using single relaxation time assumption, and without
any external force, PBE is expressed as follows:

of e
atv V==

I3

3)

where f is the phonons’ distribution function, v is the phonons’
group velocity, 7, is the relaxation time, and the superscript 0
shows the equilibrium state. The ‘total phonon intensity’ defined
as follows can be substituted for phonons’ distribution function:

1 Wmax
I = E; L Vi |1t 0D, (w)d 4)
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Fig. 3 Coordinate system, the polar, and azimuthal angles

In this relation, the subscript i indicates the material (i =1 refers to
germanium and i =2 refers to silicon), D(w) is the density of states
per unit volume, f is the phonons’ distribution function, % is the
Plank’s constant, Vmi| is the phonons’ group velocity magnitude,
w is the phonons’ frequency, w,,,, is the phonons’ maximum fre-
quency for each polarisation, and the subscript m shows three polar-
isations of phonons. In steady-state conditions, using the total
phonon intensity, EPRT is obtained from (3) and can be written
as follows:

ol al a  Iy—1
Vi & + =

v, —tv,—=
yay 0z T, (5)

I3

v, =vcosf, v,=vsinfcosa,

2 v, = vsin fsin ¢

After substitution and simple manipulations, the EPRT can be
written as

hy=1
— ©

1

al; ol; ol
cos 6; 87); + sin 6, cos d)ia—; + sin 6, sin ¢ia—z’ =

where A;is the average phonons’ mean free path of each material,
the product of relaxation time and group velocity magnitudes,
and [ is the equilibrium phonon intensity defined as

1
IOi(x, ¥, z) = ETJ

I(r, Q) dQ
4

1 2 o7 (7)
j j [i(x, ¥, 2z, 0, (f)) sin 0d6d¢p

4m)o Jo

where Q)denotes the solid angle, 6 is the polar, and ¢ is the azimuth-
al angle as shown in Fig. 3.

4. Interfaces and the boundaries: As stated before according to
Fig. 2 for determining the phonons intensities in all directions in
the domain of Si and Ge, we can use (6) and (7). For interfaces
and boundaries, we should note that according to the mathematical
structure of the Boltzmann transport equation, the intensities entering
the domain, should be specified from boundary and interface condi-
tions. For example, according to Figs. 2 and 4, in the left boundary
(x=0), intensities in the negative x-direction, can be achieved from
(6) and (7) but those in the positive x-direction, should be specified
as boundary conditions. Therefore, boundaries (x=0) and
(x = Lg,) are subject to the periodic boundary condition as follows:

I(LGeaya z, 99 d)) _IO(LGe9y7 Z) :I(ana Z, 6’ d)) _IO(ana Z)
®)
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Fig. 4 Boundary and interface conditions for unit cell

While heat only flows in the x-direction, on the boundaries
(»=0), v =Lg.), (z=0), and (z = Lg.) the specular reflection
boundary condition is implemented as follows:

I(x, Lge, 2, 0, §) = I(x, Lge, 2, 6, m— &)
I(x,0,z 6, p) = I(x, 0,z 0, 7— ¢>)
I(X,J’a LGe> 0’ d)) = I(x’y> LGe> 95 - ¢)

[(X,y, Oa 6, d)) :[(X,y, Oa 97 - ¢)

The scattering of the phonons at the interfaces is diffuse and the
transmissivity and reflectivity of the interfaces are obtained from
the diffuse mismatch model and calculated as follows:

Ty =Ry, Rp+Tp=1, Tp=0Cn/(Cv +Cyy) (10)
where T denotes the transmissivity, R is the reflectivity and the
subscript 12 means from medium one to medium two. As an
example in the left interface (x; = Lg./2 — Lg;/2) and in the posi-
tive x-direction, the total phonon intensity that has a constant value
in the right hemisphere is achieved from the conservation of energy
as follows:

27 T
I(x, 5,20, ¢) = —R—:j J /zlz(xl,y, z, 6, ¢) cos Osin 6d6de

27 /2
+—j j I, (%, », z, 6, §) cos fsin §dOd¢p
m™Jo Jo
(1)

5. Temperature field and thermal conductivity modelling:
Although at the nanoscale the temperature is not a criterion of
local thermal equilibrium, the temperature can be defined as the
local energy density as follows [15]:

4l (x, ¥, z)

v (12)

T(x, ¥, z) =

The average temperature in each surface perpendicular to the heat
transfer flow can be achieved as follows:

_ 1 (Lae (Lce
T(X)ZTJ j T(x,y, Z) dydz (13)
Ge J O 0
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The x-component heat flux and the rate of heat transfer can be
obtained from the total phonon intensity as follows:

2 e
q,(x, y,2) = jo L I(x, , z, 6, ¢) cos 6(sin 6d6dep)
(14)

Le

LGe
QX(X)ZJ j q,(x, y,z) dydz
0

0

Indeed, because of the specular boundary conditions in y and z
directions, the rate of heat transfer is independent of x and is
constant. The ETC can be modelled with a similar formulation of
the Fourier’s law for heat transfer across a single layer thin wall,
as follows:

(70 - T(t:))

L 2
Ge (15)

o0, = eff(Lée)

)
Lge (}(0) - iw(LGe))

The method implemented for the numerical solution of the EPRT
[25] is based on the finite difference method and is similar to the
discrete ordinate method in thermal radiation. A detailed
computer programming is applied to extract the results in 25
different cases. Some parameters used for the calculation are
presented in Table 1 [15].

6. Results and discussion: In presenting the results, we use x*, y*,
and z*, instead of x, y, and z, whereas x* =x/Lge, y* =)/Lg., and
z*=z/Lge. X|,)], and z| indicate the first interfaces in the x, y,
and z directions, respectively, while x5, 35, and z; represent the
second interfaces. Another parameter is the atomic percentage of
the constituents in the nanocomposite representing the ratio of
Lge to Lg;.

In Figs. 5-10, the Ge atomic percentage is selected 78%, which
corresponds to Lge/Ls; being 1.714. According to the phonon MFP
of Si at room temperature, three different values of Si lengths are

Table 1 Room-temperature parameters used in the calculations

C, J/m’K v, m/s k, W/mK A, nm
Si 930,000 1804 150 268
Ge 870,000 1042 60 198

temperature(z* = 0.5)(LSi= 10.5nm)(LGe = 18nm)
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Fig. 5 Temperature contours z*=0.5, Ls;=10.5 nm, LG, =18 nm
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Fig. 7 Temperature contours z* = 0.5, Lg; =280 nm, LG, =480 nm
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Fig. 8 Temperature profiles z* = 0.5, Ls; =280 nm, Lg, =480 nm, y*=0.5,
=0.75, y*=0.91

selected as 10.5, 280, and 831 nm to present a more comprehensive
analysis. The temperature contours in the surface z*=0.5 are
plotted in Figs. 5, 7 and 9 and also the temperature profiles for
three different values of y*, in the surface z*=0.5 are shown in
Figs. 6, 8 and 10. In Figs. 5 and 6 (Lg;= 10.5 nm), since the Si nano-
particle size is much smaller than the phonon MFP, the ballistic
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Fig. 9 Temperature contours z*=0.5, Ls; =831 nm, Lg, = 1425 nm
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Flg 10 Temperature profiles z¥=0.5, Lg;=831nm, Lg,=1425nm,
=0.5, y*=0.75, y*=0.91

effects of phonon heat transfer is completely dominant and large
temperature jumps are seen at the interfaces perpendicular to the
heat flow. Here the temperature jump in the centreline (z*=0.5
and y*=0.5) is 0.3818 K. In such cases, high thermal resistance
at perpendicular interfaces causes this temperature jump, and
increases the total thermal resistance of the nanoparticle composite
and consequently reduces the ETC. In this case, the ETC is
5.268 W/mK. As shown in Fig. 5, despite the important role of
the perpendicular interfaces, the parallel interfaces do not have
notable effects on thermal resistance as they have a little influence
on the temperature field. A notable behaviour shown in Fig. 6 is that
the temperature gradient in some regions is positive that does not
happen in macroscales when the temperature gradient should be
negative in the heat flow direction as shown in Fig. 10 and even
Fig. 8. It seems to have a contradiction with the second law of
thermodynamics. As mentioned before, at the nanoscale the tem-
perature is not defined as the thermal equilibrium case, but it
is defined as the local energy density according to (12). In the
case of Figs. 5 and 6, the ballistic transport is dominant and
no local thermal equilibrium can be established and the calculated
temperature represents the local energy density. A detailed illustra-
tion is available in [15] for a similar case based on the thermal
radiation analysis in the phonon ballistic range. In Figs. 7 and 8
(Lsi=280 nm), both ballistic and diffusive effects are present.
The temperature jump in the centreline is 0.1993 K and the ETC
is 42.43 W/mK. In Figs. 9 and 10 (Ls;=831 nm), the diffusive
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regime is dominant and the ballistic effects start to vanish. The tem-
perature jump in the centreline is only 0.1142 K and the ETC is
55.67 W/mK. Between the parallel interfaces in Figs. 5, 7 and 9,
the shape of the temperature contours are approximately similar
and indicate that the parallel interfaces have a little contribution
to the ETC reduction. In Fig. 11, the average temperature profiles
for the three preceding cases are shown. As stated before the tem-
perature jump decreases as the Si nanoparticle size increases. It is
interesting to mention that in all sections of these profiles even
for the case (Ls;=10.5 nm), in spite of Fig. 6, the temperature pro-
files are always descending.

In Fig. 12, the change of ETC versus Ge atomic percentage
is shown for two Si nanoparticle sizes of 10 and 50 nm. In this
figure, the 3D deterministic method based on EPRT is compared
with the MC simulation [26]. As shown in Fig. 12, at a fixed Si
nanoparticle size, as the Ge atomic percentage increases, the ETC
also increases. The diagrams show that the two methods have the
same behaviour but the ETC in our work is slightly less than the
MC.

At a fixed atomic percentage of the constituents, as the size of Si
particles increase, the ETC also increases and approaches to the
bulk values. An example for 78% of the Ge atomic percentage is
shown in Fig. 13.

The most comprehensive parameter is the interface density that
covers the atomic percentage and also the size of the nanoparticles,
which can be calculated from these two parameters. In Fig. 14, the
ETC of the nanoparticle composite plots versus the interface
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Fig. 11 Average temperature profiles Lg;=10.5, 280, 831 nm
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tion [26] and our 3D solution based on EPRT
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density. By increasing the summation of perpendicular interfaces
of nanoparticles per each cubic nanometre, the ETC is reducing.
A check point is that by approaching the interface density to zero,
the ETC approaches the bulk Ge thermal conductivity (60 W/mK).

7. Concluding remarks: In this research, an extensive 3D study on
the conductive heat transfer in the Si—Ge nanoparticle composites
has been done. The EPRT has been solved numerically and some
of the results are as follows:

Thermal conductivity in nanostructures does not only depend on
the material of the constituents but also depends on dimensions and
sizes.

At fixed atomic percentage, as the dimensions are decreased,
the ETC reduces and the temperature jumps become larger. At
fixed Si nanoparticle size, as the Ge atomic percentage increases,
the ETC also increases, and the ETC reduces as the interface
density increases.

The ETC values obtained, are approximately the same as the MC
simulation results and the deviation is ~10%.

By employing semiconductor nanocomposites, the thermal con-
ductivity reduces, and consequently, the figure-of-merit becomes
larger and the efficiency of thermoelectric devices improves.

8 References

[1] Guo Y., Wang M.: ‘Phonon hydrodynamics and its applications in
nanoscale heat transport’, Phys. Rep., 2015, 595, pp. 1-44

[2] Sellitto A.: ‘A phonon-hydrodynamic approach to thermal con-
ductivity of Si—Ge quantum dot superlattices’, Appl. Math. Model.,
2015, 39, (16), pp. 46874698

Micro & Nano Letters, 2018, Vol. 13, Iss. 6, pp. 788-793
doi: 10.1049/mnl.2018.0128



[5]

[10]
[11]
[12]
[13]

[14]

[15]

Li L., Zhou L., Yang M.: ‘An expanded lattice Boltzmann method
for dual phase lag model’, Int. J. Heat Mass Transf., 2016, 93,
pp. 834-838

Zhou Y., Zhang X., Hu M.: ‘Nonmonotonic diameter dependence of
thermal conductivity of extremely thin Si nanowires: competition
between hydrodynamic phonon flow and boundary scattering’,
Nano Lett., 2017, 17, (2), pp. 1269-1276

Zhou Y., Gong X., Xu B., E7 4L.: ‘Decouple electronic and phononic
transport in nanotwinned structures: a new strategy for enhancing
the figure-of-merit of thermoelectrics’, Nanoscale, 2017, 9, (28),
pp. 9987-9996

Nolas G.S., Sharp J., Goldsmid J.: ‘Thermoelectrics: basic principles
and new materials developments’ (Springer Science & Business
Media, Berlin, 2013)

Kajikawa T., Rowe D., Rowe D.: ‘Thermoelectric handbook: macro
to nano’, (CRC/Taylor & Francis, Boca Raton, FL, USA, 2006)
Casimir H.: ‘Note on the conduction of heat in crystals’, Physica,
1938, 5, (6), pp. 495-500

Holland M.: ‘Phonon scattering in semiconductors from thermal
conductivity studies’, Phys. Rev., 1964, 134, (2A), p. A471

Pohl R., Stritzker B.: ‘Phonon scattering at crystal surfaces’, Phys.
Rev. B, 1982, 25, (6), p. 3608

Klitsner T., VanCleve J., Fischer H.E., £7 4L.: ‘Phonon radiative heat
transfer and surface scattering’, Phys. Rev. B, 1988, 38, (11), p. 7576
Joshi A., Majumdar A.: ‘Transient ballistic and diffusive phonon heat
transport in thin films’, J. Appl. Phys., 1993, 74, (1), pp. 31-39
Ioffe A.F.: ‘Semiconductor thermoelements and thermoelectric
cooling’ (Infosearch Limited, London, 1957)

Raisi A., Rostami A.A.: ‘Unsteady heat transport in direction perpen-
dicular to a double-layer thin-film structure’, Numer. Heat Transf. 4,
Appl., 2002, 41, (4), pp. 373-390

Yang R., Chen G.: ‘Thermal conductivity modeling of periodic two-
dimensional nanocomposites’, Phys. Rev. B, 2004, 69, (19),
p. 195316

Micro & Nano Letters, 2018, Vol. 13, Iss. 6, pp. 788-793
doi: 10.1049/mnl.2018.0128

[16]

[17]

(18]

[19]

[20]

(21]
[22]

(23]

[24]

[25]

[26]

Lukes J.R., Tien C.: ‘Molecular dynamics simulation of thermal con-
duction in nanoporous thin films’, Microscale Thermophys. Eng.,
2004, 8, (4), pp. 341-359

Yang R., Chen G., Dresselhaus M.S.: ‘Thermal conductivity of
simple and tubular nanowire composites in the longitudinal direc-
tion’, Phys. Rev. B, 2005, 72, (12), p. 125418

Minnich A., Lee H., Wang X., £7 4..: ‘Modeling study of thermo-
electric SiGe nanocomposites’, Phys. Rev. B, 2009, 80, (15),
p. 155327

Zhou J., Li X., Chen G., £7 4L.: ‘Semiclassical model for thermoelec-
tric transport in nanocomposites’, Phys. Rev. B, 2010, 82, (11),
p. 115308

Nabovati A., Sellan D.P., Amon C.H.: ‘On the lattice Boltzmann
method for phonon transport’, J. Comput. Phys., 2011, 230, (15),
pp. 5864-5876

Guo Y., Wang M.: ‘Lattice Boltzmann modeling of phonon trans-
port’, J. Comput. Phys., 2016, 315, pp. 1-15

Garg J., Chen G.: ‘Minimum thermal conductivity in superlattices: a
first-principles formalism’, Phys. Rev. B, 2013, 87, (14), p. 140302

Hua Y.-C.,, Cao B.-Y.. ‘Ballistic-diffusive heat conduction
in multiply-constrained nanostructures’, Int. J. Thermal Sci., 2016,
101, pp. 126-132

Zhou Y., Gong X., Xu B., £7 4L.: ‘First-principles and molecular
dynamics study of thermoelectric transport properties of N-type
silicon-based superlattice-nanocrystalline heterostructures’, J. Appl.
Phys., 2017, 122, (8), p. 085105

Mohamadi M., Raisi A., Mehrabian M.A.: ‘Numerical study of
thermal conductivity reduction in nanolayered Si-Ge structures by
solving the equation of phonon radiative transfer’, J. Serb. Soc.
Comput. Mechan. (JSSCM), 2017, 11, (1), pp. 2945

Jeng M.-S., Yang R., Song D., £7 4L.: ‘Modeling the thermal con-
ductivity and phonon transport in nanoparticle composites using
Monte Carlo simulation’, J. Heat Transfer, 2008, 130, (4), p. 042410

793
© The Institution of Engineering and Technology 2018



	1. Introduction
	2. Research perspective
	3. Governing equations
	4. Interfaces and the boundaries
	5. Temperature field and thermal conductivity modelling
	6. Results and discussion
	7. Concluding remarks

