Analysis of entrance region flow of Bingham nanofluid in concentric annuli
with rotating inner cylinder
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This work analyses the entrance region flow of Bingham nanofluids in cylindrical concentric annuli. In this discussion, water is used as the
base fluid which is embedded with the silver(Ag) and copper(Cu) nanoparticles coalescing with Bingham fluid. The investigation has been
carried out by rotating the inner cylinder, while the outer cylinder is assumed to be at rest. A finite-difference analysis is used to obtain
the axial, radial, tangential velocity components and the pressure along the radial direction. With the Prandtl’s boundary layer
assumptions, the continuity and momentum equations are solved iteratively using a finite difference method. Computational results are
obtained for various non-Newtonian flow parameters, different volume fraction parameters and geometrical considerations. This work’s
main interest is to study the development of velocity profiles and pressure drop in the entrance region of the annuli. The present results

are compared with the results available in the literature for various particular cases and it is found to be in good agreement.

Nomenclature

m number of radial increments in the numerical
mesh network

D, Do pressure and initial pressure, respectively, Pa

P dimensionless pressure

7,0 z cylindrical coordinates

nand ¢ dimensionless coordinates in the radial and axial
directions, respectively

B Bingham number

Re, Ta modified Reynolds number and Taylor number,
respectively

Rt=Re*/Ta ratio of Reynolds number with Taylors number

R aspect ratio of the annulus, r/r, (flow region
of an annular space)

r1, 72 radius of the inner and outer cylinders,
respectively

Vs, Vy Vo velocity components in z, 7, 0 directions,
respectively, m/s

Vo uniform inlet velocity, m/s

k coefficient of fluidity

uv,w dimensionless velocity components

10} volume fraction of the nanofluid

p density of the fluid, Kg/m®

Pnf density of the Bingham nanofluid

u apparent viscosity of the model, Kg/m s

Iy reference viscosity

Hnt viscosity of the Bingham nanofluid

[0} angular velocity, rad/s

An, Ag mesh sizes in the radial and axial

directions, respectively.

1. Introduction: Recently, the study of non-Newtonian flow
has been a tremendous attraction in fluid dynamics research. In
particular, non-Newtonian fluid characterised by a yield value
such as Bingham plastics, Casson and Herschel-Bulkley fluids
are the special interest of the tribologists. The applications of
non-Newtonian fluids are evident in polymer devolatisation and
processing, wire and fiber coating, heat exchangers, extrusion
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process, chemical processing equipment, etc. Many important
industrial fluids are non-Newtonian in their characteristics and are
referred to as rheological fluids. This includes blood, coal-water
or coal-oil slurries, glues, inks, foods, polymer solutions, paints,
grease, paste, jelly and many others. In this analysis the
non-Newtonian fluid considered here is the Bingham plastic.

On the other hand, nanotechnology has been widely used in
many industrial applications. Nanofluids are engineered colloids
made up of a base fluid and nanoparticles, i.e. nanofluid is the com-
posite of nano-sized particles, like, copper, silver, gold, carbon
nanotubes etc. and the base fluids, like, water, engine oil, glycerin,
etc. Choi and Eastman [1] were the first one who gave the idea
of utilising composite fluid, namely, nanofluids, they used two
different types of nanofluids, copper (copper with water) and
silver (silver with water), in their study. The reasons for the use
of water-based Ag and Cu are generally regarded as a safe material
for humans and animals although it is recognised that this may
change in the future with more fundamental research on
nano-toxicology.

Further, both experimental and theoretical analyses are carried
out with the experimental work on ethylene glycol-based nanofluids
containing with spherical TiO, nanoparticles and the theoretical
analyses on the high shear viscosity, shear-thinning behaviour
and temperature dependence by Chen et al. [2]. This work aims
at a more fundamental understanding of the rheological behaviour
of nanofluids and the interpretation of the discrepancy. Hojjat
et al. [3] investigated experimentally the forced convective heat
transfer of three kinds of nanofluids, prepared by dispersing
g-Al,03, CuO, and TiO, nanoparticles in an aqueous solution
of the carboxymethylcellulose. The base fluid and all nanofluids
show pseudoplastic rheological behaviour through a uniformly
heated circular tube under turbulent flow conditions. Esmaeilnejad
et al. [4] investigated the advantages of using nanoparticles with
particular size in non-Newtonian fluids. They have computed
numerically the convection of heat transfer and laminar flow of
nanofluids with non-Newtonian base fluid through rectangular
microchannels. Hayat et al. [5] discussed the boundary layer flow
of'a Casson fluid due to a stretching cylinder in the presence of nano-
particles and thermal radiation. Here all physical properties are taken
as constant for the Casson fluid, except the thermal conductivity.
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Usman et al. [6] investigated numerically the velocity and thermal
slip effects on Casson nanofluid with heat and mass transfer
phenomena over an inclined permeable stretching cylinder by
using the collocation method.

Even though many research works have been carried out
separately in entrance region study as well as about nanofluids by
various researchers, the study of entrance region flow using nano-
fluids has been very rare, therefore we intend to do that work.
In this research article, the entrance region flow of a Bingham
fluid in the presence of nanofluids has been studied in cylindrical
concentric annuli. The focus will be on nanofluids containing Ag
and Cu by using water as base fluid, and the theoretical analysis
is based on our current understanding of the rheology of
Bingham fluid. The problem of entrance region flow of Bingham
nanofluid in concentric annuli has been investigated. The analysis
has been carried out under the assumption that the inner cylinder
is rotating and the outer cylinder is at rest. With Prandtl’s boundary
layer assumptions and the equations of conservation of mass and
momentum are solved using linearised implicit finite difference
technique. The system of linear algebraic equations thus obtained
has been solved by the Gauss-Jordan method. The present study
reports the development of axial, radial, tangential velocity profiles
and pressure drop in the entrance region for different values of
Bingham fluid characteristics, different volume fraction parameters
for Ag—water and Cu—water under various geometrical parameters.
The effects of these on the velocity profiles and pressure drop have
been discussed.

2. Analysis of the problem: The flow of two different nanofluids
are considered namely Ag-nanofluid and Cu-nanofluid and they
are coalescing with Bingham fluid and entering into the horizontal
rotating concentric circular cylinders, from a large chamber with a
uniform velocity vy and pressure p, initially. The radius of the inner
and outer cylinders is 7; and r,, respectively. Here o is the angular
velocity for rotating inner cylinder where the outer cylinder is
assumed to be at rest. The laminar flow is steady and incompress-
ible, with the physical properties being constants. We consider a
cylindrical polar coordinates system (r, 8, z) fixed at the entry
section with 7 and z along the radial and axial direction, respective-
ly. The geometry of the problem is shown in Fig. 1.

The constitutive equation and governing equations for nanofluid
with the Bingham fluid are given as from Nadiminti and
Kandasamy [7].

To
T = M‘nf+; g TZ=ZTy

1)
1 1
where 7= ETI-jTij and ¢ = Esijsij

where 7 is the yield stress, ¢ is the viscosity of the Bingham nano-
fluid. 7;; and g are the stress tensor and the rate-of-strain tensor,

Fig. 1 Geometry of the concentric coaxial cylinders
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respectively. The flow is governed by the equations

Bt Lemy=0 @
' 8(8‘;0) tv % v % - pnirzf% (rz [TO + kra% (%)] @
v, a(a‘;z)-i—vz a(a‘;z): —p%f%-i—ﬁ% (V|:To+k%j|> %)

where v,, vg v, are the velocity components in 7, 6, z directions,
respectively. pnr is density of the Bingham nanofluid. For the
inner cylinder rotation, the boundary conditions are

Forz>0andr=r,v,=v,=0and vy = wr,
Forz>0andr=r,,v.=v,=0andv, =0 ©)
Forz=0andr <r<r,v,=v,
p=pyatz=0

Using the boundary conditions, the continuity (2) can be expressed
in the following integral form

2‘[ l rv,dr :(r% — r%)vo 7

)

The non-dimensionalisation of the parameters are as follows:

=t U=l y =% Yo
7 Vo Mg wry
R:r_l,P:p—po,éu:sz(l—R)’
&) Pan(Z) r,Re
_To _ 2pye(ry = 1y
B—E,Re—T, (8)
22 2 3
7, =200 =) e Mf:k<w_ru)
mi(ry +73) )
= (1= B)pr + bpys g = s
Pnf Pr Pss Mng ( _d))z,s

where 1 and ¢ dimensionless coordinates in the radial and axial
directions respectively. ¢ is the solid volume fraction of the nano-
fluid, ¢ is the viscosity of the fluid fraction, pr is the reference
density of the fluid fraction, pg is the reference density of the
solid fraction. By introducing the above non-dimensional para-
meters, the governing (2)—(5) as well as boundary conditions (6),
they become

() () v ) e o
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where 4; = ((D/((1 = ¢)**)) and 4> =(()/((1 = 9)+6((0s)/(0))))-
Above (9)—(13), and the boundary conditions (6) become
Fors>0andn=1,V=U=0and W =1
Fors>0andn=R,V=U=0and W =0
(14)

Fors=0andR<n<1,U=1
P=0ats=0

3. Numerical solution: The numerical investigation and the
scheme of solution can be considered as a roundabout expansion
work of Nadiminti and Kandasamy [7]. It has been decided to
solve the above system of governing equations, using finite differ-
ence method.

The discritised solution space is shown in Fig. 2 in which An and
Ag correspond to the grid size along the radial direction and also
axial direction, respectively. By assuming appropriate finite-
difference definitions, the non-dimensionalised system of (9)—(13)
got reduced as

V(.n+l) 1 _ V.(n+1> 1 < R + IAT] )
D\ (4,%4,) i (4,%4;) | \R + (i + DAn

C4An( 1 (2R+(2i+1)An)* (15)
4As \ (4,%4,) ]\ R+ (i + DAn

(Ui(ﬁl) + U[((n+1) _ Ui(nH) _ Uf(n))

" (- rRe AY - PY

R+iAn ~ 2Ta(l +R) An (16)

R
[
i+1
i R
Im] AL
i1
2
1
0 z
1 2 -l S

Fig. 2 Meshwork for the finite difference technique

Micro & Nano Letters, 2019, Vol. 14, Iss. 13, pp. 1361-1365
doi: 10.1049/mnl.2019.0437

(n+1) (n) (n+1) (n)
o) Wil "W =W =W . 1
: 44 (4y%4;)

(1) _ ) () )
) R O R W
i As R+iAn |\ (4;%4,)

FkD) | () (n+1) )
| P W 2 2 o1
(4%43)

2(An)?

. (W™ — it o) W (0
L 2an)? (yx4y))  |(R+iAn)? ]| \(41%42)

My (n+1) (n) (n+1) (n)
Wi +Win — W - Wi . 1
(R + iAn)4An (4y%4,)

n [ 2B *( 1 >
|R+ ihn) " \4,
(n+1) (n+1) +1
] i T O W)/
i i A
2A7] (AI*AZ) S
(n+1) (1) (n+1) (n+1)
_ Pl =P + Ui = U . 1
As (R + iAn)2An (41%45) (18)
RS i
@n? (A147)

o))

where i=0 at n=R and i=m at n=1. The application of trapezoidal
rule to (13) gives

an

An (oo, o) = om 1-R
7 (RU" + U +Am 21: U R+ it = (19)
pn

The boundary conditions (14) gives
U = UM =0

The above equation reduces to

m—1 1 _R2
An ) UPR+iAn) = ( . ) (20)

i=1

The set of above equations (15)—(18) and (20) has been solved using
an iterative process. At first, (17) has been solved at n=0 column,
and 7 has been varied from 1 to m-1 to obtain a system of linear
equations which is then solved using the Gauss-Jordan method to
obtain tangential velocity. m is the number of radial increments in
the numerical mesh network. Correspondingly (16), (18) and (20)
have also been solved under similar conditions to determine the
system of linear equations. By Gauss-Jordan method, these
systems are then solved to obtain the axial velocity and pressure
at adjacent column n=1. Finally, the radial velocity is obtained
from (15) by Gauss-Jordan method using the known values of U.
By repeating the above procedure, we get the result column by
column along the axial direction of the annulus until the flow is
fully developed, both axially and tangentially.

4. Results and discussion: The computations have been done
by fixing the Bingham number as 10 for different aspect ratio.
The solid volume fraction of the nanofluid considered are 0.5
and 1.5 for both copper and silver nanofluids. Moreover, the
ratio between the reference density of the solid fraction and the
reference density of the fluid fraction for copper and silver
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Table 1 Non-Newtonian flow parameters and different volume fraction
parameters in tabular form

Nanofluids B ] Ps Por
Cu with water 10 0.5and 1.5 8933 997.1
Ag with water 10 0.5and 1.5 10,500 997.1

nanofluids are 8.9590 and 10.5305. We fix the ratio of Reynolds
number to Taylors number as 20, 30 and the results have been
obtained at radial direction 0.02, 0.03 and axial direction 0.007,
0.002, respectively. The velocity profiles along axial, radial,
tangential and pressure distribution along the radial direction
have been computed for different aspect ratios are 0.3 and 0.8,
when the inner cylinder is rotating and the outer cylinder is at
rest (Table 1).

The development of tangential velocity profiles in the entrance
region is depicted in Figs. 3 and 4 for the aspect ratio of large
annular space (R=0.3) and a small annular space (R=0.8),
respectively. Here the volume fraction parameter impacts the
tangential velocity much, which is high for a small value. The
tangential velocity decreases from the inner cylinder to the outer
cylinder in a gradual but linear manner, immaterial of the annular
width. For a higher value of volume fraction 1.5, this decreasing
pattern is in an oscillation nature in a large annular space for both
Bingham nanofluids. However, when space is small, the tangential
profile takes the shape of convex form for both silver and copper
nanofluids. However, silver nanofluid takes a good development
in the tangential velocity rather than copper nanofluid.

Figs. 5 and 6 depict the axial velocity profiles for the same value
of volume fraction and aspect ratio taken earlier. It is observed that
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Cu=15

rangential velocity, Vv

ale L L L L L L L L L
0307 03 L s 0%8 085 Lk o o8 083 1
radial drection, v

Fig. 3 Tangential velocity for R=0.3, Z=0.02, B=10then @=0.5 and 1.5
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Fig. 4 Tangential velocity for R=0.8, Z=0.02, B=10then @ =0.5 and 1.5
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for a low volume fraction irrespective of annular space, the axial
velocity component increases from the inner wall to reach its
maximum at a particular radial position and then decreases as it
moves towards the outer wall of the annular cylinder. However,
for a high volume fraction, the above trend remains the same for
the small annular space. However, the above-mentioned trend is
oscillating for a large annular space. Further, irrespective of the
two nanofluids under consideration, for the low volume fraction,
the difference in the values of axial velocity at any radial position
between the two cylinders is found to be marginal. Whereas, for
high volume fraction, the difference in the values of axial velocity
is found to be marginal for the small annular space and difference is
significant for a large annular space. Silver nanofluid develops in
quick time than copper nanofluid. Therefore we can conclude the
length of the entrance region is smaller for a silver nanofluid than
that of copper nanofluid. This may be due to their physical proper-
ties with flow nature.

The radial velocity, for the above-mentioned aspect ratio and the
volume fraction parameters, is presented in Figs. 7 and 8. For any
annular space and volume fraction, the radial velocity profile is
found to follow sinusoidal behaviour. It has been realised that for
silver and copper nanofluids, at any radial position, the difference
between the values of the radial velocity is found to be negligible.
For high volume fraction, the difference is negligible in the small
annular space and significant in large annular space. Silver nano-
fluid takes high magnitude of radial velocity with the negligible
difference between the Bingham nanofluids.

The pressure distribution computed for various cases is shown
in Figs. 9 and 10. For all the parameters considered, the pressure
increased gradually from inner rotating cylinder to outer stationary
cylinder. However, this increase is very small in magnitude for

axlatvelocity, U

2 1 1 Il 1 L L L L
0307 Lk 044 o5 058 065 072 o 08§ 083 1
radl directon, n

Fig. 5 Axial velocity for R=0.3, Z=0.02, B=10 then @=0.5 and 1.5
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Fig. 6 Axial velocity R=0.8, Z=0.02, B=10 then @=0.5 and 1.5
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Fig. 7 Radial velocity for R=0.3, Z=0.02, B=10 then @=10.5 and 1.5
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Fig. 8 Radial velocity for R=0.8, Z=0.02, B=10 then @=0.5 and 1.5
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Fig. 9 Pressure drop for R=0.3, Z=0.02, B=10 then @=0.5 and 1.5

the narrow space cylinders. Copper nanofluid showed a higher
pressure when compared to silver nanofluid irrespective of aspect
ratio. It has been observed that the pressure in the annuli is
found to be less for the copper nanofluid than that of silver nano-
fluid provide the volume fraction assumes that value from 0.1
to 1.1. However, this trend is reversed for the volume fraction
1.2-2. Also it has been observed as the volume fraction increase
the pressure also increases for both nanofluids. However, the rate
of increase is much higher for copper nanofluid than that of silver
nanofluid. Bingham nanofluids are inversely proportional to the
viscous nature. Silver nanofluid coalescing with Bingham fluid
decreases the pressure better than copper nanofluid coaleascing
with Bingham fluid in the entrance region of the annuli.

The above-mentioned observations are compared with the results
of Nadiminti and Kandasamy [7] in similar conditions, without
adding nanoparticles to the Bingham fluid and it has been found
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Fig. 10 Pressure drop for R=0.8, Z=0.02, B=10 then @ =0.5 and 1.5

that our results are in good agreement with the results of above-
mentioned authors. The case of stationary concentric annular
cylinders, the results of axial velocity components in the analysis
matched well with the results of Kandasamy [8].

5. Conclusion: Low volume fraction does not have an impact
on velocity profiles (axial, radial and tangential) irrespective of
aspect ratio. From Figs. 3-10 for low volume fraction, copper
(Cu) and silver(Ag) nanofluids have a similar trend of velocity pro-
files, which may be because of Newtonian behaviour and for higher
volume fractions, Ag-nanofluid showed a higher magnitude com-
pared to copper nanofluid because of its physical properties like
density and viscosity. The time taken for the silver nanofluid to
flow between the annular cylinders obviously dissipates the heat
generated due to friction comparatively better than copper
nanofluid. Pressure drop is more for higher volume fraction,
because of the viscous nature of nanofluids when compared with
base fluid and lower volume fractions of the nanofluids. From
Figs. 3-10, a higher volume fraction of copper nanofluid showed
a higher pressure drop when compared to silver nanofluids.
Higher pressure drop increases the pumping power and cost
which is not suitable for practical applications.
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